Investigation of Dual Injection of Ethanol Fuel in Downsized Spark Ignition Engine

By

Nizar Faisal Odah Al-Muhsen

A thesis in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Mechanical and Mechatronic Engineering
Faculty of Engineering and Information Technology
University of Technology Sydney

February 2019
Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by the Australian Government Research Training Program.

Production Note:
Signature removed prior to publication.

Nizar F. O. Al-Muhsen
Acknowledgements

First of all, I would like to thank my God Almighty for the blessing of health and patience throughout the time of this study.

There are no proper words to convey my deep gratitude and respect for my principal supervisor Associate Professor Guang Hong. I would like to express my heartfelt gratitude to her for the consistent guidance and great encouragement that never stopped since the first day of my candidature. She not only helped me with her deep expert knowledge but also with high-level research methodology skills. In addition, I would like to express my sincere gratefulness to my co-supervisor Dr. Nic Surawski for his concern about my future career.

I would like to acknowledge the scholarship provided by the Iraqi Ministry of Higher Education and Scientific Research. Their generosity is gratefully appreciated.

I would like to acknowledge the great help that I received from the staff in the Mechanical Engineering Laboratories and FEIT workshops at UTS, including but not limited to Jack Liang, Campbell Cain-Carney, and Chris Chapman. Their distinguished and unlimited technical support was a key reason that made the testing rig possible.

I wish to acknowledge help of Yuhan Huang during my candidature at UTS. He never hesitated to answer any of my questions and he was always kind and supportive. His patience and generosity will never be forgotten.

I gratefully thank my close friends Mahdi Hassan, Yuhan Huang, Mohamed Awadallah and Mohammad Abuhilaleh for their real friendship and the wonderful time we spent together throughout my candidature at UTS. I wish you all the health and success.

I would like to express my love and gratitude to my family {father, mother, brothers, sisters, wife (Maisam), my son (Mouamal) and my daughter (Maya)}, who helped me with lasting motivation and enthusiasm. At the same time, I would like to thank my parents-in-law, brothers-in-law, and sisters-in-law for their love and support.

Lastly but most importantly, my sweetheart wife Maisam Al-Amiri, it is impossible to thank you enough for your support, care, and love since the time we have met. This thesis would not have been possible without you. I am perpetually grateful.
List of Publications

Journal Paper:

Conference Proceedings:

Abstract

Ethanol fuel, as a bioproduct has become a common option to address the issue of energy sustainability. However, the current method of blending ethanol with gasoline does not take the full advantages of ethanol fuel such as its high octane number and great latent heat which potentially allow the increase of the compression ratio and improvement of engine efficiency. Dual injection of ethanol fuel is currently in development and has aimed to make more effective and efficient use of ethanol fuel in SI engines. Experiments were performed on a small single-cylinder four-stroke SI engine equipped with two dual fuel injection systems to investigate both dual injection of ethanol fuel (DualEI) and ethanol port injection plus gasoline direct injection (EPI+GDI). The effect of EPI+GDI on knock mitigation was also investigated.

In the investigation of DualEI, the effects of the ratio of the directly injected (DI) ethanol fuel, spark timing, and DI timing on engine performance, combustion and emissions were analysed. The results demonstrated that the indicated mean effective pressure (IMEP) was improved over all the DI ratios in DualEI engine compared to the original engine with gasoline port injection (GPI) only. This improvement was mainly due to the enhanced combustion quality. However, at higher DI percentages, the over-cooling effect and poor mixture quality adversely affected the combustion performance. The indicated specific nitric oxide emission (ISNO) was reduced by the cooling effect enhanced by ethanol fuel and the DI strategy, but the indicated specific hydrocarbon emission (ISHC) and the indicated specific carbon monoxide emission (ISCO) were raised with the increased DI percentage. As shown by the results for the effect of spark timing, the greatest IMEP and thermal efficiency occurred at spark timing around 30 CAD bTDC at the light load and 23 CAD bTDC at the medium load, which was identified to be the MBT spark timing. The IMEP was increased and the combustion duration was shortened when the spark timing was advanced from 15 CAD bTDC to the MBT timings.

The effect of DI timing associated with spark timing was also investigated. Results showed that the early DI timing enhanced the DualEI engine performance. The variation of IMEP with DI timing was not significant either with early DI timing or in most of the tested conditions with late DI timing. However, the results showed different effects of early and late DI timings associated with the spark timing on engine emissions. With late
DI timing, the engine emissions of ISCO and ISNO increased with the advance of late DI timing and spark timing. With early DI timing, the engine emissions increased with the advance of spark timing. However, the variation of engine emissions with early DI timing was greater than that with late DI timing, showing more unstable combustion.

In the investigation of EPI+GDI, the IMEP did not increase obviously with the increased ratio of EPI. However, the indicated thermal efficiency increased with the increased ratio of EPI because the total heating value of the fuels reduced with the increase of EPI. This was mainly attributed to the enhanced combustion process as the initial and major combustion durations were shortened with the increased ratio of EPI. This also explained why the coefficient of variation of the IMEP reduced with the increased ratio of EPI. As a consequence of improved combustion, the ISCO and ISHC emissions decreased with the increased ratio of EPI. However, the ISNO was increased possibly due to the average combustion temperature increased with and the oxygen added by the increased ratio of EPI.

The EPI+GDI effectively mitigated the engine knock and permitted more advanced spark timing. Results showed that every 10% increment (by volume) of EPI permitted about 2.0 CAD advance of knock limit spark timing. When the EPI ratio was 30% and over, the engine knock was entirely suppressed. The knock intensity was decreased with the increased ratio of EPI until the engine knock was completely suppressed when EPI was increased to 30%.
Table of Contents

Certificate of Original Authorship .. I
Acknowledgements .. II
List of Publications ... III
Abstract ... IV
Table of Contents ... VI
List of Tables: .. VIII
List of Figures: .. IX
Nomenclature and Abbreviation: ... XIII

1 Introduction ... 1
 1.1 Research significance and objectives .. 4
 1.2 Thesis outline .. 5

2 Literature review .. 7
 2.1 Properties of ethanol fuel .. 7
 2.2 Injection strategies in SI engine development ... 12
 2.2.1 Blended fuels for SI engines .. 12
 2.2.2 Direct injection and dual injection in SI engines 13
 2.2.3 Effect of spark and direct injection timings on combustion 15
 2.3 Engine downsizing and knock mitigation ... 17

3 Experimental setup and methods ... 21
 3.1 Research engine with dual fuel injection .. 21
 3.2 Experimental control and data acquisition systems .. 25
 3.2.1 Engine control systems ... 25
 3.2.2 Data acquisition systems .. 26
 3.3 Combustion and emissions data analysis methods ... 27

4 Dual ethanol injection (DualEI) engine performance ... 34
 4.1.1 Engine performance and combustion characteristics 37
List of Tables:

Table 2.1 Properties of gasoline and ethanol fuels. .. 8
Table 3.1 Research Engine Specification .. 25
Table 3.2 Specification of the Direct Fuel Injector [48, 86] ... 25
Table 4.1 Experimental Operating Conditions Section 4.2 ... 35
Table 4.2 Experimental operating conditions for subsection 4.3 44
Table 4.3 Shows Section 4.4 Experimental Operating Conditions 58
Table 5.1 Engine testing conditions .. 83
List of Figures:

Figure 2.1 Laminar flame speed of DMF, gasoline and ethanol fuels at various equivalence ratios [36].. 9

Figure 2.2 Distillation curves for blending ethanol/gasoline fuels (E0 for gasoline only) [45]... 10

Figure 2.3 Vaporisation curves for Gasoline, Iso-octane and Ethanol [32, 47]........... 11

Figure 2.4 Spatial and Temporal Spray Distribution for Two Direct Injection Timings, at 390 and 480 CAD [67]... 16

Figure 2.5 Typical engine knock cycle [78]... 18

Figure 3.1 Schematic Diagram of the Dual Injection SI Engine.................................... 23

Figure 3.2 The relative position of the HP injector and spark plug in engine cylinder head [85].. 23

Figure 3.3 Research Engine Test Rig.. 24

Table 3.2 Specification of the Direct Fuel Injector [48, 86]... 25

Figure 3.4 Schematic Diagram of Engine Output Data Measurement Systems. 27

Figure 3.5 Demonstration of Rassweiler and Withrow Algorithm and Combustion Phases Calculation Method [88]... 30

Figure 3.6 Port and Direct Fuel Injection Calibrations.. 33

Figure 4.1 Variation of the IMEP with Spark Timings (a) Light Load (b) Medium Load. ... 37

Figure 4.2 Variation of the IMEP with EDI Percentages.. 38
Figure 4.3 Variation of the Major Combustion Duration with the EDI Percentage.39

Figure 4.4 Variation of the In-Cylinder Peak Pressure with the EDI Percentage.40

Figure 4.5 Variation of the ISNO with the EDI Percentage. ..41

Figure 4.6 Variation of the ISHC with the EDI Percentage. ..42

Figure 4.7 Variation of the ISCO with the EDI Percentage. ..43

Figure 4.8 Effect of spark timing on IMEP at different DI ratios (a-light load).46

Figure 4.9 Effect of spark timing on IMEP at different DI ratios (b-medium load).46

Figure 4.10 Effect of spark timing on indicated thermal efficiency at different DI ratios (light load). ..48

Figure 4.11 Effect of spark timing on indicated thermal efficiency at different DI ratios (medium load). ..48

Figure 4.12 Effect of spark timing on the maximum pressure and its phase with DI56% at light load. ..49

Figure 4.13 Effect of spark timing on the maximum pressure and its phase with DI50% at medium load. ..50

Figure 4.14 Cylinder pressure, MBF, and HRR at ST30, DI56% and light load.51

Figure 4.15 Variation of the major combustion duration (CA10-90%) with DI ratio at light load. ..52

Figure 4.16 Effect of spark timing on CA50 at different DI ratios and light load.53

Figure 4.17 Effect of spark timing on ISCO at different DI ratios.54

Figure 4.18 Effect of spark timing on ISHC Variation at different DI ratios.55

Figure 4.19 ISNO Variation with spark timing at different DI ratios.56
Figure 4.20 Valve, Spark and Injection Timings set in the experiments.57
Figure 4.21 Variation of IMEP (a) and indicated thermal efficiency (b) with an early DI and spark timings. ...60
Figure 4.22 Variation of COV_{IMEP} with DI and spark timings.61
Figure 4.23 CA0-10% (a) and CA10-90% (b) vs. spark timing at DIT330.................63
Figure 4.24 Variation of CA50 with an early DI and spark timings..........................64
Figure 4.25 Variation of ISCO (a) and ISHC (b) with an early DI and spark timings. ..66
Figure 4.26 Variation of ISNO with an early DI and spark timings.........................67
Figure 4.27 Variation of IMEP (a) and indicated thermal efficiency (b) with the late DI and spark timings. ..69
Figure 4.28 Variation of the COV_{IMEP} with late DI and spark timing70
Figure 4.29 Variation of CA0-10% (a) and CA10-90% (b) with the late DI and spark timings..72
Figure 4.30 Variation of ISNO (a), ISCO (b) and ISHC (c) with the late DI and spark timings...75
Figure 4.31 Variation of Equivalence Air/Fuel Ratio (\lambda) with DI and spark timings in light load condition. ..75
Figure 4.32 Cylinder head and Exhaust gas temperatures variation with DI timing at Medium load. ..79
Figure 5.1 IMEP variation with ethanol PI ratio...85
Figure 5.2 Volumetric efficiency variation with ethanol PI ratio.87
Figure 5.3 Coefficient of variation of IMEP (COV_{IMEP}) variation with ethanol PI ratio. .. 88

Figure 5.4 Initial combustion duration (CA0-10%) variation with ethanol PI ratio. 90

Figure 5.5 Combustion phase (CA50) variation with ethanol PI ratio. 91

Figure 5.6 Major combustion duration (CA10-90%) variation with ethanol PI ratio. 94

Figure 5.7 Indicated thermal efficiency variation with ethanol PI ratio. 95

Figure 5.8 ISCO variation with ethanol PI ratio. ... 97

Figure 5.9 ISHC variation with ethanol PI ratio. ... 98

Figure 5.10 ISNO variation with ethanol PI ratio. ... 100

Figure 6.1 Combustion pressure trace and knock intensity vs. CAD. 105

Figure 6.2 Variation of engine knock limit and knock intensity with the ethanol PI ratio. ... 106
Nomenclature and Abbreviation:

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>aTDC</td>
<td>after top dead centre</td>
</tr>
<tr>
<td>bTDC</td>
<td>before top dead centre</td>
</tr>
<tr>
<td>CAD</td>
<td>crank angle degree</td>
</tr>
<tr>
<td>CR</td>
<td>engine compression ratio</td>
</tr>
<tr>
<td>DFI</td>
<td>direct fuel injection</td>
</tr>
<tr>
<td>DI</td>
<td>direct injection</td>
</tr>
<tr>
<td>DualEI</td>
<td>ethanol dual-injection</td>
</tr>
<tr>
<td>EDI+GPI</td>
<td>ethanol direct injection plus Gasoline port injection</td>
</tr>
<tr>
<td>EPI</td>
<td>ethanol port injection</td>
</tr>
<tr>
<td>EVO</td>
<td>exhaust valve opened</td>
</tr>
<tr>
<td>EVC</td>
<td>exhaust valve closed</td>
</tr>
<tr>
<td>GDI</td>
<td>gasoline direct injection</td>
</tr>
<tr>
<td>GDI+EPI</td>
<td>gasoline direct injection plus ethanol port injection</td>
</tr>
<tr>
<td>H/C</td>
<td>hydrogen to carbon ratio</td>
</tr>
<tr>
<td>HRR</td>
<td>heat release rate (J/CAD)</td>
</tr>
<tr>
<td>IC engines</td>
<td>internal combustion engines</td>
</tr>
<tr>
<td>IMEP</td>
<td>indicated mean effective pressure</td>
</tr>
<tr>
<td>ISCO</td>
<td>indicated specific carbon monoxide</td>
</tr>
<tr>
<td>ISFC</td>
<td>indicated specific fuel consumption</td>
</tr>
<tr>
<td>ISHC</td>
<td>indicated specific hydrocarbon</td>
</tr>
<tr>
<td>ISNO</td>
<td>indicated specific nitric oxide</td>
</tr>
<tr>
<td>IVC</td>
<td>intake valve closed</td>
</tr>
<tr>
<td>IVO</td>
<td>intake valve opened</td>
</tr>
<tr>
<td>KI</td>
<td>knock intensity</td>
</tr>
<tr>
<td>KLST</td>
<td>knock limit spark timing</td>
</tr>
<tr>
<td>MBT</td>
<td>the spark timing for maximum brake torque</td>
</tr>
<tr>
<td>MFB</td>
<td>mass fraction burnt</td>
</tr>
<tr>
<td>MPFI</td>
<td>multipoint port fuel injection</td>
</tr>
<tr>
<td>O/C</td>
<td>oxygen to carbon ratio</td>
</tr>
<tr>
<td>PFI</td>
<td>port fuel injection</td>
</tr>
<tr>
<td>PI</td>
<td>port injection</td>
</tr>
</tbody>
</table>
RON research octane number
SI spark ignition
TDC top dead centre

Symbols

CA10-90% the major combustion duration (CAD)
CA0-10% the minor combustion duration (CAD)
CA50 the combustion phase when 50% of the fuel is burnt (CAD aTDC)
COVIMEP the coefficient of variation of IMEP
θ Instantaneous crank angle degree (CAD)
θPmax the phase of peak pressure (CAD aTDC)
γ specific heat capacity
λ stoichiometric air/fuel ratio
σIMEP the standard deviation in IMEP
t time in msec
DIT’YY’ direct injection timing of YY CAD bTDC
E’XX’ XX% ethanol by volume e.g. E39 is 39% ethanol via port injection plus 61% gasoline via gasoline direct injection
IP Indicated power (W, kW)
m Mass (kg)
mm air and mm air air and fuel mass flow rates (kg/sec)
μm Micrometer
n polytropic index
ηInd. indicated thermal efficiency (%)
ηVol. engine volumetric efficiency (%)
ρair air density (kg/m³)
P pressure (kPa, bar)
P0 the instantaneous pressure at (CAD)
Pmax maximum cylinder pressure (kPa, bar)
\(Q_{HV:i} \) \(Q_{HV:i} \) higher heating value of species \((i) \) (MJ/kg)

ST’XX’ spark timing of XX (CAD bTDC)

T Temperature (°C, K)

T_w cylinder wall temperature (°C, K)

V cylinder volume (m\(^3\))

V_d displacement volume (m\(^3\))

V_c clearance volume (m\(^3\))

W_i indicated work (J, kJ)

\(\chi \) the mole fraction of species