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Abstract  46 

	47 

The present study evaluates the feasibility of applying forward osmosis (FO) process for 48 

the pretreatment of feed solution to a Multi Stage Flash (MSF) desalination plant. For the 49 

first time, real brine reject and real seawater were used as the draw solution and the feed 50 

solution, respectively in the FO process. The FO pretreatment is expected to dilute the 51 

brine reject and reduce the concentration of divalent ions, which are responsible for scale 52 

formation on the surface of heat exchanger in the MSF evaporator unit. The FO 53 

experiments were performed at different draw solution temperatures ranging between 25 54 

– 40oC, different draw and feed solutions flowrates and different membrane orientations. 55 

A maximum average membrane flux of 22.3 L/m2.h was reported at a draw solution 56 

temperature of 40oC and 0.8 and 2.0 LPM flow rate of draw and feed solutions, 57 

respectively. The experimental results also revealed the process sensitivity to the feed 58 

solution temperature. It was found that the average membrane flux in the FO process 59 

operating at 0.8 and 2 LPM draw and feed solution flow rates, respectively was 16.9 60 

L/m2.h at 25oC brine temperature but increased to 22.3 L/m2.h at 40oC brine temperature. 61 

These membrane fluxes resulted in 3% and 8.5% dilution of the draw solution at 25oC 62 

and 40oC temperatures, respectively. The average membrane flux in the FO mode was 63 

equal to that in the PRO mode at low flow rates but it was lower than that in the PRO 64 

mode at high flow rates of the feed and draw solutions. The outcomes of the study are 65 

very promising with regard to membrane flux and dilution of draw solution.   66 

 67 

Keywords: Forward Osmosis (FO); Multi Stage flash (MSF); Pretreatment; Scaling; 68 

Membrane flux. 69 

 70 

 71 

 72 
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1. Introduction  73 

	74 

Thermal desalination processes such as multi stage flash (MSF) and multi effect 75 

distillation (MED) demonstrated a high performance in a harsh environment without the 76 

requirements for seawater pretreatment. Conventionally, the top brine temperatures 77 

(TBT- the operating temperature in thermal desalination plant) in the MSF (operating in 78 

brine recycle mode) and MED are 65oC and 112 oC, respectively. These temperatures 79 

would achieve a recovery rate equal to 30% in both technologies [1-3]. However, these 80 

processes experience a major drawback represented by scale formation and deposition on 81 

the surface of heat transfer tubes. Scale formation reduces the heat transfer efficiency of 82 

the heat exchangers and adversely impact the performance of the thermal plant [1–4]. 83 

Alkaline scales, mainly CaCO3, were reported in MED plants while non-alkaline scales, 84 

such as MgSO4 and CaSO4, were the main scale formations in the MSF plants [3]. The 85 

main strategies for scale minimization and removal in thermal plants are the use of 86 

antiscalants and periodic cleaning. Technically, these strategies are not effective in 87 

preventing scale deposition that builds up over time [2,5–8]. Alternatively, 88 

unconventional processes such as pretreatment using Nanofiltration (NF) membrane was 89 

proposed for the removal of scale ions from the feed solution to thermal plants [9,10]. 90 

Integrating NF with thermal desalination demonstrated a high efficiency in the removal 91 

of divalent ions, such as Ca2+, Mg2+ and SO4
-2, from seawater and allowed thermal plants 92 

to operate at elevated top brine temperatures [11]. An experimental work by Hasan et al. 93 

[10] demonstrated the advantage of NF pretreatment of seawater for the removal of scale 94 

ions and feasibility to increase the TBT of the MSF plant to 130oC.  Operating at a TBT 95 

equal to130oC increased the recovery rate in the MSF plant and produced a gained output 96 

ratio (GOR) of 13. Despite the successful application of NF process for pretreatment of 97 

seawater, economically the process was unfeasible due to the high-energy cost [12–14]. 98 

The specific power consumption in the NF process was 1 kWh/m3 when operating at a 99 

65% recovery rate which is considered relatively high for an economic desalination 100 

process [15,16]. 101 

A previous study investigated the feasibility of FO pretreatment of feed solution to the 102 

MSF plant [17]. Brine reject was used as the draw solution while seawater was the feed 103 

solution. The study revealed the potential of the FO process to reduce the concentration 104 



  4

of divalent ions in the brine reject [17]. At a 32% recovery rate, 62% reduction in the 105 

concentration of Ca2+, Mg2+ and SO4
2- ions was achieved by the FO process. Moreover, 106 

the feasibility of the FO process combined to MSF plant is approved to reduce the 107 

concentration of divalent ions in the feed solution at 130 °C [15]. The estimated water 108 

flux for 45 g/L seawater salinity was in the range of 4 L/m2.h to 9.6 L/m2h depending on 109 

the recovery rate of the FO process. For 45 g/L seawater salinity and 16% FO recovery 110 

rate, the concentration of divalent ions in the draw solution decreased by 13% after the 111 

FO treatment. The corresponding value for 32% FO recovery rate was 23.5% reduction in 112 

the concentration of divalent ions [15]. Unlike the NF process, the driving force in the FO 113 

process is the osmotic pressure gradient across the FO membrane instead of the hydraulic 114 

pressure [17,18]. Therefore, the cost of such pretreatment process is expected to be lower 115 

than that of the NF process. 116 

Previous FO studies on the pretreatment of feed solution to the MSF plant were 117 

theoretical and there is no experimental data, yet to proof the concept. Experimental data, 118 

therefore, are essential to demonstrate the feasibility of the FO-MSF system for seawater 119 

desalination. In this study, we experimentally investigated the feasibility of FO process 120 

for the treatment of the feed solution to the MSF plant. Real MSF brine reject and 121 

seawater, the draw and feed solution, respectively, were collected from a thermal 122 

desalination plant in Doha City, Qatar. The study investigated the impact of different 123 

operating parameters on the performance of the FO process. Concentration of divalent 124 

ions in the brine reject was measured before and after the FO process to determine the 125 

dilution ratio.  126 

2. Materials and Methods  127 

2.1. Draw and Feed solutions characteristics  128 

	129 

In the FO process a brine reject (BR) collected from a MSF thermal desalination plant in 130 

Qatar was used as the draw solution (DS) while the feed solution (FS) was seawater 131 

collected from the west bay in Qatar. The characteristics and composition of the DS and 132 
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the FS in terms of cation and anion concentrations, total dissolved solids (TDS), 133 

conductivity, pH and turbidity are illustrated in Table 1.  134 

	135 

	136 

Table 1: Characteristics of seawater and brine reject of MSF 137 

 FS 

(SW) 

DS 

(BR) 

Method 

Cl-(ppm) 22183.7 35377.9 APHA 4110 DETERMINATION OF ANIONS 
BY ION CHROMATOGRAPHY 

Equipment: Metrohm 850 Professional IC 
 

Br-(ppm) 74.93 118.79 

SO4
2-(ppm) 3153.6 5041.5 

Na+(ppm) 12952.6 20993.4 APHA 3120 METALS BY PLASMA 
EMISSION SPECTROSCOPY 

  
Equipment: iCAP 6500-ICP-OES CID 
Spectrometer (Thermo Scientific) 
 

K+(ppm) 458.7 739.7 

Ca2+(ppm) 485.8 725.4 

Mg2+(ppm) 1535.0 2504.8 

TDS (ppm) 43474 81492 APHA 2540 C. Total Dissolved Solids Dried at 
180°C 
 

Conductivity  

( / ) 

60750 93650 APHA 2510 B. Conductivity 

pH 8.40 9.07 APHA 4500-H+ B. Electrometric Method 

Turbidity 

(NTU) 

1.45 0.35 APHA 2130 B. Nephelometric Method 

 138 

2.2. FO membrane  139 

	140 

In this study, a flat sheet Thin Film Composite (TFC) FO membrane made by HTI 141 

(USA). According to the manufacturer the membrane can tolerate temperatures up to 40 142 

oC and has a rejection rate for sodium chloride ions of 90%. The membrane was placed 143 

inside the FO cell and washed for 30 minutes with distilled water for pre-conditioning 144 
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and removal of any impurities from the surface. A 1 mm Sepa CF high fouling spacer (8 145 

x 3.5 cm) was always placed on the support side of the FO membrane. 146 

2.3. FO Bench‐scale unit 147 

	148 
A CF042D-FO cell provided by Sterlitech was used in this study. The exterior 149 

dimensions of the cell are 12.7 x 10 x 8.3 cm (5 x 4 x 3.25 in) with a membrane active 150 

area of 42 cm2 (6.5 in2). CF042D FO cell has a shape of a cube, made of acetal 151 

copolymer and can withstand a maximum temperature and pressure of 82oC (180 oF) and 152 

1000 psi (69 bar), respectively. The FO system has two stainless steel tanks of 9 L 153 

capacity for the FS and DS supply provided by Sterlitech (USA). The flow rates of the FS 154 

and the DS were measured using two panel mount flow meters F-550 from Blue-White 155 

industries Ltd. These flow meters have a maximum reading ability up to 4 LPM (1 GPM) 156 

and a minimum of 0.4 LPM (0.1 GPM). The flows of the FS and the DS were set in a 157 

countercurrent flow mode. The FS and the DS were circulated in the system using two 158 

Mount Gear Pumps with Console Drive 115 V PEEK Gears/PTFE seals provided by 159 

Sterlitech Company. The maximum motor rotation per minute for the pump is 5000 rpm 160 

where the pump can achieve a maximum flow rate of 3200 mL/min (3.2 LPM). The 161 

pressure of the FS and the DS were measured using pressure gauges type PEM series 162 

provided by Winters Company in the range of 0 – 3 bar (0 - 45 psi). A MX-CA11B 163 

immersion circulator (PolyScience Co-USA) controlled the temperature of the DS during 164 

the FO experiments. This controller measured the temperature of solutions which can 165 

read up to 135 oC. The conductivity of the FS and the DS were measured by OAKTON 166 

PCD650 multi meter. This device has the ability to measure the conductivity, salinity and 167 

total dissolved solids (TDS) in the range of 0–500 mS, 0-800 ppt and 0–500 ppt, 168 

respectively. Ohaus RangerTM bench-scale balance connected to a computer to record the 169 

change in the FS weight. Water flux was calculated by measuring the change in weight of 170 

the FS over time divided by the membrane area multiplied by water density according to 171 

Equation (1):  172 

1000 ∆

	 	 	 	
                             Equation (1) 173 
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∆W is the change in the FS weight (kg) before and after permeation time, A is the 174 

membrane effective area (m2), t is the time (h) and 	is water density (kg/m3). The initial 175 

volume of the DS and the FS were 6 L and the FS and the DS were recycled back to the 176 

same tanks. Figure 1 depicts a schematic diagram of the FO system used in this study.  177 

 178 

2.4. Experimental procedure  179 

	180 

The experiments were designed to operate for 150 minutes. Firstly, the impact of 181 

changing the circulation flow rate of the FS and the DS was studied. Three different flow 182 

rates were studied, 0.8:0.8 LPM, 2.0:2.0 LPM, 0.8:2.0 LPM for the draw solution and the 183 

feed solution, respectively. Secondly, the influence of increasing the temperature of the 184 

DS from 25 oC to 40 oC by a 5 oC increment was studied. Finally, the impact of the 185 

membrane orientation was studied where firstlty the membrane active layer (AL) faced 186 

the DS (AL-DS), PRO mode and then the membrane AL faced the FS (AL-FS), FO 187 

mode. After each run and before the next run the system was washed with distilled water 188 

for 30 minutes. 189 

3. Results and discussion 190 

3.1. Impact of Feed Solution (FS) and Draw Solution (DS) flow rates  191 

3.1.1 Membrane flux 192 

Figure 1. A schematic diagram of the FO system used in this study 
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The impact of increasing the FS flow rate and the DS flow rate on the membrane flux 193 

was evaluated at room temperature (i.e. 25oC). The experiments were conducted at a flow 194 

rate of 0.8 LPM for the FS and the DS then the flow rates were elevated to 2 LPM for 195 

both the FS and the DS. Finally, the membrane flux was evaluated at a FS and DS flow 196 

rate of 2.0 and 0.8 LPM, respectively. Each experiment lasted for 150 minutes and the 197 

membrane active layer was facing the DS (i.e. PRO mode). Figure 2 (A) shows the 198 

change of membrane flux with time at the different flow rates of the FS and the DS. 199 

Figure 2 (A) shows the three consecutive runs where the membrane was washed for 30 200 

minutes with distilled water between each run. Figure 2 (B) illustrates the average 201 

membrane flux in the FO process at the different flow rates of the FS and the DS. In 202 

general, membrane flux decreased over time due to the dilution and concentration of 203 

draw and feed solution, respectively, that resulted in reducing the osmotic pressure 204 

driving force across the FO membrane (Figure 2(A)). 205 

 206 

(A) 



  9

	207 

 208 

Figure 2. (A) Change of membrane flux with time at different FS and DS flow rates (B) 209 

The average membrane flux at different FS and DS flow rates at room temperature (25oC) 210 

As shown in Figure 2 (A) the membrane flux increased at higher flow rates of the FS and 211 

the DS. This is due to increasing the rate of turbulence inside the module which reduces 212 

the concentration polarization. The average membrane flux at 0.8 LPM flow rate of FS 213 

and DS was 8.1 L/m2.h, which increased to 12.2 L/m2.h at 2.0 LPM flow rate of FS and 214 

DS (Figure 2B). This suggests that the high flow rates of FS and DS reduced the effect of 215 

concentration polarization and increased the membrane flux [20]. Interestingly, the 216 

highest membrane flux was 16.9 L/m2.h at a flow rate of 2.0 LPM for the FS and 0.8 217 

LPM for the DS. The reason for the high average membrane flux at these flow rates is 218 

due to the development of a small positive hydraulic pressure across the FO membrane in 219 
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the same direction of the draw solution. A value of 0.15 bar hydraulic pressure was 220 

measured on the feed solution side. This hydraulic pressure was created by the higher 221 

flow rate of the FS, 2.0 LPM, compared to FS, 0.8 LPM, inducing an additional 222 

permeation flow across the membrane. Increasing the flow rate of the FS and the DS 223 

from 0.8 LPM: 0.8 LPM to 2.0 LPM: 2.0 LPM resulted in 33.6% increase in the average 224 

membrane flux while over 52% increase in the average membrane flux was achieved at 225 

2.0:0.8 LPM flow rate of the FS and the DS, respectively. It is apparent that operating the 226 

FO system at higher flow rates does not necessarily result in the most desirable 227 

membrane flux despite its advantage in reducing the effect of concentration polarization. 228 

Operating the FO system at different feeds flow rates with the flow rate of the FS being 229 

higher than that of the DS would result in a better membrane flux in the FO process.  230 

The drop in the membrane flux over time can be attributed to either the reduction in the 231 

osmotic pressure driving force due to the dilution and concentration of the draw and the 232 

feed solution as mentioned earlier or it could be due to the fouling of the membrane. 233 

Figure 3 shows the Scanning Electron Microscope (SEM) images for the active and 234 

support layer of the FO membrane before and after the FO experiments. Figure 3 (A) and 235 

Figure 3 (B) show the clean (i.e. before use) active layer and support layer of the 236 

membrane, respectively. Figure 3 (C) and Figure 3 (D) show the membrane active layer 237 

and support layer, respectively, after the experimental run and before washing the 238 

membrane with distilled water. Figure 3 (E) and Figure 3 (F) show the membrane active 239 

layer and support layer, respectively, after washing the membrane with distilled water for 240 

30 minutes. It is clear from Figure 3 (C) and Figure 3(D) that salts accumulated on both 241 

sides of the membrane forming a fouling layer on the membrane surface. However, it 242 

should be noted that the same membrane was used for three consecutive runs. The 243 

membrane was washed after every experiment for 30 minutes with distilled water. In fact, 244 

all tests were repeated three times and the membrane flux results were very close in all 245 

runs after membrane washing. This indicates that the fouling materials were washed out 246 

during the washing process. Figure 3 (E) and Figure 3 (F) show the membrane active 247 

layer and support layer were clean after washing with distilled water for 30 minutes. 248 

Generally, fouling of the FO membrane seems to be reversible by membrane cleaning 249 
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with distilled water. This finding is in an agreement with previous work carried out by 250 

Modern Water in Oman [9]   251 

 252 

 253 

 254 

3.1.2 Recovery rate  255 

Figure 4 shows the achieved recovery rates at the studied flow rates after 150 minutes. 256 

The recovery rate percentage is calculated using Equation (2) [39]: 257 

 258 

Figure 3. Fouling on the FO membrane surface after permeation during PRO mode (A) 
clean active layer, (B) clean support layer, (C) active layer after use, (D) support layer 
after use, (E) active layer after washing with distilled water for 30 minutes, (F) support 
layer after washing with distilled water for 30 minutes. 

(A) 

(F)(E) 

(D)(C) 

(B)
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%R
∆

∆
∆
∆

100                                                                                                  Equation (2) 259 

ΔVp and ΔVF are the change in volume of permeate and feed solution (L), respectively, 260 

and Δt is time of the experiment (h). Equation 2 can be described in terms of Vp and VF 261 

since Δt is equal for both permeate and feed solution: 262 

 263 

%R 100%                                                  Equation (3) 264 

Vp is the permeate volume at the end of each run and VF is the initial volume of the feed 265 

solution. The maximum recovery rate at 0.8:0.8 LPM flow rate of the feed and the draw 266 

solution was 1.4%, increased to 2.1% at 2.0:2.0 LPM flow rate of the feed and the draw 267 

solution. The maximum recovery rate of 3% was achieved at 2.0 LPM: 0.8 LPM flow 268 

rate of the feed and the draw solution, respectively. As explained earlier the higher 269 

recovery rate at 2.0 LPM: 0.8 LPM was due to the development of a positive hydraulic 270 

pressure in the same direction of the draw solution, which promoted further permeation 271 

flow across the membrane.  272 

 273 

Figure 4. Impact of increasing FS and DS flow rates on recovery rate percentage at 274 

isothermal conditions (25oC). 275 

 276 
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3.1.3 Dilution of draw solution 277 

The concentration of Ca2+, Mg2+ and SO4
2- ions were measured in the DS before and after 278 

the experimental runs. As mentioned earlier, these ions are responsible for scale 279 

formation and deposition in the MSF desalination plant. As shown in Table 2 at 0.8 LPM: 280 

0.8 LPM flow rate of the feed solution and the draw solution and at room temperature, 281 

the concentration of SO4
2-, Mg2+, and Ca2+ ions in the draw solution was 5203.9, 2539.8 282 

and 733.6 ppm, respectively. After the FO experimental run these concentrations became 283 

5163.3, 2519.9 and 714.1 ppm for SO4
2-, Mg2+ and Ca2+ ions, respectively. It was noticed 284 

that the draw solution was diluted by 0.78%, 0.78% and 1.1% for SO4
2-, Mg2+, and Ca2+ 285 

ions, respectively. The corresponding dilution in ions concentration at 2.0:2.0 LPM flow 286 

rate of the feed solution and the draw solution was 2.6%, 1.3% and 1.7% for SO4
2-, Mg2+ 287 

and Ca2+ ions, respectively. Where the concentration of SO4
2-, Mg2+ and Ca2+ ions in the 288 

draw solution was 5052.9, 2493.7 and 729 ppm, respectively. After the FO experimental 289 

run these concentrations became 4923.4, 2460.9 and 716.8 ppm for SO4
2-, Mg2+ and Ca2+ 290 

ions, respectively. A further dilution of 2.9%, 1.8% and 2.2% for SO4
2-, Mg2+ and Ca2+ 291 

ions, respectively was achieved at 2.0:0.8 LPM flow rate of the feed solution and the 292 

draw solution. Where the concentration of SO4
2-, Mg2+ and Ca2+ ions in the draw solution 293 

was 5712.2, 2601.6 and 726.2 ppm, respectively. After the FO experimental run these 294 

concentrations became 5547.6, 2555.3 and 715.5 ppm for SO4
2-, Mg2+ and Ca2+ ions, 295 

respectively. It was noticed that the SO4
2- and Ca2+ ions exhibited higher dilution 296 

percentage than the Mg2+ ions; this was attributed to several factors such as the FO 297 

membrane rejection to ions and to the ions diffusion coefficient. Generally, SO4
2- is 298 

highly rejected by FO membranes because of its negative charge and its large molecular 299 

weight [10, 18]. FO membrane rejection to Ca2+ was higher than Mg2+ because of the 300 

larger molecular weight of calcium ions compared to magnesium ions. It should be also 301 

noted that SO4
2- has a diffusion coefficient of 1.07*10-9 m2/s, which is higher than that of 302 

Ca2+ (i.e. 0.793*10-9 m2/s) and Mg+2 (i.e. 0.703*10-9 m2/s). This will affect ions reverse 303 

salt diffusion across the membrane and hence concentration in solution. A high rejection 304 

of SO4
2- ions by FO membranes is very important in the FO pretreatment of seawater to 305 

prevent scale formation in the MSF plant since MgSO4 and CaSO4 are the main non-306 

alkaline scale formations. It should be mentioned here that the initial concentrations of 307 
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the studied ions slightly varied between each set of experiments due to the fact that fresh 308 

samples were used for every set of experiments. New seawater samples and new brine 309 

reject samples were used for every set of experiments.  310 

 311 

 312 

 313 

 314 

 315 

 316 

Table 2: Concentration of SO4
2-, Mg2+, and Ca2+ ions in the DS before and after the FO 317 

experiments at different DS and FS flowrates and at room temperature.  318 

Ion 
(ppm) 

Flow rates of 
FS and DS 

(LPM) 

Initial ions 
concentration 

in DS  
(ppm) 

Ions 
concentration 
in DS at the 

end of the run 
(ppm) 

 

Reduction 
(ppm) 

 Reduction
(%) 

SO4
2- 0.8 LPM (FS): 

0.8 LPM (DS) 
5203.9 5163.3 40.6 0.78 

2.0 LPM (FS): 
2.0 LPM (DS) 

5052.9 4923.4 129.5 2.6 

2.0 LPM (FS): 
0.8 LPM (DS) 

5712.2 5547.6 164.6 2.9 

Mg2+ 0.8 LPM (FS): 
0.8 LPM (DS) 

2539.8 2519.9 19.9 0.78 

2.0 LPM (FS): 
2.0 LPM (DS) 

2493.7 2460.9 32.8 1.3 

2.0 LPM (FS): 
0.8 LPM (DS) 

2601.6 2555.3 46.3 1.8 

Ca2+ 0.8 LPM (FS): 
0.8 LPM (DS) 

733.6 714.1 8.06 1.1 

2.0 LPM (FS): 
2.0 LPM (DS) 

729 716.8 12.2 1.7 

2.0 LPM (FS): 
0.8 LPM (DS) 

726.2 715.5 16.1 2.2 

 319 
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3.2. Impact of Draw Solution Temperature  320 

Practically, the temperature of brine reject from an MSF desalination plant will be around 321 

40oC. Therefore, we investigated the impact of the draw solution temperature on the 322 

performance of the FO process. Increasing the temperature of the draw solution was 323 

evaluated at different flow rates of the feed and the draw solutions. The experiments were 324 

conducted at draw solution temperatures of 25oC, 30oC, 35oC, and 40oC while the 325 

temperature of the feed solution remained constant at 25oC. Typically, the temperature of 326 

MSF brine is about 40oC but using different brine temperature would help to understand 327 

the impact of DS temperature on the performance of the FO process. The duration of each 328 

experiment was 150 minutes in which the membrane active layer was facing the DS (i.e. 329 

PRO mode). Figure 5 (A) presents the average membrane flux at the different draw 330 

solution temperatures and flow rates of feed and draw solutions. It was noticed that for 331 

any given flow rates, the average membrane flux increased with the increase in the 332 

temperature of the draw solution from 25oC to 40oC. At 0.8: 0.8 flow rate of the feed and 333 

the draw solution, the average membrane flux was 8.1 L/m2.h at a DS temperature of 334 

25oC which increased to 13.9 L/m2.h at a DS temperature of 40oC, achieving 72% higher 335 

average membrane flux due to the temperature increase of the DS. The corresponding 336 

increase in the average membrane flux for 2.0 LPM: 2.0 LPM and 2.0 LPM: 0.8 LPM 337 

flow rates for the FS and the DS was 52% and 32%, respectively. The increase of the 338 

membrane flux at high draw solution temperature could be due to the lower water 339 

viscosity and greater diffusivity across the membrane at higher temperatures. 340 

Furthermore, according to Van’t Hoff equation, the osmotic pressure increases with the 341 

increase of the draw solution temperature, therefore, the driving force in the process 342 

increases. Figure 5(A) also shows that the impact of feeds’ flow rates on the average 343 

membrane flux remained unaffected with the variation in the temperature of the feed 344 

solution. The FO process at flow rate equal to 2.0 LPM: 0.8 LPM for the feed solution 345 

and the draw solution, respectively, exhibited the highest average membrane flux, which 346 

reached 22.3 L/m2.h at 40oC. According to a previous study by Hawari et al. [21], the 347 

membrane flux in a FO process increased with increasing the draw solution temperature. 348 

The membrane flux reached a maximum value at a draw solution temperature around 26 349 

°C before it started to decrease again with further temperature increase of the draw 350 
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solution up to 32oC. On the contrary, the membrane flux in this study kept increasing as 351 

the temperature of the DS increased. Where at the highest draw solution temperature of 352 

40oC the highest membrane flux was obtained. This could be due to the increase of the 353 

flow rates of the feed solution and the draw solution that resulted in i) reducing the 354 

impact of concentration polarization which could have overcame the thermal-osmosis 355 

effect ii) developing a positive hydraulic pressure across the FO membrane that promoted 356 

permeation flow. Where at flow rates 2.0 LPM for FS and 0.8 LPM of DS a 0.15 bar 357 

hydraulic pressure was measured across the membrane. This can be clearly seen in Figure 358 

5 (A) where at the flow rates of 0.8 LPM: 0.8 LPM for the FS and DS there was no 359 

enhancement in the membrane flux when the temperature increased from 35oC to 40oC. 360 

In effect, the effect of CP decreased at high flow rates of the feed and draw solution, 361 

leading to a noticeable increase in the water flux from the feed to draw solution which 362 

reduced the counter water flux due to the thermal-osmosis. It should be noted that the 363 

obtained average membrane flux was found to be very promising and it is 2.3 to 5.5 times 364 

more than the theoretically anticipated water flux in previous studies [22–26]. However, 365 

water flux between 25 and 33 L/m2h was reported in FO experiments treating feed water 366 

at 32 oC [20]. Figure 5B also show that, depending on the temperature of draw solution, 367 

increasing the flow rate of feed solution from 0.8 LPM to 2.0 LPM resulted in 33 to 368 

100% increase in water flux. On the other hand, increasing the temperature of draw 369 

solution (using same flow rates) resulted in up to 71% increase in water flux. As such, 370 

increasing flow rate of feed solution resulted in a larger improvement in the water flux.  371 

 372 

 373 
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 374 

 375 

Figure 5. (A) Average membrane flux at different DS temperatures for the different 376 

studied flow rates (B) Water recovery percentage at different DS temperature for the 377 

different studied flow rates 378 

Figure 5 (B) shows the recovery rate of the FO process at different flow rates of the draw 379 

solution and the feed solution. The recovery rate of the FO process increased with 380 

increasing the temperature of the draw solution from 25oC to 40oC and was always higher 381 

at 2.0:0.8 LPM flow rate of the feed and the draw solution. At the 2.0:0.8 LPM flow rate, 382 
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the recovery rated increased by 35%, from 3% to 4.6%, due to the increase of DS 383 

temperature from 25oC to 40oC. The reason for a greater membrane flux at a draw 384 

solution temperature of 40oC is due to the higher diffusivity of water molecules at 385 

elevated temperatures and higher osmotic pressure of draw solution. The FO process 386 

resulted in 2.9%, 1.8% and 2.2% dilution of SO4
2-, Mg2+, and Ca2+ ions in the draw 387 

solution, respectively at 25oC and 2.0:0.8 LPM flow rate. The dilution of SO4
2-, Mg2+, 388 

and Ca2+ ions in the draw solution increased to 7.7%, 4.9%, and 8.5%, respectively at 389 

40oC and 2.0:0.8 LPM flow rate. As indicated before, SO4
2- and Ca2+ ions exhibited 390 

higher dilution by the FO than Mg2+ion but most important that SO4
2- ions are reduced in 391 

the solution since it is the main component in non-alkaline scale formations in the MSF 392 

plant.  393 

3.3. Impact of membrane orientation 394 

The membrane orientation is one of the factors that would affect the performance of the 395 

FO process [20]. The membrane flux was evaluated in the PRO mode (DS-AL) and in the 396 

FO mode (FS-AL). Figure 6 shows that the membrane flux was generally higher in the 397 

PRO mode than in the FO mode. This is due to the lower effect of concentration 398 

polarization in the PRO mode. This is in agreement with previous studies, which 399 

demonstrated better controllable concentration polarization effects when the FO process 400 

operates in the PRO mode [20,27–29]. Figure 6 shows that the average membrane flux in 401 

the FO mode was equal to that in the PRO mode at low flow rates, i.e. 0.8:0.8 LPM, and 402 

feed temperatures 30oC to 40oC. Whilst the average membrane flux in the PRO mode was 403 

higher than that in the FO mode at 2.0:2.0 LPM and 2.0:0.8 LPM. This suggest that at 404 

low feeds’ flow rates, the FO process has no preference to operate on either mode, i.e. FO 405 

or PRO, whereas at high feeds’ flow rate it is desirable to operate the process at the PRO 406 

mode to increase the membrane flux. In case of seawater contains high fouling materials, 407 

it is suggested to operate the process in the FO mode and hence 0.8:0.8 LPM would be 408 

more energy-efficient and easier to clean the membrane. However, 2.0:0.8 LPM FO 409 

process operating at the PRO mode generated 1.6 times more water flux than 0.8:0.8 410 

LPM FO process and should be considered when seawater quality does not promote 411 

membrane fouling.  412 
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 413 
Figure 6. Impact of membrane orientation on average membrane flux (A. At DS temperature 
of 25oC, B. At DS temperature of 30oC, C. At DS temperature of 35oC, D. At DS 
temperature of 40oC) 
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4. Conclusions  414 

 415 

The feasibility of employing the forward osmosis (FO) process in the pretreatment of 416 

Multi Stage Flashing (MSF) desalination plant feed solution was evaluated in the present 417 

study. Brine reject from real MSF desalination plant and seawater were the draw and feed 418 

solutions. The impact of increasing the FS flow rate and the DS flow rate on the 419 

membrane flux was evaluated. It was found that the highest membrane flux was 16.9 420 

L/m2.h at a flow rate of 2.0 LPM for the FS and 0.8 LPM for the DS. The maximum 421 

membrane flux was 22.3 L/m2.h at 40oC draw solution temperature, this actually three 422 

times more than the theoretical flux expected in the previous studies that suggested FO 423 

process for treatment of feed solution to the MSF. The study showed that water flux was 424 

generally higher in the PRO mode than in the FO mode. In fact, this is not a problem in 425 

the FO process for seawater pretreatment for the MSF desalination plant since results 426 

demonstrated that the membrane flux can be fully recovered by washing the membrane 427 

with distilled water for 30 minutes. This indicates that the fouling was not severe and 428 

mainly reversible. In general, the study showed the promising application of FO process 429 

for pretreatment of seawater to MSF plant. A pilot plant test is planned to take place in 430 

the very near future.  431 
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