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Abstract—Electronic health records contain a wealth of in-
formation on a patients healthcare over many visits, such
as diagnoses, treatments, drugs administered, and so on. The
untapped potential of these data in healthcare analytics is vast.
However, given that much of medical information is a cause and
effect science, new embedding methods are required to ensure
the learning representations reflect the comprehensive interplays
between medical concepts and their relationships over time.
Unlike one-hot encoding, a distributed representation should
preserve these complex interactions as high-quality inputs for
machine learning-based healthcare analytics tasks. Therefore,
we propose a novel attentive dual embedding method called
MC2Vec. MC2Vec captures the proximity relationships between
medical concepts through a two-step optimization framework
that recursively refines the embedding for superior output. The
framework comprises a Skip-gram model to generate the initial
embedding and an attentive CBOW model to fine-tune the
embedding with temporal information gleaned from sequences of
patient visits. Experiments with two public datasets demonstrate
that MC2Vecs produces embeddings of higher quality than five
state-of-the-art methods.

Index Terms—medical concept embedding, attention mecha-
nism, med2Vec, dual embedding

I. INTRODUCTION

Today, most healthcare information systems store their data
as electronic healthcare records (EHRs). Each EHR is a
sequential record of a patients healthcare visits, where each
visit is logged as a set of medical entities and concepts [2].
To ensure there is no ambiguity about what the data means, the
medical concepts are recorded as codes following a set of stan-
dardized coding systems. There are codes, and coding systems,
for diagnoses, medical procedures, drugs administered, and so
on. Developed by medical experts, these coding systems are
based on straightforward tree hierarchies that reflect the basic
taxonomy of our current medical knowledge. Tree structures
are easy for humans to understand and maintain, while they
are good at representing simplistic vertical relationships, they
are not good at representing the intricate complexities of hor-
izontal and time-aware relationships. In EHRs, many medical
concepts co-occur creating a much richer picture than a simple
tree-based hierarchy can possibly illustrate. As such, there is
a wealth of knowledge locked within these codes that, when
revealed by healthcare analytics, can be put to purpose for
example, for diagnoses prediction [1], [22], [25], predicting
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Fig. 1. An example segment of one patient’s healthcare journey

inpatient mortality [9], or the expected length of a hospital
stay after admission [9].

The multi-level structure of an EHR comprises three layers:
the patient, the visits associated with that patient, and the med-
ical concepts associated with that visit. A patients healthcare
journey, namely a patient journey, is a sequence of visits each
occurring at a different time stamp. Fig. 1 shows an example
segment of one patients journey from an EHR [5], [25]. The
medical concept codes here are codes from the International
Classification of Diseases (ICD).

Natural language processing (NLP) uses a similar multi-
level structure with its document, sentence, and word struc-
tures, i.e., a document comprises a sequence of sentences,
and each sentence is a bag of words. These parallels mean
healthcare analytics may be able to borrow some of NLPs
useful tools. However, there are some differences between the
two domains.
• The visits in a patient journey are sequential but inter-

mittent, while the sentences in a document are simply
sequential.

• In the bag of medical concepts, one code is dominant,
called the principle. All the other codes are considered to
be of equal importance with no sequential relationships
between them. Whereas, the words in a sentence have
a sequential relationship, and all are treated as being
equally important.

• Each medical code in a bag is unique, while a sentence
may include repeated words.



Hence, drawing out the semantic information in EHRs for
analytics and applications requires an embedding method.
One-hot encoding a medical concept will generate a sparse
high-dimensional vector, so a more straightforward solution
is to use word embedding to create representations of the
medical concepts for learning [7], [12], [14], [15]. These
approaches have been shown to improve performance in a
range of healthcare applications [16], [17], [19], [20], [22].
Extending this idea, Choi et al. and Edward et al. [1],
[31] proposed multi-level representation learning to embed
the visits and medical concepts simultaneously by using the
sequential order of visits and the co-occurrence of medical
concepts. Cai et al. [5] proposed a CBOW-based embedding
method for medical concepts, enhanced with an attention
mechanism that captures temporal information about the visits.
The basic idea of their approach is to split the sequence of a
patients visits into a number of discrete time units. Then, an
attention mechanism captures both the sequence information
and the time-aware information. These methods have merit.
However, the time units are divided into fixed sizes, which
is impractical because different diagnoses or treatments might
have a different awareness of time. Moreover, the length of the
time units is sensitive – a long unit might cause information
loss by placing several visits into one time unit; a short unit
may drastically increase dimensionality, causing an explosion
in the attention mechanism. A better method is needed.

Our solution is to embed a medical concept into a vector
with a novel attentive dual embedding technique, which fully
leverages the information in multi-level EHRs. This dual em-
bedding model, called MC2Vec (medical concept to vector),
is controlled by a novel loss function designed to satisfy
three objectives: 1) the target medical concept can accurately
predict the context of the concept, i.e., one-to-N embedding;
2) the context surrounding the medical concept can accurately
predict the target concept, i.e., N-to-one embedding; and 3)
the attention mechanism can accurately attend the temporal
sequence information. Then, the optimal solution, i.e., the
embedding result, is discovered through a two-step optimiza-
tion procedure. First, the medical concept is converted into
a representation using one-hot encoding. Skip-gram is then
used to embed the medical concept by taking that concept and
using it to predict the surrounding context. These embedding
results are generated as a one-to-N embedding. This one-to-
N embedding forms a representation of the medical concept,
which is used to train an attentive CBOW model that fine-
tunes the embedding into an N-to-one embedding. These two
steps are conducted recursively until the optimal embedding
is produced.

A summary of this papers contributions to medical concept
embedding include:
• a novel dual embedding method that fully leverages

the information in EHRs with a new loss function that
optimizes the workflow between two embedding models;

• an attentive CBOW method that captures temporal infor-
mation in a flexible way and with less information loss
due to its attention to time intervals; and

• a practice-driven method of embedding medical concepts
that achieves start-of-the-art performance with two public
datasets.

The rest of this paper is organized as follows. In Section
II, we briefly discuss some related work. Then, the details
of our method are presented in Section III. In Section IV,
we demonstrate the results of experiments conducted on
real-world public datasets. Lastly, we conclude our study in
Section V along with our intentions for future work.

II. RELATED WORK

A. Word Embedding

Although word embedding was first introduced by Rumel-
hart et al. [4] in 1986, distributed representation learning of
words with neural networks has only become a hot research
topic since 2003 [3], [7], [12]–[15]. CBOW and the Skip-gram
model [12], [13] are among two of the model families, that
were introduced to compute continuous vector representations
of words from very large data sets. Each is based on the
assumption that the order of words or a words context do not
influence the projection of the target word. However, recently,
some scholars have begun to discover that sequence and
context do matter. For example, Melamud et al. [21] explored
the impact of context with the Skip-gram model, finding that
weighting for context can improve performance with extrinsic
tasks. Similarly, Liu et al. [23] show that conditioning a target
word on a subset of contexts improves both the quality of
the embedding and the predictions. Ling et al. [18] extended
CBOW by incorporating an attention model that considers
contextual words and their positions relative to the predicted
word, which results in better representations. Each of these
advancements has proven effective in the field of NLP but,
as discussed in Section I, the differences between documents
and patient journeys means these embedding models cannot
be directly applied to medical concepts in EHRs without
information loss or reduced performance.

B. Medical Concept Embedding

Borrowing ideas from word representation models [12],
[13], researchers in the healthcare domain have recently ex-
plored the possibility of creating representations of medical
concepts. Much of this research has focused on the Skip-
gram model. For example, Minarro-Gimnez et al. [16] directly
applied Skip-gram to learn representations of medical text, and
Vine et al. [17] did the same for UMLS medical concepts. Choi
et al. [20] went a step further and used the Skip-gram model to
learn medical concept embeddings from different data sources,
including medical journals, medical claims, and clinical nar-
ratives. In other work [1], Choi et al. developed the Med2Vec
model based on Skip-gram to learn concept-level and visit-
level representations simultaneously. The shortcoming of all
these models is that they view EHRs as documents in the
NLP sense, which means temporal information is ignored.

Attention mechanisms are a more recent introduction to
healthcare analytics [8]. Choi et al. [22] proposed a graph-
based attention model that learns representations of medical



concepts from medical ontologies. Rajkomar et al. [9] applied
an attention-based time-aware neural network model to predict
patient outcomes, and Cai et al. [5] proposed MCE (Medical
Concept Embedding) as a way to integrate time information
into an attention model to embed medical concepts. Our work
departs from Cai et al. [5] in that MC2Vec attends the time
intervals between visits, and the context window is not based
on time units but rather on temporal windows.

III. THE PROPOSED MODEL

This section starts by introducing some definitions of medi-
cal concepts and the related notations. Then, we briefly intro-
duce the basic units of medical concept embedding. The final
subsection describes the proposed attentive dual embedding
method.

A. Preliminaries

Definition 1 (Medical Concept): A medical concept is
defined as a term or code to describe a diagnosis, procedure,
medication, laboratory test, etc. for an inpatient during a
treatment process. A set of medical concepts is denoted as
C = {c1, c2, ..., cN}, where N is the number of medical
concepts in the dataset.

Definition 2 (Visit): A visit by an inpatient refers to
the treatment process from admission to discharge, includ-
ing an admission time stamp. A visit is denoted as Vt =
{ct,1, ct,2, ..., ct,K}, where ct,i ∈ C, i = 1, ...,K, K is the
nunber of medical concepts in the visit and t is admission
time.

Definition 3 (Patient Journey): A patient journey consists of
a sequence of visits over time, denoted as J = {Vt1 , Vt2 , ...,
VtM }, where M is the total number of visits by a patient .

Definition 4 (Temporal Interval): Temporal interval refers to
time difference between two visits in a patient journey, defined
as 4 = |ti − tj |, where i, j = 1, ...,M .

Definition 5 (Task): Given a set of Patient Journey Js, the
task is to learn an embedding function fC : C −→ Rd that maps
every code in the set of medical concepts C to a real-valued
dense vector of dimension d.

B. Basic Units of Medical Concept Embedding

The most straightforward embedding method is to adapt a
classic embedding model [12], [13], such as CBOW or Skip-
gram, to tackle medical concept embedding tasks. The basic
idea is to generate training samples from EHRs by selecting
one medical concept as the target vector and its co-occurring
or correlated medical concepts as the context. In the medical
concept version of CBOW, the representations are learned by
constructing a neural network classification model that uses a
context vector comprising multiple medical concepts to predict
the target word. This is also known as N-to-one embedding.
In Skip-gram, rather than predicting the target word based on
the context, each target vector is used as an input to predict a
context vector. This is known as one-to-N embedding.

Given EHRs’s multi-level structure, we have elected to
extract training samples using medical concepts that co-occur

in a sequence of visits. Each visit Vt is a bag of medical
concepts {c1, c2, ...}. Each ci in the bag is transformed into a
target vector, and its context vector H = {ck, cl, cm, cn, ...} is
constructed by randomly sampling medical concepts from this
bag. Sometimes, the first concept in the bag will be allocated a
higher probability of being sampled because, traditionally, the
first concept is the principle code, i.e., the disease, procedure,
drug, etc. that dominated the visit. At other times, a sliding
window might be used to sample related medical concepts
based on the assumption that medical doctors commonly
annotate highly correlated concepts together. Which alternative
is chosen is based on an empirical analysis of the dataset.
For simplicity, we have chosen to outline the sliding window
method in our description of the model.

1) CBOW-based medical concept embedding: The objec-
tive of CBOW is to maximize the average log probability of
the occurrence of a target vector c given a context vector H .
For a given visit, the objective function can be defined as a
maximal likelihood estimation:

max
1

T − 2k

T−k∑
t=k

log p(ct|Ht), (1)

where T is the total number of medical concepts in the given
visit, k is the size of slide window, and Ht is the context vector
comprising the medical concepts sampled from the sliding
window.

2) Skip-gram-based medical concept embedding: The ob-
jective of the Skip-gram model is to maximize the average log
probability of predicting a context vector using a target vector.
This objective function is defined as

max
1

T

T∑
t=1

K∑
j=1

log p(c′j |ct), (2)

where K is the total number of medical concepts in the context
vector, and c′j is a medical concept in the context vector.

The probability p(ct|Ht) in Equation 1 and p(c′t|ct) in
Equation 2 can be defined as a generalized softmax function,
regardless of whether the CBOW-based N-to-one embedding
or the Skip-gram-based one-to-N embedding is used. The
general definition is: use an input vector cI to predict cO.
The probability of prediction is:

p(cO|cI) =
exp{v′cO

T
vcI}∑|C|

c=1 exp{v
′
c
T
vcI}

, (3)

where vc and v
′

c are the “input” and “output” vector represen-
tations of c, and |C| is size of the medical concept vocabulary.
For CBOW, vcI = (1/2k) ∗

∑
cj∈Ht

vcj .
3) Negative Sampling: The formulation of 3 is impractical

for computation because the cost of computing5 log p(cO|cI)
is proportional to |C|, which is often large. To reduce the
computational complexity, the Word2Vec model uses negative
sampling to replace every log p(cO|cI) term in CBOW and
Skip-gram objectives. Rather, the objective is to maximize
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J = log σ(v
′

cO

T
vcI ) +

r∑
i=1

Eci∼P (c)[log σ(−v
′

ci

T
vcI )], (4)

where σ is a Sigmoid function, r is the number of negative
samples, and P (c) is the noise distribution [12].

C. Attentive Dual Embedding Approach

One of the unique elements that separate standard docu-
ments from patient journeys is that medical concepts have
temporal relationships, whereas words do not. This temporal
information is important for the embeddings. Therefore, we
propose an attentive dual embedding method that comprises
one-to-N and N-to-one embeddings so as to capture multiple
views of the comprehensive semantic relationships in an EHR
as well as the temporal information.

1) Architecture: MC2Vec has three parts: a) a patient jour-
ney with time stamps; b) the medical concept concatenation;
and c) the attentive dual embedding. The architecture of the
framework is illustrated in Fig. 2.

a) Patient journey with time stamps: The patient journey
is split into M visits, i.e. Vt = {ct,1, ..., ct,j , ..., ct,Kt}, where
t is the tine if patient visit, and each medical concept c is
associated with a time stamp t.

b) Medical concept concatenation: To generate a
context and target concept for MC2Vec, the visits in
the patient journey are concatenated according to their
temporal sequence into a vector of medical concepts
with time stamp. For example, suppose a patient has
three visits, V1 = {ct1,1, ..., ct1,j , ..., ct1,Kt1

},V2 =
{ct2,1, ..., ct2,j , ..., ct2,Kt2

},V3 = {ct3,1, ..., ct3,j , ..., ct3,Kt3
}.

The concatenated vector would be Jvec = {ct1,1, ..., ct1,j , ...,
ct1,Kt1

, ct2,1, ..., ct2,j , ..., ct2,Kt2
, ct3,1, ..., ct3,j , ..., ct3,Kt3

}.

c) Dual embedding for medical concepts: Given Jvec, a
temporal window size of l, and target concept ct, we first
leverage Skip-gram with a temporal window to learn the
embedding parameters E of the medical concepts over the
context as one-to-N embedding. Then we use a one-to-N
embedding of E and temporal attention to learn the medical
concept representations in the same window with an attentive
CBOW model. The embedding produced is N-to-one. One-to-
N works like an expectation step in the (EM) algorithm [6]
as it fixes the embedding parameters of the target concept
ct to optimize the embedding parameters of its contextual
concepts. Similarly, N-to-one is like the maximization step
of the EM algorithm in that the embedding parameters of
the target concept ct are optimized by fixing the embedding
parameters of the context concepts. By sliding a temporal
window l over Jvec to view a different target concept ct,
one-to-N and N-to-one mutually reinforce each other to learn
optimized embeddings.

The dual embeddings consist of three components: Skip-
gram, CBOW, and temporal attention. On the one hand,
Skip-gram is better for infrequent medical concepts than
CBOW [12], [13]. On the other hand, attentive CBOW in-
tegrates temporal information to learn non-uniform attention
weights within a temporal context. Therefore, MC2Vec can
improve the quality of medical concept embeddings by cap-
turing temporal distributions.

d) Unified training: A single unified framework for
generating an optimized representation of a medical concept
can be built by summing the objective functions of one-to-N
(Skip-gram ) and N-to-one (attentive CBOW), i.e.,

max
E

JOne2N + JN2One (5)



JOne2N =
∑
cj∈Ht

{log σ(e
′

cj

T
ect)+

r∑
i=1

Eci∼P (c)[log σ(−e
′

ci

T
ect)]}

JN2One = log σ(e
′

ct

T
ht) +

r∑
i=1

Eci∼P (c)[log σ(−e
′

ci

T
ht)]

where E denotes the embedding parameters, ct is the target
medical concept, ht is the weighted context of ct, cx is the
negative sample, and Ht = {ect−l

, ..., ect−1 , ect+1 , ..., ect−l
}.

By combining the two objective functions, the medical concept
embeddings can be learned from the same temporal window.

2) Temporal Attention: To capture the semantic relation-
ships between medical concepts over time, we developed
a temporal attention mechanism that is able to learn non-
uniform attention weights in a temporal window. Specifically,
the embedding results from the Skip-gram model form the
inputs to the attentive CBOW embedding model, and the
context vector is calculated by non-uniformly weighting the
context vectors:

ht = log(2l + 1) log(
∑

eci∈Ht

β2
i )

∑
eci∈Hi

βieci (6)

where l is the temporal window, log(2l + 1) and
log(

∑
eci∈Ht

β2
i ) are scalars to the weighted sum∑

eci∈Hi
βieci .

βi =
eαi∑

ecj∈Ht
eαj

(7)

To calculate the attribution logits, we introduce k functions,
A1(4), ..., Ak(4), where each Ai has the form A(4) =
log(4+ 1day), and 4 is the temporal interval between each
context eci ∈ Ht and the target ect . A k dimensional projection
of the embedding is defined by learning a k × d dimensional
matrix P and multiplying it to get the k scalars p1,j , ..., pk,j
for ecj ∈ Ht. The attribution logits are defined as

αi =

k∑
i=1

pi,jAi(4j) (8)

Thus, the model learns to pay more attention to the tem-
poral intervals, and the medical concept representations are
improved by identifying the time intervals between related
visits and, in turn, capturing more accurate related target-
context pairs.

3) Model Parameters and Complexity: Model training is
conducted through Adam [27], one of the gradient descent
optimizers [27]–[30], with the default recommended param-
eters. The only additional computation required beyond Skip-
gram and CBOW is the temporal attention. Each operation for
computing the attention weight multiplies P with ecj . Hence,
the added computational complexity is related to the temporal
attention window k, which is discussed in further detail in

Section IV. The details of MC2Vec are shown in Algorithm 1
below.

Algorithm 1 Algorithm of MC2Vec Model
Input: Set of Patient Journey Js
Output: Medical Concept Embedding Parameters E ⊂ RN×d

1: Initialization: E(0)

2: for each J ∈ Js do
3: Initialization: Jvec
4: for each V ∈ J do
5: push V into Jvec
6: end for
7: generate a batch of samples d from Jvec
8: for i = 0 to (|d| − 1) do
9: E(2i+1) = F (E(2i)) //F: Skip-gram function

10: E(2i+2) = G(E(2i+1)) //G: Att. CBOW function
11: end for
12: end for
13: return E

IV. EXPERIMENTS

We evaluated the quality of MC2Vecs embedding results
with two public datasets on a machine learning clustering task.

A. Dataset Descriptions

Details of the two datasets used follow.
a) CMS: is a publicly available1 synthetic claims dataset,

which includes four types of files: inpatient, outpatient, carrier,
and beneficiary summary. We chose to use a subset of the
inpatient files for the period 2008 to 2010.

b) MIMIC III: [24] is an open-source, large-scale,
de-identified dataset of EHR records for ICU patients. The
dataset mainly consists of clinical logs for patients admitted to
critical care units with serious conditions. The diagnosis codes
are derived from the International Classification of Diseases
(ICD9) system2.

The statistical information for both datasets is listed in
Table I.

TABLE I
STATISTICS OF DATASETS.

Datasets CMS(08-10) MIMIC III
# of patients 755,214 46,520
# of visits 1,332,822 58,976
Avg. # of visits per patient 1.76 1.27
# of unique diagnose codes 7,873 6,985
# of unique procedure codes 10,726 2,032

B. Ground Truth

The ground truths for the clustering task were selected
from two well-organized ontologies: the ICD9 standards and
the Clinical Classifications Software (CCS) 3. ICD9 has a

1https://www.cms.gov
2http://www.icd9data.com
3https://www.hcup-us.ahrq.gov



hierarchical structure [26], as shown in Fig. 3. For example,
the first three numbers of all codes ranging from 460 to 519
are classified as diseases of the respiratory system, which is
one of 19 categories. We used the high-level nodes as the
clustering labels. Both the MIMIC III and the CMS datasets
contained all 19 categories of disease. These ground truths
are denoted as ICD. CCS provides a way to classify ICD9
diagnosis codes and other medical procedures into 285 broad
but mutually exclusive diagnoses and procedure groups for
statistical analysis and reporting 4. Examples of the CCS
diagnosis categories are shown in Table II. The MIMIC III
dataset contained 265 of these categories and CMS contained
274. These ground truths are denoted as CCS.

Fig. 3. The hierachical structure of ICD9.

TABLE II
EXAMPLES OF CCS DIAGNOSIS CATEGORIES

Description ICD9 Diagnosis Codes CCS
Category

Essential
Hypertension 4011 4019 98

Hypertension with
complications and
secondary
hypertension

4010 40200 40201 40210 40211
40290 40291 4030 40300 40301
4031 40310 40311 4039 40390
40391 4040 40400 40401 40402
40403 4041 40410 40411 40412
40413 4049 40490 40491 40492
40493 40501 40509 40511 40519
40591 40599 4372

99

C. Baseline Methods

A brief description of the five state-of-the-art embedding
methods chosen as baseline comparisons is provided below.

a) CBOW-based medical concept embedding (CBOW):
learns representations by averaging the context within a sliding
window to predict the target vector.

b) Skip-gram-based medical concept embedding (Sg):
predicts the target vector based on the context using each target
word as an input to predict words within the given context.

4https://www.hcup-us.ahrq.gov/toolssoftware/ccs/CCSUsersGuide.pdf

c) GloVe [1]: is an unsupervised learning algorithm
for generating vector representations of words. Training is
conducted on aggregated global word-word co-occurrence
statistics from a corpus, and the resulting representations
showcase interesting linear substructures in the word vector
space.

d) med2vec [1]: is a multi-level embedding model that
creates d) embedding medical concepts and visits simultane-
ously.

e) MCE [5]: is a CBOW model with time-aware atten-
tion that embeds medical concepts with temporal information.

We also tested the subcomponents of MC2Vec indepen-
dently for further comparison, as follows:

f) CBOW Attn: is based on CBOW but integrates the
temporal intervals of sequential visits into an attention model
to learn representations of medical concepts. This is the
attentive CBOW component of MC2Vec.

g) Sg CBOW: is a vanilla version of our dual embedding
model MC2Vec without the attention mechanism.

h) MC2Vec: is our proposed attentive dual embedding
model for medical concepts that integrates Skip-gram and
attentive CBOW to learn representations of medical concepts.

All datasets were preprocessed to remove infrequent medi-
cal concepts with an empirically set threshold of 5. Following
the original Word2Vec [12], [13], the same negative sampling
strategy was used for Skip-gram and CBOW, CBOW Attn,
Sg CBOW and MC2Vec. The number of negative samples for
both MIMIC III and CMS was set to 10 and 5, respectively.
All models were trained for 10 epochs with MIMIC and
for 5 epochs with CMS. The dimension d of the medical
concept embeddings was set to 100. The temporal window
for MC2VEC was empirically set to 9 for both datasets.

D. Results

This section presents the results of the clustering task with
all models. We used K-Means as the clustering algorithm
and evaluated the learned representations against the two sets
of ground truths in terms of normalized mutual information
(NMI). The results appear in Table III. The best results appear
in bold.

TABLE III
CLUSTERING PERFORMANCE (NMI) OF THE MODELS ON TWO DATASETS

W.R.T. GROUND TRUTH ICD AND CCS (%).

Model MIMIC III CMS
ICD CCS ICD CCS

CBOW 16.42 51.38 7.65 41.69
Sg 18.93 51.85 5.56 34.48
GloVe 19.18 48.24 7.58 34.11
med2vec 5.25 33.65 3.69 17.66
MCE 8.49 39.23 4.29 31.75
CBOW Attn 23.20 54.77 12.48 43.82
Sg CBOW 29.20 57.73 11.57 42.93
MC2Vec 30.79 58.85 15.09 44.49

a) Overall Performance: As the results show, MC2Vec
delivered the best results against both ground truths with both
datasets at a window of 9. We attribute this performance
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Fig. 5. NMI (%) of the models on CMS w.r.t. ground truth ICD and CCS. The window size varies from 3 to 50.

to the introduction of the dual embedding model, which
incorporates the temporal attention into the model. In turn,
the model learns better embeddings of the medical concepts.
Notably, the performance of the two components of MC2VEC,
Sg CBOW, and CBOW Attn, was also very competitive. All
models performed better when compared to the CCS ground
truth than ICD. CCS has a well-organized ontology based on
expert knowledge, which may explain this result.

b) Performance of varying window sizes: To evaluate
the effects of the context window, we varied the size of
the window from 3 to 50 and compared the full version of
MC2Vec with the five of the six baselines. Med2Vec was
omitted because this model does not include a parameter
for window size. The results with MIMIC III on the same
clustering task as above are summarized in Fig. 4, and Fig. 5
shows the results with the CMS dataset.

For most models, performance decreased as the window
size increased due to the additional noise a larger window
size introduces. However, GloVe makes use of global co-
occurrences, and MCE has greater temporal scope, so neither
of these models were sensitive to window size. In fact, these
two models showed better performance as the window size
grew. MC2Vec and Sg CBOW showed competitive perfor-
mance and consistently produced better results than the rest

models in terms of NMI. This demonstrates that integrating the
two embedding models does capture the relationships between
medical concepts in a more comprehensive way.

Turning to the results with the CMS dataset in Fig. 5,
MC2Vec outperformed the other baselines with a skip window
size of not more than 10, after which CBOW Attn took over.
This interesting result indicates that attention brings benefit to
the quality of the embeddings.

The GloVe, Skip-gram, and MCE models remained rela-
tively stable no matter the window size. The other models
reached the local minimum at a skip window of 6 with their
best performance at 8.

c) Influence of the Attention Window k: Fig. 6 shows
the change in MC2Vecs performance with different attention
window sizes. Here, k was varied from 10 to 500. The two
vertical axes represent the range of results.

The results show the best performance with MIMIC III at
an attention window size of 300 for both ICD and CCS, but
performance dropped quickly once the window size reached
300. This is due to data sparsity in the EHRs in the period
2001 to 2012. With the CMS dataset, MC2Vecs best perfor-
mance occurred at an attention window of 100. This demon-
strates MC2Vecs effectiveness at classifying dense, large-scale
datasets.
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V. CONCLUSION

This paper presents an attentive dual embedding method,
called MC2Vec, that captures multiple views of the compre-
hensive relationships between medical concepts. The model
comprises Skip-gram, which generates the initial embedding
and attentive CBOW, which refines the embeddings with
temporal information. The two models operate in a recursive
manner to produce superior embeddings for use with machine-
learning-based healthcare analytics. Comparative experiments
with five state-of-the-art baselines on two public datasets show
MC2Vec produces significantly better quality representations
for clustering tasks. In next step, we plan to build patient
journey graph [32]–[34] to learn medical concept embedding.
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