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Abstract. In this paper, we study the problem of selectivity estimation on set con-
tainment search. Given a query record Q and a record dataset S, we aim to ac-
curately and efficiently estimate the selectivity of set containment search of query
Q over S. The problem has many important applications in commercial fields and
scientific studies.
To the best of our knowledge, this is the first work to study this important problem.
We first extend existing distinct value estimating techniques to solve this prob-
lem and develop an inverted list and G-KMV sketch based approach IL-GKMV.
We analyse that the performance of IL-GKMV degrades with the increase of vo-
cabulary size. Motivated by limitations of existing techniques and the inherent
challenges of the problem, we resort to developing effective and efficient sam-
pling approaches and propose an ordered trie structure based sampling approach
named OT-Sampling. OT-Sampling partitions records based on element frequency
and occurrence patterns and is significantly more accurate compared with sim-
ple random sampling method and IL-GKMV. To further enhance performance, a
divide-and-conquer based sampling approach, DC-Sampling, is presented with an
inclusion/exclusion prefix to explore the pruning opportunities. We theoretically
analyse the proposed techniques regarding various accuracy estimators. Our com-
prehensive experiments on 6 real datasets verify the effectiveness and efficiency of
our proposed techniques.

1 Introduction
Set-valued attributes are ubiquitous and play an important role in modeling database sys-
tems in many applications such as information retrieval, data cleaning, machine learning
and user recommendation. For instance, such set-valued attributes may correspond to the
profile of a person, the tags of a post, the domain information of a webpage, and the
tokens or q-grams of a document. In the literature, there has been a variety of interests in
the computation of set-valued records including set containment search (e.g., [6], [18],
[24], [32]), set similarity joins (e.g., [27], [29]), and set containment joins (e.g., [10],
[21], [22], [30]).

In this paper, we focus on the problem of selectivity estimation of set containment
search. Considering a query record Q and a collection of records S where a record con-
sists of an identifier and a set of elements (i.e., terms), a set containment search retrieves
records from S which are contained by Q, i.e., {X|X ∈ S ∧Q ⊇ X}, where Q contains
X (Q ⊇ X) if all the elements in X are also in Q. Fig. 1 shows an example with eight
records in a dataset and a query record Q where Q contains X2, X3 and X5. Selectiv-
ity (cardinality) of a query refers to the size of the query result size. For instance, the
selectivity of Q in Figure 1 is 3.
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id record id record
X1 {e1, e2, e3, e4, e7} X5 {e1, e3, e5, e7}
X2 {e2, e3, e5} X6 {e2, e6, e7, e8}
X3 {e2, e5, e7} X7 {e4, e8}
X4 {e1, e2, e6, e10} X8 {e4, e10}
Q {e1, e2, e3, e5, e7, e9}

Fig. 1. A record dataset with eight records and a query Q

Selectivity estimation on set containment search aims at estimating the cardinality of
the containment search. As an essential and fundamental tool on massive collections of
set-values, the problem has a wide spectrum of applications because it can provide users
with fast and useful feedback. As a simple example, when introducing a new product to
the market, its characteristics and features could be described as a set of keywords. As-
sume a preference dataset consists of such characteristics and features desired by users
from online survey. Size estimation of the new product descriptions on the preference
dataset estimates the total number of users who may be interested in the product and
could serve as a prediction of the product’s market potential. In another example, com-
panies may post positions in an online job market website where a position description
contains a set of required skills. A job-seeker may want to have a basic understanding of
the job market by obtaining the total number of active job vacancies that he/she perfectly
matches (i.e., the skill set of the job-seeker contains the required skills of the job).
Challenges. The key challenges of selectivity estimation on set containment search come
from the following three aspects. Firstly, the dimensionality (i.e., the number of distinct
elements) is high. As shown in our empirical studies, the vocabulary size in real-world
dataset could reach more than 3 million when the high-order shingles are used. This
makes the selectivity estimation techniques which are sensitive to dimensionality inap-
plicable to our problem. Secondly, the number of records in the dataset could be very
large. Moreover, the length of query and data record may also be large. To deal with the
sheer volume of the data, it is desirable to efficiently and effectively provide approximate
solutions. Thirdly, the distribution of element frequency may be highly skewed in real
applications. It is desirable to devise sophisticated data-dependent techniques to properly
handle the skewness of data distribution to boost accuracy.

Even though selectivity estimation has been widely explored, most of the existing
techniques cannot be trivially applied to handle the problem studied in this paper. We
discuss two categories of techniques which can be extended to support the selectivity
estimation problem, range counting estimating (e.g., [12], [5]) and distinct value esti-
mating ([9], [13]).

Given the element universe (vocabulary) E , a record Xi can be regarded as an |E|-
dimensional binary vector, where Xij = 1 if element ej appears in Xi (ej ∈ Xi) and
Xij = 0 otherwise, for 1 ≤ j ≤ |E|. Let n denote the vocabulary size |E|. Under this
context, the dataset S can be modeled as a set of points in {0, 1}n where each record
corresponds to an n-dimensional point and the query is a hypercube in {0, 1}n. Thus, we
can rewrite the selectivity estimation problem as the approximate range counting problem
in computational geometry. However, the approximate range counting problem suffers
from the curse of dimensionality where the computing cost is exponentially dependent
on dimensionality n ([13], [23]). As the vocabulary size is usually large, applying range
counting estimating methods to our problem is not applicable.

Distinct value estimators (e.g., KMV [9], bottom-k, min-hash [13]) can effectively
support size estimation for set operations (e.g., union and intersection) and are widely
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used for problems of size estimation under different context. In Section 3.2, we show
how to extend the distinct value based estimator to the problem studied in this paper
combining with inverted list techniques. We also analyse that the performance of distinct
value estimators based approach degrades when the vocabulary size is large due to the
inherent superset containment semantics of the problem studied in this paper. [28] studies
selectivity estimation on streaming spatio-textual data where the textual data is a set of
keywords/terms (i.e., elements). However, the query semantic is different as it specifies
a subset containment search on the textual data, i.e., the keywords (elements) in the
query should be contained by the keywords from spatial objects. This is different from
the superset query semantic in our problem which is more challenging to handle using
distinct value estimators as discussed in Section 3.2.
Contributions. Motivated by the challenges and limitations of existing techniques, in
the paper we aim to develop efficient and effective sampling based approaches to tackle
the problem. Naively applying random sampling over the dataset ignores the element fre-
quency distribution and results in compromised performance. Intuitively, combinations
of high-frequency elements (i.e., frequent patterns) occur among data records with high
frequency, and records with similar frequent patterns are more likely to be contained by
the same query. Thus, we use the frequent patterns as labels and partition records by these
labels to boost efficiency and accuracy. Moreover, assume that the elements are ordered
based on frequency, we use ordered trie structure to maintain partitions of the dataset and
present OT-Sampling method. This ordered trie based approach, though demonstrated to
be highly efficient and accurate, does not consider element distribution of the query Q.
Inspired by the observation that query Q must include a subset of record X in order to
containX , efficient pruning techniques are developed on the partitions of dataset. We fur-
ther propose a divide-and-conquer based sampling approach named DC-Sampling which
only conducts sampling on the qualified partitions surviving from the pruning.

The principle contributions of this paper are summarized as follows.

– This is the first work to systematically study the problem of selectivity estimation on
set containment search, which is an essential tool for set-valued attributes analyses
in a wide range of applications.

– Two baseline algorithms are devised. The first algorithm is based on random sam-
pling. We also extend distinct value estimator G-KMV sketch and propose an inverted
list based approach IL-GKMV. Insights about the limitations of the two baseline ap-
proaches are theoretically analysed and empirically studied.

– We develop two novel sampling based techniques OT-Sampling and DC-Sampling.
OT-Sampling integrates ordered trie index structure to group the dataset and achieves
higher accuracy by capturing the element frequency and frequent patterns. DC-
Sampling employs divide-and-conquer philosophy and an exclusion/inclusion-set
prefix to further improve performance by exploring pruning opportunities and skip-
ping sampling on pruned partitions of the dataset.

– Comprehensive experiments on a variety of real-life datasets demonstrate superior
performance of the proposed techniques compared with baseline algorithms.

2 Preliminary

In this section, we first formally present the problem of containment selectivity esti-
mation, and then give some preliminary knowledge. The notations used throughout this
paper are summarized in Table 1.
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Notation Definition Notation Definition
X , Q, S a record, a query record, a set of records Pi, P a partition of dataset, all partitions
e, E an element, element domain (vocabulary) mi size of partition Pi

m number of records in S m′
i sampling size in partition Pi

n number of distinct elements (vocabulary size) pi sampling probability in Pi

t (t̂) containment selectivity (estimation of t) ti containment selectivity of Q in Pi

Table 1. The summary of notations

2.1 Problem Definition

Suppose the element universe is E = {e1, e2, ..., en}. Each record X consists of a set of
elements from domain E . Let S be a collection of records {X1, X2, ..., Xm}. Given two
records X and Y , we say X contains Y , denoted as X ⊇ Y , if all elements of Y can be
found in X . In the paper, we also say X is a superset of Y or Y is a subset of X . Given a
query record Q and a dataset S, a set containment search of Q over S returns all records
from S which are contained by Q, i.e., {X|X ∈ S, Q ⊇ X}. We use t to denote the
selectivity (cardinality) of the set containment search. The selectivity of Q measures the
number of records returned by the search, namely, t = |{X|X ∈ S, Q ⊇ X}|.

Considering the containment relationship between a given queryQ and a recordXi ∈
S (1 ≤ i ≤ m), let ni be the indicator function such that

ni :=

{
1 if Q ⊇ Xi,

0 otherwise
(1)

then the selectivity of the set containment search on dataset S with respect to the query
Q can also be calculated as t =

∑
Xi∈S ni.

Problem Statement. In this paper, we investigate the problem of selectivity estimation
on set containment search. Given a query record Q and a dataset S, we aim to accurately
and efficiently estimate the selectivity of the set containment search of Q on S.

Hereafter, whenever there is no ambiguity, selectivity estimation on set containment
search is abbreviated to containment selectivity estimation.
Estimation Measure. In order to evaluate the accuracy of containment selectivity es-
timation, we apply the mean square error (MSE) to measuring the expected difference
between an estimator and the true value. The MSE formula is as follows,

E(t̂− t)2 = V ar(t̂) + (E(t̂)− t)2 (2)

where t̂ is an estimator for t. If t̂ is an unbiased estimator, the MSE is simply the variance.

2.2 KMV Synopses

The k minimum values (KMV) technique first introduced in [8] is to estimate the number
of distinct elements in a large dataset. Given a no-collision hash function h which maps
elements to range [0, 1], a KMV synopses of a record (set)X , denoted by LX , is to keep k
minimum hash values of X . Then the number of distinct elements |X| can be estimated
by |̂X| = k−1

U(k)
where U(k) is k-th smallest hash value. [9] also methodically analyses

the problem of distinct element estimation under set operations. As for union operation,
consider two records X and Y with corresponding KMV synopses LX and LY of size
kX and kY , respectively. In [9], LX ⊕LY represents the set consisting of the k smallest
hash values in LX ∪ LY where k = min(kX , kY ). Then the KMV synopses of X ∪ Y
is L = LX ⊕ LY . An unbiased estimator for the number of distinct elements in X ∪ Y ,
denoted by D∪ = |X ∪ Y |, is as follows.
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D̂∪ =
k − 1

U(k)
(3)

The variance of D̂∪, as shown in[9], is

V ar[D̂∪] =
D∪(D∪ − k + 1)

k − 2
(4)

As shown in [9], Equation 3 can be modified to compound set operation where L =
LA1
⊕ ...⊕ LAn

and k = min(kA1
, ..., kAn

).
An improved KMV sketch, named G-KMV, is proposed to estimate the multi-union

size in [28]. G-KMV imposes a global threshold and ensures that all hash values smaller
than the threshold will be kept. Considering a union operation

⋃
Xi with the sketch as

L = LX1 ∪ LX2 ... ∪ LXn , the sketch size k for the union is k = |LX1 ∪ LX2 ... ∪ LXn |.
The estimation variance by G-KMV method is smaller than that of simple KMV method
under reasonable assumptions as analysed in [31].

3 Baseline Solutions

In this section, we introduce two baseline solutions following simple random sampling
and G-KMV sketching techniques, respectively.

3.1 Random Sampling Approach

A simple way to tackle the set containment estimation problem is to adopt the random
sampling techniques and conduct set containment search over a sampled dataset S ′ which
is usually much smaller compared with the original dataset S. After getting the selectivity
of Q on sampled dataset S ′, we scale it up to get an estimation of containment selectivity
regarding S.

Given sampling size budget b in terms of number of records, we describe the random
sampling based approach in the following two steps: 1) uniformly at random sample b
(b� m) recordsX1, X2, ..., Xb from S; 2) compare each sampled recordXi (1 ≤ i ≤ b)
with the query Q and assign ni accordingly. Recall that ni is the containment indicator
for a record Xi as shown in Equation 1. Based on this, the containment selectivity esti-
mator (t̂R) of the random sampling approach is:

t̂R =
m

b

b∑
i=1

ni (5)

Note that ni is a binary random variable because of the random sampling on records.
Next we show that the estimator for baseline solution t̂R is an unbiased estimator and
then derive its variance. We first compute the probability of the event {ni = 1}. Let
t denote the containment selectivity over dataset S with respect to query Q, i.e., t =
|{X|X ∈ S, Q ⊇ X}|, then Pr[ni = 1] = t

m where m is total number of records,
and thus the expectation of ni is E[ni] = t

m . By the linearity of expectation, we get the
expectation of the estimator for baseline solution in Equation 5 is E[t̂R] = t, and the
variance is

V ar[t̂R] =
t(m− t)

b
. (6)

3.2 IL-GKMV: Inverted List and G-KMV Sketch Based Approach

The random sampling method, which is very efficient, may result in poor accuracy be-
cause it ignores the data distribution information, e.g., the distribution of element fre-
quency or record length. In this section, we develop containment selectivity estimation
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techniques which are data-dependent by utilizing the inverted list and G-KMV sketch
techniques.

In the first step, we build an inverted index I on the dataset S where an element (to-
ken) ei is associated with a list of record identifiers such that the corresponding records
contain the element ei [7]. For instance, in Figure 1, the inverted list of element e3 is
{X1, X2, X5}. Let fi denote the frequency of an element ei, i.e., the size of the inverted
list Iei ; let Pr[ei = 1] denote the probability that a record in a dataset contains the ele-
ment ei, then we have Pr[ei = 1] = fi

m . Similarly, given a recordX = {e1, e2, ..., e|X|},
the probability of X appearing in the dataset is

Pr[X = 1] = Pr[
⋂
e∈X
{e = 1},

⋂
e∈E\X

{e = 0}].

Note that record X can be duplicated in the dataset S; given a query Q, the containment
selectivity t of Q is calculated as

t̂ =
∑
X∈2Q

m ∗ Pr[X = 1] (7)

where the sum is over all subsets of Q. The above equation enumerates every subset
of the query Q to check if it appears in the dataset. In order to compute Equation 7,
we need to compute the joint probability Pr[X = 1] for each subset X of Q. Clearly,
the complexity in Equation 7 is exponentially dependent on the query size |Q| which
is not acceptable when |Q| is large. Furthermore, the joint probability computation of
Pr[X = 1] is complicated and expensive.

Given the difficulty of directly computing the containment selectivity, we consider
the complement version of set containment search. It is easy to see that Xi ⊆ Q if and
only if E\Xi ⊃ E\Q; this implies that, if an element e ∈ E \Q and there exists a record
X with e ∈ X , then record X is definitely not a subset of the query Q. Thus, if we
exclude all the records that contain any element in E\Q, the remaining records in dataset
S are all subsets of Q, namely, satisfying the set containment search. Given that, the
containment selectivity t of query Q can be computed as

t = m−m ∗ Pr[
⋃

e∈E\Q

e = 1] (8)

where Pr[e = 1] denotes the probability that some record in the dataset S contains the
element e. Remind that the event {e = 1} corresponds to all the records containing
element e in dataset S, i.e., the inverted list Ie = {X|e ∈ X}, we can rewrite Equation 8
as

t = m− |
⋃

e∈E\Q

Ie| (9)

The key point in the above equation is to calculate the union size of the inverted lists,
which has the time complexity of

∑
e∈E\Q |Ie| by merge-join. Since the set of E\Q and

the inverted list Ie could both be very large, directly computing the multi-union operation
could result in unaffordable time consumption. Based on this, we adopt approximate
methods (e.g., G-KMV sketch) to estimate the union size of the inverted lists.

For each element e ∈ E , Le denotes the G-KMV synopsis of its inverted list with k
(=|Le|) smallest hash values. Considering the union of inverted lists in Equation 9, we
have the sketch L =

⋃
e∈E\Q Le and k = |L| as introduced in Section 2.2, then the size

D∪ of the multi-union set
⋃
e∈E\Q Ie can be estimated as D̂∪ = k−1

U(k)
, where U(k) is the

k-th smallest hash value in the synopsis L. Thus the containment selectivity of G-KMV
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sketch based method is computed as t̂G = m − D̂∪. Furthermore, the variance can be
calculated as V ar[t̂G ] = D∪(D∪−k+1)

k−2 by Equation 4.

Analysis. Given the space budget b in terms of number of records, the sketch size of
IL-GKMV method is |L| ≈ b ∗ d̄ where d̄ denotes the average record length. By G-
KMV sketch, the budget size is proportionally assigned to each inverted list. Apparently,
with the very large vocabulary size, the performance significantly deteriorates since each
inverted list receives little sampling space. Remark that the time complexity for simple
random sampling method is O(b ∗ C) where C is the time cost for set comparison. The
time cost of IL-GKMV is O(|L|) which is comparable with O(b ∗ C) since |L| ≈ b ∗ d̄.

4 Our Approach

As analysed in the previous section, the random sampling approach fails to capture the el-
ement frequency distribution. IL-GKMV approach, on the other hand, considers data dis-
tribution by utilizing the inverted lists (i.e., frequent elements are associated with longer
inverted lists) and G-KMV sketch (i.e., inverted lists with larger size keep more hash-
ing values) techniques. However, due to the inherent superset query semantics studied in
this paper, the number of inverted lists involved in IL-GKMV method linearly depends
on the vocabulary size which leads to compromised accuracy. In this section, we aim to
develop sophisticated sampling approaches which strike a balance between accuracy and
efficiency.

4.1 Trie-Structure Based Stratified Sampling Approach

Trie is a widely used tree data structure for storing a set of records (i.e., dataset). Observ-
ing that combinations of high-frequency elements (i.e., frequent patterns) occur among
records with high frequency and records with similar frequent patterns are more likely
to be included by the same query, we adopt the trie structure to partition the dataset us-
ing the combinations of high-frequency elements as labels. Assume that elements of the
vocabulary E are ordered based on decreasing frequency in the underlying dataset. For
example, the most frequent element in Fig. 1 is e2 as it appears 5 times; e7 appears 4
times and is ranked 2nd place. Based on this ordering, we refer the top-k high-frequency
elements as Ek, and adopt the combination of high-frequency elements within Ek as label.
The choice of k will be discussed later in Section 5.

e2 e7 e4

root
null

e7 e1 e3 e1

e5 e3

e5

X7

e8
X8

e10

X5

e6

X6

e8

X4

e10

e1

X3

e5 e6

e3

X1

e4

X2

P1

P2 P3

P4

Fig. 2. Trie Structure
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Algorithm 1: Ordered Trie Structure Based Estimation
Input : Q, a query set; b, sample size budget

S, a dataset; k, top-k high-frequency elements
Output : t̂: estimation of containment selectivity under query Q
Ek ← the top-k high-frequency elements;1
construct a trie T on dataset S;2
L← all labels in trie T w.r.t Ek;3
for each label Li ∈ L do4

Pi← records with Li as the prefix in trie T ;5
P ′
i ← sample m′

i records from Pi based on sample size budget b;6
conduct containment search regarding Q over sampled records P ′

i ;7

t̂← estimator based on each partition P = {P1, ..., P|P|};8

return t̂9

Fig. 2 illustrates an ordered trie T built on dataset in Fig. 1. It is easy to see that each
record in the trie is stored in a top-to-down manner with a start node as null. Next we
give an example about the labels.

Example 1. Consider the top-2 elements E2 in Fig. 2; {e2, e7} is the label for records
X1, X3, X6, {e2} is for records X4, X2 and {e7} is for X5.

It is interesting to notice that the left and upper part of the trie encompasses most of
the dataset, since this part is made up of high-frequency elements in the dataset. Based
on this, there is a natural partition strategy generated by the trie T . Namely, from the root
node along the high-frequency part (left and upper of trie), each path (label for records)
comprises a partition of the dataset since records in the corresponding partition are all
made up of this path as prefix. Note that all the remaining records that do not share any
high-frequency element are accumulated as a partition by themselves, and we set the
label of this partition as φ. Here is an example about the partition on trie.
Example 2. In Fig. 2, there are four partitions as {X1, X3, X6}, {X2, X4}, {X5} and
{X7, X8} with labels {e2, e7}, {e2}, {e7} and φ, respectively.

Next, we propose an approximate method to compute the containment selectivity
based on the partition P = {P1, ..., P|P|}. Given a query record Q and sample size bud-
get b (number of sampled records), we allocate the sample size budget proportionally to
the size mi = |Pi| of each partition in P (i.e., stratified sampling). Namely, for partition
Pi, there are m′i = |Pi|

m ∗ b records uniformly at random sampled from Pi. Let P ′i denote
these sampled records, i.e., P ′i = {Xi1, ..., Xim′

i
}, then in each partition, the query Q is

compared with each sampled records Xij ; let nij be the indicator such that

nij :=

{
1 if Xij ⊆ Q,
0 otherwise,

(10)

then an estimator of the containment selectivity is

t̂P =
∑
Pi∈P

mi

m′i

m′
i∑

j=1

nij (11)

Algorithm 1 illustrates the ordered trie based sampling approach (OT-Sampling). Line
1 collects the k most frequent elements Ek and Line 2 constructs the ordered trie structure
based on the dataset S, followed by obtaining the labels according to Ek (Line 3). Lines 4-
7 groups the dataset based on the labels, and conduct the set containment search over each
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sampled P ′i from individual partitions regarding Q. Line 8 retrieves the final selectivity
estimation.
Analysis. Next we show that the estimator t̂P in Equation 11 is unbiased, followed by an
analysis of the variance V ar[t̂P ]. Recall that the containment selectivity is t = |{X|X ⊆
Q and X ∈ S}|; for each partition Pi, let ti be the size of subsets of Q in partition Pi,
i.e., ti = |{X|X ⊆ Q and X ∈ Pi}|, and t =

∑
Pi∈P ti, then we have Pr[nij = 1] =

ti
mi

which means that the probability of a sampled record Xij in partition Pi being the
subset of Q is ti

mi
; the expectation of nij is E[nij ] = ti

mi
and variance is V ar[nij ] =

ti(mi−ti)
m2

i
. Let t̂i = mi

m′
i

∑m′
i

j=1 nij , then E[t̂i] = ti and V ar[t̂i] = ti(mi−ti)
m′

i
by linearity

of expectation, thus the expectation of Equation 11 is

E[t̂P ] =
∑
Pi∈P

E[t̂i] = t

which proves that t̂P is an unbiased estimator of containment selectivity. Similarly, the
variance of t̂P is

V ar[t̂P ] =
∑
Pi∈P

V ar[t̂i] =
∑
Pi∈P

ti(mi − ti)
m′i

(12)

Compare with Random Sampling (RS) Approach. Comparing the variance of OT-
Sampling in Equation 12 with that of RS-Sampling in Equation 6, we show that
V ar[t̂P ] ≤ V ar[t̂B ] as follows. Let pi denote the sampling probability in partition Pi,
and there is pi =

m′
i

mi
= b

m by the stratified sampling strategy. Suppose that the number of

partitions is q = |P|, then we have V ar[t̂P ]−V ar[t̂B ] = −
∑

(i,j)∈(q
2)

∏q
k=1mk

mimj
(timj−

tjmi)
2 ≤ 0.

Time Complexity. The time complexity of the OT-Sampling method isO(b∗C)+O(P )
where C is the containment check cost andO(P ) is the pre-process time on trie partition.
As demonstrated in our empirical studies, O(b ∗ C) is the dominating cost and O(P ) is
negligible since we only consider top-k (small k).
4.2 Divide-and-Conquer Based Sampling Approach
In OT-Sampling, the sampling strategy is independent of query workload; that is, we do
not distinguish the data information (e.g., labels) of each partition with respect to the
query. In this section, we propose a query-oriented sampling approach to improve the
estimation accuracy.

Consider the records X’s in a dataset as binary vectors with respect to the element
universe E = {e1, ..., en}, i.e., each record is regarded as a size-n vector with i-th posi-
tion as 1 if ei ∈ X and 0 otherwise; divide the element universe E into two disjoint parts
as E1 and E2, then each record X can be written as two parts X1 and X2 corresponding
E1 and E2 respectively, and we have X = {X1;X2} where X1 is concatenated with X2.
We give a lemma based on the division.

Lemma 1. (Subset Inclusion) Given a query record Q and a record X from the dataset
S,Q andX are under the same division strategy described above and letQ = {Q1;Q2}
and X = {X1;X2}. We have X ⊆ Q if and only if X1 ⊆ Q1 and X2 ⊆ Q2.

The proof of the lemma is straightforward. From this lemma, a simple pruning technique
can be derived such that if X1 * Q1 then X * Q.

Recall the tire-based partition method; we partition the dataset into several groups
by the labels of records, where the label can be regarded as the representative for each
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partition. Before drawing samples from a partition with label X1, we can calculate if X1

is a subset of query Q. If not, we can skip sampling from that collection of records with
X1 as a label. In order to specify the grouping of records, we give a definition as follows.

Definition 1. ((E1, E2)-Prefix Collection) Given E1 and E2 as the subsets of element
universe E , the (E1, E2)-prefix collection of records denoted as S(E1, E2) consists of
all records X’s from dataset S such that all elements of E1 are contained in X while no
element of E2 appears in X , that is, S(E1, E2) = {X ∈ S|E1 ⊆ X and E2 ∩X = Φ}.

Note that E1 and E2 are respectively named as inclusion element set and exclusion ele-
ment set.

Example 3. An ({e2}, {e7})-prefix collection in Fig. 1 is {X2, X4}.
Recall that in Section 3.2 we model the record X as a random variable and give the

probability thatX appears in dataset S. Similarly, we compute the generating probability
of the prefix collection S(E1, E2) as follows:

Pr[S(E1, E2)] = Pr[
⋂
e∈E1

{e = 1},
⋂
e∈E2

{e = 0}]. (13)

Next we compute the number of subsets of a given query Q within the prefix collection
S(E1, E2), i.e., the containment selectivity in regard to S(E1, E2). Let nX denote the
indicator function such that

nX :=

{
1 if Q ⊇ X,
0 otherwise

then the containment selectivity of Q with respect to S(E1, E2) is

tS(E1,E2) =
∑

X∈S(E1,E2)

nX ∗
Pr[X]

Pr[S(E1, E2)]
(14)

Now we can present the lemma which lay the foundation of the divide-and-conquer al-
gorithm.

Lemma 2. Considering a prefix collection S(E1, E2) and an element e which does not
belong to E1 ∪E2, the containment selectivity of a given query Q within S(E1, E2) can
be calculated as

tS(E1,E2) = Pr[e = 1|S(E1, E2)]∗tS(E1∪{e},E2)+Pr[e = 0|S(E1, E2)]∗tS(E1,E2∪{e}).

The key point in the proof of Lemma 2 is to consider the conditional probability. We omit
the detailed proof here due to space limitation.

Based on Lemma 2, we propose the divide-and-conquer algorithm illustrated in Al-
gorithm 2. We can calculate the containment selectivity of Q within dataset S by invok-
ing procedure T(S, φ, φ,Q); by lemma 2, the dataset is partitioned into two groups of
records by choose an element e ∈ E and we have

tS(φ,φ) = Pr[e = 1|S(φ, φ)] ∗ tS({e},φ) + Pr[e = 0|S(φ, φ)] ∗ tS(φ,{e})
then compute the containment selectivity in each of the two groups recursively as shown
in Line 4-5. When there isE1 * Q, we can prune this collection of records S(E1, E2) by
Lemma 1. Obviously, the time complexity of the exact divide-and-conquer algorithm is
O(C ∗ 2n) where n is the size of the element universe E and C is the cost of set compar-
ison. Recall that the element frequency distribution is usually skew in real dataset, and
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Algorithm 2: Divide-And-Conquer Exact Algorithm
Input : S, a collection of records as dataset; Q, a query set

E1 (E2), elements included (excluded) in the prefix collection
Output : t̂: containment selectivity of query Q within S(E1, E2)
procedure T(S, E1, E2, Q)1
if E1 * Q then2

return 03

choose an element e /∈ E1 ∪ E2;4
return Pr[e = 1|S(E1, E2)] ∗T(S, E1 ∪ {e}, E2, Q) + Pr[e =5
0|S(E1, E2)] ∗T(S, E1, E2 ∪ {e}, Q)

we can arrange the elements by decreasing frequency order when choosing the element e
in Line 4 of Algorithm 2, which can accelerate the computation by pruning more records
corresponding to the high-frequency elements.
Approximate Divide-And-Conquer Algorithm. Next we propose an approximate
method based on the exact divide-and-conquer algorithm. In Algorithm 2, the dataset
S is recursively partitioned into two collection of records by choosing an element
e /∈ E1 ∪ E2. In addition, we can order the elements by decreasing element frequency
to boost the computation efficiency. However, the complexity is still O(C ∗ 2n). In this
section, we only consider the top-k high-frequency elements Ek, from which the element
is selected to partition the dataset. After finishing all the elements in Ek, we end up with
2k prefix collections of records Si(E1, E2), i = 1, 2, ..., 2k, which is much smaller than
2n. Note that (E1, E2) can be regarded as the label for each prefix collection.

Recall Lemma 1, all the records X’s can be described as the binary vector with X =
{X1;X2} where X1 corresponds to the top-k high-frequency elements part Ek and X2

is the rest part concatenated with X1. Similarly, when a query record Q arrives, let Q
be Q = {Q1;Q2} following the same manner; then by Lemma 1, we can exclude all
the prefix collections S(E1, E2) with E1 * Q1. For the remaining prefix collections,
we sample some records from each group and conduct containment search of Q over
sampled records. Let X = {X1;X2} be a sampled record, it is only required to test
if X2 ⊆ Q2 since X1 ⊆ Q1. In the following part, we formally demonstrate how to
estimate the containment selectivity of Q by the divide-and-conquer method.

Let Ii denote the indicator function for prefix collection Si(E1, E2) (Si for short)
such that Ii = 1 when E1 ⊆ Q1 otherwise 0. The size of prefix collection Si(E1, E2)
can be computed as mi = |Si(E1, E2)| = m ∗ Pr[Si(E1, E2)] by Equation 13. Let pi
be the sampling probability in Si, then the sample size is m′i = mi ∗ pi. For any sampled
record Xj = {X1;X2} in this prefix collection Si, let nij be the indicator for which
nij = 1 if X2 ⊆ Q2 otherwise 0. Then an estimator for the containment selectivity of Q
by divide-and-conquer algorithm can be expressed as

t̂D =
∑
Si

Ii

m′
i∑

j=1

nij
pi

(15)

It can be verified that t̂D is an unbiased estimator and the variance of t̂D is

V ar[t̂D] =
∑
Si

Ii ∗
ti(mi − ti)
pimi

(16)

where ti is the number of records satisfying X2 ⊆ Q2 in Si. Let Si, i = 1, 2, ..., l be all
the prefix collections withE1 ⊆ Q1 for a given queryQ, then the variance can be written
as V ar[t̂D] =

∑l
i=1

ti(mi−ti)
pimi

.
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Dataset Abbreviation Record Elements #Records AvgLength #Elements
Bookcrossing [1] BOOKC Book User 340,523 3.38 105,278
Delicious [2] DELIC User Tag 833,081 98.42 4,512,099
Livejournal [3] LIVEJ User Group 3,201,203 35.08 7,489,073
Netflix [10] NETFLIX Movie Rating 480,189 209.25 17,770
Sualize [4] SUALZ Picture Tag 495,402 3.63 82,035
Twitter [19] TWITTER Partition User 371,586 65.96 1,318

Table 2. Characteristics of datasets

Compare with OT-Sampling. Obviously, in DC-Sampling method, we avoid allocating
the space budget to unqualified partitions compared with OT-Sampling. In formal, as-
sume there are q partitions (corresponding to prefix collections) in total with {P1, ..., Pq};
after pruning, there remains l partitions, w.l.o.g, {P1, ..., Pl}. Then for DC-Sampling,
the sampling probability is pi = b∑l

i=1mi
where mi = |Pi| and b is space bud-

get, and the sampling probability of OT-Sampling is p′i = b∑q
i=1mi

. Thus we have

V ar[t̂P ]− V ar[t̂D] =
∑l
i=1( 1

p′imi
− 1

pimi
)ti(mi − ti) +

∑q
i=l+1

1
p′imi

ti(mi − ti) ≥ 0

since p′i ≤ pi.
Time Complexity. The time complexity of DC-Sampling method is O(b ∗ C̃) + O(P )

where C̃ is the cost for two-record containment check. After pruning the unqualified
partitions, we can skip comparing the prefix part of a record with the query by our algo-
rithm, thus the time cost of C̃ is smaller than that of OT-sampling, which leads to better
efficiency than DC-Sampling.

5 Experimental Evaluation

In this section, we evaluate the estimation accuracy and computation efficiency of dif-
ferent strategies on a variety of real-life datasets. All experiments are conducted on PCs
with Intel Xeon 2x2.3Ghz CPU and 128GB RAM running Debian Linux.
5.1 Experimental Setting
Algorithms. Since there exists no previous work for tackling the problem of set contain-
ment selectivity estimation, we evaluate the following estimation methods introduced in
this paper.

– RS. Direct random sampling method in Section 3.1.
– IL-GKMV. Inverted lists and G-KMV sketch based method in Section 3.2.
– OT-Sampling. Ordered trie structure based sampling method in Section 4.1.
– DC-Sampling. The divide-and-conquer based sampling method in Section 4.2.

The above algorithms are implemented in C++. In verifying the inclusion relationship
between the query and records, we apply the merge-join method. For records with large
size, we utilize the prefix-tree structure to boost the computation efficiency.
Datasets. We deploy 6 real-life datasets which are chosen from various domains with
different data properties. In Table 2, we illustrate the characteristics of these 6 datasets in
details. For each dataset, we show the representations of record and element, the number
of records, the average record length, and the number of distinct elements in dataset.
Workload. The workload for the selectivity estimation of set containment search is made
up of 10000 queries, each of which is uniformly at random selected from the dataset. Note
that we exclude the queries with size smaller than 10 in order to evaluate the accuracy
properly.
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Fig. 3. Overall Performance

Measurement. In the following part, we use relative error to measure the accuracy. Let
t be the exact result and t̂ be the estimation one, then the relative error denoted by ε is
calculated as ε = |t−t̂|

t . The sampling size is in terms of the number of records. For
IL-GKMV approach, the space budget is allocated as discussed at the end of Section 3.
Tuning k. In order to evaluate the impact of the high-frequency elements in OT-Sampling
and DC-Sampling, we first tune the number of highest-frequency elements, i.e., top-k. By
experimental study, we set the k value as 12 which can well balance the trade-off between
accuracy and efficiency.
5.2 Overall Performance
Fig. 3(a) compares the estimation accuracy and time cost of the four algorithms on
6 datasets. The sample size is set as 1000 in terms of number of records; for trie-
structure based approach and divide-and-conquer algorithm, the k-value is 12 as men-
tioned above. Overall, we can see that the divide-and-conquer (DC-Sampling) algorithm
achieves the best performance in accuracy on all datasets, which can reduce the relative
error of the random sampling (RS) method by around 60% and cut the relative error of
IL-GKMV method by more than 80%. Also, the ordered-trie structure-based approach
(OT-Sampling) can diminish the relative error of RS by around 40% for most datasets
and narrow the relative error of IL-GKMV by about 70%. Moreover, divide-and-conquer
(DC-Sampling) algorithm outperforms the ordered tire structure based approach (OT-
Sampling) by decreasing the relative error about half.

Fig. 3(b) reports the query response time on 6 datasets with 10000 queries, where
DC-Sampling method consumes less time than the other three because of the pruning
techniques. It is remarkable that for each dataset, the time costs of the four algorithms
are comparable since we keep the same sample size in every algorithm. Meanwhile,
the response time varies among different datasets because of the diverse average record
lengths, and datasets with larger average length, e.g., NETFLIX with AvgLength 209.25,
consume more query time.
5.3 Estimation Accuracy Evaluation
In this section, we assess the effectiveness of the four methods in terms of relative error.
We consider the effect of space budget on the estimation accuracy by changing the sam-
pling size. Fig. 4 illustrates superior accuracy achievement of DC-Sampling against the
other three by varying the space budget. As anticipated, the accuracy performance of all
algorithms is ameliorated when more sampling size is provided.
5.4 Computation Efficiency Evaluation
In the last part of experiment, we evaluate the efficiency of the four algorithms in terms of
query response time with 10, 000 queries. Fig. 5 demonstrates the response time of four
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algorithms with different space budget. Obviously, the query response time increases as
the sampling size grows. The DC-Sampling method outperforms the other three algo-
rithms because of the pruning techniques.

6 Related Work

To the best our knowledge, there is no existing work on selectivity estimation of set
containment search. In this section, we review two important directions closely related
to the problem studied in this paper.
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Searching Set-valued Data. The study of set-valued data has attracted great attention
from research communities and industrial organizations due to an ever increasing preva-
lence of set-valued data in a wide range of applications. The research in this area fo-
cuses on set containment search ([15], [16], [24]), set similarity and set containment
joins ([17], [19], [20], [26]). In one of the representative work on set containment search
([24]), M. Terrovitis et. al introduce a OIF index combined the inverted index with B-
tree to tackle three kinds of set-containment queries: subset queries, equality queries
and superset queries. In a recent work ([30]), J. Yang et. al propose a TT-join method
for the set containment join problem, which is based on prefix tree structure and utilize
the element frequency information; they also present a detailed summary of the existing
set-containment join methods. The containment queries can also be modeled as range
searching problem in computational geometry ([5]); nevertheless, the performance is ex-
ponentially dependent on dimension n which is unsuitable in practice for our problem.
Selectivity Estimation. The problem of selectivity estimation has been studied for a large
variety of queries and over a diverse range of data types such as range queries (e.g., [13]),
boolean queries (e.g., [11]), relational joins (e.g., [25]), spatial join (e.g., [14]), and set
intersection (e.g., [13]). Nevertheless, many of the techniques developed above are sen-
sitive to the dimension of data and not applicable to the problem studied in this paper.
Moreover, the superset containment semantics brings in extra challenges in adopting ex-
isting techniques. Although the set containment search query can be naturally modeled as
range counting problem as discussed in Section 1, existing range counting techniques are
exponentially dependent on the dimensionality (i.e., number of distinct elements in our
problem) and not applicable to solving the containment selectivity estimation problem in
our problem ([13], [23]). Distinct value estimators (e.g., KMV [9], bottom-k, min-hash
[13]) are adopted in [28] to solve subset containment search (i.e., query record is a sub-
set of data record). We also extend the distinct value estimator KMV and develop the
IL-GKMV approach in Section 3 and demonstrate theoretically and through extensive
experiments that distinct value estimators cannot efficiently and accurately support the
superset containment semantics studied in this paper.

7 Conclusion

The prevalence of set-valued data generates a wide variety of applications that call for
sophisticated processing techniques. In this paper, we investigate the problem of selectiv-
ity estimation on set containment search and develop novel and efficient sampling based
techniques, OT-Sampling and DC-Sampling, to address the inherent challenges of set
containment search and the limitations of existing techniques. Simple random sampling
techniques and a G-KMV sketch based estimating approach IL-GKMV are also devised
as baseline solutions. We theoretically analyse the accuracy of the proposed techniques
by means of expectation and variance. Our comprehensive experiments on 6 real-life
datasets empirically verify the effectiveness and efficiency of the sampling based ap-
proaches.
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