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Abstract 24 

Polyamide thin-film composite (PA TFC) membranes have attained much attention for 25 

forward osmosis (FO) applications in separation processes, water and wastewater treatment 26 

due to their superior intrinsic properties, such as high salt rejection and water permeability 27 

compared to the first generation of cellulose-based FO membranes. Nonetheless, several 28 

problems like fouling and trade-off between membrane selectivity and water permeability are 29 

hindering the progress of conventional PA TFC FO membranes for real applications. To 30 

overcome these issues, nanomaterials or chemical additives have been integrated into the TFC 31 

membranes. Nanomaterial-modified membranes have demonstrated significant improvement 32 

in their anti-fouling properties and FO performance. In addition, PA TFC membranes can be 33 

designed for specific applications like heavy metal removal and osmotic membrane bioreactor 34 

by using nanomaterials to modify their physicochemical properties (porosity, surface charge, 35 

hydrophilicity, membrane structure and mechanical strength). This review provides a 36 

comprehensive summary of the progress of nanocomposite PA TFC membrane since its first 37 

development for FO in the year 2012. The nanomaterial-incorporated TFC membranes are 38 

classified into four categories based on the location of nanomaterial in/on the membranes: 39 

embedded inside the PA active layer, incorporated within the substrate, coated on the PA layer 40 

surface, or deposited as an interlayer between the substrate and the PA active layer. The key 41 

challenges still being confronted and the future research directions for nanocomposite PA TFC 42 

FO are also discussed. 43 

 44 

Keywords: Forward osmosis membrane, thin-film composite (TFC), thin-film nanocomposite 45 

(TFN), nanoparticles, interfacial polymerization 46 
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Abbreviations: 3HBTC, silver (I) and 1,3,5-benzene tricarboxylic acid; A, water permeability 79 
coefficient; AAPTS, 1-(2-amino-ethyl)-3-aminopropyl] trimethoxysilane; Ag, silver; AgNP, 80 
silver nanoparticle; AgCl, silver chloride; AgNO3, silver nitrate; AL-DS, active layer facing 81 
draw solution; AL-FS, active layer facing feed solution; Al2O3, aluminium oxide; ASP, 82 
alternate soaking process; B, solute permeability coefficient; BaCl, barium chloride; BaSO4, 83 
barium sulfate; BP, bucky paper; BSA, bovine serum albumin; C60@PAF900, fullerene 84 
impregnated porous aromatic framework; CaCO3, calcium carbonate; CFV, cross-flow 85 
velocity; CN, graphitic carbon nitride; CNT, carbon nanotube; COF, covalent-organic 86 
framework; CP, concentration polarization; CSA, camphorsulfonic acid; CTA, cellulose 87 
triacetate; DA, dopamine; DS, draw solution; ECP, external concentration polarisation; EDC, 88 
n-(3-Dimethylaminopropyl)-n’-ethylcarbodiimide hydrochloride; Fe3O4, iron (III) oxide, FO, 89 
forward osmosis; FRR, flux recovery ratio; FS, feed solution; f-SWNTs, functionalized 90 
single-walled carbon nanotubes; gMH, gm-2h-1; GO, graphene oxide; HA, humic acid; GQDs, 91 
graphene quantum dots; HTI, Hydration Technologies Inc.; HNT, halloysite nanotube; ICP, 92 
internal concentration polarisation; INT, imogolite nanotube; IP, interfacial polymerization; 93 
Js, solute flux; Jw, water flux; LbL, layer-by-layer; LDH, layered double hydroxide; LMH, 94 
Lm-2h-1; MD, membrane distillation; MF, microfiltration; MOF, metal-organic framework; 95 
MPD, m-phenylenediamine; mPDA, 1,3-phenylenediamine; MWCNT, multi-walled carbon 96 
nanotube; NaBH4, sodium borohydride; NaCl, sodium chloride; Na2SO4, sodium sulfate; NF, 97 
nanofiltration; NHS, n-hydroxysuccinimide; NP, nanoparticles; PA, polyamide; PAN, 98 
polyacrylonitrile; pDA, polydopamine; PEG, polyethylene glycol; PEI, polyethylenimine; 99 
PES, polyether sulfone; PET, polyester; PI, phase inversion; PLL, poly L-Lysine; PMR, 100 
photocatalytic membrane reactor; PSf, polysulfone; PV, pervaporation; PVDF, 101 
polyvinylidene fluoride; PVP, polyvinylpyrrolidone; rGO, reduced graphene oxide; RO, 102 
reverse osmosis; S, structural parameter; SA, sodium alginate; SDS, sodium dodecyl sulfate; 103 
SiO2, silica; SRSF, specific reverse solute flux; TEA, triethylamine; TFC, thin-film 104 
composite; TFN, thin-film nanocomposite; TiO2, titanium oxide; TMC, trimesoyl chloride; 105 
TNT, titanate nanotubes; UF, ultrafiltration; UiO-66, WW, wastewater; zirconium (IV) 106 
carboxylate metal-organic framework; Zn2GeO4, zinc germinate; ZnO, zinc oxide; ZSCSNP, 107 
ZnO-SiO2 core-shell nanoparticles 108 



1. Introduction 109 

Membrane technologies like reverse osmosis (RO) and forward osmosis (FO) have 110 

attracted enormous research interest as more energy-efficient and sustainable methods for 111 

desalination, wastewater treatment and separation processes over the past decades [1-3]. They 112 

are simple to install and operate, highly scalable, consume relatively low energy, and their 113 

performance mechanism is well-understood [4-6]. RO is the most commonly used membrane 114 

technology as it produces the best water quality compared to other commercial membrane-115 

based technologies like ultrafiltration (UF) and nanofiltration (NF) [7]. However, RO is a very 116 

energy-intensive process, where membrane replacement can be costly and membrane scaling 117 

and fouling can be a significant challenge [8, 9].  118 

On the other hand, FO has turned out to be an active research area as a prospective low-119 

energy membrane-separation technology, mainly for application in wastewater treatment, RO 120 

pre-treatment and brine dilution [10, 11]. Unlike RO, which operates at a very high hydraulic 121 

pressure, FO processes are driven naturally by the osmotic pressure difference existing between 122 

the draw and feed solution with the existence of little or zero transmembrane pressure [12]. In 123 

a FO process, water moves from a low concentrated feed to a highly concentrated draw solution 124 

through a semi-permeable membrane, while rejecting solutes on both sides of the membrane. 125 

Pure water is then separated from the diluted draw solution using a suitable separation 126 

technique [13, 14]. However, the draw solute regeneration step in the FO process is 127 

significantly energy-intensive, which makes direct desalination with RO more energy-efficient 128 

than FO [15]. Nonetheless, FO may be more energetically favorable than RO for high salinity 129 

and high fouling potential applications that do not require draw solution regeneration, such as 130 

food concentration and brine dilution [16, 17]. 131 

 132 
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Besides, FO processes can remove an extensive range of pollutants present in the feed 133 

solution [18], and function at much greater feed recovery rates than the RO processes [19]. FO 134 

membranes have higher fouling reversibility than the pressure-driven RO process, and most 135 

FO foulants can generally be removed by physical cleaning requiring only limited chemical 136 

cleaning frequency [20-22]. However, membrane characteristics play a significant role in the 137 

process performance and the economics of the FO technology in addition to the other factors, 138 

such as draw solution type and regeneration method [11].  139 

Development of FO membranes started around the year 2000. Prior to that, FO studies 140 

were conducted mostly using RO membranes, which were unsuitable for FO applications due 141 

to their thick support layers. For a FO process to work efficiently, it is desirable that the 142 

membranes exhibit high water flux, low reverse solute flux, excellent mechanical stability, 143 

chemical resistance and antifouling property [10]. McCutcheon and Elimelech concluded 144 

based on the results from their asymmetric membrane flux modeling that FO membranes 145 

should have smaller solute resistance to diffusion (K) values to diminish the internal 146 

concentration polarisation (ICP) effect and achieve high water flux during the FO operation 147 

[23-25]. The K values could be improved by increasing the membrane porosity and reducing 148 

membrane thickness. The first generation FO membrane commercialized by Hydration 149 

Technologies, Inc. (HTI) comprised of cellulose triacetate (CTA) supported on a thin woven 150 

polyester mesh [26]. Although the commercial CTA FO membranes were able to reduce the 151 

ICP effects, the water permeability and selectivity of the CTA membranes were not impressive 152 

[27]. HTI later developed a thin-film composite (TFC) FO membrane that included a thin 153 

polyamide (PA) selective layer on top of a porous substrate layer supported by a polyester 154 

(PET) mesh. The HTI TFC membrane demonstrated a much higher solute rejection and a water 155 

flux nearly double of that achieved using CTA FO membrane [28]. Unlike the CTA 156 

membranes, which can operate under a limited pH range of 4 to 8 [29], the TFC membranes 157 
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can tolerate a wide pH range of 2 to12 and have better chemical stability [27]. The high 158 

biodegradability of CTA membrane reduces its membrane lifespan; thereby, limiting its 159 

application [10]. As a result, most recent studies on FO membranes are aimed towards TFC 160 

membrane fabrication and their modification. 161 

Polymeric TFC membranes have been previously used for NF and RO applications, and 162 

they usually involve the development of a thin dense active layer on top of a porous substrate 163 

[30, 31]. The thin selective or active layer is usually formed by interfacial polymerization (IP) 164 

reaction of monomers, and its thin-film formation is significantly governed by the structure 165 

and properties of the membrane substrate [32-34]. The substrate structure and morphology 166 

significantly influence the degree of ICP within the porous layer [35]; whereas, the active layer 167 

controls the extent of solute and water fluxes across the membrane [36]. Additionally, 168 

membrane fouling lowers water flux by increasing membrane resistance, which further reduces 169 

the mass transfer coefficient and enhances external concentration polarization (ECP) on the 170 

membrane surface [37-40]. Although PA-based TFC FO membranes have better performance 171 

compared to the cellulose-based membranes, the overall FO performance in terms of ICP, 172 

fouling resistance and chlorine tolerance is still an issue [11].  173 

Inspired by nanocomposite membranes developed in the 1990s for gas separation [41], 174 

several studies have incorporated nanomaterials in RO and FO membranes to improve the 175 

overall membrane performance as reviewed by Li, Yan and Wang [42]. Xiao et al. developed 176 

a general multiscale modeling and simulation framework to predict the properties of polymer 177 

nanocomposites like mechanical strength and permeability for gas separation [43]. The 178 

framework could be used to investigate the molecular level interactions between thermoset 179 

polymer and various types of nanoparticles that affect the performance of polymer 180 

nanocomposites. Nanomaterial incorporation has shown to enhance not only the water 181 

permeability, antimicrobial properties, fouling and chlorine resistance of the membranes, but 182 
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also their thermal stability and mechanical strength. Silver nanoparticles have been extensively 183 

used as an antimicrobial agent in nanocomposite membranes to improve their antimicrobial 184 

properties [44]. Whereas, the addition of porous nanoparticles like zeolites were found to 185 

increase the water permeability of the nanocomposite membranes by creating channels for 186 

water transport [45]. The changes in properties of nanocomposite membranes are strongly 187 

influenced by the chemical properties, type, size and concentration of the nanomaterial used. 188 

As such, the nanocomposite membrane properties can be tailored depending on the type of 189 

nanomaterial chosen. The first nanocomposite FO membrane with improved water 190 

permeability was developed by Tang’s group in 2012 [45], which was inspired by the study on 191 

zeolite-incorporated TFC RO membrane [46]. The increasing interest in the development of 192 

nanomaterial-based PA TFC FO membranes is evident from the increasing number of studies 193 

published as presented in Figure 1.  194 

 195 

Figure 1: Number of publications related to nanomaterial-modified PA TFC FO membranes (Retrieved from Web 196 

of Science on 14th March 2019). 197 
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 198 

Nanomaterials can be added either into the active layer or into the substrate of the 199 

membrane to enhance active layer’s transport properties, substrate’s structural characteristics, 200 

and membrane’s overall mechanical stability and chemical resistance [42]. Some studies have 201 

also coated or covalently bonded nanomaterials on the membrane surface to improve 202 

membrane hydrophilicity, surface charge density and antifouling property [47, 48]. Whereas, 203 

others have deposited nanomaterial interlayer on porous substrates for formation of defect-free 204 

PA active layer [49, 50]. Based on the approach of nanomaterial integration, TFC membranes 205 

can be classified as follows: (a) thin-film nanocomposite (TFN) membrane, (b) TFC membrane 206 

with a nanomaterial-coated PA layer surface, (c) TFC membrane with a nanocomposite 207 

substrate, and (d) TFC membrane with a nanomaterial interlayer (Figure 2). Some of the 208 

inorganic nanomaterials that have been most widely used for FO membrane modification 209 

include zeolite [45, 51], graphene oxide (GO) [52-54], carbon nanotubes (CNTs) [55-58], silica 210 

[59, 60] and titanium oxide [61-63].   211 
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 212 

Figure 2: Schematic illustrations demonstrating typical structures of nanomaterial-incorporated PA TFC 213 

membranes: a) TFN membrane, b) TFC membrane with nanomaterial-coated PA layer surface, c) TFC membrane 214 

with nanocomposite substrate and d) TFC membrane with nanomaterial interlayer.  215 

 216 

The review articles on FO membranes that have been published to date have considered 217 

draw solutes [64-66], membrane fouling [39, 67, 68], various FO applications [69-72], FO 218 

membrane materials, fabrication methods and their chemical modifications [73-75]. However, 219 

a specialized review providing ample information on the advancement of nanomaterial-220 
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incorporated PA TFC membranes for FO applications is currently lacking. The development 221 

of high-performing FO membranes, especially those incorporated with nanoparticles, has 222 

gained significant research interests recently as they have the potential to enhance FO 223 

performance. Hence, for the first time, we set out to provide a comprehensive review on the 224 

progress and developments of incorporating various kinds of nanomaterials into the active 225 

layer, substrate and surface of PA TFC FO membranes. The major challenges, future research 226 

directions and prospects in the development of nanomaterial-incorporated PA TFC membrane 227 

are also critically discussed. The aquaporin-based biomimetic FO membranes have not been 228 

included in this review due to the difference in their fabrication technique and behavior from 229 

that of the nanocomposite PA TFC membranes. Habel et al. provided an extensive review of 230 

the different fabrication and characterization approaches for aquaporin-based biomimetic 231 

membranes [76]. This review is expected to inspire more studies to address the existing 232 

challenges in membrane development and realize the practical applications of membranes for 233 

enhancing FO performance.  234 

2. Nanomaterial-modified PA active layers 235 

 Since 2012, several studies have dispersed inorganic nanomaterials into the thin PA 236 

active layer of the TFC FO membranes to improve their separation performance. The PA layer 237 

is made via IP reaction between trimesoyl chloride (TMC) organic solution and m-238 

phenylenediamine (MPD) aqueous solution. Depending on the hydrophilic/hydrophobic nature 239 

of the nanofillers, they can be distributed in either aqueous MPD or organic TMC phase. Figure 240 

3 illustrates the typical steps involved in the TFN membrane fabrication process. Nanomaterials 241 

like zeolites, silica, GO, CNTs that have been previously used for RO nanocomposite 242 

membranes have also been studied for preparation of TFN FO membranes [42, 77]. Table 1 243 

and   244 
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Table 2 list the research articles based on the development of PA TFN membranes. 245 

 246 

 Figure 3: Typical steps involved in the fabrication of a TFN membrane through the IP process. 247 

Nanomaterials are uniformly-dispersed either in the MPD aqueous or TMC organic solution 248 

for the formation of nanocomposite PA layer. 249 



Table 1: Summary of the fabrication conditions and FO performance of porous nanomaterial-incorporated PA TFN membranes  250 

TFN membrane 
Optimal particle 

loading 
Intrinsic 

properties 
Substrate fabrication 
method & conditions 

FO performance (AL-FS) 
Year 
[Ref] 

Fillers embedded 
in PA layer  

(Particle size) 

Substrate 
(PA layer 

monomers) 

DS 
(FS) 

CFV 
Jw 

(LMH) 
Js 

(gMH) 

Zeolite (NaY) 
(40-150 nm) 

PSf 
(MPD, TMC) 

0.1 wt/v% in 
TMC/n-hexane 

A = 2.59 LMH/bar 
B = 1.57 LMH 

S = 782 µm 

PI 
Casting/overall 

thickness = 150/70 µm 

1 M NaCl 
(10 mM NaCl) 

20 
cm/s 

14.6 3.5 
2012 
[45] 

Amine 
functionalized 

CNTs 
(OD: 5 nm, ID: 
1.3-2 nm, L: 50 

µm) 

PSf 
(MPD, TMC) 

0.05 wt% in MPD 
solution 

A = 3.56 LMH/bar 
B = 0.10 LMH 

S = 380 µm 

PI 
Casting/overall 
thickness = n/a 

2 M NaCl 
(10 mM NaCl) 

7.2 
cm/s 

30.0 2.4 
2013 
[78] 

CNTs 
(D: 20 nm, L: 0.5-

2 µm) 

PSf 
(DA Tris 

buffer 
solution, 
TMC) 

0.05 wt/v% in DA 
solution 

- 
PI 

Casting/overall 
thickness = n/a 

2 M MgCl2 

(DI water) 
1.59 
cm/s 

8.6 2.1 
2015 
[79] 

Amine 
functionalized 

TNTs 
(ID: 5-25 nm) 

PSf 
(MPD, TMC) 

0.05 wt/v% in 
TMC/cyclohexane 

solution 

A = 2.38 LMH/bar 
B = 0.37 LMH 

S = 368 µm 

PI 
Casting/overall 
thickness = n/a 

1 M NaCl 
(10 mM NaCl) 

32.72 
cm/s 

20.8 4.3 
2015 
[80] 

HNTs 
(ID: 10-15 nm) 

PSf 
(MPD, TMC) 

0.05 wt/v% in 
TMC/cyclohexane 

solution 

A = 1.87 LMH/bar 
B = 0.63 LMH 

PI 
Casting/overall 
thickness = n/a 

2 M NaCl 
(10 mM NaCl) 

350 
mL/min 

20.1 5.8 
2015 
[81] 

TiO2/HNT 
nanocomposites 
(ID: 5-15 nm) 

PSf 
(MPD, TMC) 

0.05 wt/v% in 
TMC/cyclohexane 

solution 

A = 2.45 LMH/bar 
B = 0.60 LMH 

PI 
Casting/overall 

thickness = 120/70-90 
µm 

2 M NaCl 
(10 mM NaCl) 

350 
mL/min 

25.5 4.9 
2015 
[82] 

CNTs 
(D: 20 nm, L: 0.5-

2 µm) 

PSf 
(DA Tris 

buffer 
solution, 

MPD, TMC) 

0.05 wt% in DA 
solution 

A = 6.7 LMH/bar 
B = 8.3 LMH 
S = 1637 µm 

PI 
Casting thickness = 80 

µm 

2 M MgCl2 

(DI water) 
7.8 

cm/s 
14.5 7.5 

2016 
[83] 
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Al2O3 

(<50 nm) 

PSf, 0.5 wt% 
Al2O3 

(MPD, TMC) 

0.05 wt% in 
TMC/n-hexane 

solution 

A = 8.43 LMH/bar 
B = 1.66 LMH 
S = 1028 µm 

PI 
Casting thickness = 90 

µm 

1 M NaCl 
(DI water) 

18.5 
cm/s 

27.6 7.1 
2017 
[84] 

MOF: UiO-66 
(n/a) 

PSf 
(MPD, TMC) 

0.1 wt% in TMC/ 
n-hexane solution 

A = 3.3 LMH/bar 
B = 0.3 LMH 
S = 1637 µm 

PI 
Casting/overall 

thickness = 150/62 µm 

2 M NaCl 
(DI water) 

1.1 
cm/s 

27.0 6.1 
2017 
[85] 

MOF 
(D: 30 nm) 

PES 
(MPD, TMC) 

0.04 wt/v% in 
TMC/n-hexane 

solution 

A = 4.7 LMH/bar 
B = 0.6 LMH 
S = 238 µm 

PI 
Casting thickness = 

100 µm 

2 M NaCl 
(DI water) 

21 
cm/s 

46.0 102.3 
2017 
[86] 

Zwitterion 
(AEPPS) 

(n/a) 

PSf 
(MPD, TMC) 

30 wt% in MPD 
solution 

A = 4.81 LMH/bar 
B = 0.19 LMH 

S = 747 µm 

PI 
Casting/overall 
thickness = n/a 

2 M NaCl 
(n/a) 

n/a 22.5 12.5 
2018 
[87] 

COF: SNW-1 
(D: ~30 nm) 

PSf 
(MPD, TMC) 

0.005 wt% in MPD 
solution 

A = 1.77 LMH/bar 
B = 0.46 LMH 

PI 
Casting/overall 

thickness = 120/58 µm 

1 M NaCl 
(DI water) 

12.6 
cm/s 

15.6 4.8 
2019 
[88] 

 251 

A: water permeability coefficient; Al2O3: aluminium oxide; B: solute permeability coefficient; CFV: cross-flow velocity; CNT: carbon nanotube; COF: covalent-organic 252 
framework; DA: dopamine; DS: draw solution; FS: feed solution; Js: solute flux; Jw: water flux; HNT: halloysite nanotube; MOF: metal-organic framework; MPD: m-253 
phenylenediamine; PI: phase inversion; PSf: polysulfone; S: structural parameter; SNW-1: Schiff base network-1; TMC: trimesoyl chloride; TNT: titanate nanotubes254 
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Table 2: Summary of the fabrication conditions and FO performance of non-porous nanomaterial-incorporated PA TFN membranes  255 

TFN membrane 

Optimal particle 
loading 

Intrinsic properties 
Substrate fabrication 

methods and 
conditions 

FO performance (AL-FS) 

Year 
[Ref] 

Fillers 
embedded in 

PA layer 
(Particle size) 

Substrate 
(PA layer 

monomers) 

DS 
(FS) 

CFV 
Jw 

(LMH) 
Js 

(gMH) 

SiO2 

(15-20 nm) 

PSf 
(MPD, TMC) 

0.05 wt% in MPD 
solution 

A = 3.43 LMH/bar 
B = 1.02 LMH 

S = 368 µm 

PI 
Casting thickness = 

100 µm 

2 M NaCl 
(10 mM NaCl) 

800 
mL/min 

15.0 1.6 
2014 
[89] 

GO 
(Lateral size: 
35-90 nm, T: 
0.75-1.25 nm) 

PAN 
(MPD, TMC) 

0.06 wt% in MPD 
solution 

A = 2.0 LMH/bar 
B = 0.8 LMH 

S = 85 µm 

PI 
Casting thickness = 

100 µm 

1 M NaCl 
(DI water) 

300 
mL/min 

23.6 4.4 
2016 
[90] 

TiO2 

(20 nm) 
PSf 

(MPD, TMC) 
0.05 wt/v% in MPD 

solution 

A = 3.89 LMH/bar 
B = 1.33 LMH 

S = 650 ± 70 µm 

PI 
Casting thickness = 

100 µm 

2 M NaCl 
(10 mM NaCl) 

800 
mL/min 

20.8 8.8 
2016 
[62] 

TiO2 

(n/a) 
PSf 

(MPD, TMC) 
0.05 wt/v% in TMC/n-

hexane solution 
n/a n/a 

2 M NaCl 
(10 mM NaCl) 

300 
mL/min 

26.0 4.98 
2016 
[91] 

PVP modified 
GO 

(T: 0.55-1.2 
nm) 

PSf 
(MPD, TMC) 

0.0175 wt% in MPD 
solution 

- 
PI 

Casting thickness = 
175 µm 

2 M NaCl 
(10 mM NaCl) 

333.3 
mL/min 

14.6 14.6 
2017 
[92] 

Polyrhodanine 
(50 nm) 

PES 
(MPD, TMC) 

0.01 wt/v% in TMC/n-
hexane solution 

A = 1.60 LMH/bar 
B = 0.22 LMH 

S = 128 µm 

PI 
Casting/overall 
thickness = n/a 

1.5 M NaCl 
(DI water) 

20 
cm/s 

41.0 6.7 
2018 
[93] 

Fe3O4/ZnO 
(n/a) 

PSf, 0.2 wt% 
Fe3O4/ZnO 

(MPD, TMC) 

0.02 wt/v% in MPD 
solution 

A = 2.97 LMH/bar 
B = 0.28 LMH 

S = 400 µm 

PI 
Casting/overall 

thickness = 100/131 
µm 

2 M NaCl 
(10 mM NaCl) 

720.7 
cm/s 

29.3 5.6 
2018 
[94] 

GO 
(Flake size: 57.3 

nm) 

PSf 
(MPD, TMC) 

0.1 wt% in MPD, TEA 
and SDS solution 

A = 2.35 LMH/bar 
B = 0.67 LMH 

S = 570 µm 

PI 
Casting thickness = 

100 µm 

1 M NaCl 
(DI water) 

25 
L/min 

14.5 2.6 
2018 
[95] 

GO/Fe3O4 

nanohybrid 
(n/a) 

PES 
(MPD, TMC) 

0.02 wt/v% in MPD 
solution 

A = 2.51 LMH/bar 
B = 0.27 LMH 

PI 
Casting/overall 

thickness = 80/65 µm 

1 M NaCl 
(DI water) 

8 
cm/s 

27.5 3.0 
2018 
[96] 
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Fullerenol 
(D: ~1 nm) 

PSf 
(MPD, TMC) 

0.04 wt/v% in MPD 
solution 

A = 3.87 LMH/bar 
B = 0.59 LMH 

PI 
Casting/overall 
thickness = n/a 

1 M NaCl 
(DI water) 

6.4 
cm/s 

26.1 4.7 
2018 
[97] 

Graphitic 
carbon nitride 

(g-C3N4) 
(n/a) 

PSf, 0.5 wt% 
HNTs 

(MPD, TMC) 

0.05 wt/v% in MPD 
solution 

A = 2.17 LMH/bar 
B = 0.38 LMH 

S = 370 µm 

PI 
Casting thickness = 

140 µm 

2 M NaCl 
(DI water) 

21.4 
cm/s 

18.9 2.74 
2018 
[98] 

GQDs 
(3.4-8.8 nm) 

PES 
(MPD, TMC) 

0.1 wt% in MPD, TEA 
and CSA solution 

A = 3.35 LMH/bar 
B = 0.26 LMH 

S = 189 µm 

PI 
Casting/overall 
thickness = n/a 

1 M NaCl 
(DI water) 

8.5 
cm/s 

28 5.84 
2018 
[99] 

C60@PAF900 
(n/a) 

PSf 
(MPD, TMC) 

0.015 wt/v% in TMC/n-
hexane solution 

A = 3.19 LMH/bar 
B = 0.66 LMH 

PI 
Casting thickness = 

175 µm 

2 M NaCl 
(10 mM NaCl) 

n/a 12.4 10.4 
2018 
[100] 

 256 

A: water permeability coefficient; B: solute permeability coefficient; C60@PAF900: fullerene impregnated porous aromatic framework; CFV: cross-flow velocity; CNT: 257 
carbon nanotube; CSA: camphorsulfonic acid; DS: draw solution; Fe3O4: iron (III) oxide, FS: feed solution; GO: graphene oxide; GQDs: graphene quantum dots; Js: solute 258 
flux; Jw: water flux; MPD: m-phenylenediamine; PAN: polyacrylonitrile; PES: polyether sulfone; PI: phase inversion; PSf: polysulfone; S: structural parameter; SDS: 259 
sodium dodecyl sulfate; SiO2: silica; TEA: triethylamine; TiO2: titanium oxide; TMC: trimesoyl chloride 260 



2.1 Zeolites and silica 261 

Zeolites are microporous aluminosilicate materials with a porous crystalline structure 262 

that act as molecular sieves. The uniform and well-defined pore system of zeolites can be 263 

customized to facilitate size or shape selective separation of molecules. Additionally, zeolites 264 

are both chemically and thermally stable; hence, zeolites have been utilized extensively for 265 

membrane development in applications like pervaporation, membrane reactors, reverse 266 

osmosis and gas separation [101].  267 

Motivated by the zeolite-incorporated TFN RO membrane, Tang’s group was the first to 268 

develop TFN membrane for FO application by loading zeolite NaY nanoparticles in the range 269 

of 0.02-0.4 wt/v% into TMC/n-hexane organic solution [45]. The membrane water flux 270 

improved with increasing zeolite loading between 0.02 to 0.1 wt/v% but decreased when zeolite 271 

loading exceeded 0.1 wt/v%. The membrane with a zeolite loading of 0.1 wt/v% (TFN0.1) was 272 

found to be optimal. TFN0.1 exhibited a water flux of around 15 LMH (32 LMH) in AL-FS 273 

(AL-DS) orientation; whereas, a water flux of about 10 LMH (22 LMH) was obtained using 274 

TFC membrane when 1 M and 10 mM NaCl were used as the draw and feed solution, 275 

respectively. The authors attributed the improvement in membrane water permeability within 276 

the range of 0.02–0.1 wt/v% zeolite loading to the porous structure of zeolite. However, 277 

increasing the zeolite loading beyond 0.1 wt/v% resulted in thicker PA layer formation causing 278 

the water permeability to decrease. Nonetheless, the authors did not comment on the 279 

homogeneity of zeolite dispersion within the PA layer, which may have an impact on FO 280 

performance.  281 

Similar to zeolites, silica incorporated membranes have been applied in many areas like 282 

gas separation, RO, NF and FO owing to its distinctive properties like high specific surface 283 

area, good surface hydrophilicity from the presence of silicon hydroxyl groups, and uniform 284 
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nanostructures that can be controlled for size selectivity [102]. In addition, silica particles have 285 

a spherical morphology, which allows them to disperse more effectively compared to zeolites.  286 

Niksefat et al. [89] explored the influence of silica nanoparticles on the characteristics 287 

and FO performance of TFN membranes. It was reported that increasing silica concentration 288 

(0.01, 0.05 and 0.1 wt/v%) in MPD solution also increased the membrane surface roughness, 289 

hydrophilicity and water permeability. The membrane with 0.05 wt/v% silica in MPD solution 290 

showed the highest NaCl rejection (89%) with a higher water flux (15 LMH) than that of the 291 

unmodified membrane (72% and 10.3 LMH) in AL-FS orientation. The improvement in salt 292 

rejection at higher silica loadings was associated with the pore blockage of membranes by silica 293 

nanoparticles, which is supposed to reduce the water flux too. On the contrary, integration of 294 

silica in PA active layer unexpectedly enhanced water flux. Additionally, the authors attributed 295 

the decrease in NaCl rejection (increase in salt flux) observed at the highest silica loading of 296 

0.1% wt/v% (TFN0.1) to the formation of a defective PA layer. A defective selective layer is 297 

supposed to increase the salt flux across the membrane as suggested by the authors. However, 298 

the FO test results showed that the TFN0.1 demonstrated the lowest salt flux compared to other 299 

TFN membranes, which contradicts the results obtained for NaCl rejection in RO test.  300 

2.2 Carbon nanotubes and graphene oxide 301 

CNT-modified membranes have been researched extensively for desalination and water 302 

purification due to their low biofouling potential, good chlorine resistance, self-cleaning 303 

properties, superior separation and mechanical properties [103-106]. The hollow tubular 304 

structures of CNTs act as pores in membranes and facilitates frictionless transport of water 305 

molecules to produce high water flux [107]. Besides, the specific pore diameter of CNTs helps 306 

to improve the membrane selectivity by rejecting salt ions and permitting transport of water 307 

molecules [108]. Owing to the hydrophobicity of CNTs and their inadequate dispersibility in 308 
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organic/aqueous monomer solution or polymer matrix, it is required to functionalize CNTs 309 

with carboxylic or amine functional groups by treating them with acids or amines. The 310 

dispersion of CNTs in polymer dope or monomer solutions for IP reaction can be extensively 311 

influenced by the functionalization reaction conditions of CNTs like acid concentration, 312 

reaction temperature and time [109]. 313 

Rahimpour and co-workers amine-functionalized multi-walled carbon nanotubes (f-314 

MWCNTs) using 1,3-phenylenediamine (mPDA) to augment the hydrophilicity of PA TFC 315 

membranes [78, 110]. The CNTs were first carboxylated by treating in a H2SO4: HNO3 mixed 316 

acid solution with a volume ratio of 3:1 at 90°C for 1 h. The carboxylated CNTs were then 317 

added to mPDA dissolved in dimethylformamide at 70°C for 96 h. The most permeable 318 

membrane, with a loading of 0.1 wt% f-MWCNTs (TFN0.1) in MPD aqueous solution, 319 

achieved a water flux of 95.7 LMH in AL-DS orientation, which is roughly 160% more than 320 

that of TFC membrane [78]. The NaCl rejection for TFN0.1 and the control membrane was 321 

observed to be similar (70-73%) and was evaluated using a cross-flow RO setup with 20 mM 322 

NaCl feed and a pressure of 2.4 bar. The authors deduced that the enhanced water flux in TFN 323 

membranes could have resulted from the capillary force within the f-MWCNTs nanochannels 324 

or from the formation of external nanochannels (voids) between the polymer and f-MWCNTs 325 

at the PA layer interface. The increased surface hydrophilicity of TFN membranes could have 326 

also increased the water permeation through the membrane. The TFN membranes exhibited a 327 

lower solute flux than that of the control membrane; however, the authors did not discuss the 328 

possible reasons that enhanced membrane selectivity. Kim et al. later reported that the decline 329 

in solute flux might be ascribed to the formation of narrower nanochannels due to PA partially 330 

covering CNTs, which hindered the transport of hydrated solute ions [109].  331 

Wang and his group were the first to prepare double-skinned TFN membranes using 332 

unmodified CNTs [79]. They also explored the impact on membrane performance and 333 
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characteristics by changing the location of CNTs inside the membrane [83]. In both studies, 334 

the membranes were prepared via IP of polydopamine (pDA)/CNTs and TMC on PSf 335 

substrates; and the contact angles of TFC and TFN membranes at all conditions were observed 336 

to be similar (67.0°-67.5°). This is because the unmodified CNTs did not improve membrane 337 

hydrophilicity, unlike the amine-functionalized CNTs prepared by Rahimpour’s group (47.4° 338 

with 0.05 wt% CNTs in the PA layer) [78]. The double-skinned membranes, both TFC and 339 

TFN, were found to exhibit outstanding solute rejection compared to single-skinned 340 

membranes without sacrificing water flux. The anti-fouling capacity of the double-skinned 341 

membranes to humic acid (HA) was much higher than that of single-skinned membranes. The 342 

TFN double-skinned membrane with 0.05 wt% CNTs (TFN0.05) had the highest anti-fouling 343 

capacity because CNTs in the active layer weakened the adhesion between CNTs and HA. The 344 

normalized flux recovery for double-skinned TFN0.05 was 81.4% after the third cycle of 345 

fouling and cleaning process, which was much higher than the double-skinned TFC membrane 346 

(60.8%). Moreover, water flux through the TFN0.05 double-skinned membrane was 54% 347 

higher than the control double-skinned membrane in AL-FS orientation. In addition, 348 

incorporation of CNTs into both the PA active layer and substrate of single-skinned TFC 349 

membrane (nTFN) improved membrane porosity, which led to a reduction in the structural 350 

parameter. Similar to the double-skinned TFN membranes, nTFN membranes demonstrated 351 

enhanced antifouling property to HA. The normalized flux recovery for nTFN membrane was 352 

87.8% after the third cycle of fouling and cleaning process, compared to 70.7% flux recovery 353 

achieved by the TFC membrane. Although the nTFN membranes demonstrated higher water 354 

flux, the CNT-polymer incompatibility resulted in poor salt rejection due to the formation of 355 

macrovoids within the polymer matrix. 356 

GO is a chemical derivative of graphene with abundant surface functional groups and a 357 

high area-to-thickness ratio [111]. GO is amphiphilic and can improve water flux by creating 358 



Nawshad Akther 
 

21 
 

water channels between the GO interlayers, where water molecules are initially adsorbed by 359 

the hydrophilic hydroxyl groups and then diffused rapidly between the hydrophobic carbon 360 

core [112]. The hydrophilic nature of GO promotes better GO dispersion in water, and assists 361 

in the development of nano-sized laminates involving GO layers in forming mesh-like structure 362 

[113], which is beneficial for water filtration membranes. GO has been studied only recently 363 

for preparation of high-performance polymeric membranes for water treatment applications 364 

[114-117]. GO-modified membranes were reported to have better water permeability, salt 365 

rejection, mechanical strength, chlorine resistance, surface charge and antimicrobial properties 366 

than pristine membranes in various applications like UF, RO and FO [118-122]. GO 367 

membranes have also been studied for solvent pervaporation and NF as the membranes are 368 

chemically inert [123-126]. Several reviews have been published recently that discuss the 369 

application of GO-based membranes in various areas [113, 127, 128]. 370 

The GO-incorporated PA TFN membrane not only demonstrated enhanced 371 

hydrophilicity and surface smoothness but also had a thinner PA layer compared to the control 372 

TFC membrane [90]. As a result, water permeability increased upon GO incorporation in PA 373 

layer. The optimal GO loading in the PA layer was reported to be about 400-600 ppm, beyond 374 

which the performance of TFN membranes aggravated due to GO agglomeration. The water 375 

flux achieved in AL-FS orientation with 600 ppm GO-incorporated TFN membrane was ~ 48% 376 

higher compared to that of the unmodified membrane with a comparable solute flux. The 377 

smooth, hydrophilic and negatively-charged surface of the GO-modified membrane was also 378 

able to efficiently suppress sodium alginate (SA) fouling by electrostatic repulsion and 379 

providing fewer adhesion sites on the membrane surface. The flux recovery ratio (FRR) value 380 

of TFC membranes was only ~60% after cleaning; whereas, the FRR value of all GO-modified 381 

membranes was higher than 90% [90]. 382 
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GO was also chemically modified to improve its dispersibility in MPD aqueous solution 383 

and minimize its aggregation in the polymer matrix. Polyvinylpyrrolidone (PVP) coated GO 384 

(PVP-GO) was synthesized by Wu et al. as a nanofiller to prepare TFN membrane for 385 

desalination [92]. It was found that PVP-GO had better dispersion than unmodified GO in MPD 386 

aqueous solution, which helped to reduce GO aggregation in the PA layer. Moreover, the 387 

membrane hydrophilicity, salt rejection and water flux of PVP-GO modified membranes were 388 

much higher than pristine TFC and unmodified-GO-incorporated TFN membranes. The 389 

optimal TFN membrane with a PVP-GO loading of 0.0175 wt% demonstrated a water flux of 390 

33.2 LMH in AL-DS orientation, which is approximately 3.3 times greater than that of pristine 391 

TFC membrane when 10 mM and 2 M NaCl feed and draw solution, respectively.  392 

2.3 Other carbon-based nanomaterials 393 

Graphene quantum dots (GQDs) have been recently studied as biocidal agents in TFC 394 

FO membranes by Seyedpour et al. [99]. The oxygen-containing functional groups on the 395 

surfaces of GQDs allows them to demonstrate excellent water solubility and polymeric 396 

compatibility. The biocidal property of GQDs occurs from their electron transport property, 397 

which improves their peroxidase activity. Incorporation of 0.5 wt% GQD in the MPD solution 398 

during IP reaction, not only improved the TFN FO membrane’s anti-bacterial property (>90% 399 

and 95% inactivation for E. coli and S. aureus, respectively during 1h incubation), but also 400 

enhanced FO performance by increasing membrane surface hydrophilicity. Additionally, the 401 

strong covalent bonding between the GQDs and PA layer ensured long-term membrane 402 

stability during FO test. The authors attributed the exceptional anti-bacterial property of GQD-403 

modified TFC FO membrane to the uniform dispersion of GQDs that enabled more of their 404 

active edges to disrupt bacterial cells on the membrane surface via contact mechanism. 405 

Nonetheless, the contact mechanism for cell disruption is unlikely to be effective when GQDs 406 

are embedded in the polymer matrix as suggested by Faria et al. [129]. This is because, most 407 
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of the nanoparticles are washed off with the excess monomer solution during the IP process, 408 

and the remaining nanoparticles on the substrate surface get embedded in the PA layer. 409 

However, there are other studies, which reported that graphene derivatives could kill bacteria 410 

by contact mechanism even when embedded in the PA layer [130, 131]. Hence, the exact 411 

mechanism behind the antimicrobial property of graphene derivatives when embedded in a 412 

polymer matrix is still dubious and should be further investigated. 413 

Fullerenols are carbon-containing spherical molecules (C60(OH)n) with abundant 414 

hydroxyl groups, which have also been used to modify the PA layer to augment the 415 

hydrophilicity and antifouling properties of the TFC FO membranes. Recently, Perera et al. 416 

developed fullerenol-modified TFC membrane, and a 400 ppm fullerenol loading (FTFC-4) 417 

demonstrated a 83% increase (26.1 LMH) and 78% decrease (0.18 g/L) in the water flux and 418 

specific reverse solute flux (SRSF), respectively, compared to those of the TFC membrane 419 

when tested in AL-FS orientation using DI water as feed solution against 1 M NaCl as draw 420 

solution [97]. Although this study attributed the improvement in water flux of the fullerenol-421 

modified TFC membranes to the increased membrane surface hydrophilicity, no in-depth 422 

explanation has been provided for their improved selectivity. Moreover, the authors stated that 423 

incorporation of fullerenol creates interfacial voids between the fullerenol and the PA matrix 424 

that facilitate quick transport of water molecules. In that case, the solute flux is also expected 425 

to increase at higher fullerenol loadings as interfacial voids are mostly non-selective and allow 426 

draw solutes to diffuse across the membrane easily. However, the salt flux was observed to 427 

decrease up to a fullerenol loading of 400 ppm. A change in surface charge of the 428 

nanocomposite membranes could have increased salt rejection, but no such data was provided 429 

by the authors for further validation. Besides good membrane performance, FTFC-4 430 

demonstrated good antifouling propensity by acquiring a FRR value of 87.2%, which is 431 

significantly higher than the FRR value of TFC membrane (53.4%). The hydrophilic surface 432 
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of the fullerenol-modified TFC membrane created a hydration layer that hindered the progress 433 

of foulant adsorption on the membrane surface and created a loose cake layer that could be 434 

easily eradicated by physical cleaning [97]. 435 

2.4 Titanate and halloysite nanotubes 436 

Besides CNTs, titanate nanotubes (TNTs) and halloysite nanotubes (HNTs) have also 437 

been explored as nanofillers for fabricating TFN FO membranes because their tubular form 438 

provides additional channels for water transport across the membranes. Both TNTs and HNTs 439 

have hydrophilic properties, good stability, and large pore volumes and specific surface area 440 

[132, 133]. Although TNTs, HNTs and CNTs have similar tubular and hydrophilic 441 

characteristics, the cost of production for HNTs and TNTs is significantly lower than that of 442 

CNTs [134, 135]. 443 

To date, only a few scientific articles have been published on TNTs and HNTs-modified 444 

FO membranes; most of which have been produced by Ismail’s group [80-82, 136, 137]. The 445 

first and only study exploring the possibility of self-synthesized amine-functionalized TNTs as 446 

nanofillers for TFN FO membrane was reported by Emadzadeh et al. in 2015 [80]. The surface 447 

of calcinated hydrophilic TNTs was amine-functionalized using 1-(2-amino-ethyl)-3-448 

aminopropyl] trimethoxysilane (AAPTS) to prevent agglomeration OF TNTs in the PA active 449 

layer during the IP reaction. The amine-functionalized TNTs (f-TNTs) dispersed in the 450 

TMC/cyclohexane solution were covalently bonded to the PA layer by forming amide linkages 451 

during the IP reaction as shown in Figure 4. The f-TNT modified membranes had higher surface 452 

roughness and hydrophilicity compared to the control TFC membrane. As a result, the water 453 

flux of the TFN membrane with 0.05 wt% f-TNT loading was 2 times more than that of the 454 

control membrane in both membrane orientations. Additionally, the nanochannels of f-TNTs 455 

and voids between f-TNTs and PA matrix may have also contributed to the increased flux of 456 
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the TFN membranes. The authors believe that f-TNTs assisted in a higher degree of PA cross-457 

linking by facilitating quick MPD diffusion to the surface of hydrophilic f-TNTs. The high PA 458 

cross-linking degree in TFN membrane resulted in lower reverse solute flux for TFN 459 

membranes in both orientations than the control membrane. 460 

 461 

 462 

Figure 4: Schematic illustration of the interaction between amine-functionalized titanate nanotube and polyamide 463 

(adapted from [80]). 464 

 465 

Besides incorporating only one type of nanofiller in the PA layer, two or more nanofillers 466 

have occasionally been embedded in the TFN membrane to improve FO membrane 467 

performance. For instance, Ghanbari et al. investigated the effect of adding HNTs [81] and 468 

TiO2-coated HNTs (TiO2/HNT) [82] in the PA layer on the performance and anti-fouling 469 

property of the membranes. The experimental results showed that compared to HNTs, the 470 
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degree of TiO2/HNTs aggregation in the active layer was negligible due to their good 471 

compatibility with PA structure. Moreover, integration of TiO2/HNTs into PA active layer 472 

enhanced membrane hydrophilicity, which resulted in better separation performance compared 473 

to pristine TFC and HNTs-incorporated TFN membranes. The 0.05 wt% TiO2/HNT 474 

incorporated TFN membrane, demonstrated a water and solute flux of 40.8 LMH  and 7.3 gMH, 475 

respectively with 2 M NaCl as draw solution and 10 mM NaCl as feed solution in AL-DS 476 

mode. Whereas, the TFN membrane with 0.05 wt% HNTs (TFC membrane) attained a water 477 

flux of 33.6 LMH (24 LMH) and a solute flux of 9.2 gMH  (6.4 gMH ). The tubular structure 478 

of HNTs provided additional passages for water molecule transport across the membranes. The 479 

TiO2/HNTs nanoparticles also significantly enhanced the anti-fouling property of the TFN 480 

membranes to bovine serum albumin (BSA). The normalized flux of TFC membrane decreased 481 

to 0.71 after 10 hours of fouling test; while, the normalized flux decreased to ~0.88 and 0.85 482 

for TiO2/HNTs and HNTs TFN membrane respectively. The BSA fouling in TiO2/HNTs and 483 

HNTs-modified TFN membranes was almost entirely reversible with a water recovery of 100% 484 

and 96.5%, respectively compared to a recovery of ~83% with TFC membrane. The improved 485 

hydrophilicity of the TFN membranes enhanced their anti-fouling property by weakening the 486 

interactions between the BSA foulant and PA layer. 487 

2.5 Porous coordination polymers  488 

In recent years, porous coordination polymer (PCP), a new kind of nanomaterial, has 489 

been used to develop nanocomposite membranes for various applications like gas separation, 490 

liquid separation and catalysis [138-144]. Metal-organic frameworks (MOFs) and covalent-491 

organic frameworks (COFs) are two or three-dimensional PCPs, which have been used to 492 

improve the structure and performance of FO nanocomposite membranes [85, 86, 88, 145, 493 

146]. MOFs are porous inorganic/organic hybrid nanostructure material comprising of metal 494 

ions coordinated to organic ligands as linkers [147, 148]; whereas, COFs are organic 495 
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nanoporous solids with extended structures of light elements comprising functional groups that 496 

are linked by strong covalent bonds [149].  497 

MOFs and COFs are promising for membrane application as their pore structure can be 498 

customized, and they have an exceptionally high surface area, porosity and thermal stability. 499 

Moreover, the existence of organic linkers in MOF and COF assembly improves their 500 

compatibility with the polymer matrix compared to inorganic nanofillers, which minimizes the 501 

development of non-selective cavities between the MOFs/COFs and the polymer matrix. The 502 

formation of covalent or non-covalent bonds between MOFs/COFs and polymer could attribute 503 

to their good compatibility in the polymer matrix, which can be beneficial for enhancing the 504 

properties of the PA layer without compromising on the membrane selectivity [150].  505 

Ma et al. modified the PA layer using self-synthesized zirconium (IV) carboxylate MOFs 506 

(UiO-66) to produce highly selective TFN FO membranes [85]. The hydrophilicity and 507 

molecular-sieving effect of UiO-66 increased the water permeability of the TFN membrane by 508 

52% (0.1 wt% UiO-66 loading) compared to the control TFC membrane. As a consequence of 509 

the hydrophilic nature of UiO-66, increasing its concentration in the organic phase also 510 

increased the PA layer thickness. Increasing the UiO-66 loading beyond 0.1 wt% formed a 511 

very thick PA layer, which decreased water flux by increasing the transport resistance of the 512 

water molecules in the active layer. The TFN membrane with 0.1 wt% UiO-66 loading showed 513 

a 40% (AL-DS) and 25% (AL-FS) increase in water flux than the control TFC membrane 514 

without significantly affecting the membrane selectivity.  515 

Similarly, Zirehpour et al. found that dispersing MOFs, consisting of silver (I) and 1,3,5-516 

benzene tricarboxylic acid (3HBTC), in the PA layer of FO membranes improved both the 517 

membrane hydrophilicity and transport properties without negatively altering the membrane 518 

selectivity for seawater desalination [86]. With an optimal MOF loading of 0.04 wt/v%, the 519 
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water flux of TFN0.04 increased by 27% compared to the TFC membrane without deteriorating 520 

membrane selectivity. However, the integrity of the PA layer was lost when MOF loading was 521 

increased beyond 0.04 wt/v%, which hampered membrane selectivity.  522 

The first study that investigated the effect of COF nanofillers, Schiff base network-1 523 

(SNW-1), on the performance of PA TFN membrane for FO process was conducted by Akther 524 

et al. [88]. The hydrophilic SNW-1 nanoparticles reacted with the acyl chloride groups of TMC 525 

during the IP reaction to form strong tertiary amide bonds, which aided the stability of SNW-526 

1 nanoparticles in the PA layer. Addition of SNW-1 nanoparticles formed a thinner PA layer 527 

by hindering the reaction between MPD and TMC during the IP reaction. The thin PA active 528 

layer reduced the transport resistance and the porous SNW-1 structure provided extra channels 529 

for water molecule transport. As a result, the TFN membranes demonstrated higher water flux 530 

than the pristine TFC membrane. The optimal SNW-1 loading was found to be 0.005 wt% 531 

(TFN0.005), which increased the water flux by 29% from that of the control membrane when 532 

tested in AL-FS orientation with deionized water and 0.5 M NaCl as feed and draw solution, 533 

respectively. 534 

2.6 Issues and challenges of nanomaterial-modified PA layers 535 

The selectivity of TFC membranes depends on the integrity of their dense PA layer, 536 

which will be affected upon addition of nanomaterial. Nanoparticle incorporation in the PA 537 

active layer mostly improves water permeability but at the expense of membrane selectivity. 538 

The performance of TFN membranes that are able to overcome the trade-off relationship is 539 

only marginally better than those of pristine TFC membranes. Any further increase in 540 

nanoparticle loading can cause particle agglomeration and hinder the reaction between 541 

monomers during the IP process. As a result, a defective PA layer will form that will reduce 542 

membrane selectivity. Moreover, the effective nanoparticle loading in the PA layer is much 543 

lower than that in the monomer solution as most of the nanoparticles are washed out when extra 544 

monomer solutions are discarded during the IP process. Consequently, a significant quantity 545 

of nanomaterial is lost, which can make the commercial development of TFN membrane costly. 546 
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One possible strategy to reduce nanomaterial loss during the fabrication process is to use a 547 

vacuum-assisted IP process [151, 152]. Additionally, nanoparticles may be lost during FO 548 

operation if they are incompatible with the PA matrix. Therefore, fabrication techniques should 549 

be improved, and polymer-compatible nanoparticles should be developed to achieve cost-550 

effective development of TFN membranes. This may include exploring new nanomaterials or 551 

modifying the existing commercially available nanomaterials through functionalization to 552 

enhance their stability within the PA matrix. 553 

3. Nanomaterial-coated PA layer surfaces 554 

Surface modification is an attractive technique as it allows alteration of membrane 555 

performance without significantly changing the intrinsic structures of the membrane. Surface 556 

modification allows nanomaterials to be directly coated, grafted, assembled by a layer-by-layer 557 

(LbL) method or covalently bonded to the TFC membrane surface. Modification of membrane 558 

surface using nanoparticles is often adopted to improve membrane hydrophilicity, tune the 559 

charge density and surface roughness in order to reduce membrane fouling, impart biocidal 560 

properties, enhance chlorine resistance, and eliminate the trade-off between membrane 561 

selectivity and water permeability. For instance, Yang et al. stacked GO nanosheets on 562 

membrane supports to enhance selectivity and anti-fouling property of the membranes [153, 563 

154]. Table 3 presents the studies on surface modified TFC FO membranes. 564 



Table 3: Summary of the fabrication conditions and FO performance of PA TFC membranes with nanomaterial-modified surfaces 565 

TFC membrane surface modification 
using nanomaterials 

Modification method Modification benefits 

FO performance (AL-FS) 
 

Year 
(Ref) 

Nanomaterial or 
nanocomposite 
(Particle size) 

Substrate 
(PA layer 

monomers) 

DS 
(FS) 

CFV 
Jw 

(LMH) 
Js 

(gMH) 

f-SWNTs 
(n/a) 

PSf 
(MPD, TMC) 

EDC/NHS facilitated GO 
binding 

Improved hydrophilicity 
Biofouling control 

- - - - 
2011 
[47] 

Superhydrophilic 
ligand-coated SiO2 

nanoparticles 
(D: ~8 nm) 

PSf 
(MPD, TMC) 

Dip-coating 

Reduced surface roughness 
Improved hydrophilicity 

Lower fouling propensity: 
hydration layer barrier 

- - - - 
2012 
[155, 
156] 

Ag-PEGylated 
dendrimer 

(n/a) 

PES 
(MPD, TMC) 

In situ synthesis of AgNPs via 
photolysis of AgNO3 within 

the 
PEGylated dendrimer matrix 

Antiadhesive and antibacterial 
properties 

Anti-protein fouling property 

1 M NaCl 
(DI water) 

3.3 
cm/s 

25.0 5.0 
2013 
[157] 

GO/PLL 
(n/a) 

PSf 
(MPD, TMC) 

EDC/NHS facilitated GO/PLL 
grafting 

Improved hydrophilicity 
and selectivity 

Anti-biofouling and biocidal 
property 

2 M NaCl 
(DI water) 

500 
mL/min 

11.0 15.0 
2015 
[158] 

GO-Ag 
(n/a) 

PSf 
(MPD, TMC) 

In situ synthesis of AgNPs on 
GO surface by chemically 

reducing AgNO3. 
GO-Ag nanocomposites 

grafted onto the membrane 
surface via amide forming 

condensation reaction 

Improved hydrophilicity 
Antibacterial properties 

1 M NaCl 
(DI water) 

200 
mL/min 

5.4 35.1 
2015 
[44] 

BaSO4 

(n/a) 
PSf 

(MPD, TMC) 

Deposition of BaSO4 via 
surface mineralization of TFC 

membrane with BaCl2 and 
Na2SO4 aqueous solutions 

using ASP technique 

Improved surface hydrophilicity 
Better FO performance 

1 M NaCl 
(DI water) 

250 
mL/min 

10.7 3.99 
2015 
[159] 

GO 
(T: ~1.4 nm, A: 0.19 

µm2) 

PSf 
(MPD, TMC) 

EDC/NHS facilitated GO 
binding 

Improved hydrophilicity 
Antiadhesive and antimicrobial 

properties 
Biofouling resistance 

- - - - 

2014 
[160] 
2016 
[131] 

GO-pDA PSf Coating Smoother membrane surface 2 M NaCl 500 13.0 8.75 2016 
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(T: 1.5-2.5 nm, Lateral 
size: 0.2-1 µm) 

(MPD, TMC) Improved hydrophilicity 
Biofouling resistance 

(DI water) mL/min [48] 

Ag 
(n/a) 

PSf 
(MPD, TMC) 

In situ production of AgNPs 
on GO-modified membrane 

surface via wet chemical 
reduction of AgNO3 by 

NaBH4 

Improved antibacterial property 
98% bacterial inactivation with 

E. coli 
- - - - 

2016 
[161] 

AgCl 
(n/a) 

PSf 
(MPD, TMC) 

Deposition of AgCl via 
surface mineralization of TFC 
membrane with AgNO3 and 

NaCl aqueous solutions using 
ASP technique 

Improved surface hydrophilicity 
Better FO performance 

Fouling resistance 
Better phenol removal 

efficiency 

1 M NaCl 
(DI water) 

315 
mL/min 

24.0 2.8 

2017 
[162] 
2018 
[163] 

Ag 
(28.1 nm) 

PSf 
(MPD, TMC) 

In situ synthesis of AgNPs on 
pDA-coated TFC membranes 

by incubation in AgNO3 

aqueous solution at room 
temperature for 2 h 

Improved anti-adhesive and 
anti-bacterial property 

94% reduction in cell viability 
with P. aeruginosa 

- - - - 
2018 
[164] 

Zwitterion-Ag 
(n/a) 

PES 
(MPD, TMC) 

In situ formation of AgNPs 
via reduction of Ag+ using 

0.01M NaBH4 

Antiadhesive and antibacterial 
properties 

>96% antimicrobial efficiency 
with E. coli 

1 M NaCl 
(DI water) 

8.5 
cm/s 

15.2 7.7 
2018 
[165] 

 566 

AgCl: silver chloride; AgNO3: silver nitrate; AgNP: silver nanoparticle; ASP: alternate soaking process; BaCl: barium chloride; BaSO4: barium sulfate; CFV: cross-flow 567 
velocity; DS: draw solution; EDC: n-(3-Dimethylaminopropyl)-n’-ethylcarbodiimide hydrochloride; FS: feed solution; f-SWNTs: functionalized single-walled carbon 568 
nanotubes; GO: graphene oxide; Js: solute flux; Jw: water flux; MPD: m-phenylenediamine; NaBH4: sodium borohydride; NaCl: sodium chloride; Na2SO4: sodium sulfate; 569 
NHS: n-hydroxysuccinimide; pDA: polydopamine; PEG: polyethylene glycol; PES: polyether sulfone; PLL: poly-L-lysine; PSf: polysulfone; SiO2: silica; TMC: trimesoyl 570 
chloride 571 



3.1 Carbon nanotubes and graphene oxide  572 

Tiraferri et al. developed membranes with biocidal properties by covalently binding 573 

antimicrobial functionalized single-walled CNTs to the TFC membrane surface using amide 574 

bonds. Based on characterization results, it was observed that the CNTs were firmly bonded to 575 

the surface of the membrane and provided a homogenous surface coverage. The modified 576 

membrane was able to inactivate up to 60% of the bacteria adhered to membrane surface within 577 

an hour of contact time; thus, indicating its potential to delay initiation of membrane fouling 578 

during FO process [47]. The same research group also altered the surface chemistry of the TFC 579 

membrane using modified silica nanoparticles to achieve lower foulant-membrane adhesion 580 

for fouling mitigation. The surface of the silica nanoparticles was altered via super hydrophilic 581 

ligands coating that made the silica nanoparticles more stable and bind irreversibly to the 582 

carboxylic groups of the PA layer using the dip-coating technique. Although the surface 583 

chemistry of the TFC membrane changed due to nanoparticle coating, the morphology and 584 

salt/water permeability of the membrane remained the same as that of the pristine membrane. 585 

The uniform coating of nanoparticles on the membrane surface increased the surface 586 

hydrophilicity, which formed a tightly bound hydration layer on the membrane surface. The 587 

hydration layer acted as a barrier between the membrane and the organic foulants. The 588 

neutralization of membrane carboxyl groups also contributed to the membrane’s anti-fouling 589 

property [155, 156].  590 

Surface coating of the membrane using biocidal GO nanosheets is often challenging. To 591 

overcome this issue, Hegab et al. utilized bioadhesive pDA to incorporate GO nanosheets on 592 

the TFC membrane surface. Deposition of pDA takes place via oxidative polymerization and 593 

self-assembly, both of which reduce and immobilize GO on the membrane surface. The best 594 

performing GO-pDA membrane was fabricated using a GO concentration of 80 μg/mL and 595 

pDA deposition time of 30 min. At the optimal GO loading, the GO nanosheets did not 596 
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aggregate and bound firmly to the membrane surface. The optimal GO-pDA modified 597 

membrane demonstrated 21.5% and 80% higher water flux and selectivity, respectively 598 

compared to the pristine membrane because of improved membrane hydrophilicity and 599 

morphology. Moreover, the modified membrane was able to significantly extend the biofouling 600 

onset because of its outstanding anti-bacterial properties [48].  601 

Perreault et al. investigated the anti-biofouling property of GO by covalently bonding GO 602 

nanosheets on commercial TFC FO membranes using amide coupling reaction. In addition to 603 

possessing improved antimicrobial property, the GO functionalized TFC membrane 604 

demonstrated enhanced surface hydrophilicity without significantly affecting its transport 605 

properties. During the treatment of synthetic secondary wastewater accompanied with P. 606 

aeruginosa cells, the GO functionalized membranes showed a flux decline of 20% after 24 h 607 

of operation due to biofouling; whereas, a 40% flux decline was observed with the unmodified 608 

membrane. The improved anti-bacterial property of the GO modified membrane can be 609 

ascribed to the reduction of microbial biomass build-up on the membrane surface owing to the 610 

biocidal property of GO nanosheets [131]. 611 

Hegab et al. used two unique techniques, layer-by-layer (LbL) and hybrid (H) grafting, 612 

to covalently attach GO nanosheets on the PA TFC membrane surface through a poly L-Lysine 613 

(PLL) intermediary. The GO nanosheets were firmly bound to the membrane surface and each 614 

other when hybrid grafting technique was used, which resulted in better membrane 615 

hydrophilicity, morphology, smoother surface and antibacterial property. The GO/PLL-H 616 

membrane demonstrated higher selectivity compared to the pristine and GO/PLL-LbL 617 

membranes due to the formation of a tight active layer. The GO/PLL-H and GO/PLL-LbL 618 

membranes reduced the bacteria by 99% and 48.5%, respectively, compared to the pristine 619 

membrane. GO nanosheets enhanced the anti-bacterial properties of the membranes by 620 

penetrating and damaging the bacterial cell membranes with their sharp edges. Additionally, 621 
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when PLL bonded GO nanosheets pierced the bacterial cell membranes, they inhibited several 622 

cellular enzymatic systems that killed the bacteria and impeded bacterial growth. The reverse 623 

solute flux demonstrated by GO/PLL-LbL membrane was 78% higher than the pristine 624 

membrane because of substantial swelling that occurred as a result of membrane coming in 625 

contact with high salt concentration and forming loose structures that increased both ICP and 626 

draw solute diffusion [158].  627 

Besides modifying membranes for use in water treatment processes, the surface of the PA 628 

layer was impregnated with nanomaterials for rejection or adsorption of trace pharmaceuticals 629 

[166] and shale gas wastewater treatment [167]. The modified TFC membrane demonstrated 630 

less fouling tendency and higher rejection capacity for pharmaceuticals than the pristine 631 

membrane. In the case of shale gas water treatment, a membrane comprising of a GO-632 

incorporated PES substrate and a salt-rejecting and oil-repelling hydrogel selective layer was 633 

used. The modified membrane exhibited excellent fouling resistance under several oil/water 634 

emulsions due to the robust underwater oleophobicity of the hydrogel selective layer. The 635 

structural parameter of the GO-incorporated support was 20% lower than the virgin membrane. 636 

The membrane also demonstrated 3 times higher water flux than the commercial FO membrane 637 

and removal percentage higher than 99.7% and 99.9% for multivalent ions and oil, respectively.  638 

3.2 Silver nanoparticles and nanocomposites 639 

Chung and co-workers coated TFC membrane surface with silver–polyethylene glycol 640 

PEGylated dendrimer nanocomposite to diminish both protein and bacterial fouling that occur 641 

during water treatment processes. They compared the anti-fouling property of four types of 642 

functional groups (carboxylic acid, amine, PEG or silver nanoparticles) that were imparted on 643 

the TFC membrane surface during the modification process (Figure 5). All modified 644 

membranes obtained desired electrochemical characteristics and demonstrated enhanced 645 
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hydrophilicity and anti-fouling property compared to the pristine membrane. However, the 646 

silver–PEGylated dendrimer modified membrane was the most effective in fouling mitigation 647 

and decreased fouling by 99.8%. The silver nanoparticle and PEG-modified membranes 648 

weakened the electrostatic interactions between the membrane surface and the foulants to lower 649 

the protein fouling propensity. Whereas, the strong electrostatic interactions between the 650 

amine-modified membranes and the proteins resulted in quick initial protein deposition on the 651 

membrane surface [157].  652 

 653 

 654 

Figure 5: Illustration of the steps involved in the modification of PA TFC membrane surface with silver–655 

PEGylated dendrimer nanocomposite structure [157]. 656 

 657 

Qiu and He developed a zwitterion-Ag nanocomposite to increase the biofouling resistance 658 

and water flux of the TFC FO membrane without significantly deteriorating the membrane 659 

selectivity [165]. The nanocomposites were assembled on the membrane surface using a second 660 
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IP of zwitterion followed by in situ preparation of silver nanoparticles (AgNPs). The carboxylic 661 

acid functional groups of zwitterions acted as binders to Ag ions and reduced them to AgNPs. 662 

The hydrophilic and functional surface of the modified membrane resulted in better water flux 663 

and selectivity compared to the unmodified TFC membrane. The zwitterion-Ag nanocomposite 664 

improved the membrane biofouling resistance by improving the anti-adhesion and anti-665 

bacterial property of the membranes. The modified membranes also demonstrated long-term 666 

biofouling resistance with an antimicrobial efficiency greater than 96%. A flux decline of only 667 

8% was observed with the modified membrane after 10 hours of fouling test; whereas, a 50% 668 

flux decline occurred with the unmodified membrane. Additionally, it was possible to 669 

regenerate the AgNPs on the membrane surface once it was used up [165]. 670 

Silver nanoparticles (AgNPs) have also been studied as a biocidal agent by Soroush et al. 671 

where silver nitrate was reduced to AgNPs via wet chemical reduction on the surface of GO 672 

nanosheets to form silver-coated GO (GO/Ag) nanocomposites [44]. GO was chosen as a 673 

substrate to reduce the agglomeration of AgNPs. Moreover, GO offered a larger active surface 674 

area to AgNPs by dictating spherical morphology, which resulted in higher antimicrobial 675 

activity. The GO/Ag nanocomposites were bonded covalently to the surface of the PA layer 676 

via amide forming condensation reaction using cysteamine via dip-coating technique. Surface 677 

modification improved the hydrophilicity of membranes and inactivated bacteria (E. coli) by 678 

more than 95% without significantly changing the membrane transport properties. The 679 

antibacterial property of the membranes modified with GO/Ag nanocomposites was found to 680 

be much more effective than using GO (40%) or silver nanoparticles (60%) individually due 681 

to the synergistic capture-killing mechanism exhibited by the GO/Ag nanocomposites. GO/Ag 682 

nanocomposites inactivate bacteria by (1) penetrating silver ions into the bacterial cells, (2) 683 

capturing bacteria onto the GO surface, (3) and breaking the bacterial membrane through the 684 

sharp edges of GO nanosheets. 685 
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In addition to exploring the biocidal properties of GO/Ag nanocomposites, Soroush et al. 686 

modified commercial HTI TFC FO membranes via in situ development of AgNPs on both the 687 

control and GO-modified TFC membrane surfaces. The GO-incorporated membrane surface 688 

resulted in a more uniform AgNPs distribution and production of smaller sized AgNPs due to 689 

the presence of oxygen-containing functional groups on the GO surface. The functional groups 690 

on the surface of GO also provided better anchoring to silver ions that facilitated improved 691 

stability, higher Ag loading and greater control on Ag ion release. In terms of biocidal 692 

properties, GO/Ag modified FO membranes demonstrated higher bacterial inactivation (98%) 693 

than the Ag-only modified (80%) or GO-only modified membranes (50%). Regeneration of 694 

AgNPs on the GO/Ag modified membrane surface after 7 days of Ag leaching resulted in the 695 

retrieval of 70% of the initial silver loading, and almost complete restoration of its antibacterial 696 

properties (95%) [161]. 697 

The antibacterial property of AgNPs was further investigated by combining pDA and 698 

AgNPs to simultaneously achieve both passive and active antibacterial properties [164]. Under 699 

static conditions, the pDA coating demonstrated both anti-bacterial and anti-adhesive 700 

properties by deactivating 30% Pseudomonas aeruginosa cells and decreasing the number of 701 

adhered cells by 85% compared to the control TFC membrane. The pDA coating demonstrated 702 

good anti-adhesive property due to the formation of the hydration layer that helped to minimize 703 

adsorption of foulants. The anti-bacterial property of pDA coating was ascribed to the 704 

protonation of pDA amine groups that assisted in bacteria lysis via contact with the bacterial 705 

cell walls. However, the pDA coating failed to prevent the growth of attached cells in dynamic 706 

conditions as the experimental conditions increased foulant interaction that covered the 707 

membrane surface entirely with biofilm. On the other hand, the AgNPs minimized microbial 708 

biomass and inhibited biofilm growth via inactivation of the attached bacterial cells. Moreover, 709 

the AgNPs on the TFC FO membrane surface showed good activity and stability during the 24 710 
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h cross-flow FO operation with a permeate flux decline of only 0.5%. Overall, the authors 711 

concluded that the hydrophilic pDA coating would be ineffective in mitigating biofilm growth 712 

and biofouling, but its anti-adhesion properties may facilitate easy biofilm removal using 713 

physical backwash [164]. Despite several studies proving the regeneration possibility of 714 

AgNPs on the membrane surface and its excellent biocidal property, the concern for AgNPs 715 

leaching and its effect on the environment cannot be overlooked. Moreover, in situ regeneration 716 

of AgNPs on membrane surface requires more chemicals, which is associated with additional 717 

costs and negative impacts on the environment. 718 

3.3 Membrane surface mineralization  719 

Besides surface coating and covalent binding, Yu’s group adopted a new technique called 720 

surface mineralization to chemically-modify membrane surface. Barium sulfate was deposited 721 

on PA TFC membrane surface using alternate soaking process (ASP), where the membrane 722 

was soaked separately into barium chloride and sodium sulfate aqueous solutions (Figure 6). 723 

The number of ASP cycles was varied to prepare membranes with various degrees of 724 

mineralization. The characterization results showed that the barium sulfate particles were 725 

dispersed uniformly on the membrane surface. The mineral coating did not increase the TFC 726 

membrane active layer thickness, but it made the membrane surface smoother and denser. 727 

Increasing the mineralization degree made the membrane more negatively charged and 728 

hydrophilic. The salt rejection and water flux of mineralized TFC membrane were found to be 729 

better than those of the unmodified TFC membrane and commercial CTA FO membrane. The 730 

FO water flux of mineralized membrane improved with increasing number of ASP cycles 731 

because the enhanced surface hydrophilicity at higher mineralization degree counterweighed 732 

the decrease in water permeability caused by the additional barium sulfate coating layer. 733 

Increasing the number of ASP cycles also decreased the reverse solute flux as the membrane 734 

surface acquired more negative charge, which increased the repulsion force between the 735 
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membrane surface and anions (chloride ions) in the draw solution; thus, hindering the 736 

permeation of anions across the mineralized membrane [159]. 737 

  738 

 739 

Figure 6: Key steps involved in a single cycle of the alternate soaking process (ASP) for the deposition and coating 740 

of barium sulfate on the PA TFC membrane surface [159]. 741 

 742 

Yu and co-workers also deposited silver chloride on PA TFC membrane surface by 743 

separately soaking the membrane in 0.1 M sodium chloride and 0.1 M silver nitrate aqueous 744 

solutions using the ASP technique [162]. The membrane fabricated with four ASP cycles (M4) 745 

was found to be optimal with a 67.8% higher water flux and 64.5% lower reverse solute flux 746 

than the control TFC membrane. The water flux decreased for membranes beyond four ASP 747 

cycles (M5 and M6) due to the increased resistance from the large quantity of deposited silver 748 

chloride coating. However, all the mineralized membranes demonstrated a higher water flux 749 

and lower reverse solute flux than the pristine membrane due to the negatively-charged surface 750 

of the mineralized membrane that repelled chloride ions. Additionally, the enhanced surface 751 

hydrophilicity of mineralized membranes contributed to lower solute flux by preferentially 752 
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allowing water molecules to diffuse through the membrane instead of salt ions. The negative 753 

surface charge, reduced surface roughness and improved hydrophilicity of the mineralized 754 

membranes enhanced their water flux recovery and fouling resistance to BSA [162]. Due to 755 

the high selectivity and improved fouling resistance, the optimal mineralized membrane with 756 

4 ASP cycles was used for separating phenol from water using the FO process. FO performance 757 

tests showed higher flux and phenol rejection with mineralized membranes compared to TFC 758 

membranes. Moreover, increasing both the feed solution pH and draw solution concentration 759 

resulted in better phenol rejection. Maximum phenol rejection of 98.8% was achieved when 760 

the feed solution pH was changed to 11. This is because of the electrostatic repulsion existing 761 

between the membrane surface and phenolate ion when the feed solution pH is maintained 762 

above 9.96, which is the pKa of phenol. In addition, the phenol adsorption behavior on the 763 

membrane surface was found to be significantly influenced by operating parameters and the 764 

reverse salt flux, electrostatic interaction and solute hydrophobic character. It was observed 765 

from the fouling tests that the phenol fouling for the mineralized membrane was reversible 766 

(90% flux recovery of the initial flux) and could be simply eliminated using physical cleaning 767 

[163].  768 

Although several studies have considered surface modification of PA TFC membranes, 769 

none of them reported the effect of long-term FO operation and nanomaterials leaching on the 770 

FO performance. Therefore, investigating the stability of nanomaterials in water and the PA 771 

layer is essential to retain a stable FO performance for an extended period. In general, the 772 

continuing research on surface modifications of the membrane using nanoparticles has the 773 

potential to develop high-performance PA TFC FO membranes with good antifouling 774 

properties and chlorine resistance. 775 

3.4 Issues and challenges of nanomaterial-coated PA layer surfaces 776 
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Surface modifications with nanomaterials have proven to be successful in imparting 777 

chemical functionality and improving the fouling and chlorine resistance of the membranes 778 

[168]. However, nanoparticle deposition on membrane surface increases mass transfer 779 

resistance and may block pores on the selective layer, which ultimately increases CP and 780 

reduces water flux. Therefore, coating layers should be ultrathin to reduce water transport 781 

resistance. Advanced surface modification techniques like layer-by-layer (LbL) assembly and 782 

chemical vapor deposition (CVD) can be employed as they provide control over coating layer 783 

thickness at the nanoscale level. Moreover, the coating layers prepared by the LbL and CVD 784 

methods are thinner and more stable than those developed using other techniques [169]. 785 

Nanomaterial detachment from the membrane surface is another major issue that occurs 786 

with the implementation of physical surface coating methods. Nanomaterial loss will not only 787 

reduce membrane functionality but will also cause secondary environmental pollution. For 788 

instance, in situ formation of silver nanoparticles allows the release of silver ions, which are 789 

toxic to both bacterial and human cells [161]. Hence, good mechanical and chemical stability 790 

of coating layers is imperative for long term operations, which may be achieved by chemical 791 

grafting. Future studies on surface modifications should validate long-term efficiency and 792 

stability of the coating layer on the membrane surface under practical conditions. 793 

4. Nanomaterial-modified substrates 794 

A desired PA TFC membrane is anticipated to have not only a dense active layer with high 795 

selectivity and water permeability but also a hydrophilic substrate/support with a low structural 796 

parameter to minimize ICP and allow a high mass transfer. One possible strategy to achieve 797 

high-performance membrane substrates with good mechanical strength, chemical stability and 798 

antifouling resistance is to blend nanomaterials in the polymer dope solution. Until now, hollow 799 

fiber and flat sheet substrates for PA TFC FO membranes have been produced mostly by phase 800 

inversion method as illustrated in Figure 7, and most recently by electrospinning (nanofiber 801 

mat). Table 4 and Table 5 summarise the studies on nanomaterial-incorporated TFC FO 802 

membrane substrates along with their FO performance.  803 
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 804 

Figure 7: Typical steps involved in the preparation of a PA TFC membrane with nanomaterial-incorporated 805 

substrate.806 



Table 4: Summary of the fabrication conditions and FO performance of PA TFC membranes with porous nanomaterial-incorporated substrates. 807 

TFC membrane with 
nanocomposite substrate 

Optimal particle 
loading 

Intrinsic properties 
Substrate fabrication 
method & conditions 

FO performance (AL-FS) 
Year 
[Ref] Filler embedded in 

substrate 
(Particle size) 

Substrate 
(PA layer 

monomers) 

DS 
(FS) 

CFV 
Jw 

(LMH) 
Js 

(gMH) 

Zeolite: NaY 
(40-150 nm) 

PSf 
(MPD, TMC) 

0.5 wt% in dope 
solution 

A = 3.3 LMH/bar 
R = 91.0 % 
S = 340 µm 

PI 
Casting/overall thickness = 

150/66.3 µm 

2 M NaCl 
(10 mM NaCl) 

500 
mL/min 

40.0 29.1 
2013 
[51] 

Carboxylated CNTs 
(OD: 10-20 nm, L: 1-

5 µm) 

PES 
(MPD, TMC) 

2 wt% in dope 
solution 

A = 2.3 LMH/bar 
B = 0.08 LMH 
S= 2042 µm 

PI 
Overall thickness = 90.1 µm 

2 M glucose 
(10 mM NaCl) 

2.0 
cm/s 

12.0 - 
2013 
[170] 

Acid functionalized 
CNTs 

(D: ~11 nm, L: ~10 
µm) 

PEI 
(MPD, TMC) 

0.3 wt% (weight 
ratio to PEI) in dope 

solution 

A = 2.5 LMH/bar 
B = 0.7 LMH 
S = 310 µm 

Electrospinning 
Flow rate = 30 µL/min 

Voltage = 30 kV 
Working distance = 12 cm 

Humidity = 60% 

1 M NaCl 
(DI water) 

9.0 
cm/s 

33.0 3.7 
2015 
[171] 

Acid functionalized 
CNT/TiO2 

composites 
(OD: 9.5 nm, L: 1.5 

µm) 

PSf 
(MPD, TMC) 

0.5 wt% in dope 
solution 

- 

PI 
Spin-coating at 3000 rpm for 

1 s 
 

1 M NaCl 
(DI water) 

0.09 
cm/s 

12.7 5.8 
2016 
[172] 

CNTs 
(D: 20 nm, L: 0.5-2 

µm) 

PSf 
(2 mg/mL 
DA Tris 
buffer 

solution, 
MPD, TMC) 

0.15 wt% in dope 
solution 

A = 6.5 LMH/bar 
B = 7 LMH 

S = 1669 µm 

PI 
Casting thickness = 80 µm 

2 M MgCl2 
(DI water) 

7.8 
cm/s 

14.5 6.6 
2016 
[83] 

HNT 
(ID: 5-15 nm) 

PVDF 
(MPD, TMC) 

0.5 wt% in dope 
solution 

A = 2.02 LMH/bar 
B = 0.33 LMH 

S = 370 µm 

PI 
Casting/overall thickness = 

150/70-90 µm 

2 M NaCl 
(10 mM NaCl) 

350 
mL/min 

27.7 14.6 
2016 
[136] 

Acid functionalized 
CNTs 
(n/a) 

PES 
(MPD, TMC) 

0.5 wt% in dope 
solution 

A = 1.8 LMH/bar 
B = 1.89 LMH 

S = 387 µm 

PI 
Casting thickness = 100 µm 

0.6 M NaCl 
(DI water) 

FS: 200 
mL/min 
DS: 400 
mL/min 

11.98 7.7 
2017 
[173] 
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INTs 
(OD: 2 nm, ID: 1 nm, 

L: 100 -200 nm) 

PSf 
(MPD, TMC) 

0.66 wt% (weight 
ratio to PSf) in dope 

solution 

A = 3.0 LMH/bar 
B = 2.9 LMH 
S = 2090 µm 

PI 
Casting/overall thickness = 

100/64.2 µm 

1 M NaCl 
(DI water) 

333.3 
mL/min 

7.5 11.6 
2017 
[174] 

MOF: UiO-66 
(507 nm) 

PSf 
(MPD, TMC) 

6.5 wt% (weight 
ratio to PSf) in dope 

solution 

A = 3.31 LMH/bar 
B = 0.53 LMH 

S = 351 µm 

PI 
Casting/overall thickness = 

150/61 µm 

1 M NaCl 
(DI water) 

1.1 
cm/s 

24.5 4.4 
2017 
[175] 

SiO2/MWCNTs 
nano-rod 

(n/a) 

PVDF 
(MPD, TMC) 

0.75 wt% in dope 
solution 

A = 1.21 LMH/bar 
B = 0.12 LMH 

S = 240 µm 

PI 
Casting thickness = 150 µm 

1 M NaCl 
(DI water) 

300 
mL/min 

22.1 4.1 
2018 
[176] 

Zwitterion (PMAPS) 
(n/a) 

PES 
(MPD, TMC) 

1.0 wt% in MPD 
solution 

A = 0.69 LMH/bar 
B = 0.56 LMH 

PI 
Casting/overall thickness = 

n/a 

2 M NaCl 
(1,000 ppm 
oily WW) 

32.7 
cm/s 

15.8 
(AL-
DS) 

4.2 
(AL-
DS) 

2018 
[177] 

 808 

A: water permeability coefficient; B: solute permeability coefficient; CFV: cross-flow velocity; CNT: carbon nanotube; DS: draw solution; FS: feed solution; HNT: 809 
halloysite nanotube; INT: imogolite nanotube;  Js: solute flux; Jw: water flux; MF: microfiltration; MPD: m-phenylenediamine; MWCNT: multi-walled carbon nanotube; 810 
pDA: polydopamine; PEI: polyethylenimine; PES: polyether sulfone; PI: phase inversion; PSf: polysulfone; PVDF: polyvinylidene fluoride; S: structural parameter; TMC: 811 
trimesoyl chloride; TNT: titanate nanotube; WW: wastewater 812 

 813 

Table 5: Summary of the fabrication conditions and FO performance of PA TFC membranes with non-porous nanomaterial-incorporated substrates. 814 

TFC membrane with nanocomposite 
substrate 

Optimal particle 
loading 

Intrinsic 
properties 

Substrate fabrication 
method & conditions 

FO performance (AL-FS) 
Year 
[Ref] Filler embedded in 

substrate 
(Particle size) 

Substrate 
(PA layer 

monomers) 

DS 
(FS) 

CFV 
Jw 

(LMH) 
Js 

(gMH) 

TiO2 

(~21 nm) 
PSf 

(MPD, TMC) 
0.5 wt% in dope solution 

A = 1.98 LMH/bar 
B = 0.39 LMH 

S = 420 µm 

PI 
Casting/overall thickness 

= 150/76 µm 

2 M NaCl 
(10 mM 
NaCl) 

32.72 
cm/s 

29.7 7.39 

2013 
[178] 
2014  
[179] 

TiO2 

(~21 nm) 
PSf 

(MPD, TMC) 
0.6 wt% in dope solution 

A = 2.63 LMH/bar 
B = 0.45 LMH 

S = 390 µm 

PI 
Casting/overall thickness 

= 140/60-70 µm 

2 M NaCl 
(DI water) 

350 
mL/min 

33.0 15.7 
2014 
[180] 

SiO2 

(160-240 nm) 
Bottom layer: 10 

wt% PSf 

3 wt% in bottom layer 
and 0 wt% in top layer 

dope solution 

A = 1.64 LMH/bar 
B = 0.29 LMH 

S = 169 µm 
PI 

1 M NaCl 
(DI water) 

25 
cm/s 

31.0 7.4 
2015 
[181] 
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Top layer: 7 wt% 
PSf 

(MPD, TMC) 

Casting thickness of 
bottom/top layer = 0/80 
µm on top of PET mesh 
Overall thickness = 97.2 

µm 

GO 
(T: 1-2 nm) 

PSf 
(MPD, TMC) 

0.25 wt% (weight ratio 
to PSf) in dope solution 

A = 1.76 LMH/bar 
B = 0.19 LMH 

S = 191 µm 

PI 
Casting/overall thickness 

= 150/50 µm 

1 M NaCl 
(DI water) 

25.0 
cm/s 

29.5 5.5 
2015 
[52] 

CN/rGO 
(n/a) 

PES 
(MPD, TMC) 

0.5 wt% (weight ratio to 
PES) in dope solution 

A = 1.6 LMH/bar 
B = 0.3 LMH 
S = 163 µm 

PI 
Casting/overall thickness 

= 100/51 µm 

2 M NaCl 
(DI water) 

- 41.1 9.6 
2015 
[182] 

Zn2GeO4 nanowires 
(D: 20-50 nm, L: 200-

300 nm) 

PES 
(MPD, TMC) 

0.05 wt% 
in dope solution 

A = 2.47 LMH/bar 
B = 8.4 LMH 
S = 540 µm 

PI 
Casting/overall thickness 

= 150/64 µm 

2 M NaCl 
(DI water) 

500 
mL/min 

21.6 4.0 
2015 
[183] 

LDH/GO 
(T: 100-150 nm) 

PSf 
(MPD, TMC) 

2 wt% in dope solution 
A = 0.53 LMH/bar 

B = 0.15 LMH 
S = 138 µm 

PI 
Casting/overall thickness 

= 150/58.6 µm 

1 M NaCl 
(DI water) 

2.6 
cm/s 

13.4 6.2 
2016 
[184] 

SiO2 

(200 nm) 
PAN 

(MPD, TMC) 
15 wt% (weight ratio to 
PAN) in dope solution 

A = 2.5 LMH/bar 
B = 1.7 LMH 

S = 65 µm 

Electrospinning 
Flow rate = 1 mL/h 
Voltage = 28.5 kV 

Working distance = 16 
cm 

Humidity = 50% 

1 M NaCl 
(DI water) 

15.8 
cm/s 

56.2 8.2 
2016 
[185] 

SiO2 

(n/a) 
PAN 

(MPD, TMC) 
15 wt% (weight ratio to 
PAN) in dope solution 

A = 1.36 LMH/bar 
B = 0.88 LMH 
S = 29.7 µm 

Electrospinning 
Flow rate = n/a 

Voltage = 20 kV 
Working distance = 15 

cm 
Humidity = 47% 

1 M NaCl 
(DI water) 

7.5 
mL/min 

52 34.84 
2016 
[186] 

GO 
(n/a) 

PSf 
(MPD, TMC) 

0.1 wt% in dope solution - 
PI 

Spin-coating at 3000 
rpm for 1 s 

0.6 M NaCl 
(DI water) 

0.09 
cm/s 

3.6 1.7 
2016 
[172] 

LDH nanoparticles 
(20-30 nm) 

PSf 
(MPD, TMC) 

2 wt% in dope solution 
A = 0.61 LMH/bar 

B = 0.27 LMH 
S = 148 µm 

PI 
Casting/overall thickness 

= 150/57.4 µm 

1 M NaCl 
(DI water) 

2.6 
cm/s 

18.1 8.1 
2016 
[187] 

CaCO3 
(40– 80 nm) 

PSf 
(MPD, TMC) 

7.5 wt% in dope solution 
A = 1.86 LMH/bar 

B = 0.77 LMH 
S = 796 µm 

PI 
Casting thickness = 150 

µm 

2 M NaCl 
(DI water) 

166.67 
mL/min 

17.0 44.3 
2016 
[188] 
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GO 
(T: 1-2 nm) 

Bottom layer: 7 
wt% PSf 

Top layer: 15 
wt% PSf 

(MPD, TMC) 

0.25 wt% in both top 
layer and bottom layers 

A = 1.46 LMH/bar 
B = 0.25 LMH 

S = 130 µm 

PI 
Casting thickness of 
bottom/top layer = 

100/150 µm 
Overall thickness = 61 

µm 

1 M NaCl 
(DI water) 

16.7 
cm/s 

33.8 6.9 
2017 
[189] 

GO 
(n/a) 

PSf 
(MPD, TMC) 

0.5 wt% in dope solution 
A = 0.54 LMH/bar 

B = 0.07 LMH 
S = 420 µm 

PI 
Overall thickness = 70-

90 µm 

2 M NaCl 
(DI water) 

2.5 
cm/s 

11.7 3.5 
2017 
[190] 

TiO2 /GO 
(< 21 nm) 

PSf 
(MPD, TMC) 

0.5 wt% in dope solution 
A = 0.58 LMH/bar 

B = 0.05 m/s 
S = 0.2 µm 

PI 
Overall thickness = 70-

90 µm 

2 M NaCl 
(DI water) 

2.5 
cm/s 

23.9 2.7 
2017 
[190] 

Fe3O4 

(20-30 nm) 

PES 
(MPD, TMC) 

0.2 wt% in dope solution 
A = 3.06 LMH/bar 

B = 0.56 m/s 
S = 420 µm 

PI 
Casting thickness = 100 
µm on top of PE mesh 

Overall thickness = 
99.47 µm 

2 M NaCl 
(10 mM 
NaCl) 

800 
mL/min 

28.8 14.7 
2017 
[191] 

ZnO-SiO2 core-shell 
(30 nm) 

PES 
(MPD, TMC) 

1.0 wt% (weight ratio to 
PES) in dope solution 

A = 3.5 LMH/bar 
B = 4.0 LMH 
S = 297 µm 

PI 
Casting/overall thickness 

= 100/59.8 µm 

1 M NaCl 
(DI water) 

8.3 
cm/s 

33.5 11.5 
2017 
[192] 

SiO2 

(5-15 nm) 
PEI 

(MPD, TMC) 
1.6 wt% in dope solution 

A = 2.99 LMH/bar 
B = 0.4 LMH 
S = 174 µm 

Electrospinning 
Flow rate = 15 µL/min 

Voltage = 30 kV 
Working distance = 12 

cm 
Humidity = 50% 

l = 93.7 µm 
D = 249 nm 
da = 1.28 µm 

1 M NaCl 
(DI water) 

9.0 
cm/s 

42.0 5.1 
2017 
[193] 

TiO2 

(<25 nm) 
PSf 

(MPD, TMC) 
0.25 wt% in dope 

solution 
n/a 

Electrospinning 
Flow rate = 16.66 

µL/min 
Voltage = 35 kV 

Working distance = 15 
cm 

Humidity = 25% 

1 M NaCl 
(DI water) 

10.0 
cm/s 

51.5 12 
2017 
[63] 

ZnO 
(50 nm) 

PES 
(MPD, TMC) 

1.0 wt% (weight ratio to 
PES) in dope solution 

A = 3.1 LMH/bar 
B = 3.7 LMH 

PI 
1 M NaCl 
(DI water) 

8.3 
cm/s 

31.2 12.6 
2017 
[192] 
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S = 300 µm Overall thickness = 70-
90 µm 

TiO2 

(< 21 nm) 

PSf 
(MPD, TMC) 

0.5 wt% in dope solution 

A = 1.5 × 10-12 m/s 
Pa 

B = 0.03 LMH 
S = 310 µm 

PI 
Overall thickness = 70-

90 µm 

2 M NaCl 
(DI water) 

2.5 
cm/s 

18.9 1.7 
2017 
[190] 

 815 

A: water permeability coefficient; B: solute permeability coefficient; CaCO3: calcium carbonate; CFV: cross-flow velocity; DS: draw solution; Fe3O4: iron (III) oxide, FS: 816 
feed solution; GO: graphene oxide; Js: solute flux; Jw: water flux; LDH: layered double hydroxide; MPD: m-phenylenediamine; pDA: polydopamine; PAN: 817 
polyacrylonitrile; PEI: polyethylenimine; PES: polyether sulfone; PI: phase inversion; PSf: polysulfone; rGO: reduced graphene oxide; S: structural parameter; SiO2: silica; 818 
TiO2: titanium oxide; TMC: trimesoyl chloride; Zn2GeO4: zinc germinate; ZnO: zinc oxide 819 

 820 



4.1 Zeolites, silica and zinc oxide  821 

Several works have been published on zeolite-incorporated TFC membrane for RO 822 

applications because the unique pore structure of super-hydrophilic zeolite molecular sieves 823 

allows greater shape and size selectivity [194-197]. However, only two studies reported zeolite-824 

modified PA TFC FO membrane, both of which were studied by Tang’s group [45, 51]. Ma et 825 

al. were the first to prepare a nanocomposite substrate for TFC membrane to control ICP in the 826 

FO process [51]. The PA TFC membrane with an optimal porous zeolite loading of 0.5 wt% in 827 

the PSf substrate (PSfN0.5-TFC) demonstrated a water flux that was more than 2 times higher 828 

than that of the conventional TFC membrane. The structural parameter of the PSfN0.5-TFC 829 

(control TFC) membrane was found to be 340 µm (960 µm). The zeolite-loaded TFC 830 

membranes showed improvement in hydrophilicity, surface porosity and water permeability. 831 

However, the nanocomposite membrane was not highly selective, with a NaCl rejection of only 832 

~91% attained using PSfN0.5-TFC membrane at 5 bar using a 10 mM NaCl feedwater [51].   833 

Silica-modified PSf flat-sheet substrates have also been developed for PA TFC FO 834 

membranes. A dual-layered flat sheet membrane was made via the phase-inversion technique 835 

using silica-incorporated PSf solution for the bottom layer and pristine PSf solution for top 836 

layer [181]. The dual-layered TFC membranes had a much higher NaCl rejection (~98%) than 837 

the single-layered TFC membranes (~15-97%) at all silica loadings (1-4 wt%). However, only 838 

minor enhancement in water flux was attained in comparison to control membrane in AL-FS 839 

orientation for both single and dual-layered silica-modified TFC membranes. In contrast, water 840 

flux improved significantly in AL-DS orientation for nanocomposite TFC membranes 841 

compared to the pristine TFC membrane. The selectivity of single-layered silica-modified TFC 842 

membranes deteriorated with increasing silica concentration but remained nearly constant with 843 

dual-layered silica-incorporated membranes [198]. The better selectivity of the dual-layered 844 

substrate could be attributed to its desirable surface morphology for the formation of a high 845 
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salt rejecting and dense PA layer. Additionally, the porous and hydrophilic structure of the 846 

dual-layered substrate helped to reduce ICP. 847 

More recently, electrospun silica-embedded nanofiber mats were prepared as porous 848 

substrates for PA TFC membranes [185, 193]. The low tortuosity and high porosity of the 849 

nanofiber mats substantially reduced ICP by reducing the structural parameter of the nanofiber 850 

supported membranes (<175 µm with the optimal silica loading). The high porosity of silica-851 

nanofibrous substrate enhanced mass transfer within the support layer, which increased the 852 

osmotic water flux of FO membranes. The water and salt permeability of the best performing 853 

FO membrane increased by more than 7 and 3.5 times, respectively, in comparison to the 854 

commercial HTI-CTA FO membrane. The surface roughness of the silica-embedded 855 

nanofibers has not been reported in both the works; however, the high surface roughness is 856 

more likely to impair PA layer formation on the nanofibers support [199].  857 

Rastgar et al. dispersed ZnO and ZnO-SiO2 core-shell nanoparticles (ZSCSNPs) in the 858 

polyethersulfone (PES) substrate to explore the effect of different nanoparticle surface 859 

characteristics on the pore structure and performance of PA TFC FO membranes [192]. The 860 

cross-sectional SEM images exhibited dense sponge-like porous structure for pristine PES 861 

substrates and loose and long finger-like porous structures for ZnO and ZSCSNPs-incorporated 862 

substrates. The hydrophilicity and large surface area of ZnO and ZSCSNPs could have 863 

augmented the exchange rate of solvent/non-solvent phases during the phase-inversion process 864 

that resulted in the development of finger-like pore structures. The finger-like pore structures 865 

reduced ICP by decreasing membrane tortuosity and structural parameter. The water fluxes of 866 

ZnO and ZSCSNPs-incorporated TFC membranes were more than twofold higher than that of 867 

the pristine TFC membrane. The TFC membrane with 1.0 wt% ZNCSNPs loading had higher 868 

hydrophilicity, permeability, pore density, and bigger surface pore size compared to the 1.0 869 

wt% ZnO loaded TFC membrane. Although the ZnO nanoparticles had 10 times higher surface 870 
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area than the ZNCSNPs, the water fluxes obtained using ZNCSNPs-modified TFC membranes 871 

were higher with comparable solute flux. Hence, the impact of nanoparticle hydrophilicity on 872 

the FO performance was found to dominate the effect of surface area.  873 

4.2 Carbon nanotubes and graphene oxide 874 

Unlike conventional PA TFC membranes supported on polymeric substrates (PSf/ PES), 875 

novel membranes with PA layer supported on robust and highly stable self-supporting Bucky-876 

papers (BPs) were fabricated for potential application in FO/RO processes by Dumée et al.  877 

[55]. The BPs were solely comprised of hydroxyl-functionalized entangled CNTs that 878 

demonstrated enhanced wettability (contact angle < 20°) after plasma treatment. The high 879 

porosity of BPs allowed good water permeation (water uptake capacity of 17%), and the 880 

comparable pore size of BPs and PSf support meant that the PA layer could effectively form 881 

on BP without damage. The BP supported PA TFC membranes also had a smoother surface 882 

(29.2 nm) than the PSf-supported (56 nm) and commercial TFC membranes (49.7 nm). The 883 

low structural parameter (620 µm) for BPs could potentially reduce ICP. Additionally, the 884 

water and salt permeability of BPs could be adjusted by preparing thin sheets and fine-tuning 885 

their chemistry. Nonetheless, no data on water flux and salt rejection have been provided for 886 

FO performance tests possibly due to the membrane’s fragility.  887 

It is essential to functionalize CNTs to improve their hydrophilicity before blending them 888 

in the polymer dope solution in order to improve the performance of CNT-incorporated FO 889 

membranes. Pristine CNTs are hydrophobic and form low porosity substrates with macrovoids 890 

that increase draw solute leakage and reduce water flux. Moreover, pristine CNTs can readily 891 

agglomerate in organic and/or polymer solutions [172]. Wang et al. produced a high-892 

performance PA TFC membrane for desalination using carboxylated MWCNTs-blended PES 893 

substrates [200]. The nanomaterial-incorporated substrates were observed to have finger-like 894 
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macrovoid structures that resulted in better water permeability, higher salt rejection (>90%), 895 

and smaller structural parameter than the neat PES and CTA commercial membrane. The open 896 

porous structure of the substrate significantly reduced ICP and improved water flux. The 897 

nanomaterial-incorporated PES substrate also demonstrated higher tensile strength; thus, 898 

creating the possibility of producing substrates without fabric supports.  899 

Similarly, Choi et al. used carboxylated MWCNTs (f-MWCNTs) incorporated PA TFC 900 

membrane for application in combined seawater desalination and wastewater recovery FO 901 

process [173]. The increased porosity and hydrophilicity of the nanocomposite membrane 902 

resulted in a 72% higher water flux than the baseline TFC membrane. The SRSF of 903 

nanocomposite membrane was 15% lower than the TFC membrane. The nanocomposite 904 

membrane also exhibited 19% less decline in normalized flux under alginate fouling test 905 

compared to TFC membrane because of the negatively-charged membrane surface, which 906 

improved repulsive foulant–membrane interaction. The smoother surface and electrostatic 907 

repulsive force of the nanocomposite membrane improved fouling reversibility, and the 908 

recovered normalized flux of nanomaterial-incorporated TFC membrane was observed to be 909 

6% higher than TFC membrane after physical cleaning.  910 

Polyetherimide (PEI) nanofibers embedded with f-MWCNTs were also explored as 911 

potential substrates for PA TFC membranes [171]. The f-MWCNTs were found to be well-912 

distributed in the nanofibers, which improved the average substrate porosity and tensile 913 

strength by 18% and 53% respectively and decreased the structural parameter by 30% 914 

compared to neat PEI nanofibers. The dispersed f-MWCNTs retained the porous structure by 915 

providing better compaction resistance to nanofibers during heat-press treatment. The nano-916 

sized water channels of f-MWCNTs could have also contributed to the higher substrate 917 

porosity and improved pure water permeability. The high mechanical strength of f-MWCNTs-918 

incorporated nanofibers assisted in ICP mitigation by allowing a further increase in substrate 919 
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porosity and pore size and forming large interconnected pores. As a result, the water flux of 920 

nanomaterial-incorporated TFC membranes was much higher than neat TFC membranes. The 921 

nanomaterial-incorporated TFC membranes also demonstrated a lower SRSF than the control 922 

TFC membrane. 923 

In addition to CNTs, graphene derivatives like graphene oxide (GO) and reduced GO 924 

(rGO) have been explored as potential nanofillers for TFC FO membrane substrate due to their 925 

smooth structure, high mechanical strength, good chemical stability, low thickness (1-2 nm), 926 

favourable surface chemistry and high surface area-to-volume ratios that assist in better 927 

interaction with the polymer matrix [201-204]. GO’s surface contains hydrophilic oxygen-928 

containing functional groups like epoxide, carbonyl, hydroxyl and carboxyl groups, which can 929 

improve the hydrophilicity and antifouling properties of the nanocomposite membranes [205].  930 

Recent studies have reported that GO incorporation into TFC substrate enhanced the 931 

membrane pore diameter, porosity, and hydrophilicity, which markedly increased water 932 

permeability and allowed efficient formation of PA layer [52, 172, 190]. Moreover, the addition 933 

of GO/TiO2 composite and/or mixture to membrane substrate further improved the water flux, 934 

compared to pristine and GO-modified TFC membrane, without significantly sacrificing the 935 

reverse solute flux due to the establishment of straight finger-like elongated pores and increased 936 

the support layer porosity [172, 190]. A similar observation was made using rGO modified 937 

graphitic carbon nitride (CN/rGO) as PES substrate filler, which reduced membrane structural 938 

parameter by changing the PES substrate structure [182].  939 

Lim et al. developed a TFC FO membrane with a dual-layered nanocomposite substrate 940 

[189] as shown in Figure 8. The substrate layers were made using 15 wt% and 7 wt% PSf 941 

solution for the top and bottom layers, respectively. The lower PSf concentration of the bottom 942 

layer resulted in the creation of highly porous finger-like structures, which helped diminish 943 
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ICP effects. Whereas, the higher concentration of PSf in the top layer formed a smooth, thin 944 

skin layer with desirable pore size for adequate development of the dense PA layer. The pure 945 

water permeability and porosity of the dual-layered membrane substrate were suggestively 946 

higher than the single-layered substrate. Dual-layered TFC membrane incorporated with 0.25 947 

wt% hydrophilic GO nanosheets demonstrated a lower structural parameter, higher water 948 

permeability and ion selectivity compared to the GO-free membrane. The water flux of GO-949 

modified dual-layered TFC membrane was 69% higher than the single-layered TFC membrane 950 

under AL-FS mode using 1 M NaCl and DI water as a draw and feed solution, respectively. 951 

Moreover, the reverse solute flux of GO-modified dual-layered TFC membrane was less than 952 

that of single-layered TFC membrane under the same operating conditions suggesting that 953 

improvement in water permeability was achieved without comprising on membrane selectivity. 954 

The dual-layered PSf substrates were also able to mitigate the ICP effects at higher draw 955 

solution concentrations effectively. 956 

 957 
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 958 

Figure 8: Schematic of the co-casting technique used for fabrication of dual-layered GO-incorporated TFC FO 959 

membranes [189]. 960 

 961 

4.3 Titanium oxide 962 

TiO2 nanoparticles have been extensively used to enhance characteristics of RO, NF, UF, 963 

membrane distillation (MD), pervaporation, and FO membranes due to their outstanding 964 

hydrophilicity, good anti-fouling properties, high chemical stability and adequate 965 

photochemical reactivity [206-210]. Ismail’s group was the first to incorporate TiO2 966 

nanoparticles in the PSf substrate of PA TFC membrane using direct blending to control ICP 967 

in the substrate during FO operation [178, 180]. Similar to MWCNTs and GO, incorporation 968 

of TiO2 in the membrane substrate formed long finger-like pores, improved hydrophilicity and 969 

porosity [180]. The structural parameter of 0.5 wt% TiO2 embedded membrane was found to 970 

be 420 µm, which was much smaller than that of the TFC membrane (980 µm). The water flux 971 

of nanocomposite membrane embedded with 0.5 wt% TiO2 was approximately 87% higher 972 
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than the TFC membrane in AL-FS mode when tested using 10 mM and 0.5 M NaCl as feed 973 

and draw solution, respectively. In addition, the TFN membrane demonstrated good water flux 974 

stability under long-term FO test due to diminished effect of ICP in the support layer [178]. 975 

Increasing the TiO2 loading beyond 0.5 wt% caused in particle agglomeration at the surface of 976 

the substrate causing a lower degree of cross-linking in the PA layer. Consequently, water flux 977 

increased but at the expense of deteriorating membrane selectivity [211].  978 

Additionally, the TiO2-embedded TFC membrane was tested for organic fouling in AL-979 

DS mode using BSA in the presence of Ca2 +. The hydrophilic nature of the nanocomposite 980 

membrane significantly diminished the hydrophobic BSA adsorption on the membrane surface. 981 

The fouling in nanocomposite membrane was highly reversible with a pure water flux recovery 982 

of 92% after rinsing with water for 30 minutes without any chemical cleaning reagents; while 983 

the control TFC membrane achieved a water flux recovery of 79% [179]. 984 

4.4 Other nanomaterials 985 

A Zn2GeO4 nanowire embedded PSf UF membrane with high surface porosity was 986 

employed as a substrate for PA TFC FO membrane preparation. The surface characteristics of 987 

the substrate improved the crosslinking-degree of PA layer that improved membrane 988 

selectivity. However, the Zn2GeO4 nanowire-modified substrate demonstrated a lower FO 989 

water flux despite achieving a water permeability that was ~42% higher than that of the control 990 

PES membrane in RO mode. The contradicting results may have occurred as the Zn2GeO4 991 

incorporated substrate failed to efficiently mitigate ICP due to the increased membrane 992 

tortuosity resulting from the formation of thick pore walls near the bottom matrix of the 993 

membrane. The modified membrane also had a higher structural parameter (540 vs. 352 µm) 994 

than the pristine PES membrane [183]. 995 
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In another study, hydrophilic HNTs were embedded into a PSf substrate with an optimal 996 

loading of 0.5 wt%. Increasing the HNTs loading beyond 0.5 wt% resulted in poor salt rejection 997 

due to a lower degree of cross-linking in the PA layer. The structural parameter of 0.5 wt% 998 

HNT-incorporated membrane (370 µm) was lower than that of the control TFC membrane (950 999 

µm) due to higher porosity, enhanced hydrophilicity and extra water pathway formation in the 1000 

substrate. The HNT-modified membrane also exhibited high water permeability without 1001 

significantly sacrificing membrane selectivity. The water flux of nanocomposite membrane 1002 

was much higher than that of the control TFC membrane in both AL-FS (27.7 vs. 13.3 Lm-1h-1003 

1) and AL-DS (42.3 vs. 26.0 Lm-1h-1) orientations when 10 mM and 2 M NaCl were used as 1004 

feed and draw solution, respectively [136]. 1005 

Wang and co-workers developed functional layered double hydroxide (LDH) 1006 

nanoparticles blended PSf UF substrates for TFC FO membranes [187]. Addition of LDH 1007 

changed the substrate morphology, which significantly enhanced the surface pore diameter, 1008 

surface hydrophilicity, porosity, thermal stability and mechanical strength of the membrane. 1009 

The water permeability of nanocomposite membranes was higher than the pristine TFC 1010 

membrane at all LDH loadings (0 – 4 wt%). The water flux of the optimal LDH-modified 1011 

membrane (2 wt% LDH loading) was 42.5% more than that of pristine TFC membrane when 1012 

tested in AL-FS orientation with DI water and 1 M NaCl as feed and draw solution, 1013 

respectively. The structural parameter of the 2 wt% LDH loaded membrane, and the pristine 1014 

membrane was evaluated as 148 µm and 287 µm, respectively. Integration of LDH in the 1015 

membrane substrate reduced the substrate tortuosity and ICP effects [187]. The group also 1016 

synthesized LDH/GO hybrid as a nanofiller for PSf substrate and obtained similar results as 1017 

the LDH-modified substrate. However, the LDH/GO-modified membrane exhibited a lower 1018 

structural parameter (138 µm) and reverse solute flux compared to the LDH-modified and 1019 

pristine TFC membranes [184].  1020 
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Imogolite nanotubes (INTs) are hydrous aluminosilicate single-walled nanotube 1021 

materials that have evolved as a promising competitor of CNTs [212]. Unlike CNTs, INTs are 1022 

exceptionally hydrophilic due to the existence of ample hydroxyl groups both on their outer 1023 

and inner walls (Figure 9). In addition to their superior hydrophilicity, INTs have a high aspect 1024 

ratio and surface area that make them potential nanofillers for developing desalination 1025 

membranes [213, 214]. Pan et al. prepared hydrophilic TFC FO membranes for desalination 1026 

using INTs blended PSf substrates [174]. It was found that the TFC membrane with 0.66 wt% 1027 

INTs blended PSf substrate demonstrated the best FO performance regarding water flux and 1028 

salt rejection. Moreover, the incorporation of INTs in the substrate enhanced the intrinsic 1029 

transport properties of the nanocomposite membrane. The INTs blended substrates provided 1030 

three types of passages for salt and water transport. The first type included the widest channels 1031 

that are formed during the phase inversion process and comprised of the finger-like pores, top 1032 

surface spongy pores, and bottom surface macro-voids. The second kind involved the 1033 

interfacial gaps, which existed between the INTs and the polymer matrix; whereas, the third 1034 

type comprised of the INTs nanochannels. The interfacial gaps and INTs nanochannels helped 1035 

to connect the wide channels or pores in the substrate polymer matrix to assist in water and salt 1036 

transport. Incorporation of INTs alleviated ICP as the optimal nanocomposite membrane had a 1037 

much lower structural parameter (2.09 mm) than the TFC membrane (13.34 mm) [174]. 1038 

 1039 
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 1040 

Figure 9:  View of the atomic structure of INTs. (a) Axial and (b) 3-D side view (adapted from [174]). 1041 

 1042 

The work of Deng et al. [215] on the development of ultrahigh permeable nanoporous 1043 

membranes using copper hydroxide nanostrands as sacrificial additives inspired Kuang et al. 1044 

to develop porous PSf substrates using calcium carbonate nanoparticles (CaCO3-NPs) as 1045 

sacrificial additives [188]. The CaCO3-NPs distributed in PSf matrix were removed after the 1046 

phase inversion process by etching with hydrochloric acid to enhance the substrate porosity. 1047 

Chemical etching of the substrate reduced the membrane structural parameter. Increasing the 1048 

CaCO3-NPs loading made the substrate more porous and reduced the structural parameter 1049 

further. The optimal membrane with a 7.5 wt% CaCO3-NPs loading demonstrated a water flux 1050 

of 17 Lm-1h-1 (27.6 Lm-1h-1) in AL-FS (AL-DS) mode compared to a much smaller water flux 1051 

of 3.6 Lm-1h-1 (5.5 Lm-1h-1) obtained using the control TFC membrane under same testing 1052 

conditions. Although the sacrificial additive helped to increase the membrane porosity and 1053 

water flux, it hampered membrane selectivity. The salt permeability of the modified 1054 
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membranes was much higher than the control membrane, and the SRSF values were reported 1055 

between 3 g/L and 2.3 g/L at different CaCO3-NPs loading in AL-FS mode, which is much 1056 

higher than those reported in other FO nanocomposite membrane studies [188].   1057 

Ferrous-ferric oxide (Fe3O4) has also be used as a nanofiller in PA TFC membrane 1058 

substrate due to its numerous desirable properties like high surface area, low toxicity, chemical 1059 

stability, good biocompatibility and magnetic properties. Darabi et al. added Fe3O4 1060 

nanoparticles (0.06-0.5 wt%) in the PES substrate matrix to alleviate ICP. The water and salt 1061 

permeability increased as the Fe3O4 loading was increased from 0-0.2 wt% due to higher overall 1062 

porosity and formation of additional water pathways that considerably reduced the membrane 1063 

structural parameters from 780 to 420 µm. The lowest NaCl rejection (93.2%) was observed at 1064 

0.2 wt% Fe3O4 loading due to particle agglomeration that reduced the degree of PA cross-1065 

linking. Increasing the Fe3O4 loading beyond 0.2 wt% increased the structural parameter from 1066 

420 to 850 µm, decreased water permeability and improved salt rejection possibly due to pore 1067 

blockage and reduction in the overall membrane porosity. The nanocomposite membrane with 1068 

0.2 wt% Fe3O4 loading demonstrated the highest water flux and lowest SRSF compared to other 1069 

membranes. [191].  1070 

4.5 Issues and challenges of nanomaterial-modified substrates 1071 

One of the major drawbacks of nanocomposite substrates is that a comparatively higher 1072 

nanomaterial loading is required compared to the TFN membranes to observe any improvement 1073 

in membrane performance. The relatively high cost of fabricating TFC membranes with 1074 

nanocomposite substrates may limit their wide applications. In addition, nanoparticles may 1075 

agglomerate easily in polymer dope solution due to the solution viscosity and the polymer-1076 

nanoparticle incompatibility. Therefore, interfacial voids are formed between the nanomaterial 1077 

and the polymer, which can cause nanoparticle loss and reduce membrane selectivity. In 1078 

addition, some nanomaterials can change substrate morphology and increase surface pore size, 1079 

which will result in the formation of defective PA layer during the IP process. Hence, it is 1080 

preferable to use organic pore formers like PVP and polyethylene glycol (PEG) to prepare a 1081 
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substrate with a porous bottom surface and a tight top surface for the formation of a defect-free 1082 

PA layer [216, 217]. Moreover, cost-effective nanoparticles can be developed that are 1083 

hydrophilic and compatible with polymer-phase to reduce ICP and minimize material loss. 1084 

5. Nanomaterial interlayer 1085 

Although commercial TFC FO membranes have demonstrated exceptional separation 1086 

performance, their practical application is still challenging due to their intrinsic trade-off effect 1087 

between water flux and salt flux. Further improvement in water permeability without reducing 1088 

selectivity is difficult by only embedding nanomaterials in the membrane active layer or 1089 

substrate. Besides nanomaterial modification of TFC membranes, several studies have focused 1090 

on the development of the PA layer structure performance enhancement of TFC membranes 1091 

by optimizing the IP process conditions. It was found that parameters like the monomer 1092 

concentration, reaction time and temperature considerably affect the PA layer formation 1093 

because IP is a diffusion-controlled process where the amines in the aqueous phase diffuse to 1094 

the organic phase and react with the acyl chloride at the interface between aqueous and organic 1095 

solutions [36, 218, 219]. In addition, the surface property and pore structure of the substrate 1096 

surface facing the active layer directly influences the PA layer structure because it serves as a 1097 

platform for holding the aqueous amine solution during the IP reaction. For example, large 1098 

pores on the substrate surface can cause the PA to develop inside the porous substrates and 1099 

form a defective selective layer. Therefore, efforts have been made to fine-tune the surface 1100 

properties of substrates using nanomaterial-based interlayer between the porous substrate and 1101 

dense PA layer to form a defect-free PA active layer through controlled IP reaction. Figure 10 1102 

illustrates the typical steps involved in the fabrication process of PA TFC membranes 1103 

incorporated with a nanomaterial interlayer. 1104 
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 1105 

Figure 10: Typical steps involved in the preparation of a PA TFC membrane incorporated with a nanomaterial 1106 

interlayer. 1107 

 1108 

5.1 Carbon nanotubes and graphene oxide 1109 

Livingston’s group recently developed a free-standing PA layer, less than 10 nm thick, via 1110 

controlled IP reaction on top of a porous cadmium hydroxide nanostrand layer coated on a 1111 

porous substrate [49]. The nanostrand interlayer allowed the development of an ultrathin, 1112 

uniform and defect-free PA active layer through controlled release of MPD solution at the 1113 

water-hexane interface, which exhibited excellent permeability. Inspired by this study, Zhao et 1114 

al. developed a TFC membrane using a CNT interlayer between the polyvinylidene fluoride 1115 

(PVDF) support layer and PA layer [220]. The CNT interlayer improved the effective contact 1116 

area of the PA layer area by providing a porous three-dimensional free space below the PA 1117 

skin. The structural parameter of the modified membrane (392 µm) was significantly lower 1118 

than the control membrane (1562 µm) because the CNT interlayer free-space acted as a 1119 

buffering zone to enhance the feed and draw solution exchange near the PA active layer and 1120 

maintain the osmotic pressure; thus, diminishing the ICP effect in the FO process [220]. 1121 

Meanwhile, Zhang and co-workers deposited GO/MWCNT composite as an intermediate 1122 

layer on MF support using vacuum filtration to facilitate the successful growth of defect-free 1123 

PA layer on substrates with large pores [221]. The GO/MWCNT layer controlled the diffusion 1124 

of MPD by forming hydrogen and/or covalent bonds with the MPD monomers that contributed 1125 

towards the formation of a thinner PA layer. Moreover, the GO/MWCNT layer prevented the 1126 

diffusion of TMC inside the substrate pores that restricted the PA growth along the 1127 
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GO/MWCNT layer but not within the substrate pores (Figure 11). Consequently, the FO 1128 

membranes with the interlayer demonstrated higher water flux and better selectivity than the 1129 

control membranes. The nanochannels in the MWCNT/GO interlayer also contributed towards 1130 

enhanced water flux of the modified membranes. 1131 

 1132 

Figure 11: Schematic diagram representing the PA development process on porous substrates with and without a 1133 

nanomaterial interlayer. 1134 

 1135 

A similar mechanism was reported by Zhou et al. who spray-coated an ultrathin CNT 1136 

interlayer onto a commercial porous PES MF membrane using an airbrush to develop a high-1137 

performance TFC FO membrane [222]. The CNT interlayer not only prevented the PA 1138 

formation into the substrate pores but also enhanced the effective PA surface area, which 1139 

reduced the water transport resistance. The crosslinking degree of the PA layer formed on the 1140 

CNT interlayer was found to be higher than that on the PES substrate. The resulting TFC 1141 

membrane with the CNT interlayer exhibited 7 times higher water flux and 7 times lower SRSF 1142 

than that of the control TFC membrane in AL-DS mode with DI water and 1 M NaCl as feed 1143 

and draw solution, respectively. 1144 

Subsequently, Choi et al. formed a hydrophilic pDA/GO interlayer on the PSf support 1145 

[223]. They found that increasing the pDA coating time and GO loading beyond 1 h and 0.5 1146 
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g/L, respectively, resulted in the reduction of water permeability due to blockage of surface 1147 

pores by pDA and GO. The TFC membranes with pDA/GO interlayer demonstrated improved 1148 

water flux without affecting the selectivity when GO loading was maintained between 0.25 g/L 1149 

and 0.5 g/L with a pDA coating duration of 1 h.  1150 

5.2 Porous coordination polymers 1151 

More recently, Wang et al. suggested the construction of an interlayer on PSf substrate 1152 

using MOF UiO-66 nanoparticles for preparing TFC FO membranes [224]. The optimal TFC 1153 

membrane with UiO-66 interlayer showed better water flux, selectivity and lower transport 1154 

resistance than both the pristine and UiO-66 modified TFN membranes. The channels of UiO-1155 

66 nanoparticles allow water molecules to pass through while rejecting the hydrated draw 1156 

solute ions. Future studies can focus on tuning the properties and structure of the PA layer by 1157 

modifying the properties of the interlayer, such as its surface pore size, roughness and 1158 

thickness, to achieve high membrane performance. 1159 

5.3 Issues and challenges of nanomaterial interlayer 1160 

The scalability of nanomaterial interlayer development on porous substrates may be very 1161 

challenging. Vacuum filtration is the most widely used technique used to deposit nanomaterial 1162 

interlayer, but its implementation for large-scale membrane production may be unviable. A 1163 

more feasible strategy may be to use controlled spray coating, which can be easily installed in 1164 

the commercial membrane fabrication unit. Besides scalability, the material should be carefully 1165 

selected for interlayer formation such that they provide a desirable platform of defect-free PA 1166 

layer formation without causing pore blockage.  1167 

6. Implications and future perspectives 1168 

Figure 12 summarises the critical issues in the fabrication of nanomaterial-incorporated 1169 

PA TFC membranes that need addressing to achieve further enhancement in the membrane 1170 
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performance and scalability. Particle aggregation is one of the major issues encountered during 1171 

nanocomposite membrane fabrication, and it mainly results from the high surface energy of 1172 

nanomaterials and high inter-particle interactions. This results in poor dispersion of nanofillers 1173 

in the monomer solution used for PA layer formation, or in the polymer dope solution used for 1174 

membrane substrate. Agglomeration of nanoparticles decreases the effective nanoparticle 1175 

surface area and results in the formation of a defective PA layer with voids and uneven 1176 

nanomaterial distribution. Several studies have explored surface functionalization of 1177 

nanomaterials like amine-functionalized or carboxylated CNTs and HNTs to minimize particle 1178 

aggregation in the non-polar solvent or polymer matrix and produce dense defect-free active 1179 

layer. Besides surface functionalization of nanofillers, new nanomaterials like MOFs and COFs 1180 

can be designed with customized pore structure and surface charge to facilitate homogenous 1181 

distribution of nanofillers in the polymer matrices. In addition, more surface modification 1182 

methods can be explored to overcome the trade-off relationship between water and solute flux, 1183 

and improve the anti-fouling property and chlorine resistance of the PA TFC membranes.  1184 

  1185 
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 1186 

 1187 

Figure 12: Current problems and consequences of nanoparticle (NP) incorporation in the membranes, and some 1188 

possible solutions to overcome those issues. 1189 

 1190 

Non-uniform nanomaterial dispersion in the solvent or polymer dope solution can hinder 1191 

membrane reproducibility and cause a significant amount of variation in the FO performance, 1192 

especially when a small FO membrane coupon is used for performance tests. For instance, if 1193 

coupons are tested from a membrane sample with a non-uniform nanoparticle dispersion, then 1194 

coupons cut from the membrane region with a denser nanoparticle loading will demonstrate 1195 

higher water flux comparatively. Hence, it is crucial that all lab-scale membrane performance 1196 

studies are conducted using larger membrane samples instead of small membrane coupons like 1197 
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2 cm2 so that the performance results are comparable and representative of the whole composite 1198 

membrane.  1199 

The size of nanoparticle not only affects the substrate morphology but also influences the 1200 

development of PA active layer. Consequently, it is vital to ensure that particles smaller than 1201 

the PA layer thickness (150-300 nm) are used so that they can be effectively incorporated into 1202 

the PA layer. Nanofillers larger than the PA layer thickness, such as CNTs and HNTs can 1203 

damage the active layer and undermine membrane selectivity [225, 226]. The loss of 1204 

nanomaterials during membrane fabrication and FO operation is an additional problem. For 1205 

example, a large amount of hydrophilic nanomaterial dispersed in the aqueous amine solution 1206 

for the IP reaction can be lost from the substrate surface when the surplus amine solution is 1207 

removed using a rubber roller. As a result, only a small quantity of the nanomaterials would 1208 

remain inside the substrate pores.  1209 

Many works that have used hydrophilic nanotubes (functionalized CNTs and HNTs) as 1210 

membrane fillers have stated that incorporation of nanotubes into the membrane substrate or 1211 

PA layer can improve water permeability without significantly affecting salt rejection by 1212 

providing extra passages for transport of water molecules [81, 227]. However, the concept of 1213 

the preferential pathway for water molecules requires further verification since it is only 1214 

possible if the nanochannels are aligned towards the water flux direction and not blocked by 1215 

the polymer matrix they are embedded in. So far, most studies on liquid separation reported 1216 

the membrane performance results with only randomly arranged nanotubes [79, 83, 220]. 1217 

Sharma et al. used an electric field to align CNTs in the polymer membranes for hydrogen 1218 

separation [228]. Thus, it may be possible to use an electric or magnetic field to consider the 1219 

effect of uniform nanotube alignment on the membrane performance for liquid separation.  1220 
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Although FO process is associated with an intrinsic low fouling potential, FO process 1221 

performance can be significantly affected by the reduced mass transfer resulting from the 1222 

fouling layer resistance and increased concentration polarization [68, 229]. The addition of 1223 

hydrophilic nanomaterials in the PA selective layer can significantly improve the membrane 1224 

hydrophilicity but may also increase the surface roughness, which can promote fouling and 1225 

exacerbate biofilm formation [35].  1226 

While many studies have developed and tested nanocomposite PA TFC membranes at a 1227 

lab-scale level, nanomaterial-incorporated TFC membranes are not yet reported on a 1228 

commercial scale, which raises concerns on the economic competitiveness of the 1229 

nanocomposite membranes. Although reproducibility and cost-effectiveness of the 1230 

nanocomposite membrane are important, it is also crucial that the long-term performance of 1231 

the nanocomposite membranes under real feed conditions are well understood to determine 1232 

membrane robustness. Long-term performance tests and thorough assessment of the 1233 

nanocomposite membrane stability are critical, especially for the surface-modified 1234 

nanocomposite membranes, to control leaching of nanomaterials. Leaching of nanomaterial 1235 

may deteriorate membrane performance and durability. For example, depletion of biocidal 1236 

agents like AgNPs located on the membrane surface can result in loss of membrane 1237 

antimicrobial activity with time. Thus, it is worth exploring and developing surface coating 1238 

materials that firmly adhere to membrane surface that are stable in water, can resist fouling and 1239 

chlorine attack.  1240 

Additionally, it is essential to develop reliable and standard protocols for characterizing 1241 

FO membranes to facilitate the standardization of the results obtained from different research 1242 

groups and enable data exchange and analysis. Kim et al. comprehensively reviewed the 1243 

various approaches available to determine the characteristics of FO membranes [230]. The RO-1244 

FO tests are the most widely used methods to estimate the intrinsic membrane transport and 1245 



Nawshad Akther 
 

68 
 

structural parameters. However, the intrinsic parameters obtained for FO membranes using the 1246 

RO-FO tests are unreliable due to the different driving forces used in the RO and FO process. 1247 

Moreover, testing the FO membranes at high hydraulic pressures can damage the thin active 1248 

and support layer of the membrane, which will result in unreliable estimation of membrane 1249 

transport and structural parameters [231]. To address these issues, Tiraferri et al. proposed a 1250 

non-pressurized method comprising of a four-step FO protocol, where a different draw solution 1251 

concentration is used in each step [232]. Non-linear least-squares regression is then performed 1252 

using the experimental water and reverse salt flux data obtained in each step to estimate the 1253 

intrinsic membrane transport and structural parameters. Nonetheless, the four-step FO protocol 1254 

is unsuitable for predicting the performance parameters of pressure-applied FO processes. Kim 1255 

et al. have extensively discussed in their review the limitations of the existing protocols and 1256 

other possible methods to determine FO membrane characteristics [230]. Furthermore, a 1257 

standard protocol for FO operating conditions is also required to be able to compare different 1258 

membranes in terms of FO performance. For instance, a predetermined cross-flow velocity 1259 

should be used for all studies as it has a significant impact on the mass transfer and mixing of 1260 

feed and draw solution in the flow channels, which will ultimately affect the water flux, solute 1261 

flux and membrane fouling.  1262 

7. Conclusions  1263 

In this paper, we reviewed the development of nanomaterial-incorporated PA TFC 1264 

membranes for FO processes. We focused on different nanofillers and the methods used to 1265 

fabricate nanocomposite membranes. In addition, we discussed the influence of various 1266 

nanoparticles on the performance and anti-fouling property of the membranes. Most studies 1267 

observed that incorporation of nanofillers into the TFC membranes changed membrane 1268 

physicochemical properties resulting in a more durable and high-performing TFC membrane 1269 

with good anti-fouling property. Several studies also reported that the nanomaterial-1270 
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incorporated PA TFC membranes can overcome the trade-off between membrane permeability 1271 

and selectivity that occurs in the conventional TFC membranes; although, their fundamental 1272 

mechanisms are yet to be fully understood. 1273 

The fabrication of nanocomposite membrane, however, faces several challenges. Hence, 1274 

the commercialization of nanocomposite membranes for industrial-scale application will not 1275 

be possible unless those challenges are addressed. Some of the major challenges include the 1276 

high nanomaterial cost, toxicity, and the additional nanomaterial modification steps required 1277 

to fabricate nanocomposite membranes. Besides, the nanoparticle used should be highly 1278 

dispersible in the solvent or polymer dope solution and have high polymer-nanoparticle 1279 

compatibility to prevent the non-uniform distribution of nanomaterials within the membrane 1280 

material. Most of the approaches adopted for lab scale fabrication of nanocomposite membrane 1281 

may not be scalable; hence, such methods could need significant modifications.  1282 

The robustness and stability of surface modified nanocomposite membranes to the long-1283 

term operation is another significant concern that needs to be addressed through long-term 1284 

studies. Most of the published works have not reported the robustness of the nanocomposite 1285 

membranes, including their ability to meet the stringent health and safety for drinking water 1286 

standards. The loss of nanomaterials during fabrication not only adds to the membrane cost but 1287 

could be a significant health issue if leached during the FO operation.  1288 

Overall, this review shows that the nanocomposite membranes have the potential for 1289 

much-improved membrane performance compared to the conventional TFC FO membranes. 1290 

However, more research is required to improve our understanding of the nanoparticle-polymer 1291 

interactions, its effect on water/solute transport mechanism and membrane fouling so that the 1292 

membrane design and performance can be improved for specific applications. 1293 
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