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ABSTRACT A wideband and high gain cavity-backed 4× 4 patch antenna array is proposed in this paper.
Each patch antenna element of the array is enclosed by a rectangular cavity and differentially-fed by the
slot underneath. By optimizing the geometry of the radiating patch and the cavity, a very uniform E-field
distribution at the antenna aperture is achieved, leading to the high array aperture efficiency and thus the
gain. Taking advantages of the higher-order substrate integrated cavity excitation, the elements of the array
are efficiently fed with the same amplitude and phase in a simplified feeding mechanism instead of the
conventional bulky and lossy power-splitter-based feeding network. Measured results show the antenna
bandwidth is from 56 to 63.1-GHz (16.1%) with the peak gain reaching 21.4 dBi. The radiation patterns
of the array are very stable over the entire frequency band and the cross-polarizations are as low as−30 dB.
These good characteristics demonstrate that the proposed array can be a good candidate for the future 60-GHz
communication system applications.

INDEX TERMS mm-wave, cavity-backed, aperture coupled, substrate integrated waveguide, array antenna,
higher order mode.

I. INTRODUCTION
With the unprecedented rapid development of the fifth gen-
eration (5G) wireless communications in recent years, mm-
Wave frequency band, the 60-GHz band in particular, has
emerged as one of the most promising candidates for the
multi-gigabit wireless indoor communication systems. Due
to the continues and the sufficient bandwidth, the commu-
nication systems at 60-GHz are capable of achieving a high
data rate up to multiple gigabits per seconds, which opens
the door to the future wireless data transfer, particularly for
the transmission of the uncompressed high-definition video
and ultra-fast file [1], [2]. As a vital portion of the commu-
nication systems, mm-Wave antennas or arrays that feature
low cost, wideband and high gain are in increasing demand.
To date, various types of antennas with good performances
for mm-Wave applications have been proposed [3]–[29], such
as patch antennas [3]–[7], grid antennas [8]–[11], aperture
antennas [12]–[14], dipole antennas [15], [16], slot anten-
nas [17]–[23], and cavity-backed antennas [24]–[31].

Although the 60-GHz technology offers various advan-
tages over currently proposed or existing communications
systems, it has the disadvantage of the lossy channel with
the excess loss approximately up to 15dB/km due to oxy-
gen absorption [32]. Therefore, increasing the transmit-
ter or receiver antenna gain is not only desirable but inevitable
to compensate the significant propagation loss caused by
the oxygen absorption and ensure that a sufficient margin
exists to overcome other loss, such as rain-induced fading.
Generally, there are two approaches to increase the antenna
gain. One is increasing the radiating aperture size of the
antenna while the other is improving the antenna aperture
efficiency. The latter is more favorable as antennas with
large physical size are usually cost-ineffective and bulky in
structure, which is difficult to be integrated into the front-
end of the transceiver. To improve the aperture efficiency,
cavity-backed antennas have been demonstrated an efficient
approach [33]–[35]. By optimizing the cavity geometry and
size, a very uniform E-field distribution can be achieved
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FIGURE 1. 3-D view of the proposed 4×4 antenna array.

at the aperture, leading to a high aperture efficiency [13],
[36]–[38]. Moreover, the cavity can suppress the surface
wave propagate along the substrate and also reduce the
mutual coupling between the adjacent radiating elements of
the array, which leads to a high radiation efficiency and stable
radiation pattern over the wide frequency bandwidth.

Besides antenna gain and efficiency, the effect of the
fabrication tolerance on antenna performance should not be
neglected because of the very small wavelengths. Therefore,
a highly accurate fabrication technology is required. Oth-
erwise, the antenna performance including matching, gain
as well as efficiency will be deteriorated. To alleviate the
fabrication tolerance on the antenna performance, higher-
order-mode substrate integrated cavity (SIC) excitation was
proposed in [39] and [40] instead of other complicated feed
networks to reduce the number of metal posts in the cav-
ity for feeding elements of the antenna array. Nevertheless,
their impedance bandwidths can be further improved for
widespread applications.

In this paper, a new wideband cavity-backed patch
antenna array with very high aperture efficiency as well
as the gain is proposed for the 60-GHz applications.
Firstly, a 2× 2-element cavity-backed aperture-coupled
patch antenna array is demonstrated, which exhibits high
aperture efficiency as well as gain. Taking advantages of

the higher-order-mode cavity excitation, the elements of the
array are efficiently excited with the same amplitude and
phase in a simple TE340 mode cavity, which eases the burdens
of the conventional bulky and lossy feednetwork containing
multiple power splitters and SIW-lines. The higher-order-
mode cavity resonance is excited by a simple slot aper-
ture located in the bottom center of the cavity. Then, the
2× 2 –element patch array is used as subarray to built a
4× 4-element array, as shown in Fig. 1. Measured results
show the antenna bandwidth is from 56 to 63.1-GHz (16.1%)
with peak gain reaching 21.4 dBi. The radiation patterns of
the array are very stable over the entire frequency band and
the cross-polarizations are as low as −30 dB. These good
characteristics demonstrate the proposed array can be a good
candidate for the future 60-GHz communication systems.

II. THE 2 × 2-ELEMENT SIC-EXCITED ARRAY
The geometry of the proposed 2 × 2-element cavity-backed
patch antenna subarray is shown in Fig. 2. The array con-
sists of three Rogers 5880 layers with a dielectric constant
of 2.2 and thickness of 0.787mm. The 2 × 2 cross-shaped
radiating patch antenna array incorporated with its rectangu-
lar cavity is located in the upper substrate (D1). Each cross-
shaped patch is differentially fed by the coupling slot right
underneath the patch. The coupling slot is cut on the top wall
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FIGURE 2. 3-D view of the proposed 2 × 2-element cavity-backed
aperture-coupled patch antenna array.

FIGURE 3. Electric field distributions in the cavity at (a) 57-GHz
(b) 60-GHz and (c) 63-GHz.

of the substrate integrated cavity (SIC), which is implemented
on the middle substrate (D2) with metallized vias as sidewalls
and metals as its top and bottom. The cavity is excited by
the center slot in the bottom plane and the slot is cut on the
top wall of the lower SIW lines. In order to obtain enough
space to arrange the four cavity-backed antenna elements
while maintaining a compact size simultaneously, the size
of the SIC is adopted as 8.5 mm×8.5mm. In this case,
TE340 mode is excited in the cavity. The complex E-field
distributions in the cavity at 57, 60 and 63-GHz are shown
in Fig. 3. It is seen the TE340 mode exists over the operating
frequency band although the mode slightly deteriorates as
the frequency varies. In fact, the radiation performance of
the array will not be affected by the mode deterioration
due to the fact that the slots cut on the top of the cavity
are symmetrical along the center plane, and thus the radi-
ating elements are always excited with the same phase and
amplitude.

To evaluate the performance of the proposed subarray,
the simulated gains is shown in Fig. 4. It is observed that
the gains are escalated from 14.3 to 15.3 dBi with its peak
occurring at 60-GHz. In fact, this high gain is achieved due
to the uniform E-field distributions at the antenna aperture,
which can be easily realized by optimizing the cavity size
and the patch geometry that enclosed. To better demon-
strate this, the E-field distributions at the top surface of
the antenna aperture are shown in Fig. 5. A very uniform

FIGURE 4. Simulated gain versus frequency of the proposed 2×2 antenna
array.

FIGURE 5. Surface E-field distributions at the array aperture.

TABLE 1. Dimensions of the proposed antenna array.

E-field distributions can be observed in each cavity, indicat-
ing that the high aperture efficiency as well as the gain can be
achieved.

III. THE 4×4-ELEMENT SIC-EXCITED ARRAY
Based on the proposed 2×2 cavity-backed subarray, the
4×4-element array is proposed and verified, as shown in
Fig. 1. 4×4 cross-shaped radiating patch array together with
its cavity is implemented on the upper layer (D1). They
are excited by the four substrate integrated cavities that are
realized in the middle substrate (D2). The 1-to-4 SIW-based
power splitter is implemented on the lower layer (D3),
which is directly fed at the center by the WR-15 waveg-
uide. The distances between the adjacent subarrays are
8.5 mm in both the x-direction and y-direction. Top view
of each layer of the array is shown in Fig. 6 and the
detailed dimensions of the proposed 4×4 array are given
in Table 1.
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FIGURE 6. Top view of each layer of the array.

A. WAVEGUIDE-FED 1-TO-4 POWER SPLITTER
The amplitude and phase balance of the 1-to-4 power splitter
are crucial to the antenna performance. Therefore, the pro-
posed differentially-fed 1-to-4 power splitter is carefully
designed and evaluated, as shown in Fig. 7. The simu-
lated performance of the 1-to-4 power divider together with
the WR15-to-SIW transition is given in Fig. 8. It is seen
that the S11 is below −15 dB from 57 to 64-GHz. The
energy is equally divided into the four output ports and
the phase imbalance is less than 0.5◦, indicating the good
performance of the proposed waveguide-fed 1-to-4 power
splitter.

B. EXPERIMENTAL RESULTS
A prototype is fabricated and measured to verify the design,
as shown in Fig. 9. Three Rogers 5880 laminates are fabri-
cated independently and then stacked together by screw holes.
Thermally&Electrically ConductiveAdhesive (TECA) films
are used to bond the dielectric layers andwipe out the possible
air between them. The reflection coefficient of the array,
which is measured by a Vector Network Analyzer MS4646B,
is shown in Fig. 10. The simulated −10 dB bandwidth is
from 57 to 64.2-GHz (17.7%) and the measured result is
from 56 to 63.1-GHz (16.1%). The antenna gain versus

FIGURE 7. (a) WR-15 differentially-fed 1-to-4 power splitter. (b) E-field
distributions in the waveguide.

frequency is shown in Fig. 11. The gains are escalated from
19.6 to 21.6 dBi for simulation and from 19.9 to 21.4 dBi for
measurement. The formula for calculating aperture efficiency
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TABLE 2. Comparison of Different arrays working at 60 GHz.

FIGURE 8. (a) S-parameters of the 1-to-4 power splitter. (b) Phase
imbalance of the output ports.

of an aperture antenna εap is given by [41]:

εap =
Gλ2

4πAp
(1)

where G and Ap are the gain and the physical aperture of
the antenna, respectively. Considering that the relatively large
area (30 × 30 mm2) of the proposed array is due to the

FIGURE 9. Prototype of the antenna array. (a) Top view of each layer.
(b) Assemble view.

peripheral area occupied by the screw holes and this periph-
eral area contributes little to the antenna gain, we simulated
the antenna boresight gain with dielectric margins that are
occupied by the screw hole removed, as shown in Fig. 11.
Under this circumstance, the size of the physical radiating
area is 20mm× 20mm and the calculated aperture efficiency
is about 70.3% at 61 GHz, which is acceptable for the array
antenna.

The radiation patterns of the array at 57, 60 and 63-GHz
are given in Fig. 12. The patterns are measured by using the
far-field mm-Wave measurement system. Due to the system
limitation, only half of the sphere is measured. It is seen the
patterns are generally symmetrical with its main beam and
the highest gain fixed at its boresight. Cross polarizations
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FIGURE 10. simulated and measured reflection coefficient.

FIGURE 11. Simulated and measured antenna gains.

are lower than −40 dB and −30 dB for the simulation and
measurement, respectively. The sidelobes are generally below
−12 dB at both planes. The discrepancy between the simula-
tion and measurement is due to the fabrication tolerance and
other uncertainties such as dielectric change of the substrate,
etc.

The simulated radiation patterns and the gain of the array
without the top patch are also given in the Fig. 13 and 14,
respectively. As can be seen, the side lobes of the radiation
patterns deteriorate at high frequencies. At 60 and 63-GHz,
the side lobe levels are worse than −10 dB. The gain of the
array also shows about 1.6 to 2 dB drop over the frequency
band compared with the proposed design. Therefore, we can
conclude that adding the top patch can help to improve the
radiation performance of the array through properly adjusting
the geometry of the patch.

C. DISCUSSION
Table 2 compares the key characteristics of the proposed
antenna array with other 60-GHz antenna arrays. Although
patch antenna array with L-probe feed [3], CPW feed [4]
and grid array antenna with microstrip feed [8] show many
excellent performances including wide impedance matching
and good radiation patterns. The aperture efficiency and the
gain are lower than the proposed one. Besides, CPW and
microstrip line are relatively lossier in 60-GHz frequency
band compared with SIW feeding, especially at the discon-
tinuities. In order to obtain high aperture efficiency as well as

FIGURE 12. Simulated and measured radiation patterns of the proposed
array. (Simulated: solid line. Measured: dash line).
(a1) XOZ-plane@58-GHz. (a2) YOZ-plane @58-GHz. (b1) XOZ-plane @
60-GHz. (b2) YOZ-plane @ 60-GHz. (c1) XOZ-plane @ 63-GHz. (c2)
YOZ-plane @ 63-GHz.

high gain, patch antennas that are enclosed by the cavity are
used in many array designs [21], [25], [29], [30]. Although
these designs can achieve very good performance including
wide impedance matching, high gain as well as aperture effi-
ciency, they are usually equipped with large SIW (parallel)
based feeding network, which consists of plenty of SIW-
based power dividers and long SIW lines. Therefore, the loss
of the feed network is nonnegligible, which will eventually
give rises to the drop of the antenna radiation efficiency.
Compared with these works, the proposed design exhibits
two advantages. Firstly, the proposed array shows higher
radiation efficiency because it uses less power dividers by
taking advantages of the high-order-mode cavity excitation.
More importantly, the proposed array can be extended to
larger array design, such as 8×8 and 16×16-element array
using even higher resonant modes without sacrificing the
radiation efficiency much. Secondly, the proposed array uses
fewer vias compared with the design in [30]. This reduces the
cost of the antenna. Moreover, at 60-GHz, the effect of the
fabrication tolerance on antenna performance should not be
neglected because of the very small wavelengths. The fabrica-
tion tolerance will affect the antenna performance including
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FIGURE 13. Simulated radiation patterns of the array without the top
patch. (a1) XOZ-plane@58-GHz. (a2) YOZ-plane @58-GHz.
(b1) XOZ-plane@60-GHz. (b2) YOZ-plane @60-GHz. (c1)
XOZ-plane@63-GHz. (c2) YOZ-plane @63-GHz.

FIGURE 14. Simulated antenna boresight gain of the array without top
patch.

matching, gain as well as efficiency. Therefore, the proposed
array that uses fewer vias can generally have more stable
performance. With these good features, the proposed cavity-
backed patch antenna array can be used in the future 60-GHz
communication systems.

IV. CONCLUSION
In summary, a wideband high gain cavity-backed patch
antenna array is proposed and demonstrated in this paper.
By optimizing the geometry of the radiating patch and the

cavity, a very uniform E-field distribution at the antenna
aperture is achieved, resulting in the high array aperture
efficiency and thus the gain. Taking advantages of the higher-
order substrate integrated cavity excitation, the elements of
the array are efficiently fed with the same amplitude and
phase with a simplified feeding network. Measured results
show the antenna bandwidth is from 56 to 63.1-GHz (16.1%)
with peak gain reaching 21.4 dBi. The radiation patterns of
the array are very stable over the entire frequency band and
the cross-polarizations are as low as −30 dB.
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