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Abstract
A variety of machine learning applications expect
to achieve rapid learning from a limited number of
labeled data. However, the success of most current
models is the result of heavy training on big data.
Meta-learning addresses this problem by extracting
common knowledge across different tasks that can
be quickly adapted to new tasks. However, they do
not fully explore weakly-supervised information,
which is usually free or cheap to collect. In this pa-
per, we show that weakly-labeled data can signif-
icantly improve the performance of meta-learning
on few-shot classification. We propose prototype
propagation network (PPN) trained on few-shot
tasks together with data annotated by coarse-label.
Given a category graph of the targeted fine-classes
and some weakly-labeled coarse-classes, PPN
learns an attention mechanism which propagates
the prototype of one class to another on the graph,
so that the K-nearest neighbor (KNN) classifier de-
fined on the propagated prototypes results in high
accuracy across different few-shot tasks. The train-
ing tasks are generated by subgraph sampling, and
the training objective is obtained by accumulating
the level-wise classification loss on the subgraph.
The resulting graph of prototypes can be continu-
ally re-used and updated for new tasks and classes.
We also introduce two practical test/inference set-
tings which differ according to whether the test task
can leverage any weakly-supervised information as
in training. On two benchmarks, PPN significantly
outperforms most recent few-shot learning meth-
ods in different settings, even when they are also
allowed to train on weakly-labeled data.

1 Introduction
Machine learning (ML) has achieved breakthrough success in
a great number of application fields during the past 10 years,
due to more expressive model structures, the availability of
massive training data, and fast upgrading of computational

∗This work has been accepted to IJCAI 2019. Code at: https:
//github.com/liulu112601/Prototype-Propagation-Networks.

Figure 1: Prototypes learned by PPN and transformed to a 2D space
by t-SNE [Maaten and Hinton, 2008]. Each edge connects a child
class to a parent. The prototypes spread out as classes become finer,
preserve the graph structure, and reflect the semantic similarity.

hardware/infrastructure. Nowadays, with the support of
expensive hardware, we can train super-powerful deep neural
networks containing thousands of layers on millions or even
trillions of data within an acceptable time. However, as
AI becomes democratized for personal or small business
use, with concerns about data privacy, demand is rapidly
growing for instant learning of highly customized models
on edge/mobile devices with limited data. This brings new
challenges since the big data and computational power that
major ML techniques rely on are no longer available or
affordable. In such cases, ML systems that can quickly adapt
to new tasks and produce reliable models by only seeing
few-shot training data are highly preferable.

This few-shot learning problem can be addressed by a class
of approaches called “meta-learning”. Instead of indepen-
dently learning each task from scratch, the goal of meta-
learning is to learn the common knowledge shared across
different tasks, or “learning to learn”. The knowledge is
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Figure 2: Weakly-supervised few-shot learning in PPN. The few-shot classes (leaf nodes) in training and test tasks are non-overlapping, but
they are allowed to share some ancestor classes. Weakly-labeled data only has non-leaf class labels. As shown in the left side, finer class
labels are more informative but more expensive to collect, so we assume that the number of weakly-labeled data exponentially reduces as
their labels become finer. PPN is trained on classification tasks with both fine and coarse classes.

at learning/algorithm-level and is task-independent, and thus
can be applied to new unseen tasks. For example, it can
be shared initialization weights [Finn et al., 2017], an op-
timization algorithm [Ravi and Larochelle, 2017], a dis-
tance/similarity metric [Vinyals et al., 2016], or a generator
of prototypes [Snell et al., 2017] that compose the support
set of the K-nearest neighbor (KNN) predictor. Therefore,
new tasks can benefit from the accumulated meta-knowledge
extracted from previous tasks. In contrast to single-task
learning, the “training data” in meta-learning are tasks, i.e.,
tasks from a certain distribution are sampled across all pos-
sible tasks. It then tries to maximize the validation accu-
racy of these sampled tasks. Meta-learning shares ideas
with life-long/continual/progressive learning in that the meta-
knowledge can be re-used and updated for future tasks. It
generalizes multi-task learning [Caruana, 1997] since it can
be applied to any new task drawn from the same distribution.

Although recent studies of meta-learning have shown its
effectiveness on few-shot learning tasks, most do not lever-
age weakly-supervised information, which is usually free or
cheap to collect, and has been proved to be helpful when
training data is insufficient, e.g., in weakly-supervised [Zhou,
2017] and semi-supervised learning [Belkin et al., 2006;
Zhu and Ghahramani, 2002]. In this paper, we show that
weakly-supervised information can significantly improve the
performance of meta-learning on few-shot classification. In
particular, we leverage weakly-labeled data that are annotated
by coarse-class labels (but without any labels of fine-classes
from the targeted few-shot tasks), e.g., an image of a Tractor
with a coarse label of Machine. These data are usually cheap
and easy to collect from web tags or human annotators. We
additionally assume that a category graph describing the rela-
tionship between fine classes and coarse classes is available,
where each node represents a class and each directed edge
connects a fine-class to its parent coarse-class. An example of
a category graph is given in Fig. 2. It is not necessary for the
graph to cover all the possible relationships and graph con-
taining partial relationship is usually easy to obtain, e.g., the
ImageNet category tree built based on synsets from WordNet.

We propose a meta-learning model called prototype
propagation network (PPN) to explore the above weakly-
supervised information for few-shot classification tasks. PPN
produces a prototype per class by propagating the prototype
of each class to its child classes on the category graph, where

an attention mechanism generates the edge weights used for
propagation. The learning goal of PPN is to minimize the
validation errors of a KNN classifier built on the propagated
prototypes for few-shot classification tasks. The prototype
propagation on the graph enables the classification error of
data belonging to any class to be back-propagated to the pro-
totype of another class, if there exists a path between the two
classes. The classification error on weakly-labeled data can
thus be back-propagated to improve the prototypes of other
classes, which later contribute to the prototype of few-shot
classes via prototype propagation. Therefore, the weakly-
labeled data and coarse classes can directly contribute to the
update of prototypes of few-shot fine classes, offsetting the
lack of training data. The resulting graph of prototypes can be
repeatedly used, updated and augmented on new tasks/classes
as an episodic memory. Interestingly, this interplay between
the prototype graph and the quick adaptation to new few-shot
tasks (via KNN) is analogous to the complementary learning
system that reconciles episodic memory with statistical learn-
ing inside the human hippocampus [Schapiro et al., 2017],
which is believed to be critical for rapid learning.

Similar to other meta-learning methods, PPN learns from
the training processes of different few-shot tasks, each
defined on a subset of classes sampled from the category
graph. To fully explore the weakly-labeled data, we develop
a level-wise method to train tasks, generated by subgraph
sampling, for both coarse and fine classes on the graph. In
addition, we introduce two testing/inference settings that
are common in different practical application scenarios: one
(PPN+) is allowed to use weakly-labeled data in testing tasks
and is given the edges connecting test classes to the category
graph, while the other (PPN) cannot access any extra infor-
mation except for the few-shot training data of the new tasks.
In experiments, we extracted two benchmark datasets from
ILSVRC-12 (ImageNet) [Deng et al., 2009], specifically for
weakly-supervised few-shot learning. In different test set-
tings, our method consistently and significantly outperforms
the three most recently proposed few-shot learning models
and their variants, which also trained on weakly-labeled data.
The prototypes learned by PPN is visualized in Fig. 1.

2 Related Works
A great number of meta-learning approaches have been pro-
posed to address the few-shot learning problem. There are



usually two main ideas behind these works: 1) learning
a component of a KNN predictor applied to all the tasks,
e.g., the support set [Snell et al., 2017], the distance met-
ric [Vinyals et al., 2016], or both [Mishra et al., 2018];
2) learning a component of an optimization algorithm used
to train different tasks, e.g., an initialization point [Finn et
al., 2017]. Another straightforward approach is to gener-
ate more training data for few-shot tasks by a data aug-
mentation technique or generative model [Lake et al., 2015;
Wong and Yuille, 2015]. Our method follows the idea of
learning a small support set (prototypes) for KNN, and dif-
fers in that we leverage the weakly-labeled data by relating
prototypes of different classes.

Auxiliary information: unlabeled data [Ren et al., 2018]
and inter/intra-task relationship [Nichol and Schulman, 2018;
Liu et al., 2019; Ravi and Beatson, 2019] have recently been
used to improve the performance of few-shot learning. Co-
training on auxiliary tasks [Oreshkin et al., 2018] has also
been applied to improve the learning of the similarity metric.
In contrast, to the best of our knowledge, we are the first to
utilize the weakly-labeled data as the auxiliary information to
bring significant improvement.

The prototype propagation in our method inherits ideas
from random walk, message passing, belief propagation, and
label propagation. A similar idea has also been used in more
recent graph neural networks (GNN) such as graph attention
networks (GAT) [Veličković et al., 2018]. GNN are mainly
designed for tasks on graph-structured data such as node clas-
sification [Hamilton et al., 2017], graph classification [Lee et
al., 2018], graph embedding [Yu et al., 2018], and graph gen-
eration [Dai et al., 2018]. Although our method uses an at-
tention mechanism similar to GAT for propagation, we have
a different training scheme (Algorithm 1) that only requires
one-step propagation on a specific directed acyclic graph
(DAG). GNN has been applied to meta-learning in [Garcia
and Bruna, 2018], but the associated graph structure is de-
fined on samples (images) instead of classes/prototypes, and
is handcrafted with fully connected edges.

3 Prototype Propagation Networks (PPN)
3.1 Weakly-Supervised Few-Shot Learning
In weakly-supervised few-shot learning, we learn from two
types of data: the few-shot data X annotated by the target
fine-class labels and the weakly-labeled data Xw annotated
by coarse-class labels. Each x ∈ X is associated with a fine-
class label y ∈ Y , while each x ∈ Xw is associated with
a coarse-class label yw ∈ Yw. We assume that there ex-
ists a category graph describing the relationship between fine
classes and coarse classes. This is a directed acyclic graph
(DAG) G = (Y ∪ Yw, E), where each node y ∈ Y ∪ Yw

denotes a class, and each edge (or arc) z → y ∈ E connects a
parent class z to one of its child classes y. An example of the
category graph is given in Fig. 2: the few-shot classes Y are
the leaves of the graph, while the weakly-labeled classes Yw

are the parents 1 or ancestors 2 of the few-shot classes; for

1Parents: directly connected coarse classes.
2Ancestors: coarse classes not connected but linked via paths.

example, the parent class of “Tractor” is “Farm Machine”,
while its ancestors include “Farm Machine” and “Machine”.
A child class can belong to multiple parent classes, e.g., the
class “Organ” has two parent classes, “Wind Instrument” and
“Keyboard Instrument”.

We follow the setting of few-shot learning, which draws
training tasks T ∼ T from a task distribution T and assumes
that the test tasks are also drawn from the same distribution.
For few-shot classification, each task T is defined by a subset
of classes, e.g., an N -way k-shot task refers to classification
over N classes and each class only has k training samples. It
is necessary to sample the training classes and test classes
from two disjoint sets of classes to avoid overlapping. In
our problem, as shown by Fig. 2, the few-shot classes used
for training and test (colored light blue and deep blue re-
spectively) are also non-overlapping, but we allow them to
share some ancestors on the graph. We also allow training
tasks to cover any classes on the graph. Since finer-class la-
bels can provide more information about the targeted few-
shot classes but are more expensive to obtain, we assume that
the amount of weakly-labeled data is reduced exponentially
when the class becomes finer. The training aims to solve the
following risk minimization (or likelihood maximization) of
“learning to learn”:

min
Θ

ET∼T
[
E(x,y)∼DT − log Pr(y|x;w(T ; Θ))

]
, (1)

where each task T is defined by a subset of classes YT ⊆ Y∪
Yw, DT is the distribution of data-label pair (x, y) with y ∈
YT , Pr(y|x;w(T ; Θ)) is the likelihood of (x, y) produced
by model w(T ; Θ) for task T , where Θ is the meta-learner
parameter shared by all the tasks drawn from T .

In our method, Pr(y|x;w(T ; Θ)) is computed by a soft-
version of KNN, wherew(T ; Θ) is the set of nearest neighbor
candidates (i.e., the support set of KNN) for task T , and Θ
defines the mechanism generating the support set. Similar
to prototypical networks [Snell et al., 2017], the support set
w(T ; Θ) is composed of prototypes PYT , {Py ∈ Rd : y ∈
YT }, each of which is associated with a class y ∈ YT . Given
a data point x, we first compute its representation f(x) ∈
Rd, where f(·) is convolutional neural networks (CNN) with
parameter Θcnn, then Pr(y|x;w(T ; Θ)) = Pr(y|x;PYT ) is
computed as

Pr(y|x;PYT ) ,
exp(−‖f(x)− Py)‖2)∑

z∈YT exp(−‖f(x)− Pz)‖2)
, (2)

In the following, we will introduce prototype propagation
which generates PYT for any task T ∼ T .

3.2 Prototype Propagation
In PPN, each training task T is a level-wise classification on
a sampled subgraph Gi ⊆ G, i.e., a classification task over
YT = YG

j
i , where Gji denotes the level-j of subgraph Gi and

YG
j
i is the set of all the classes on Gji .
The prototype propagation is defined on each subgraph Gi,

which covers classes YGi . Given the associated training data
X y for class y ∈ YGi , the prototype of class y is initialized by



averaging the representations f(x) of samples x ∈ X y , i.e.,

P 0
y ,

1

|X y|
∑

x∈Xy

f(x). (3)

For each parent class z of class y on Gi, we propagate P 0
z to

class y with edge weight a(P 0
y ,P

0
z ) measuring the similarity

between class y and z, and aggregate the propagation (the
messages) from all the parent classes by

P+
y ,

∑
z∈PGi

y

a(P 0
y ,P

0
z )× P 0

z , (4)

where PGiy denotes the set of all parent classes of y on
subgraph Gi, and the edge weight a(P 0

y ,P
0
z ) is a learnable

similarity metric defined by dot-product attention [Vaswani
et al., 2017], i.e.,

a(p, q) ,
〈g(p), h(q)〉

‖g(p)‖ × ‖h(q)‖
, (5)

where g(·) and h(·) are learnable transformations applied to
prototypes with parameters Θatt, e.g., linear transformations
g(p) = Wgp and h(q) = Whq.

The prototype after propagation is a weighted average of
P 0

y and P+
y with weight λ ∈ [0, 1], i.e.,

Py , λ× P 0
y + (1− λ)× P+

y . (6)

For each classification task T on subgraph Gi, Py is used
in Eq. (2) to produce the likelihood probability. The likeli-
hood maximization in Eq. (1) aims to optimize the parame-
ters Θcnn from f(·) and Θatt from the attention mechanism
across all the training tasks.

3.3 Level-wise Training of PPN on Subgraphs
The goal of meta-training is to learn a parameterized prop-
agation mechanism defined by Eq. (3)-Eq. (6) on few-shot
tasks. In each iteration, we randomly sample a subset of few-
shot classes, which together with all their ancestor classes and
edges on G form a subgraph Gi. A training task T is drawn
from each level Gji ∼ Gi as the classification over classes
YT = YG

j
i . The meta-learning in Eq. (1) is approximated by

min
Θcnn,Θatt

∑
Gi∼G

∑
Gj
i∼Gi

∑
(x,y)∼DGj

i

− log Pr(y|x;P
YGj

i
), (7)

where DG
j
i is the data distribution of data-label pair (x, y)

from classes YG
j
i . Since the prototype propagation is defined

on the whole subgraph, it generates a computational graph
relating each class to all of its ancestor classes. Hence, dur-
ing training, the classification error on each class is back-
propagated to the prototypes of its ancestor classes, which
will be updated to improve the validation accuracy of finer
classes and propagated to generate the prototypes of the few-
shot classes later. Therefore, the weakly-labeled data of a
coarse class will contribute to the few-shot learning tasks on
the leaf-node classes.

The complete level-wise training procedure of PPN is
given in Algorithm 1, each of whose iterations comprises

Algorithm 1 Level-wise Training of PPN

Input: few-shot data X with labels from Y ,
weakly-labeled data Xw with labels from Yw,
category graph G = (Y ∪ Yw, E),
learning rate scheduler for SGD, λ, m;

1: Initialize: randomly initialize P , Θcnn, Θatt, τ ← 0;
2: while not converge do
3: if τ mod m = 0 then
4: for class y ∈ Y ∪ Yw do
5: Lazily update P 0

y by Eq. (3) and save it in buffer;
6: end for
7: end if
8: Sample a subgraph Gi ∼ G;
9: for class y ∈ YGi do

10: Get P 0
y from buffer, and propagation by Eq. (4)-(6);

11: end for
12: initialize loss L← 0;
13: for level-j Gji ∼ Gi do
14: L← L+

∑
(x,y)∼DGj

i

− log Pr(y|x;P
YGj

i
) by Eq. (2);

15: end for
16: Mini-batch SGD to minimize L, update Θcnn, Θatt;
17: τ ← τ + 1;
18: end while

two main stages: prototype propagation (lines 9-11) which
builds a computational graph over prototypes of the classes
on a sampled subgraph Gi, and level-wise training (lines 12-
16) which updates the parameters Θcnn and Θatt on per-level
classification tasks. In the prototype propagation stage, each
class’s prototype will be merged with the information from
the prototypes of its ancestor classes, and the classification
error of using the merged prototypes will be backpropagated
to update the ancestor prototypes during the level-wise train-
ing stage. To improve computational efficiency, we do not
update P 0

y for every propagation. Instead, we lazily update
P 0

y for all classes y ∈ Y ∪ Yw every m epochs, as shown in
lines 3-7.

3.4 Meta-Test: Apply PPN to New Tasks
We study two test settings for weakly-supervised few-shot
learning, both of which will be used in the evaluation of PPN
in our experiments. They differ in whether or not the weakly-
supervised information, i.e., the weakly-labeled data and the
connections of new classes to the category graph, is still ac-
cessible in the test tasks. The first setting (PPN+) is allowed
to access this information within test tasks while the second
setting (PPN) is unable to access the information. The sec-
ond setting is more challenging but is preferred in a variety
of applications, for example, where the test tasks happen on
different devices, whereas the first setting is more appropriate
for life-long/continual learning on a single machine.

In the second setting, we can still leverage the prototypes
achieved in the training phase and use them for the propaga-
tion of prototypes for test classes. In particular, for an unseen
test class y (and its associated samples X y), we find the K-
nearest neighbors of P 0

y among all the prototypes achieved



Table 1: Statistics of WS-ImageNet-Pure and WS-ImageNet-Mix for weakly-supervised few-shot learning, where #classes and #img denote
the number of classes and images respectively. Their classes are extracted from levels 3-7 of ImageNet WordNet hierarchy.

WS-ImageNet-Pure WS-ImageNet-Mix

level training testing #img training testing #img#classes #img #classes #img #classes #img #classes #img
3 7 15140 1 3680 18820 7 92785 4 42882 135667
4 13 10093 6 2662 12755 13 76889 7 24592 101481
5 25 6904 9 1834 8738 23 50348 12 13462 63810
6 44 4350 18 1155 5505 42 22276 18 5849 28125
7 71 2538 18 646 3184 71 7546 18 1919 9465
all 160 39025 52 9977 49002 156 249844 59 88704 338548

during training, and treat the training classes associated with
the K-nearest neighbor prototypes as the parents of y on G.

In both settings, for each class y in a test task T , we
apply the prototype propagation in Eq. (3)-(6) on a subgraph
composed of y and its parents PGy . This produces the final
prototype Py , which will be used in KNN classification on
task T as a candidate of nearest neighbor within PYT . In
the first setting (PPN+), when a parent class y′ ∈ PGy is
among the training classes, we use the buffered prototype
P 0

y′ from training for propagation; otherwise, we use Eq. (3)
to compute P 0

y′ over all weakly-labeled samples belonging
to class y′. In the second setting (PPN), since all the parents
of y have to be training classes, we directly use their buffered
prototypes from training for propagation.

4 Experiments
We compare PPN/PPN+ to three baseline methods, i.e., Pro-
totypical Networks, GNN and Closer Look [Chen et al.,
2019], and their variants of using the same weakly-labeled
data as PPN/PPN+. For their variants, we apply the same
level-wise training on the same weakly-labeled data as in
PPN/PPN+ to the original implementations, i.e., we replace
the original training tasks with level-wise training tasks. We
always tune the initial learning rate, the schedule of learning
rate, and other hyperparameters of all the baselines and their
variants on a validation set of tasks. The results are reported
in Table 2 and Table 3, where the variants of baselines are
marked by “*” following the baseline name.

In PPN/PPN+ and all the baseline methods (as well
as their variants), we use the same backbone CNN (i.e.,
f(·; θcnn)) that has been used in most previous few-shot
learning works [Snell et al., 2017; Finn et al., 2017; Vinyals
et al., 2016]. It has 4 convolutional layers, each with 64
filters of 3 × 3 convolution, followed by batch normaliza-
tion [Ioffe and Szegedy, 2015], ReLU nonlinearity, and 2 ×
2 max-pooling. The transformation g(·) and h(·) in the atten-
tion module are fully connected linear layers.

In PPN/PPN+, the variance of P 0
y increases when the num-

ber of samples (i.e., the “shot”) per class reduces. Hence, we
set λ = 0 in Eq. (6) for N -way 1-shot classifications, and
λ = 0.5 for N -way 5-shot classification. During training,
we lazily update P 0

y for all the classes on the graph G every
m = 5 epochs and choose the nearest K = 3 neighbours as
parents among all prototypes gained after training for PPN.
ADAM [Kingma and Ba, 2015] is used to train the model for
150k iterations, with an initial learning rate of 10−3, a weight

decay of 10−4, and a momentum of 0.9. We reduce the learn-
ing rate by a factor of 0.7× every 15k iterations starting from
the 10k-th iterations.

4.1 WS-ImageNet-Pure
WS-ImageNet-Pure is a subset of ILSVRC-12. On the Im-
ageNet WordNet Hierarchy, we extract 80% classes from
level-7 as leaf nodes of the category graph G and use them as
the targeted classes Y in few-shot tasks. The ancestor nodes
of these classes on G are then sampled from level-6 to level-3,
which compose weakly-labeled classes Yw. We sub-sample
the data points for classes on G in a bottom-up manner: for
any level-7 (bottom) level class y, we directly sample a subset
from all the images belonging to y in ImageNet; for any class
y on lower level-j with j < 7, we sample from all the images
that belong to y and have not been sampled into its descen-
dant classes. Hence, we know that any data point sampled
into class y belongs to all the ancestor classes of y but we do
not know its labels on any targeted class of y. In addition, we
sample each candidate data point for any class on level j with
probability 0.6j . Hence, the number of data points associated
with each class thus reduces exponentially when the level of
the class increases. This is consistent with many practical sce-
narios, i.e., samples with finer-class labels can provide more
information about targeted few-shot tasks, but they are much
more expensive to obtain and usually insufficient.

For training-test splitting of few-shot classes3, we divide
the classes from level-7 into two disjoint subsets with ratio
4:1 (4 for training and 1 for test). This ensures that any class
in any test task has never been learned in training tasks. How-
ever, we allow training classes and test classes to share some
ancestor classes. The detailed statistics of WS-ImageNet-
Pure are given in Table 2.

The experimental results of PPN/PPN+ and all the base-
lines (and their weakly-supervised variants ending with “*”)
on WS-ImageNet-Pure are shown in Table 2. PPN/PPN+ out-
perform all other methods. The table shows that PPN/PPN+
are more advantageous in 1-shot tasks, and that PPN+
achieves ∼ 15% improvement compared to other methods.
This implies that the weakly-supervised information can be
more helpful when supervised data is highly insufficient, and
our method is able to significantly boost performance by ex-
ploring the weakly-labeled data. Although all the weakly-
supervised variants of baselines are trained on the same data

3Each training task is classification defined on a randomly sam-
pled subset of training classes, while each test task is classification
defined on a randomly sampled subset of test classes.



Table 2: Validation accuracy (mean±CI%95) on 600 test tasks of PPN/PPN+ and baselines on WS-ImageNet-Pure.

Model Weakly-Supervised 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net [Snell et al., 2017] N 33.17±1.65% 46.76±0.98% 20.48±0.99% 31.49±0.57%
GNN [Garcia and Bruna, 2018] N 30.83±0.66% 41.33±0.62% 20.33±0.60% 22.50±0.62%
Closer Look [Chen et al., 2019] N 32.27±1.58% 46.02±0.74% 22.78±0.94% 28.04±0.36%

Prototypical Network* Y 32.13±1.48% 44.41±0.93% 20.07±0.93% 30.87±0.56%
GNN* Y 32.33±0.52% 45.67±0.87% 22.50±0.67% 32.67±0.37%
Closer Look* Y 32.63±1.55% 43.76±0.93% 20.03±0.83% 30.67±0.36%

PPN (Ours) Y 37.37±1.64% 50.31±1.00% 24.17±1.00% 36.21±0.57%
PPN+(Ours) Y 48.00±1.70% 52.36±1.02% 35.75±1.13% 38.18±0.63%

Table 3: Validation accuracy (mean±CI%95) on 600 test tasks of PPN/PPN+ and baselines on WS-ImageNet-Mix.

Model Weakly-Supervised 5way1shot 5way5shot 10way1shot 10way5shot
Prototypical Net [Snell et al., 2017] N 31.93±1.62% 49.80±0.90% 21.02±0.97% 36.42±0.62%
GNN [Garcia and Bruna, 2018] N 33.60±0.11% 45.87±0.12% 22.00±0.89% 34.33±0.75%
Closer Look [Chen et al., 2019] N 33.10±1.57% 40.67±0.73% 20.85±0.92% 35.19±0.43%

Protytypical Net* Y 31.80±1.48% 49.03±0.93% 20.33±0.98% 34.79±0.58%
GNN* Y 30.33±0.80% 47.33±0.28% 23.33±1.03% 31.33±0.80%
Closer Look* Y 31.13±1.51% 44.90±0.78% 20.25±0.87% 34.01±0.40%

PPN (Ours) Y 36.23±1.69% 52.38±0.92% 23.30±1.06% 38.20±0.55%
PPN+(Ours) Y 41.60±1.67% 53.95±0.96% 29.87±1.08% 39.17±0.58%

as PPN/PPN+, they do not achieve similar improvement be-
cause their model structures do not have such mechanisms
as the prototype propagation in PPN which relates different
classes and tasks. In addition, training on unrelated tasks can
be distracting and even detrimental to performance. In con-
trast, PPN/PPN+ build a computational graph of prototypes
associated with both coarse and fine classes, and the error on
any class can be used to update the prototypes of other classes
via backpropagation on the computational graph.

4.2 WS-ImageNet-Mix
To verify if PPN can still learn from weakly-labeled data that
belong to other fine classes not involved in the few-shot tasks,
we propose another subset of ILSVRC-12, WS-ImageNet-
Mix, whose detailed statistics are given in Table 1. We extract
WS-ImageNet-Mix by following the same procedure as ex-
tracting WS-ImageNet-Pure except that: 1) data points sam-
pled for a coarse (non-leaf) class can belong to the remaining
∼ 20% level-7 classes outside of the ∼ 80% level-7 classes
used for generating few-shot tasks; and 2) for any class on
level-j, we sample each data point with probability 0.7j in-
stead of 0.6j .

The experimental results are reported in Table 3, which
shows that PPN/PPN+ still outperform all other methods, and
PPN+ outperforms them by ∼ 10% for 1-shot classification.
This indicates that PPN/PPN+ is robust to (and might be
able to leverage) weakly-labeled data unrelated to the final
few-shot tasks.

4.3 Effects of Prototype Propagation
To study whether and how the propagation in Eq. (4) im-
proves few-shot learning, we evaluate PPN using different
λ in Eq. (6). Specifically, we try different weights 1 − λ
(x-axis in Fig. 3) for P+

y in Eq. (6) between [0, 0.9], and

report the validation accuracy (y-axis in Fig. 3) on test tasks
for Nway1shot tasks and the two datasets. In all scenarios,
increasing the weight of P+

y in the given range consistently
improves the accuracy (although the accuracy might drop if
the weight gets too close to 1 though), which demonstrates
the effectiveness of prototype propagation.

p+
y

Figure 3: Validation accuracy averaged over 600 Nway1shot test
tasks improves when the weight of P+

y i.e., 1 − λ in Eq. (6)
increases, which implies the effectiveness of prototype propagation.
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