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Highlights:  

-Prenatal cigarette smoke exposure (SE) affected BDNF & TrkB in the XII of P20 mice. 

-Only PAC1 expression was increased by SE, with no effect on  PACAP. 

-There were no changes in GFAP or IBA-1 expression after SE in the nuclei studied. 

- The XII & NTS were the nuclei predominantly affected in this study. 
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Abstract: 

Cigarette smoke exposure during pregnancy into infancy affects brain growth and 

development in both short and long term (into adulthood). Using a mouse model of pre- into 

post- natal cigarette smoke exposure (SE), we aimed to determine the effects on brain derived 

neurotrophic factor (BDNF) and its receptor TrkB, neuropeptide pituitary adenylate cyclase 

activating polypeptide (PACAP) and its receptor PAC1, and astrocyte (GFAP) and microglia 

(Iba-1) immunohistochemical expression, in seven nuclei of the medulla and the facial (FAC) 

nucleus of the pons. Male pups of dams exposed to two cigarettes (nicotine <1.2mg, CO 

<15mg) twice daily for six weeks prior to mating, during gestation and lactation (n=5; SE), 

were compared to pups exposed to air under the same condition (n=5; SHAM) at postnatal day 

20. Expression changes were only evident for BDNF, TrkB and PAC1 and included decreased 

BDNF in the hypoglossal (XII) nucleus and nucleus of the solitary tract (NTS), increased 

TrkB in XII but decreased TrkB in the FAC, and increased PAC1 in 4 nuclei of the medulla 

including the NTS. These results suggest that the effect of SE on the brainstem are region and 

marker selective, affecting regions of respiratory control (XII and NTS), and restricted to the 

BDNF system and PAC1, with no effect on activation states of astrocytes or microglia.   

 

Keywords: Iba-1, GFAP, nicotine, PAC1, Sudden Infant Death Syndrome (SIDS), TrKB. 

 

Abbreviations:  

BDNF, brain derived neurotrophic factor; Cun, cuneate nucleus; DMNV, dorsal motor nucleus 

of the vagus; FAC, Facial nucleus; GFAP, glial fibrillary acidic protein; Iba-1, ionized 

calcium-binding adaptor molecule 1; IHC, immunohistochemistry; ION, inferior olivary 

nucleus; LRt, Lateral Reticular Nucleus; NSTT, nucleus of the spinal trigeminal tract; NTS, 

nucleus of solitary tract; PACAP, Pituitary Adenylate Cyclase Activating Polypeptide; SIDS, 

sudden infant death syndrome; XII, hypoglossal nucleus 
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1.  Introduction 

Cigarette smoking during pregnancy is associated with a number of adverse prenatal 

conditions such as low birth weight (Bernstein et al, 2005), still birth (Wisborg et al, 2001) 

and preterm delivery (Fantuzzi et al, 2008), as well as postnatal adversities including altered 

brain growth and development (reviewed Chang et al., 2014), and increased physiological 

dysfunction related to the cardiovascular, respiratory, sleep and arousal systems (reviewed by 

Vivekanandarajah et al., 2018), including an incidence of asthma and wheezing (Gilliland et al 

2001), impaired pulmonary function (Di Franza et al, 2004), altered cardiac responses during 

hypoxic conditions (Sovik et al., 2001) and increased risk for Sudden Infant Syndrome (SIDS) 

(Hoffman et al, 1988).  

 

Data from our laboratory suggests that these postnatal adversities are in part, due to abnormal 

regulation of the nicotinic acetylcholine receptors (nAChRs) in brainstem centres, as found in 

infants who died of SIDS with a known history of cigarette smoke exposure (Machaalani et 

al., 2011, Aisha et al., 2019), and in infant mice from mothers exposed to cigarette smoke 

(Vivekanandarajah et al., 2016). In both cohorts, the final cellular outcome was found to be 

increased cell death (apoptosis) (infants: Machaalani et al., 2007, Machaalani and Waters 

2008, mouse model: Vivekanandarajah et al., 2016). Subsequent studies from our laboratory 

to determine the pathways of cigarette smoke exposure induced apoptosis indicated a role of 

abnormal expression of the growth factor, brain derived neurotrophic factor (BDNF) (Tang et 

al., 2012), and of the neuropeptide pituitary adenylate cyclase activating polypeptide 

(PACAP) (Huang et al., 2017a), with both being specific to the hypoglossal nucleus of the 

medulla. 

 

A likely mechanism leading from the activation of the nAChRs to abnormal BDNF and 

PACAP expression, and to the final step of apoptosis of the cell, is neuroinflammation and 

oxidative stress. Astrocytes and microglia, play an important role in neuroinflammation 

(reviewed Liberman et al., 2018). Glial fibrillary acidic protein (GFAP) is a marker used to 

identify activated astrocytes, while ionized calcium-binding adaptor molecule 1 (Iba-1) is used 

to identify activated microglia. To date, no study has looked at the activation of these cell 

types in the brainstem of humans or animal models of pre-into –postnatal cigarette smoke 

exposure on the developing offspring. The only studies available are those using pure nicotine 

administration (pre or post-natally) and investigating the expression in higher cortical brain 

regions in adulthood (Summarized Table 1). 
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Using a mouse model of pre-into postnatal maternal cigarette smoke exposure (SE), this study 

aimed to determine the effects on the expression of BDNF, its tyrosine kinase receptor (TrkB), 

PACAP and its receptor polypeptide type 1 receptor (PAC1), GFAP and Iba-1, in the 

brainstem medulla and facial nucleus of the pons of the male off-spring at postnatal day 20. 

Our hypothesis was that the BDNF and PACAP would be decreased in nuclei of respiratory 

regulation, and this would be associated with an increase in astrocytes (GFAP) and microglia 

(Iba-1).  

2. Methods  

2.1. Maternal cigarette smoke exposure 

The exposure regime was as we have detailed previously (Vivekanandarajah et al.,2016, Chan 

et al., 2016a, b). The protocol was performed according to the Australian National Health & 

Medical Research Council Guide for the Care and Use of Laboratory Animals and was 

approved by the Animal Care and Ethics Committee at the University of Technology Sydney 

(ACEC#2011-313A).  

 

Briefly, virgin Balb/c mice (6 weeks) were obtained from Animal Resources Center (Perth, 

Australia), and housed at 20±2°C being maintained on a 12-h light, 12-h dark cycle (lights on 

at 06:00 h) with ad libitum access to standard laboratory chow and water. The mice were 

randomly assigned to sham (SHAM) or cigarette smoke exposure (SE) groups and had this 

delivered in a perspex chamber of 15L (40 x 27 x 20 cm) at room temperature. The SE group 

were exposed to two standard regular cigarettes (Winfield Red, nicotine < 1.2 mg, CO < 15 

mg, Philip Morris, VIC, Australia) twice daily (10:00h and 15:00h) for six weeks prior to 

mating, during gestation and lactation, and this was delivered for 15 minutes, with a 5-minute 

interval between the two cigarettes. The SHAM mice were placed in a separate identical 

perspex chamber to avoid any contamination and air exposure delivered under the same 

condition. All females were mated with non-cigarette smoke exposed 8 week old male Balb/c 

mice from the same source.  

2.2. Tissue Collection 

At postnatal day 20 (P20; normal weaning age), male offspring were anesthetized with 4% 

isofluorane and then sacrificed by decapitation. We focused on male mice as it has been 

shown that in this model, male offspring are more vulnerable to the impact of maternal SE 
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than females (Chan et al., 2016a). The brain stem with cerebellum intact, was collected and 

fixed with 10% formalin, rinsed in 70% ethanol and processed to paraffin embedding. Tissue 

blocks were sectioned at 4 μm by a rotary microtome (Shandon Finesse 325, Thermo Fisher 

Scientific Inc, Massachusetts, USA), mounted onto silanized slides, dried overnight at 45 °C 

and stored at room temperature in a dust-free environment for immunohistochemical staining.  

2.3. Immunohistochemistry (IHC) 

Sections from all cases were stained within the same experimental run for each respective 

antibody to avoid day-to-day variation. Duplicate staining was performed on 20% of cases to 

verify the reproducibility of results. IHC method is standard for our laboratory and is detailed 

in Tang et al., 2012 and Huang et al., 2017a. The antibodies used are summarized in Table 2. 

 

Briefly, all steps were performed at room temperature unless otherwise noted. Tissue sections 

were deparaffinised to distilled H2O and heat-induced epitope retrieval was applied by 

microwaving on ‘high’ (Homemaker; EM925ENV; 900W) in 10% TRIS-EDTA antigen 

retrieval buffer (1 mM EDTA, 1 mM sodium citrate, 2 mM Tris, pH 9.0) for 14 min. After 

cooling and rinsing with distilled water, sections were washed with phosphate buffered saline 

(PBS), a hydrophobic barrier was drawn surrounding the sections and endogenous hydrogen 

peroxidase quenched in 50% PBS, 50% methanol and 3% H2O2 for 15 min at room 

temperature, followed by two washes in PBS. Sections were blocked by 10% normal horse 

serum (NHS) in PBS for 30 min then incubated with primary antibodies (Table 2) overnight at 

room temperature. Negative controls were incubated with 1% NHS only. After two PBS 

washes on day 2, sections were incubated with biotinylated anti-rabbit secondary 

antibody made in horse (BA-1100, Vector Laboratories Inc., California, USA) for 1 hour and 

then in avidin-biotin complex (ABC) (VEPH4000, Vector Laboratories Inc., California, USA) 

for 1 hour. The sections were color-labelled with 3,3’-diaminobenzidine (DAB) (VESK4100, 

Vector Laboratories Inc., California, USA), followed by counterstaining with Harris’s 

Haematoxylin, dehydration through graded ethanol to xylene, mounted with Di-n-butyl 

Phthalate in Xylene (DPX) and coverslipped.  

 

2.4. Quantitative Analysis 

Nuclei of interest in the caudal medulla and pons were identified and imaged with reference to 

The Mouse Brain Atlas (Fig. 94 & 79-83 respectively; Paxinos & Franklin, 2004). Seven nuclei 

at the caudal medulla [hypoglossal nucleus (XII), dorsal motor nucleus of the vagus (DMNV), 



 

 
 

6 

nucleus of the solitary tract (NTS), cuneate nucleus (Cun), nucleus of the spinal trigeminal tract 

(NSTT), lateral reticular nucleus (LRt), and inferior olivary nucleus (ION)], and the facial 

nucleus (FAC) of the pons were studied.  

 

For BDNF, TrkB, PACAP and PAC1, staining was imaged with a DCF 400 (Leica 

Microsystems Ltd. Heerbrugg, Switzerland) mounted on a Leica DM6000 Nikon Upright at 20x 

magnification and captured using the Leica application suite software (LAS V3.8, Leica 

Microsystems Ltd., Heerbrugg, Switzerland). Quantification was of neurons only since these 

were the predominant cell type stained for these markers (Figure 1). Neurons in each nucleus 

were quantified blinded to the study group, using the cell counter function in ImageJ software 

(National Institutes of Health, USA). Positively and negatively stained neurons in each nucleus 

were counted manually and the percent of positive neurons for each region was calculated. 

Neurons with brown coloured somata were deemed positive, while neurons with lighter staining 

similar to the connective tissue staining colour, or blue due to the haematoxylin counter stain, 

were deemed negative. 

 

For GFAP, staining was imaged at 10x magnification and analysis was of the percentage of 

total area of positive staining in each nucleus via the color, deconvolution, threshold, and 

measure function using ImageJ software. For Iba-1, staining was assessed at 40x 

magnification and was a count of the number of positive cells per region analysed. Values 

were then exported into excel for calculation.  

 

2.5. Statistical Analysis 

The anthropometry results and the immunohistochemistry data are presented as the mean ± 

standard error of the mean (SEM). Statistical analysis was performed using one-way analysis 

of variance (ANOVA) (IBM SPSS Statistics 24 for Windows. IBM Corp., USA) comparing 

offspring from the maternal SE group (n=5) to the SHAM controls (n=5); offspring from the SE 

group were from 4 different litters, while those from the SHAM group were from 2 different 

litters. No adjustment for this was made statistically. A p-value <0.05 was considered 

significant. 
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3. Results 

3.1. Mouse characteristics  

As reported previously (Vivekanandarajah et al., 2016), SE mice had decreased body (9.96 ± 

0.44 vs 11.44 ± 0.28 grams, p = 0.01) and brain (0.27 ± 0.00 vs 0.29 ± 0.00 grams, p= 0.003) 

weight when compared to Sham. These are common features of offspring from smoking 

mothers (reviewed in Abbott and Winzer-Sehan, 2012). Level of smoke exposure was 

determined via serum cotinine which was found to be significantly higher in SE pups (8.93 ± 

0.87 vs 2.52 ± 0.35 ng/mL; p<0.001). This level is within the range reported in human infants 

of smoking mothers (5 to 30ng/ml; Luck and Nau 1985) with levels <5ng/ml indicative of 

background noise (Luck and Nau 1985, Benowitz et al., 2009).   

3.2. BDNF, TrkB, PACAP and PAC1 expression  

All nuclei studied had some expression for all these markers. Based on the SHAM group, 

BDNF and TrkB expression ranged from 20-40% amongst the nuclei while for PACAP and 

PAC1, this ranged from 40-80% (Figure 2).  

 

Comparing SE to SHAM mice, for BDNF, there was a decrease in the XII (p=0.03) and NTS 

(p=0.04), and an increase in the ION (p=0.05) (Figure 2). For TrkB, expression was increased 

in the XII (p=0.02) and decreased in the FAC (p=0.005). For PACAP, no changes were 

evident, whereas for PAC1, expression was increased in the NTS (p=0.009), Cun, NSTT and 

ION (p<0.05) (Figure 2). 

 

3.3. GFAP and Iba-1 expression 

GFAP staining (Figure 1) was seen in all mice and in all nuclei studied and ranged from 0.5-

1.5 percent area of expression (Figure 2). For Iba-1, expression was low and not observed in 

all mice, with 3 SHAM and 2 SE mice showing some expression in the regions studied.  

 

Comparing SE to SHAM mice, there was no difference in expression levels for either GFAP 

or Iba-1 (Figure 2).  
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4. Discussion 

The main findings of this study, which is the first to be conducted in the brainstem at early 

post-natal age, is that pre-into post-natal cigarette smoke exposure only affected BDNF, TrkB 

and PAC1 expression in select nuclei of the brainstem including the XII and NTS, both of 

which play an important role in respiratory control.   

 

4.1. Expression in the normal developing mouse brainstem  

This study is unique in that it is the first to report the protein IHC expression of all these markers 

simultaneously in the mouse brainstem. Regarding BDNF and TrkB expression, the overall 

average levels were 30% in the mouse medulla. This is lower than what we previously found in 

the human infant (averaged 50%; Tang et al., 2010) and young piglet (averaged 60%; Tang et 

al., 2008). The most likely explanation for this is that, at P20, these mice were past the greatest 

developmental brain growth period, which in rats regarding highest BDNF expression in the 

brainstem, occurs at P7-10, while for TrkB occurs at P10-11 (Lui and Wong Riley, 2013).    

 

For PACAP, the average percentage expression in the mouse was 70% which is similar to the 

piglet (Huang et al., 2017b) and lower than the human (90%; Huang et al., 2017a) when 

excluding the NTS as it had very low expression (Huang et al., 2017a,b). For PAC1, the average 

was 40% in the mouse, similar to the 30% average in human (Huang et al., 2017a), and 50% in 

piglets (Huang et al., 2017b). 

 

The higher expression of PACAP/PAC1 compared to BDNF/TrkB found in our mice, consistent 

with human and piglet studies detailed above, suggests that during development, neurons of 

most brainstem medullary nuclei require more PACAP than BDNF for growth and 

development. This is further supported by work in the rat brainstem medulla where the optical 

density for PACAP averaged 0.4 (Lui and Wong Riley 2019), but for BDNF/TrkB it averaged 

0.3 (Lui and Wong Riley 2013), representing a 25% difference.  

 

Baseline levels of GFAP were lowest in the motor nuclei of the XII and FAC of the P20 mice, 

and is similar to the low expression reported in these nuclei in mice aged 8 months (Kadoyama 

et al., 2007). Iba-1 was not seen in most of the mice in this study. For the mice with some Iba-

1, expression, this was low in all the nuclei studied yet was highest in the XII and FAC. 

Similarly, higher Iba-1 than GFAP in these nuclei was reported in mice aged 8 months 

(Kadoyama et al., 2007). Combined, this suggests that the astrocyte population in these nuclei 
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is smaller than the microglia population through to adulthood. 

4.2. Effects of pre- into post-natal SE on expression levels 

We recently reviewed the effects of SE and nicotine on BDNF and TrkB expression and showed 

that all previous studies were of cortical regions, the striatum, or the hippocampus (Machaalani 

and Hui 2018). No other studies have looked at SE on PACAP and PAC1 with the exception of 

our group where we report these within the brainstem of piglets exposed to nicotine postnatally 

(BDNF/TrkB- Tang et al., 2008; PACAP/PAC1 - Huang et al., 2017b) as well as human infants 

exposed to SE (BDNF/TrkB- Tang et al., 2012; PACAP/PAC1 - Huang et al., 2017a). 

 

Our finding that the XII had altered BDNF and TrkB expression in the SE mice, is consistent 

with our finding in human infants (Tang et al., 2012) and piglets exposed to postnatal nicotine 

alone (Tang et al., 2008), albeit the direction of change was the opposite. The combined 

decreased BDNF and increased TrkB in the XII of our mice suggests a coordinated action of 

agonist and receptor, where an increase in TrkB could be the adaptive cellular response to 

lower BDNF, and could be considered as a protective compensatory effect promoting 

neuroprotection by increasing receptor availability.  

 
Finding PAC1 was increased in four nuclei within this study is surprising when considering 

we saw no change in its expression in infants exposed to cigarette smoke (Huang et al., 2017a) 

while in our piglets, nicotine decreased PAC1 in the DMNV only (Huang et al., 2017b). 

Furthermore, it is surprising that the changes were not associated with alteration in PACAP 

given the PAC1 receptor is relatively selective (1000x higher affinity) for PACAP than for 

vasoactive intestinal polypeptide (VIP) (Vaudry et al., 2000). Given the lack of any other 

studies that have looked at cigarette smoke or nicotine effects on PAC1, we can only 

hypothesize that the increase in PAC1 expression in our P20 mice could be via the MAP 

kinase pathway since it regulates PAC1 promoter activity, despite the absence of PACAP 

treatment effect on it (Jamen et al., 2002). This could subsequently lead to the activation of the 

downstream intracellular pathways via Gαs coupling to adenylate cyclase leading to an 

increase in protein kinase A (PKA) (reviewed Dickson and Finlayson, 2009), or the PKC to 

release calcium (reviewed Farnham and Pilowski, 2010).  

 

The combined increase in PAC1 and decrease in BDNF in the NTS, as well as increased 

PAC1 and increased BDNF in the ION are interesting suggesting that any abnormal 

physiologies related to these nuclei in relation to SE exposure, is due to abnormalities in both 
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PAC1 and BDNF. Indeed, a relationship between PAC1 and BDNF has been reported and 

include: 1- decreased BDNF expression (but no change in TrkB) in PAC1 knockout mice 

(Zink et al., 2004), 2- BDNF treatment stimulated PAC1 promotor activity in cultured 

cerebellar cells (Jamen et al., 2002), and 3- a negative correlation between BDNF and PAC1 

expression after antidepressant treatments (Reichenstein et al., 2008). 

 
 
Based on the limited literature available for the effects of maternal SE and nicotine exposure 

on GFAP and Iba-1 expression (summarized table 1), the overall consensus is that prenatal 

cigarette smoke exposure has no real effect on GFAP or Iba-1 expression in the adult rodent 

brain, yet specific postnatal nicotine exposures increase the expression. Our study is consistent 

with the prenatal exposures having no effect (Chang et al., 2013, Zelikoff et al., 2018) and 

indicative that astrocytes and microglia levels are stable in the brainstem of mice at P20 after 

long term SE exposure, and that neuroinflammatory processes are not active. 

 

4.3 Nuclei affected and correlation with apoptosis and nicotine acetylcholine receptors 

(nAChRs) 

The three nuclei that were predominantly affected (that is, had a change in more than one 

marker) by the SE exposure in this study, were the XII, NTS and ION. Combining the data 

with that from our study of apoptotic and nAChR expression in these same mice 

(Vivekanandarajah et al., 2016), the following changes are present in these nuclei: 

1- XII- decreased BDNF, increased TrkB, increased active caspase-3, and an increase in 

the nAChR subunits α3, α4, α7, and α9, 

2- NTS- decreased BDNF, increased PAC1, no change in apoptosis, an increase in the α3 

and α5 but decrease in α4 nAChR subunits, 

3- ION- increased BDNF, increased PAC1, decreased active caspase-3 and TUNEL, no 

change for the nAChR subunits.  

 

Thus, for the XII and NTS, it can be concluded that the effects of maternal SE on BDNF and 

PAC1 are closely related to the interaction with several nAChR subunits. This is consistent 

with findings where PAC1 activated adenylate cyclase- (AC-) and phospholipase-C- (PLC) 

dependent transduction cascades (Margiotta and Pardi, 1995, Pardi and Margiotta, 1999) 

resulting in signaling that regulated both heteromeric nAChRs (containing α3, α5, β4, ± β2 

subunits) and homomeric α7 nAChRs, and mobilized intracellular calcium (Margiotta and 

Pardi, 1995, Pardi and Margiotta, 1999). The increase in cellular calcium influx could 

https://www.sciencedirect.com/science/article/pii/S1044743109002462#bib55
https://www.sciencedirect.com/science/article/pii/S1044743109002462#bib69
https://www.sciencedirect.com/science/article/pii/S1044743109002462#bib55
https://www.sciencedirect.com/science/article/pii/S1044743109002462#bib55
https://www.sciencedirect.com/science/article/pii/S1044743109002462#bib69


 

 
 

11 

subsequently be toxic leading to cell death (apoptosis). These changes would ultimately lead 

to altered physiologies which for the XII would include abnormal regulation of the upper 

airway muscles including the genioglossus (Boone and Aldesm 1984), and for the NTS would 

include abnormal cardiorespiratory control (reviewed Dampney 1994). For the ION, which is 

involved in the coordination of movement and balance (Bengtsson and Hesslow, 2006), the 

alteration in BDNF and PAC1 are independent of the nAChRs which suggests that these are 

due to other (non-nicotine) toxic components of cigarette smoke of which there are over 4800 

(Green and Rodgman 1996).  

 

5. Conclusion 

The results of this study show for the first time that at P20, pre-into post-natal cigarette smoke 

exposure only affected BDNF, TrkB and PAC1 expression in select nuclei of the brainstem in 

mice, including the XII and NTS, both of which play an important role in respiratory control. 

The lack of any change in GFAP and Iba-1 expression suggests neuroinflammatory pathways 

may not have been activated or have reached stable conditions due to the long-term exposure. 

These results provide further evidence of the lasting adverse effects of prenatal cigarette 

smoke exposure on the proteins important for growth and development of the brain especially 

to regions of specific respiratory control. 
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Figure Legends  

Figure 1: Representative images of the immunohistochemical staining for the markers in the 

hypoglossal (XII) and DMNV (A-D) of the same mouse, and Cun (E,F) nucleus. Positive 

staining for the marker is indicated by brown colour. Scale bar represents 100µm for A-D, and 

50µm for E,F. 

 

Figure 2: Comparison of the expression of the markers between SHAM (white bars, n=5) and 

SE (black bars, n=5) mice in 7 nuclei of the caudal medulla and the facial (FAC) nucleus of 

the pons. Results are presented as mean ± SEM. *p<0.05, **p<0.01. 
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Table 1: Summary of studies looking at GFAP and Iba-1 after cigarette or nicotine 
exposure. 

Exposure 
Model 
  

Species, Sex & 
Developmenta

l age 

Brain 
region(s) 

Microglia 
and 

Astrocyte 
marker  

Results Reference
s 

Prenatal exposures     
Prenatal s.c. 
Minipump 
nicotine 

(3.3mg/kg/day
) 

P30 and P60 
male & 

female rats 

cortex, 
hippocampus, 
thalamus and 

cerebellum 

GFAP  ↑ GFAP in CA1 
hippocampus 

and cerebellum 
associated with 

↑ cell death 

Abdel-
Rahman 

2005 

Prenatal s.c. 
osmotic 

Minipump 
nicotine 

(1.5mg/kg/day
) 

P15 male rats hypothalamus 

Iba-1, 
GFAP  

No changes. Chang et 
al., 2013 

Pre-into 
postnatal e-

cigarette (with 
vs without 
nicotine) 

P20 mice (3F, 
3 M) 

Hippocampus
and frontal 

cortex  

Iba-1, 
GFAP 

↑ Iba-1 in CA1 
of non-nicotine 
e-cigarette. No 

change for 
GFAP. 

Zelikoff et 
al., 2017 

Postnatal exposures     

Chronic 
nicotine 

exposure [i.p 
injection of 
1mg/kg, 5 

times a day, 4 
weeks] 

P30 male rats Cerebral 
cortices 

anti-OX-6 
(specific for 

major 
histocompat

ibility 
complex 
class II) 

for 
microglia  

↑ number of 
microglia  

Park et al., 
2007 

(NNK) 
tobacco-
specific 

procarcinogen 
injections for 4 

or 12 days 

6week adult  
male & 

female mice 

Cortex and 
hippocampus 

Iba-1, 
GFAP 

↑ for both Ghosh et 
al., 2009 

4% (v/v, 
smoke/air) 

[smoke=11 mg 
Tar, 0.8 mg 
Nicotine], 

1hr/day for 56 
days 

P35-40 male 
rats 

Cortex. 
Western 
blotting. 

Iba-1, 
GFAP 

No changes Lau et al., 
2012 

Maternal 
osmotic 

minipump 
P180 (adults) hypothalamus 

Iba-1; 
CX3CR1 
(microglia 

↑ for all. 
Younes-

Rapozo et 
al., 2015 
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during 
lactation of 

nicotine 
6mg/kg/day 

receptor); 
GFAP 

10.4mg/kg/day 
nicotine s.c. 

osmotic pump 

Adult male 
rats 

NSTT, 
medullary 
horn spinal 
cord 

Iba-1; 
GFAP ↑ for both. Hawkins et 

al., 2015 

Moderate to 
severe smokers Human adults Whole brain 

[11C]DAA1
106 (a 
ligand for 
TSPO) via 
PET scan 
When 
activated, 
microglia 
increase the 
expression 
of 
translocator 
protein 
(TSPO). 

↓ binding  Brody et 
al., 2017 
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Table 2: Antibodies used for immunohistochemistry. 

Antibody target Company and 

catalogue number 

Species 

raised in 

Dilution used Secondary 

Antibody 

BDNF AB1779, 
Millipore 
Corporation, USA 

rabbit 
polyclonal 

1:1000 1:100  

TrkB AB5372, Chemicon 
International, 
Temecula, 
USA 

rabbit 
polyclonal 

1:1500 1:400 

PACAP sc-25439, Santa Cruz 
Biotechnology, Inc 

rabbit 
polyclonal 

1:300 1:400 

PAC1 sc-30018, Santa Cruz 
Biotechnology, Inc 

rabbit 
polyclonal 

1:200 1:100 

GFAP Z0334, Dako, 
Denmark 

rabbit 
polyclonal 

1:1500 1:400 

Iba-1 019-19741 Wako 
Chemicals USA 

rabbit 
polyclonal 

1:1000 1:400 
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