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Abstract

Attributed network embedding aims to learn a low-
dimensional representation for each node of a net-
work, considering both attributes and structure in-
formation of the node. However, the learning based
methods usually involve substantial cost in time,
which makes them impractical without the help of
a powerful workhorse. In this paper, we propose
a simple yet effective algorithm, named NetHash,
to solve this problem only with moderate comput-
ing capacity. NetHash employs the randomized
hashing technique to encode shallow trees, each
of which is rooted at a node of the network. The
main idea is to efficiently encode both attributes
and structure information of each node by recur-
sively sketching the corresponding rooted tree from
bottom (i.e., the predefined highest-order neighbor-
ing nodes) to top (i.e., the root node), and partic-
ularly, to preserve as much information closer to
the root node as possible. Our extensive experi-
mental results show that the proposed algorithm,
which does not need learning, runs significantly
faster than the state-of-the-art learning-based net-
work embedding methods while achieving compet-
itive or even better performance in accuracy.

1 Introduction
The surge of real-world network data, e.g., citation networks
and social networks, has fostered network mining research.
An important research that underpins many high-level appli-
cations is to represent the network by embedding each node in
the network into a low-dimensional space. Based on the sim-
plified network representation (i.e, network embedding), one
can conduct node classification [Bhagat et al., 2011] and link
prediction [Liben-Nowell and Kleinberg, 2007], etc. In some
real-world scenarios, high efficiency is strongly required with
precisions guaranteed. For example, given an evolving social
network, if we aim to retrieve the most similar users w.r.t. a
queried user (e.g., for user search or friend recommendation),
network representation should be performed very quickly to
return precise results. Therefore, it is necessary to develop
efficient and effective network embedding algorithms.

Recently, various network embedding algorithms have
been proposed, including plain network embedding meth-
ods with only structure information preserved [Perozzi et
al., 2014; Grover and Leskovec, 2016], and attributed net-
work embedding approaches with both structure and content
information captured [Huang et al., 2017a; 2017b]. How-
ever, plain network embedding methods may not satisfy ac-
curacy because content information is simply ignored, while
attributed network embedding methods usually involve inef-
ficient learning procedures due to massive matrix operations.
To preserve content and structure information and dramati-

cally reduce the computational cost in situations without pow-
erful workhorses (e.g, query in mobile devices), one pos-
sible solution is to employ randomized hashing techniques
[Broder et al., 1998; Gionis et al., 1999; Chi et al., 2014;
Wu et al., 2016; 2017; Yang et al., 2017], which can effi-
ciently sketch high-dimensional data and map them into a
fixed number of dimensions as an estimator. Some hashing
algorithms have been used to characterize substructures in the
graph, e.g., [Gibson et al., 2005] discovers large dense sub-
graphs. By contrast, in [Li et al., 2012], the graph is repre-
sented as a feature vector, where each dimension comprises a
set of substructures, for classification by employing the hash-
ing techniques to approximately count substructures.
Although there have been some research using randomized

hashing techniques to approximately count substructures in a
graph as features, to our knowledge there is no reported work
using randomized hashing for graph embedding (node repre-
sentation). In this paper, we represent each node of a graph
as a shallow rooted tree through expanding its neighboring
nodes, and then adopt the Locality-Sensitive Hashing (LSH)
algorithm to sketch level-wise content of the rooted tree from
bottom (the predefined highest-order neighboring nodes) to
top (i.e., the root node). In particular, to summarize multiple
attributes at each level of the rooted tree, MinHash, which is
a well-known randomized LSH scheme in the bag-of-words
model, is recursively employed. In the recursive operation of
LSH along the rooted tree, we take into account the law of
network information diffusion, i.e., exponential decay from
the information source to the distance. This implies that the
proposed recursive randomized hashing algorithm should be
able to discount the content information level by level in the
course of propagation. We name the resulting algorithm for
attributed network embedding NetHash, which can encode
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the attributes and structure information of the attributed net-
work for each node using a low-dimensional discrete vector.
We provide theoretical analysis of the estimator of the sim-

ilarity between two rooted trees, and also empirically evalu-
ate effectiveness and efficiency of NetHash and the state-of-
the-art methods on a number of real-world citation network
and social network data sets for the tasks of multi-class node
classification, link prediction and large-scale node query. In
summary, our contributions are three-fold:

1. This work is the first endeavor to introduce randomized
hashing techniques into attributed network embedding.

2. We propose a novel non-learning attributed network
embedding algorithm named NetHash, which can effi-
ciently preserve content and structure information for
each node by expanding the node and its neighboring
nodes into a rooted tree and recursively sketching the
rooted tree from bottom to top.

3. The experimental results show that NetHash can achieve
competitive or better accuracy with significantly re-
duced computational cost, compared to the state-of-the-
art learning-based network embedding methods.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews related work of network embedding and graph
hashing. Section 3 introduces the attributed network embed-
ding problem. We describe NetHash in Section 4. The exper-
imental results are presented in Section 5. Finally, we con-
clude this paper in Section 6.

2 Related Work
2.1 Network Embedding
Current network embedding approaches consist of plain net-
work embedding and attributed network embedding [Zhang
et al., 2017]. The former describes each node by consider-
ing only structure information in the network, while the latter
preserves both content and structure information.
Inspired by Skip-Gram [Mikolov et al., 2013], DeepWalk

[Perozzi et al., 2014] and node2vec [Grover and Leskovec,
2016] perform random walks in the network so that the nodes
in the random walks can capture contextual structure infor-
mation. The former uniformly samples nodes from neighbors
in the random walk, while the latter non-uniformly does. On
the other hand, The first-order proximity composed of edges
between nodes preserves local structure information, and the
second-order proximity shows that nodes with shared neigh-
bors are similar and captures global structure information.
LINE [Tang et al., 2015] explicitly defines an objective func-
tion to capture the two categories of structure information.
To incorporate content information, researchers have suc-

cessively proposed attributed network embedding algorithms.
TADW [Yang et al., 2015], as the first approach to attributed
network embedding, injects texts into matrix factorization by
proving that DeepWalk is equivalent to matrix factorization.
Based on TADW, HSCA [Zhang et al., 2016] adds informa-
tion of the first-order proximity to improve network repre-
sentation. In addition to content and structure information,
one node may have different contexts when interacting with

different neighboring nodes. To this end, CANE [Tu et al.,
2017] adopts deep learning to capture such contexts.

2.2 Graph Hashing
Although most randomized hashing algorithms are designed
for vectors or sets, some works aim to capture structure infor-
mation by characterizing substructures in the graph. In [Gib-
son et al., 2005], large dense subgraphs in massive graphs
are identified by a variant of MinHash, where each hash
function is generalized to return multiple elements to capture
more neighboring information. In [Becchetti et al., 2010], a
slight modification of MinHash, which accelerates the stan-
dard method, is used to estimate the local number of trian-
gles in large graphs. Some works adopt two random hashing
schemes: In [Chi et al., 2013], the first hashing scheme com-
presses a graph into a small graph, and the second one maps
unlimitedly emerging cliques into a fixed-size clique set.
[Li et al., 2012; Wu et al., 2018] hash tree structures in the

graph and approximately count substructures. Consequently,
the graph is represented as a feature vector for classification,
where each dimension comprises a set of substructures and
the value of each dimension is related to the estimated number
of the substructures. These algorithms cannot embed network
nodes into a low-dimensional space, thus are not designed for
node representation in our problem setting.

3 Problem Definition
Given an attributed network G = (V, E , f), where V denotes
nodes of the network, E denotes undirected edges of the net-
work, and f : V 7→ A is a function that assigns attributes
from an attribute set (or a global vocabulary) A to the nodes.
Naturally, a node v ∈ V , which owns attributes f(v), can be
represented as a 0/1 feature vector vv where each dimension
represents an attribute in A. Figure 1(a) shows a toy exam-
ple where an attributed network is composed of 6 nodes, 8
edges and 10 attributes. Each node is represented as a 10-
dimensional 0/1 feature vector (bottom right). Given a net-
work G, we aim to embed each node vv ∈ {0, 1}|A| into a
low-dimensional vector xv ∈ RK , whereK ≪ |A|1.

4 NetHash
In this section, we first introduce MinHash, and then propose
the NetHash algorithm for attributed network embedding.

4.1 The MinHash Scheme
Given a universal set U and a subset S ⊆ U , MinHash is gen-
erated: Assuming a set ofK random permutations, {πk}Kk=1,
where πk : U 7→ U , are applied to U , elements in S which lie
in the first position of each permutation, {min

(
πk(S)

)
}Kk=1,

will be the MinHashes of S [Broder et al., 1998].
MinHash is an approximate algorithm to compute the Jac-

card similarity of two sets. It is proved that the probability of
two sets, S1 and S2, to generate the same MinHash value is
exactly equal to the Jaccard similarity of the two sets:

Pr
(
min

(
πk(S1)

)
= min

(
πk(S2)

))
= J(S1,S2) =

|S1 ∩ S2|
|S1 ∪ S2|

.

1Most algorithms embed nodes into l2 space, while we embed
nodes into l1 space, as in [Gionis et al., 1999].
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Figure 1: An illustration of embedding a node (recursively sketching a rooted tree) on a network.

We can conduct multiple independent random permuta-
tions for unbiasedly estimating the similarity:

Ĵ(S1,S2) =

∑K
k=1 1

(
min

(
πk(S1)

)
= min

(
πk(S2)

))
K

.

However, the explicit random permutations are expensive.
In practice, a hash function as follows can be used to generate
the permutated index πk(i) = mod

(
(aki + bk), ck

)
, where

i is the index of an element from the universal set U , 0 <
ak, bk < ck are two random integers and ck is a big prime
number such that ck ≥ |U| [Broder et al., 1998].

4.2 The NetHash Algorithm
To simultaneously capture content and structure information
in the network, we expand each node along with its neigh-
boring nodes into a rooted tree. By recursively sketching the
rooted tree from bottom to top, NetHash diffuses content in-
formation level by level. To this end, we employ the structure
of parent pointer tree (PPT) to store the tree such that each
node of the tree is visited only once. Figure 1(b) shows a tree
rooted at Node 1 with depth 2. The 1st level has Nodes 2, 3
and 6, and the 2nd level has Nodes {1, 3}, {1, 2, 4, 5}, and
{1, 5}. Figure 1(c) shows the corresponding PPT, which is a
12 × 3 array: The first column shows node identifiers on the
network; the second column points to the parent node in the
array, e.g., “-1” means that root Node 1 has no parent node
and “1” in the 2nd row (i.e., [2, 1, 1]) shows that the parent
node of Node 2 is in the 1st row (i.e., Node 1); the third col-
umn is the level where the node is located.
We outline NetHash in Algorithm 1. NetHash processes

nodes one by one (Line 1). We first build the PPT to store
the rooted tree whose root node is currently being processed
(Line 2). Also, we introduce an auxiliary queue Q to store
the currently visited node in the rooted tree and the cor-
responding diffused content information (Line 3). Subse-
quently, NetHash traverses the PPT from end to head (Lines
4-12). The recursive sketching process consists of two steps.
Sketching a node produces a set of MinHashes called “di-
gest”, which represents the content information diffused from
the node to its parent node, e.g., {b, j} produced by sketch-
ing Node 2 in Figure 1(d). Actually, the step summarizes
content information of each node. In the while loop, an inter-
nal node merges its own attributes with all digests, which
are generated by sketching its all child nodes, to produce the

Algorithm 1 The NetHash Algorithm
Input: G = (V, E, f); number of embedding dimensions K; entropy of degrees of

network S; depth of tree D 1; hash functions at the l-th level {π(l)
k }

D,kl
l=0,k=1

Output: G’s embedding h

1: for r = 1, . . . , |V| do
2: Build a parent pointer tree T for node r;

3: Initialize an empty auxiliary queue Q;

4: for v ∈ T ↑ do
5: l← level of v in T;

6: merger ← f(v); // initial merger from attributes on v

7: whileQ is not empty and

v is the parent node of Q[0] in T do
8: merger ← merge(Q.pop().digest,merger);

9: end while
10: digest← MinHash(merger, {π(l)

k }
kl
k=1);

11: Q. push({digest, v});
12: end for
13: h(r)← Q.pop().digest;

14: end for

“merger”, whose entries of 1 correspond to attributes or di-
gests, e.g., [0 1 1 0 1 1 0 0 0 1] on Node 2 in Figure 1(d). Con-
sequently, the internal node carries both its own and diffused
content information. Essentially, this step preserves structure
information by diffusing and merging because the structure
(i.e., edges) is reflected by digests. Note that no merging
operation occurs on leaf nodes. Finally, the root node returns
its representation (Line 13).

4.3 Exponentially Decayed Diffusion
We build a framework of capturing content and structure

information by recursively sketching the rooted tree. Intu-
itively, the lower-order neighboring nodes contribute more to
representation of the root node than the higher-order ones do,
which implies that NetHash should discount content informa-
tion level by level in the course of propagation. To this end,
we combine the recursive operation of the MinHash algo-
rithm with the law of network information diffusion, i.e., ex-
ponential decay from the information source to the distance.
Natually, the number of MinHashes, kl, which is the amount
of digest produced from a node at the l-th level, satisfies:

kl = max{1,int
(
K exp(−lλ)

)
}, (1)

1Note that D = 0 indicates that the tree has only one root node.
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where K is the number of embedding dimensions, i.e., the
number of MinHashes at the root node (its level is 0 and k0 =
K), λ is the exponential decay rate, and int is a rounding
function. If kl < 1, one attribute of digest will be diffused.
Content information is diffused along edges, so informa-

tion diffusion is closely related to node degrees. If treating
node degrees in a network as a distribution, we can define
the entropy of node degrees, S, from the perspective of infor-
mation theory: S = −

∑
ν∈unique({νv}v∈V ) Pr(ν) log Pr(ν),

where νv is degree of node v and unique({νv}v∈V) is the
set of unique degrees observed in the network. A large en-
tropy suggests that the network tends to have evenly dis-
tributed degrees, which implies that content information dif-
fused in the network is unstable since the amount of diffused
content (in our case the “digest”) varies widely from node to
node. For example: Given a network containing 100 nodes,
node degrees vary from 1 to 5, and the number of the nodes
corresponding to each node degree, if evenly distributed, is
20. In this case, the amount of digest is different from node
to node. The total amount of digest received by each node
remarkably changes due to different degrees. If node degrees
are not that evenly distributed and are more concentrated, the
total amount of digest will tend to be consistent. To address
the issue, such a network ought to diffuse little digest by ac-
celerating the decay of diffusion. To this end, we use entropy
as the decay rate and Eq. (1) is rewritten as

kl = max{1,int
(
K exp(−lS)

)
}. (2)

4.4 Theoretical Analysis
Similarity: Given two rooted trees, A(D) and B(D), where
D is the depth of the trees, their similarity is:

J(A(D),B(D)) = Eπ(0),··· ,π(D)

[
1
(
ρ(A) = ρ(B)

)]
,

ρ(X ) = π(0)
(
f(X (0)

∗ )∪π(1)
(
· · · f(X (D−1)

∗ )∪π(D)(f(X (D)
∗ ))

))
,

whereX ∈ {A,B}, f(X (d)
∗ ) and π(d)(f(X (d)

∗ )) are attributes
of all nodes at the d-th level and the digest sets produced from
the corresponding nodes by MinHash π(d) at the d-th level,
respectively, and the number of π(0) is K.
Bounds: We give bounds between the real similarity

J(A(D),B(D)) and the estimated similarity Ĵ(A(D),B(D)).

Theorem 1 Given K > 2δ−2s−1 log ϵ−1, 0 < δ < 1 and
ϵ > 0, for two rooted trees, A(D) and B(D), we have bounds:

1. If J(A(D),B(D)) ≥ s, then Ĵ(A(D),B(D)) ≥ (1 − δ)s
with a probability at least 1− ϵ.

2. If J(A(D),B(D)) ≤ s, then Ĵ(A(D),B(D)) ≤ (1 + δ)s
with a probability at least 1− ϵ.

Proof 1 Let Xπ(0),··· ,π(D) be a random variable.
Xπ(0),··· ,π(D) = 1 if ρ(A) = ρ(B), and 0 otherwise.

Let X =
∑K

k=1 X
(k)

π(0),··· ,π(D) . Eπ(0),··· ,π(D) [X
(k)

π(0),··· ,π(D) ] =

J(A(D),B(D)) ≥ s; E[X] ≥ Ks as only K MinHash
functions sketch the root node whatever D is. Based on the
Chernoff bound [Chernoff, 1952], we have

Pr
(
X < (1− δ)Ks

)
≤ Pr

(
X < (1− δ)E(X)

)

Data Set |V| |E| ν |A| |A| S |L|

Cora 2,708 5,429 3.8 1,433 18.17 2.11 7
Wikipedia 2,405 17,981 9.08 4,973 673.31 3.06 19

Flickr 7,575 239,738 63.29 12,047 24.13 4.81 9
BlogCatalog 5,196 171,743 66.11 8,189 71.10 4.89 6

ACM 1,108,140 6,121,261 11.05 586,190 59.09 3.26 -

|V|: number of nodes; |E|: number of edges; ν: average node degrees; |A|: size of
the attribute set; |A|: average number of node attributes; S: entropy of node degrees;
|L|: number of node labels.

Table 1: Summary of the five network data sets.

≤ e−
δ2E(X)

2 ≤ e−
δ2Ks

2 (3)

Substituting Eq. (3) with Ĵ(A(D),B(D)) = X
K gives

Pr
(
Ĵ(A(D),B(D)) < (1− δ)s

)
≤ e−

δ2Ks
2 < ϵ (4)

By rearranging Eq. (4), we prove the first proposition for
K > 2δ−2s−1 log ϵ−1. Similarly, the second one is proved.

Complexity: The rooted tree can be averagely considered
as a ν-ary tree, where ν and |A| denote the mean value of
degrees of the network and the mean number of attributes
of each node, respectively. Since NetHash traverses each
node only once, the theoretical computational complexity is
O(|V|

(∑D−1
d=0 (|A| + kd+1ν)kdν

d + |A|kDνD
)
). Consider-

ing the simplified version of Eq. (2), i.e., kd = Ke−dS , we
have O(|V|νDKe−DS(max{|A|,Ke−(D−1)S})).
TADW and HSCA first spend O(|V|2) in probability that

each node randomly walks to any one in fixed steps; then in
each iteration of the learning process, TADW costs at least
O
(
|V|K2 + |V||A|K

)
, and HSCA does at least O

(
|V|K2 +

|V||A|K + |V||A|2
)
. In practice, we normally consider trees

with D ∈ {1, 2, 3} as the distant nodes can hardly diffuse ef-
fective attributes to the root node. Besides, in most networks,
ν, νD ≪ |V| due to sparsity, |A|,K ≪ |A|. Therefore, the
time complexity of NetHash is practically efficient, especially
in large-scale networks since it is linear with respect to |V|.

5 Experimental Results
In this section, we evaluate the performance of NetHash via
node classification, link prediction and node retrieval.
The state-of-the-art methods: (1) DeepWalk [Perozzi

et al., 2014]: It captures contextual structure information
based on random walks; (2) node2vec [Grover and Leskovec,
2016]: It performs a biased DeepWalk to explore diverse
neighbors; (3) TADW [Yang et al., 2015]: It learns node rep-
resentations by combining attributes with structure in matrix
factorization; (4) HSCA [Zhang et al., 2016]: It adds the first-
order proximity to TADW; (5) CANE [Tu et al., 2017]: Be-
sides attribute and structure information, it captures different
contexts which a node expresses for different neighbors.
Data sets: (1) Cora [Yang et al., 2015]: A citation net-

work of machine learning papers. (2) Wikipedia [Yang et
al., 2015]: A citation network of articles in Wikipedia. (3)
Flickr [Li et al., 2015]: The network consists of users as
nodes, following relationship as edges and interest tags of
users as attributes. (4) BlogCatalog [Li et al., 2015]: The
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Data Algorithms Micro-F1(%) Macro-F1(%) Runtime(s)
Training Ratio Training Ratio

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

Cora

DeepWalk 78.83 79.68 80.29 80.78 81.20 77.63 78.48 79.08 79.55 79.83 436.39
node2vec 81.22 81.98 82.68 83.09 83.52 80.14 80.91 81.61 81.99 82.28 24.01
TADW 85.74 86.17 86.46 86.71 86.78 84.35 84.71 85.23 85.25 85.26 66.54
HSCA 85.70 85.79 85.97 86.25 86.38 84.15 84.25 84.41 84.62 84.82 72.17
CANE 85.78 86.13 86.70 87.27 87.32 84.41 84.73 85.26 85.57 85.86 5622.72
NetHash 85.65 86.22 86.74 87.13 87.31 84.80 85.42 85.93 86.34 86.43 0.4

Wikipedia

DeepWalk 63.71 64.63 65.33 65.83 66.55 50.63 51.60 52.28 52.47 52.11 355.56
node2vec 63.70 64.61 65.31 65.91 66.36 50.78 51.53 52.22 52.49 52.04 24.81
TADW 75.58 76.06 76.59 76.96 77.20 59.39 60.23 61.10 61.57 60.90 90.97
HSCA 72.35 72.61 72.71 72.82 73.05 56.57 56.93 57.19 57.01 56.40 103.96
CANE 72.62 73.27 73.91 74.36 74.71 57.30 58.23 58.97 59.02 58.28 10878.74
NetHash 74.12 75.49 76.64 77.51 78.12 55.10 57.45 59.39 61.00 61.28 2.00

Table 2: Node classification results on citation networks.

Data Algorithms Training Ratio
50% 60% 70% 80% 90%

AUC Runtime(s) AUC Runtime(s) AUC Runtime(s) AUC Runtime(s) AUC Runtime(s)

Flickr

DeepWalk 31.72 1144.68 32.08 1150.99 32.83 1156.30 33.07 1156.31 34.33 1151.60
node2vec 17.98 289.60 16.62 354.92 16.70 423.26 17.52 479.61 18.95 528.56
TADW 64.40 365.34 65.85 392.96 66.50 417.07 67.05 443.16 67.79 477.08
HSCA 55.35 387.11 54.54 412.93 54.03 456.80 54.03 498.20 53.25 497.93
NetHash 85.07 0.60 85.19 0.70 85.54 0.80 85.79 1.10 85.44 1.20

BlogCatalog

DeepWalk 77.13 822.70 77.89 819.44 78.56 824.86 78.76 831.62 79.36 845.66
node2vec 56.22 92.51 61.29 109.65 66.65 125.15 70.72 141.07 74.47 159.97
TADW 68.52 213.70 69.51 219.51 70.50 226.92 71.28 218.44 71.94 221.91
HSCA 50.23 209.94 50.25 221.68 50.30 267.34 49.85 277.38 50.35 302.77
NetHash 69.07 0.60 69.83 0.80 72.16 0.90 72.51 1.00 74.26 1.10

*Note that in the experiment, each algorithm is given a cutoff time of 100,000 seconds, and CANE is forced to stop within the cutoff time.

Table 3: Link prediction results on social networks.

network consists of bloggers as nodes, following relationship
as edges and keywords in blog as attributes. (5) ACM [Tang
et al., 2008]: The original data contains 2,381,688 ACM pa-
pers and 10,476,564 citation relationship. After cleaning up
papers without abstracts or citations, we build a citation net-
work with papers as nodes, citation as edges and abstract as
attributes. The data sets are summarized in Table 1.
Experimental Settings: For all methods, we set the em-

bedding dimension K = 200, as in TADW and CANE. All
compared algorithms are implemented by the authors and
their parameters are set to default values. For two nodes v1
and v2, NetHash generates the representations of length K,
xv1 and xv2 , respectively. The Jaccard similarity between

xv1 and xv2 is Simxv1 ,xv2
=

∑K
k=1 1(xv1,k=xv2,k)

K . The run-
time of NetHash consists of generating hash functions, con-
structing and sketching the rooted trees. All experiments are
conducted on a node of Linux Cluster with 8× 3.4 GHz Intel
Xeon CPU (64 bit) and 32GB RAM.

5.1 Node Classification on Citation Networks
We report classification performance on Cora and Wikipedia.
In the task, we adopt LIBSVM [Chang and Lin, 2011] for
NetHash which uses the Jaccard similarity matrix as the pre-
computed kernel, and LIBLINEAR [Fan et al., 2008] for the
compared algorithms2, as used in their papers. We vary the
training ratio (i.e., percentage of nodes as the training set) in

2We test the compared methods on LIBSVM. DeepWalk,
node2vec and CANE achieve similar accuracy while TADW and
HSCA perform worse, so we just report results on LIBLINEAR.

{50%, 60%, 70%, 80%, 90%}, for each ratio of which we re-
peat the experiment 10 times and average the results.
Table 2 reports the experimental results in accuracy

(Micro-F1 and Macro-F1) and runtime. NetHash defeats all
plain network embedding algorithms, and achieves the com-
petitive and even better accuracy than all attributed network
embedding ones. In runtime, NetHash presents the strong ad-
vantage: it performs more efficiently than all compared meth-
ods. Generally, NetHash outperforms TADW and HSCA by
one to two orders of magnitudes, and CANE by four orders.

5.2 Link Prediction on Social Networks
We conduct link prediction task on Flickr and BlogCatalog.
NetHash uses the Jaccard similarity in l1 space while the
compared methods does the Euclidean distance in l2 space
(the same in Section 5.3). A training network is obtained by
randomly preserving a training ratio of edges, while the re-
moved edges act as the unobserved (test) links. Based on the
training network, we compute similarity between each pair
of nodes. Then, we randomly pick an unobserved link and
a nonexistent one to compare their similarities. AUC values
represent the probability that a randomly selected unobserved
link is more similar than a randomly selected nonexistent one
by repeating the picking operation 10,000 times. We compute
AUC values 10 times and average the results.
Table 3 shows the experimental results of AUC and run-

time. NetHash significantly outperforms the compared meth-
ods in AUC and runtime on Flickr, and it defeats all attributed
network embedding algorithms on BlogCatalog. NetHash ex-
hibits superiority in runtime – it performs much more effi-
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Query: Genetic Algorithms in Search, Optimization and Machine Learning Runtime(s)

DeepWalk 19,087
1. Dynamic Identification of Inelastic Shear Frames by Using Prandtl-Ishlinskii Model
2. Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization
3. Genetic Algorithms and Neural Networks in Optimal Location of Piezoelectric ...
4. Trajectory Controller Network and Its Design Automation Through Evolutionary ...
5. Flow Restrictor Design for Extrusion Slit Dies for a Range of Materials: Simulation ...

NetHash 723
1. Neural Networks: A Comprehensive Foundation
2. Machine Learning
3. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
4. Introduction to Algorithms
5. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods

*Note that in the experiment, each algorithm is given a cutoff time of 24 hours. TADW,
HSCA and CANE are forced to stop because of overtime, while node2vec fails due to
out of memory.

Table 4: Top-5 Query results on a large-scale citation network.

ciently than the compared methods by orders of magnitudes.

5.3 Case Study: Node Retrieval on a Large-scale
Citation Network

In this case study, given 5 query papers on ACM that have top
5 highest citation numbers, we retrieve 5 most similar papers
for each query based on their embeddings. Due to similar
results and space constraint, we only report the result of the
paper with the highest citation number (i.e., 6,294).
Table 4 presents the query result. All results retrieved by

NetHash are closely related to algorithms and machine learn-
ing and particularly, it accurately returns one paper regarding
the genetic algorithm (i.e, the third result). Moreover, from
the semantic perspective, we find that the results, except the
third one, and the query all focus on topics of AI and algo-
rithms, while the papers retrieved by DeepWalk are more re-
lated to specific applications, which deviate from the query.
In terms of runtime, NetHash is still very efficient when run-
ning on such a large-scale network data.

5.4 Discussion on the Results
In the above three tasks, NetHash generally achieves compet-
itive and even better accuracy, because it preserves both con-
tent and structure information while DeepWalk and node2vec
only capture structure infomration. Exceptionally, DeepWalk
performs best on BlogCatalog, largely because it captures
sufficient structure information by long random walks in the
complex network (e.g., large average node degree and en-
tropy). In terms of attributed network embedding algorithms,
NetHash and TADW essentially preserve attributes and struc-
ture information, so they keep the same level in accuracy on
Cora, Wikipedia and BlogCatalog; the reason why NetHash
defeats TADW on Flickr is largely because the recursive op-
eration of MinHash can more effectively capture structure in-
formation. Although HSCA and CANE additionally capture
first-order proximity and contexts, respectively, NetHash still
outperforms them on Wikipedia, Flickr and BlogCatalog be-
cause the additional information negatively impacts represen-
tation and in turn deteriorates the accuracy.
In terms of runtime, NetHash performs much more effi-

ciently than DeepWalk and node2vec, because NetHash ex-
pands nodes into the trees with the depth being around 2 while
DeepWalk and node2vec perform long random walks. We
know from Section 4.4 that empirically, NetHash has lower

Micro-F1(%) Runtime(s)
Training Ratio

50% 60% 70% 80% 90%

Depth (D)
1 85.41 85.99 86.55 86.98 87.28 0.1
2 85.65 86.22 86.74 87.13 87.31 0.4
3 85.12 85.93 86.55 86.75 87.00 0.8

Decay rate (λ)
0.5 85.11 85.99 86.55 86.98 87.28 6
2.11 85.65 86.22 86.74 87.13 87.31 0.4
5 85.12 85.93 86.55 86.75 87.00 0.2

Table 5: Parameter sensitivity of depth and decay rate on Cora.

time complexity than TADW and HSCA. CANE experimen-
tally executes a substantial number of matrix operations in
deep learning, which is costly in runtime and demands pow-
erful workhorses. In addition, NetHash, as a randomized al-
gorithm, avoids the iteration process in the learning-based al-
gorithms, which is also an important factor of high efficiency.

5.5 Parameter Sensitivity
NetHash has two exclusive parameters, tree depth D and de-
cay rate λ. Due to space constraint, we report only the node
classification results on Cora.
Table 5 (top) shows accuracy of NetHash w.r.t. tree depth

D. NetHash achieves the best accuracy on Cora whenD = 2.
The reason why the accuracy on Cora improves first when D
varies from 1 to 2 is largely because more useful attributes
are captured from higher-order neighboring nodes. However,
when D further increases to 3, more noise will dominate in
the diffusion process to deteriorate the performance, which
generates the unsatisfying representation. Thus, tuning depth
D is a tradeoff between noise and useful attributes, and the
optimal value of D depends on the particular data. The run-
time grows with D increasing. We set D = 1 for Wikipedia,
Flickr and BlogCatalog, and D = 2 for Cora and ACM.
Table 5 (bottom) shows accuracy of NetHash w.r.t. expo-

nential decay λ. The accuracy first increases and then de-
clines. The best accuracy is achieved when λ is set to the en-
tropy of node degrees S. A smaller λ implies more diffused
information and thus, more noise; while a larger λ implies
less diffused information, which is insufficient. The runtime
decreases remarkably with λ increasing. Hence, we adopt the
entropy of node degrees S as the decay rate.

6 Conclusion
In this paper, we propose an efficient attributed network em-
bedding algorithm dubbed NetHash, which employs the ran-
domized hashing technique to recursively sketch the shallow
trees, each of which is rooted at a node of the network, from
bottom to top, and preserves as much information closer to
the root node as possible by simulating the exponential decay
in network information diffusion.
We conduct extensive empirical tests of NetHash and the

state-of-the-art methods on five network data sets. The exper-
imental results show that NetHash not only achieves competi-
tive or better performance but also performs much faster than
the compared methods by orders of magnitude. In large-scale
network analysis, NetHash can perform very well with a lim-
ited budget of computational capacity, which makes it more
practical in the era of big data.
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