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includes long-term rhythmic arrhythmias, i.e., bradycardia, 

An algorithm of data segmentation with length constraints 

for each segment is presented and applied in the context of 

arrhythmia detection. The additivity property of the cost 

function for each segment yields the induction proof of the 

exact global optimal solution. The experiments were con- 

ducted on the MIT-BIH arrhythmia dataset with the heart- 

beat categories recommended by the ANSI/AAMI EC57:1998 

standard. The heartbeat classification task is enhanced by 

an adaptive learning scheme. Incremental support vector ma- 

chine is used to integrate a small number of expert-annotated 

samples specific to the subject into the existing classifier 

previously learned from the dataset. The proposed segmenta- 

tion scheme obtains the sensitivity of 99.89% and the posi- 

tive predictivity of 99.83%. The classification sensitivities of 

ventricular and supraventricular detection are significantly 

boosted from 85.9% and 83.5% (subject-unadaptive) to 97.7% 

and 93.2% (subject-adaptive), respectively. Similarly the pre- 

dictivities increase from 94.8% to 99.3% (ventricular), and 

from 67.7% to 88.0% (supraventricular) when plugging in the 

adaptive learning method. The signal processing framework 

is conducted in a simulated real-time model. As compared 

to the previously reported studies we achieve a competitive 

performance in terms of all assessment measures. 
 

KEYWORDS 

Data segmentation, heartbeat classification, adaptive learn- 

ing, arrhythmia detection 

 

1 INTRODUCTION 

Correctly detecting heartbeat abnormalities is of great impor- 

tance to provide promptly therapy and prevent life-threatening 

problems for patients with cardiac diseases. The detection of 

arrhythmias, or simply known as abnormal heart rhythms, 

is a crucial task in electrocardiogram (ECG) monitoring. 

Arrhythmias  are  presented  in  two  major  types.  The  first 
 

 

tachycardia. The other is represented by transient morpho- 

logical arrhythmias, i.e., ventricular ectopic beats (VEB), 

supraventricular ectopic beats (SVEB), as recommended by 

the Association for the Advancement of Medical Instrumen- 

tation (AAMI) [1]. This study focuses on the latter type and 

proposes a unified framework of ECG segmentation and clas- 

sification between VEBs, SVEBs and non-VEBs, non-SVEBs. 

Researchers have put their efforts to improve these fol- 

lowing four major areas: preprocessing techniques (Bayesian 

[2], wavelet transform [3, 4], digital filters [5, 6]), feature 

extraction methods (RR-intervals [7], QRS complexes [8], 

ECG morphology [5, 6]), heartbeat segmentation algorithms 

(based on QRS complexes, R-peaks [9, 10], or P-waves, T- 

waves [11, 12]), and learning algorithms (linear discriminant 

analysis (LDA) [5, 6, 13, 14], support vector machine (SVM) 

[15, 16], artificial neural networks (ANN) [17, 18], reservoir 

computing with logistic regression (RCLR) [19]). Among 

those areas, this paper proposes methods on the segmentation 

and learning stages. For the other two, we select appropriate 

and inexpensive ECG preprocessing techniques and ECG 

features for the sake of real-time performance. 

With regards to the segmentation problem, the methods 

mentioned in the literature are all based on the ECG morphol- 

ogy (i.e., the PQRST-wave features). One setback for these 

methods is that we must specify a specific ECG lead to pro- 

cess, since those mentioned morphologies are different among 

ECG leads. This paper aims to propose a general method not 

dependent on any special ECG feature but only the provided 

data itself, hence can be applicable to any ECG lead, or more 

generally, to any data type. One benefit of this approach 

is the boosted accuracy resulting from combination of the 

individual segmentation results from all possible ECG leads. 

The only information that can be exploited are the length 

constraints of each heartbeat segment (i.e, normal human 

resting heart rate varies between 0.6 and 1.0 seconds). We 

are inspired by the fact that normal heartbeats of a subject 

measured at a specific experimental setting share a similar 

pattern to a certain extent. We formulate that problem into 

an optimization problem with segment length constraints, 

then solve it using a novel dynamic programming algorithm. 

Our approach is developed from the method of curve fitting 

by line segments [20]. However the mentioned work did not 

impose length constraints on segments. Therefore it cannot be 

applicable to real-time ECG systems as the time needed for 

searching for the optimal solution far exceeds the allowable 

time for real-time processing. 
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where F (x) = ||rμ(x) − μ||2
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Another major difficulty imposed on heartbeat classifi- 

cation is the cardiac specificity of individual subjects. The 

trained classifier has no prior knowledge of the validation 

subject’s pattern, hence heavily affects the system’s accuracy. 

Previous studies also targeted this problem, i.e., adaptive 

LDA [6, 14], generalized regression neural networks [21], or 

switching Kalman filter [22]. For the real-time mode, how- 

ever, one would consider several issues that have not been 

satisfactorily resolved in the mentioned studies, i.e., updating 

the classifier in a restricted amount of time, or discarding 

undesirable samples to avoid data accumulation. In this pa- 

per we propose a real-time subject-adaptive learning scheme 

using the incremental support vector machine algorithm [23]. 

In summary, our main contributions are: 

• Propose a data segmentation algorithm with segment- 
length constraints. The exact global optimal solution is guar- 
anteed by a dynamic program. The algorithm can perform 

in real-time, does not require the input number of segments, 

and is applicable to any ECG lead or any data type. 

• Propose a real-time learning method to have the heart- 
beat classifier get adapted to a new subject. A small number 
of expert-annotated samples will enhance the existing SVM 

point locations. In this paper’s context, μ is obtained by 

averaging the selected typical normal heartbeat samples from 

various learning subjects. 

The number of all possible partitions S exponentially in- 

creases with respect to the number of data points N , leading 

to the intractability of the optimization problem (2) when 

N is large. On a different perspective, we can consider W as 

the sum of M additive individual cost function F as 
M 

W = 
'\" 

F (si), (3) 

i=1 
 

2. Using this denotation it is easily 

observed that the original objective function W in problem 

(2) possesses the property of additivity. By this important 

property, we are able to propose the dynamic programming 

method to find the exact global optimal of the problem (2) 

given the length constraints of each block. 

Lemma 1. Given two disjoint segments A and B, i.e., 

A ∩ B = ∅, then W (A ∪ B) = W (A) + W (B). 
Proof. The proof implies in the additivity property of 

the objective function W as: W (A ∪ B) =     si ∈A∪B F (si) =  

classifier using the Incremental SVM toolbox. si ∈A F (si) +  si ∈B F (si) − si ∈A∩B F (si)  = W (A) +  

The rest of this paper is organized as follows: Section 2 

presents the optimal segmentation method. The system’s 

W (B). 

Theorem 1. Let S∗ = {s∗, 1 ≤ i ≤ M ∗} denoted the 

framework including data preprocessing, dataset description, 

feature extraction and adaptive learning subsections are de- 

scribed in Section 3. Section 4 presents the experimental 

settings and performance assessment results. Finally the con- 

clusions are given in Section 5. 

global optimum solution of problem (2), and S∗,m = {si|si ∈ 

S∗, 1 ≤ i ≤ m ≤ M ∗} denoted the set of the first m segments 
of S∗ that covers the first n points of the original signal (i.e., J 

si = d1:n). Then S∗,m is the global optimal solution of the 

following optimization problem 

minimize W (S) = 
'\" 

||rμ(si) − μ||
2

 

2 OPTIMAL  LENGTH-CONSTRAINT S∈S1:n 
si ∈S (4) 

DATA SEGMENTATION 
The 1-D data signal of ordered individual data points di is 

denoted by dN1 :N2  = {di, N1 ≤ i ≤ N2}. We define a data 

subject to    lmin  ≤ |si| ≤ lmax. 

Proof. Suppose there exists an optimal solution of problem 
(4) other than S∗,m, denoted as St. This leads to W (St) < 

segment si  as any subset of dN1 :N2   which has consecutive 
data points di. A set of M non-overlapping contiguous seg- W (S∗,m). Let S̄ = S∗\S∗,m. We have min S∈S1:N W (S) =   

ments constructing the data dN1 :N2  is called a segmentation 
W (S∗) = W (S∗,m ∪ S̄) = W (S∗,m) + W (S̄) > W (St) +  
W (S̄) = W (St ∪ S̄). 

of dN1 :N2 , denoted as 
Since St ∪ S̄ ∈ S 

 
1:N and St ∩ S̄ I= ∅, St ∪ S̄ becomes 

M 

S = {si| 
I 

si = dN1 :N2 , si ∩i=it si = ∅}. (1) 
i=1 

The set of all possible segmentation S of dN1 :N2 is denoted 

as SN1 :N2 . Given a full signal d of N points (i.e., d = d1:N ) 
and the length constraints on each data segment to be seg- 

mented (i.e., lmin ≤ |si| ≤ lmax), the segmentation problem of 

d can be formulated to the following constrained optimization 

problem 

the optimal solution of problem (2) rather than S∗. This 

contradiction proves that St never exists, therefore S∗,m is 

the optimal solution of problem (4). 

Theorem 2.   The Algorithm 1 (procedure WarmUp- 

Phase)  guarantees  to  find  the  exact  optimal  m-segment 
segmentation, S∗,m, of n first data samples d1:n, for some 

n ∈ [2lmin, 2lmax]. 

Proof. We exploit Theorem 1 in the sense that we must 
initially search for the first two segments of the optimal 

∗,2 

minimize W (S) = 
'\" 

||rμ(si) − μ||
2

 solution,  S (corresponding to the procedure WarmUp- 

S∈S1:N 
si ∈S (2) Phase). Taken the segment length constraints into account, 

we see that the last index of the first segment, denoted as 
subject to    lmin  ≤ |si| ≤ lmax, 

where rμ(x) is the interpolated vector of x with length equal- 

ing to that of μ. Here |x| denotes the length of x, ||x||2
 

Idx(s1), lies somewhere between the interval [lmin, lmin + Δb] 

(where Δl = lmax − lmin). Idx(s2) therefore falls in [Idx(s1) + 
lmin, Idx(s1) + lmin + Δb]. As a result Idx(s2) can take val- 

denotes  the  £2 -norm of x in RN , and μ represents as the ues from [min{Idx(s1)} + l min , max{Idx(s1)} + l min + Δb] =  

template model for si and only dependent on the change 

2 

[2l min , 2l max ]. The procedure WarmUpPhase will find the 
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Algorithm 1 Optimal Segmentation Algorithm 
 

 

Input: 1-D data d1:N , segment constraints lmin, lmax. 

Output: Optimal segmentation S∗. 

1:  procedure WarmUpPhase 

2: i ← 2lmin − 1 
3: while i < 2lmax do 
4: i ← i + 1  

min{i−lmin ,lmax} 
5: W ∗(i) = min{F (d1:j )+ F (dj+1:i)}j=max  l ,i  l 

6: Save value of j where W ∗(i) occurs 
{ min — max} 

7: if i ≥ klmin (k ≥ 3 and possibly largest) then 
i−lmin 

8: W t = min{W ∗(j) + F (dj+1:i)}j=(k 

9: W ∗(i) ← min{W ∗(i), W t} 
10: end if 
11:  end while 
12:  return a 

−1)l 
 

min 

 

 

 
 

Algorithm 2 Optimal Segmentation Algorithm 
 

 

Input: 1-D data d1:N , segment constraints lmin, lmax. 

Output: Optimal segmentation S∗. 

1: procedure MainPhase 

2: i ← 2lmax + 1  
3:  while i ≤ N and i − lmin > 2lmin  do 
4: W ∗(i) ← min{W ∗(j)+ F (dj+1:i)}

i−lmin
  

,2l 

5: i ← i + 1  

6:  end while 
7:  return a 

{ − max min} 

 

 

 
exact value of Idx(s1) for each different value of Idx(s2). As 

explained, the search for all possible values of Idx(s2) must 

be conducted in the interval [2lmin, 2lmax], as indexed by the 
iterative variable i in Algorithm 1. For each given i, we search 

for the smallest segmentation cost value W ∗(i) which is the 

sum of the first two segments, s1 = d1:j and s2 = dj+1:i. 
The second iterative variable j indexes all possible values of 

Idx(s1). The smallest value j can take is max {lmin, i − lmax} 
to not violate the length constraint of s2, and the largest 

value of j is min{i − lmin, lmax} to not violate the length 
constraint of s1. 

The above search for the optimal cost of the first two 

segments inevitably covers the possibilities of more than 

Figure 1: The diagram of our proposed ECG process- 
ing framework. 

 
 

the minimum including the value of W (S∗,m−1) 

+ F (dInd(sm  1 )+1:Ind(s∗
m )

), since dInd(s∗  )+1:Ind(s∗  )  = sm. 

Line 4 in Algorithm 2 performs this thorough search and 

guarantees that sm will be included in the search pool (which 
by definition will generate the optimal cost). Recall that M ∗ 

is denoted as the number of segments in S∗, Algorithm 2 

will successfully find S∗ when i indexes the last sample (dN ), 

given that S∗,M ∗−1 has already achieved. Similar process 

happens for S∗,M ∗−2  (i.e., when i = Ind(s∗        ) we will 
∗ ∗ 

two segments in the search range. If 2lmax > klmin  (where 

k ≥ 3), extra segmentation will occur as there can be 3, . . . , k 
segments for the given iteration i. For k = 3, we need to 

select between the optimal two-segment cost, W ∗(i), and 

the optimal three-segment cost, W t. The resulting optimal 

number of segments can be 2 or 3, and we denote this value as 

m∗. For k > 3, this recursive method always compare between 

the m∗-segment and the (m∗ + 1)-segment schemes. The 

algorithm 1 therefore obtains the exact optimal segmentation 

of d1:n for some n ∈ [2lmin, 2lmax]. 
Theorem 3. The Algorithm 2 (procedure MainPhase) 

guarantees to find the exact optimal solution, S∗, of the input 
data d1:N . 

Proof. Suppose S∗,m is obtained, then by Theorem 1 

we can always obtain S∗,m+1  by conducting the search for 

3 

achieve S∗,M  −1, given that S∗,M  −2  is obtained). Finally, 

by Theorem 2 we already have the optimal for the first m 

segments, hence Theorem 3 holds. 

The proposed constrained segmentation algorithm works in 

time O(nΔb). Comparing to the other methods [20, 24] run in 

O(n2), our algorithm has the considerably lower complexity. 
The benefit of this point is discussed in more detail in Section 

4. 

 

3 FRAMEWORK 

3.1 ECG  Preprocessing 

Various ECG denoising methods had been proposed depend- 

ing intrinsically on the final objective of each study. Studies 

focusing on ECG feature extraction or segmentation require 

Validation set DS2 
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i=1 T 

 

a more sophisticated preprocessing technique (i.e., multiadap- 

 

Table 2: List of ECG Features for Classification Stage. 

tive bionic wavelet transform [4], adaptive neural network    

[25]) as one would preserve the signal morphology. A specific 

ECG lead must be specified for these methods. On the other 

hand research aiming on pattern classification generally deal 

Study Feature Description 
 

 

• RR-intervals (4 features) 

with noise removal (i.e., Bayesian [2], wavelet transform [3], 

digital filters [5, 6]) and are more prone to ECG distortion. In 

[5] • Heart-beat intervals A (3 features), 

• Morphology 1A (9 features) 

our work we adopt two selected techniques for the sake of real- 

time computational simplicity while efficiently removing arti- 

facts. First, the raw signal is decomposed using Daubechies 

[13] 
• Discrete Wavelet Transform (7 features) 

(as derived from Section II.C.3.a in [13]) 

• Principle Component Analysis (12 features) 

wavelet (db6) [3] with the 1st, 2nd level (corresponding to 

the high frequency band) and the 9th level (corresponding 

baseline wander) discarded. The reconstructed signal then 

is passed through an adaptive tunable notch finite-impulse 

response filter [26] to suppress power line interference and 

[16] • Linear Discriminant Analysis (12 features) 

• Independent Component Analysis (12 features) 

muscle contraction noise. 
 

3.2 Heartbeat  Categories 

The experiments were conducted on the Massachusetts In- 

stitute of Technology and Beth Israel Hospital arrhythmia 

database (MITBIH) [27], consisting of 109492 labeled heart- 

beats from 46 patients. Recommended by the ANSI/AAMI 

EC57:1998 standard [1], fifteen beat types of this database 

are grouped into 5 classes: normal beat (N ), ventricular ec- 

topic beat (V ), supraventricular ectopic beat (S ), fusion of 

normal and ventricular (F ), and unknown (Q ), as presented 

in Table 1. Two classification schemes are to be conducted: 

scheme A for class V (or VEB) against non-VEB, and scheme 

B for class S (or SVEB) against non-SVEB. The learning 

and validation set configuration is described in Section 4.1. 

Table 1: Five Hearbeat Categories Recommended by the 

AAMI Standard and the Corresponding Number of Sam- 

ples Used in the Validation Stage. The class labels (1, 

-1) of two classification schemes are given in the last two 

columns. 

of a heartbeat. Moreover there are hidden essential features 

related to the segments’ neighborhood (i.e., abrupt incon- 

sistencies in successive beats), or to the frequency domain 

[13, 16]. 

In this study, we select a combined set of features with the 

aim to avoid those mentioned problems, as shown in Table 2. 

The set includes 29 features of RR-interval and interpolated 

ECG morphology [5], 7 features of discrete wavelet transform 

coefficients [13], and 36 features obtained from 3 different 

dimension-reduction techniques [16]. The selected features 

form a 59-dimension feature vector for each heartbeat. It 

should be noted that although the segmentation decisions are 

combined on multiple separate ECG leads (see Section 4.2), 

the selected features only require lead A of MITBIH. This 

will generate significantly lower dimension feature vectors for 

our real-time performance. 

 

3.4 Adaptive Learning using Incremental 
Support Vector Machine 

Various learning algorithms for heartbeat classification were 

   suggested with promising results as mentioned in the liter- 

AAMI 

Class 

MITBIH 

Annotation 

Total 

beats 

Validation 

beats 

Scheme 

A 

Scheme 

B 

ature. In our study SVM [28] is employed as the baseline 

method for the exploitation of the incremental SVM (ISVM) 

N N, L, R, e, j    90126 44259 -1 -1 toolbox [23]. ISVM is an analytical method which can in- 

   tegrate a small portion of newly-classified samples into the 
V V, E, ! 7235 3221 1 -1 

S A, a, J, S, x 2779 1837 -1 1 

F F 803 388 -1 -1 

Q f, Q, / 15 7 -1 -1 
 

 

 

3.3   Feature Extraction 

There were numerous studies proposing different schemes 

to extract ECG features from segmented data [5–8, 13, 16]. 

Assigning all points of a segmented heartbeat, even after 

down-sampling, causes detrimental effects to the classifica- 

tion process for several reasons. One of them is the high 

dimensionality of feature vectors which decreases the real- 

time adaptive learning process. Another drawback would 

be the redundancy of trivial information, since only spe- 

cial morphology features substantially determine the class 

4 

existing SVM solution without re-training all the sample 

pool from scratch. That is done by analytically adding each 

new sample at a time to the solution while retaining the 

Karush-Kuhn-Tucker conditions on all previously learned 

data. ISVM is therefore tailored with our original purpose 

to tackle the ECG subject-adapting problem and efficient in 

the real-time context. Furthermore ISVM can also unlearn 

samples from the solution which is essential for the real-time 

speed adjustment in this study. We will briefly summarize 

both SVM and ISVM as black boxes (i.e., with just inputs 

and outputs without regards to the internal structure) for 

notational convenience. This method was reported to pro- 

vide promising result promising results in the context of 

subject-adaptive brain-computer interface (BCI) [29–32]. 

The learning dataset T = {x̄ i, ȳi}
NT  consisting of N 

labeled samples from various subjects, is given for the learning 
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j D 
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Algorithm 3 Real-time Adaptive Learning Routine for the 

14 Proposed ECG Framework 
 

12 
1: Input: Initial learning set T , expert-annotated set L, val- 

idation segmented samples S = {si}, validation samples 
10 per batch k1, discard samples per batch k2. 

2:  Output: Corresponding real-time class label yi of si 

3:  Initialization: k ← k1, (αD , bD) ← ISVM 

6 4:  while STOP = 0 do 
5: yi = f (si, αD , bD) 

4 6: if i = k then 

2 
7: D−  ← k2   random samples of T 

+ SVM(T ), L
)
 

 

 
0 50 100 150 200 

8: (αD , bD) ← ISVM−  (αD , bD), D−
)
 

9: D  ← {sj, yj }j=k−k2 +1 

 

 

 

Figure 3: ISVM learning time benchmark result, per- 
formed on an Intel Core i5-6300HQ, 8GB RAM, 
Windows 10 64 bit. 

10: (αD , bD) ← ISVM 

11: T ← T \ D−
 

12: k ← k + k1 

13: end if 

14: i ← i + 1  
15:  end while 

(αD , bD), D 

 

 

 

stage. In our context, each sample x̄ i corresponds to one 59- 
dimensional heartbeat segment, and ȳi  is the corresponding 

label taken the value of 1 or −1. SVM learns from these 
samples and builds a classifier denoted (in dual form) by 

(αT , bT ), or in other words 

(αT , bT ) = SVM(T ). (5) 

Then, a set L = {xi, ŷi}
NL with N manually-annotated 

labels ŷi (where NL « NT ), is used construct the subject- 

specific classifier based on (αT , bT ). ISVM only deals with NL 

new samples to construct (αT ∪L, bT ∪L), the SVM solution 

of the combined set T ∪ L, as 

 

4 EXPERIMENTAL RESULTS AND 
DISCUSSION 

4.1 Dataset Configuration 

The MITBIH is divided into the learning and validation sets 

(namely DS1 and DS2 respectively) as in [5]. Ten subjects 

who possess the highest percentages of abnormal beats in DS1 

(as named in MITBIH: 106, 116, 119, 201, 203, 207, 208, 209, 

215, 223) are designated for the learning stage (hereinafter 

referred to as learning subjects). All subjects in DS2 are 

validated and hereinafter referred to as validation subjects. 

Only 500 random beats from both classes in DS1 for each 

(α , b ) = SVM(T ∪ L) = ISVM
+ 

 (αT , bT ), L
)
.  (6) 

classification scheme are selected for the initial SVM classifier 

construction. The reason for this setting is that there will 

ISVM is also able to unlearn a set T −  (where T − ⊂ T ) 
from T as 

be a maximum of NT  = 500 samples/class × 2 classes = 
1000 training samples. Our benchmarking result, as shown 

in Fig. 3, points out that it took approximately 2 seconds to 

(αT \T − , bT \T − ) = SVM(T \ T 
−

) = ISVM
− 

 (αT , bT ), T −)
.
 integrate NL = 100 samples into the 1000-sample pool. For 

(7) 

The class decision of any new unclassified sample xi classified 

by any trained set D is given by 

the real-time requirements, in these 2 seconds there will be 

approximately 2-3 beats pending for classification after the 

ISVM updating process. This is the threshold of our system’s 

yi = f (xi, αD , bD) = sign 

( '\" 

 
αj ,xj ,yj ∈D 

αjyj x
T 
xi + b 

 

. (8) 
processing capacity. 

 

4.2 Segmentation Performance 

The algorithm for ISVM batch learning is summarized in 

Algorithm 3. In the validation stage, the first 100 expert- 

labeled beats are used as ISVM reinforced set L for each 
subject. Then after each k1 classified beats, the last k2 ones 

are fed into ISVM again with k2 arbitrary samples of T 
discarded from the learning pool. This is referred to as batch 

learning. For the sake of real-time performance k1 = 200 and 

k2 = 100 are chosen. The classification accuracy is calculated 

based on the label of every individual beat of the whole 

real-time process. The real-time mechanism is simulated by 

a virtual data pumping model built by MATLAB Simulink. 

5 

Assessment 

The separate segmenting results from two leads are combined 

if a lead  A  segment  has  above  80%  of  their  data  points 

in common with a lead B segment within the same  time 

frame, or vice versa. In that case both segments from two 

leads are designated as a successfully-detected segment. Two 

standard measures to evaluate the segmentation stage are the 

sensitivity (Se) and the positive predictivity (+P ), calculated 

by 

T + 
Se = , (9) 

T + + F − 

8 

+
) 
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Figure 2: An example result of the proposed optimal segmentation method performed simultaneously on two 
ECG leads of MITBIH (the first 10 seconds of subject 119). The dashed vertical lines represent the segmenting 
change points of our method. The toggle of white-grey background indicates the RR-intervals suggested by 

MITBIH. Each RR-interval is associated with an annotation letter indicating the AAMI beat class (see Table 

1). All heartbeats in this figure are successfully segmented as each segmented interval of our method (bounded 
by two consecutive vertical dashed lines) contains exactly one annotation. 

 
Table 3: Comparison of Segmentation and Classification Methods using the MITBIH database. 

 
(a) Comparison of Segmentation Methods 

 

Study Method’s Brief Description Multi-lead T + F + F − Se(%) +P (%) 

[12] Wavelet-based QRS detection  109208 153 220 99.80 99.86 

[10] Filter banks’ frequency analysis ../ 90535 406 374 99.59 99.56 

[33] Analytic QRS detection ../ N/A N/A N/A 99.22 99.73 

[34] Analytic QRS detection  N/A N/A N/A 99.80 99.80 

[35] Wavelet-based QRS and T-wave detection ../ 109635 135 184 99.83 99.88 

[36] Curve-length R-peak detection  109342 154 177 99.86 99.84 

[37] Inexpensive nonlinear filter  109494 353 616 99.43 99.67 

[38] Digital filters and signal energy analysis  109357 97 107 99.90 99.91 

Ours (lead A) Real-time length-constrained optimization  100334 187 210 99.81 99.79 

Ours (lead A and B) Real-time length-constrained optimization ../ 100449 113 169 99.89 99.83 

(b) Comparison of Classification Methods 

Study Year Description 
Subject

 
Real-time   VEB (Scheme A)      SVEB (Scheme B)   

Adaptive Mode Se +P Acc Se +P Acc 

[5] 2004 LDA   77.7 81.9 97.4 75.9 38.5 94.6 

[6] 2006 Reinforced LDA ../  94.3 96.2 99.4 87.7 47.0 95.9 

[14] 2012 LDA with expectation clustering ../  93.0 97.0 N/A 92.0 90.0 N/A 

[19] 2014 Resevoir computing  ../ 87.7 100.0 99.8 84.5 24.4 97.4 

[22] 2015 Kalman switching filter ../  97.3 99.9 N/A N/A N/A N/A 

[21] 2017 Regression neural network ../ ../ 88.0 92.6 98.9 85.5 92.2 99.3 

Ours  Reinforced ISVM learning ../ ../ 97.7 99.3 99.8 93.2 88.0 99.3 

 

+ P = 
T

 
 

, (10) our segmentation method can provide multi-lead processing 
T + + F + 

where T +, F −, and F + are the number of correctly segmented 

heartbeats (true positive), actual heartbeats that are not de- 

tected (false positive), and segmented heartbeats that do not 

correspond to any actual heartbeat (false positive) respec- 

tively. The result of our proposed segmentation method and 

the related studies is shown in Table 3(a). As presented there, 

and the result is competitive to the state-of-the-arts. 

 
 

4.3 Classification Performance Assessment 
With regards to the performance assessment of the classi- 

fication stage, the three most important measures are the 

sensitivity (Se), positive predictivity (+P ), and accuracy 

6 
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Table 4: Beat-by-beat Result of Our Method. 

 
 

Non-adaptive Adaptive 
 

 

Classified 
VEB SVEB VEB SVEB 

label 1 −1 1 −1  1 −1 1 −1 

True 1 2766 455 1534 303  3148 73 1712 125 

label     −1 153     46338     732     47143 21 46470     233     47642 
 

Se(%) 85.9 83.5 97.7 93.2 

+P (%) 94.8 67.7 99.3 88.0 

Acc(%) 98.8 97.9 99.8 99.3 

 

(Acc) of ventricular detection (scheme A) and supraventricu- 

lar detection (scheme B), calculated by 

 

Se = 
number of class 1 samples correctly classified 

,   (11) 
number of class 1 samples classified 

 

+ P = 
number of class 1 samples correctly classified 

, (12) 
number of samples classified into class 1 

 

Acc = 
number of samples correctly classified 

, (13) 
number of samples classified 

with the class labeling strategy as shown in Table. 1. The 

measures in Eq.(11), Eq.(12) and Eq.(13) are interpreted in a 

simple way and identical to the same measures used in most 

related studies. The beat-by-beat confusion matrix result and 

the comparison with typical selected researches are presented 

in Table 4 and Table 3(b) respectively. Thanks to ISVM 

fortification there are more 382 VEB beats (from 2766 to 

3148) and 178 SVEB beats (from 1534 to 1712) successfully 

detected. As compared to the previous studies we obtained a 

promising result in all three assessment measures. 

 

5 CONCLUSION 

We consider the ECG segmentation process as a global op- 

timization problem rather than the local detection problem 

of specific heartbeat features. With the proposed dynamic 

programming algorithm written to solve this problem, the 

achievement of the optimal solution is guaranteed. This 

method also offers a wide range of real-time applications 

for other data types alongside ECG. 

With regards to the classification stage, we are able to 

establish the subject-adapting capability by use of the ISVM 

toolbox. As a result significant boosts in sensitivity, predictiv- 

ity and accuracy of ventricular and supraventricular detection 

are obtained. The overall performance assessment when com- 

bining both the proposed segmentation and classification 

methods is highly competitive to the previous studies. 
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[11] P. Laguna, R. Jané, and P. Caminal, “Automatic Detection of 

Wave Boundaries in Multilead ECG Signals: Validation with the 

CSE Database,” Computers and Biomedical Research, vol. 27, 

no. 1, pp. 45–60, 1994. 

[12] J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. La- 

guna, “A Wavelet-Based ECG Delineator: Evaluation on Stan- 

dard Databases,” IEEE Transactions on Biomedical Engineering, 

vol. 51, no. 4, pp. 570–581, 2004. 

[13] M. Llamedo and J. P. Mart́ınez, “Heartbeat Classification Using 

Feature Selection Driven by Database Generalization Criteria,” 

IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, 

pp. 616–625, 2011. 

[14] M. Llamedo and J. P. Martinez, “An Automatic Patient-Adapted 

ECG Heartbeat Classifier Allowing Expert Assistance,” IEEE 
Transactions on Biomedical Engineering, vol. 59, no. 8, pp. 2312– 

2320, 2012. 

[15] C. Ye, B. V. K. V. Kumar, and M. T. Coimbra, “Combining gen- 

eral multi-class and specific two-class classifiers for improved cus- 

tomized ECG heartbeat classification,” in Proceedings of the 21st 
International Conference on Pattern Recognition (ICPR2012), 
pp. 2428–2431, Nov 2012. 

[16] R. Martis, U. R. Acharya, and C. Lim, “ECG beat classification 

using PCA, LDA, ICA and discrete wavelet transform,” Biomed- 
ical Signal Processing and Control, vol. 8, no. 5, pp. 437–448, 

2013. 

 

7 



119  

 

[17]  T. Mar, S. Zaunseder, J. P. Mart́ınez, M. Llamedo, and R. Poll, 

“Optimization of ECG Classification by Means of Feature Selection,” 

IEEE Transactions on Biomedical Engineering, vol. 58, pp. 2168– 

2177, Aug 2011. 

[18] E. D. Ubeyli, “Combining recurrent neural networks with eigen- 

vector methods for classification of ECG beats,” Digital Signal 
Processing, vol. 19, no. 2, pp. 320–329, 2009. 

[19] M. Escalona-Moran, M. Soriano, I. Fischer, and C. R Mirasso, 

“Electrocardiogram Classification Using Reservoir Computing With 

Logistic Regression,” IEEE Journal of Biomedical and Health 
Informatics, vol. 19, no. 3, pp. 892–898, 2014. 

[20] R. Bellman, “On the Approximation of Curves by Line Segments 

Using Dynamic Programming,” Commun. ACM, vol. 4, pp. 284–, 

June 1961. 
[21] P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T. s. Zhou, T. Li, and 

J. s. Li, “High-Performance Personalized  Heartbeat  Classifica- 

tion Model for Long-Term ECG Signal,” IEEE Transactions on 
Biomedical Engineering, vol. 64, no. 1, pp. 78–86, 2017. 

[22]  J. Oster, J. Behar, O. Sayadi, S. Nemati, A. E. W. Johnson, and 

G. D. Clifford, “Semisupervised ECG Ventricular Beat Classifica- 

tion With Novelty Detection Based on Switching Kalman Filters,” 

IEEE Transactions on Biomedical Engineering, vol. 62, no. 9, 

pp. 2125–2134, 2015. 

[23] G. Cauwenberghs and T. Poggio, “Incremental and decremental 

support vector machine learning,” in Proceedings of the 13th 
International Conference on Neural Information Processing 
Systems (NIPS’00), (3008808), pp. 388–394, MIT Press, 2000. 

[24] B. Jackson, J. D. Scargle, D. Barnes, S. Arabhi, A. Alt, P. Giou- 

mousis, E. Gwin, P. Sangtrakulcharoen, L. Tan, and T. T. Tsai, 

“An algorithm for optimal partitioning of data on an interval,” 

IEEE Signal Processing Letters, vol. 12, pp. 105–108, Feb 2005. 

[25] Q. Xue, Y. H. Hu, and W. J. Tompkins, “Neural-network-based 

adaptive matched filtering for QRS detection,” IEEE Transac- 
tions on Biomedical Engineering, vol. 39, no. 4, pp. 317–329, 

1992. 

[26] A. R. Verma and Y. Singh, “Adaptive Tunable Notch Filter for 

ECG Signal Enhancement,” Procedia Computer Science, vol. 57, 

no. Supplement C, pp. 332–337, 2015. 

[27] R. Mark and G. Moody, “MIT-BIH Arrhythmia Database,” 1997. 

[Online].  Available:  http://ecg.mit.edu/dbinfo.html. 

[28] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algo- 

rithm for Optimal Margin Classifiers,” in Proceedings of the 5th 
Annual Workshop on Computational Learning Theory (COLT 

’92) (D. Haussler, ed.), pp. 144–152, ACM Press, New York, NY, 

USA, 1992. 

[29] K. Vo, T. Pham, D. N. Nguyen, H. H. Kha, and E. Dutkiewicz, 

“Subject-Independent ERP-Based Brain-Computer Interfaces,” 

IEEE Transactions on Neural Systems and Rehabilitation En- 
gineering, vol. 26, no. 4, pp. 719–728, 2018. 

[30] K. Vo, D. N. Nguyen, H. H. Kha, and E. Dutkiewicz, “Real-time 

analysis on ensemble SVM scores to reduce P300-Speller intensifi- 

cation time,” in 2017 39th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society (EMBC), 
pp. 4383–4386, 2017. 

[31] K. Vo, D. Nguyen, H. H. Kha, and E. Dutkiewicz, “Subject- 

Independent P300 BCI using Ensemble Classifier, Dynamic Stop- 

ping and Adaptive Learning,” in IEEE Global Communications 
Conference (GLOBECOM), 2017. 

[32] K. Vo, D. Nguyen, H. H. Kha, and E. Dutkiewicz, “Dynamic 

Stopping Using eSVM Scores Analysis for Event-Related Potential 

Brain-Computer Interfaces,” in 11th International Symposium on 
Medical Information and Communication Technology (ISMICT), 
2017. 

[33] J. C. T. B. Moraes, M. M. Freitas, F. N. Vilani, and E. V. Costa, 

“A QRS complex detection algorithm using electrocardiogram 

leads,” in Proceedings of the International Conference on Com- 
puters in Cardiology, pp. 205–208, 2002. 

[34] P. Hamilton, “Open source ECG analysis,” in Proceedings of the 
International Conference on Computers in Cardiology, pp. 101– 

104, 2002. 

[35] M. Bahoura, M. Hassani, and M. Hubin, “DSP implementation 

of wavelet transform for real time ECG wave forms detection 

and heart rate analysis,” Computer Methods and Programs in 
Biomedicine, vol. 52, no. 1, pp. 35–44, 1997. 

[36] J. Lewandowski, H. E. Arochena, R. N. G. Naguib, and K. M. 

Chao, “A simple real-time QRS detection algorithm utilizing 

curve-length concept with combined adaptive threshold for elec- 

trocardiogram signal classification,” in TENCON 2012 IEEE 

Region 10 Conference, pp. 1–6, 2012. 

[37] D. Castells-Rufas and J. Carrabina, “Simple real-time QRS de- 

tector with the MaMeMi filter,” Biomedical Signal Processing 
and Control, vol. 21, no. Supplement C, pp. 137–145, 2015. 

[38] J. Kim and H. Shin, “Simple and Robust Realtime QRS Detection 

Algorithm Based on Spatiotemporal Characteristic of the QRS 

Complex,” PLoS ONE, vol. 11, no. 3, p. e0150144, 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
8 

http://ecg.mit.edu/dbinfo.html

