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Intercellular communication is a normal feature of most physiological interactions

between cells in healthy organisms. While cells communicate directly through intimate

physiology contact, other mechanisms of communication exist, such as through the

influence of soluble mediators such as growth factors, cytokines and chemokines.

There is, however, yet another mechanism of intercellular communication that permits

the exchange of information between cells through extracellular vesicles (EVs). EVs are

microscopic (50 nm−10µM) phospholipid bilayer enclosed entities produced by virtually

all eukaryotic cells. EVs are abundant in the intracellular space and are present at a cells’

normal microenvironment. Irrespective of the EV “donor” cell type, or the mechanism of

EV biogenesis and production, or the size and EV composition, cancer cells have the

potential to utilize EVs in a manner that enhances their survival. For example, cancer cell

EV overproduction confers benefits to tumor growth, and tumor metastasis, compared

with neighboring healthy cells. Herein, we summarize the current status of knowledge

on different populations of EVs. We review the situations that regulate EV release,

and the factors that instruct differential packaging or sorting of EV content. We then

highlight the functions of cancer-cell derived EVs as they impact on cancer outcomes,

promoting tumor progression, metastases, and the mechanisms by which they facilitate

the creation of a pre-metastatic niche. The review finishes by focusing on the beneficial

(and challenging) features of tumor-derived EVs that can be adapted and utilized for

cancer treatments, including those already being investigated in human clinical trials.

Keywords: cancer, cancer immunosuppression, cancer vaccine, exosome, extracellular vesicles, microparticle,

pre-metastatic niche

INTRODUCTION

Several mechanisms of cell-to-cell and cell-to-microenvironment communication are used to
maintain physiological processes in healthy organisms. These processes are numerous and
often involve the production of soluble molecules such as cytokines and growth factors (1,
2). There is also an intercellular communication mechanism involving extracellular vesicles
(EVs) (3). EVs are ubiquitous, but unlike soluble cytokines and growth factor molecules, EVs
function as a vehicular-mediated exchange of surface and/or intracellular contents, delivering
proteins, lipids, nucleic-acid based molecules and metabolites, between adjacent or distant cells,
including within a tumor microenvironment (4, 5). In this review we discuss EV biology, the
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mechanisms of intercellular horizontal vesicular transfer and the
impacts of EVs in cancer biology and cancer treatments.

EVs are microscopic phospholipid bilayer enclosed spherical
bodies of approximately 50 nm – 10µm in size. They are
abundant particles that are often present in culture supernatants
(in vitro) or present within tissue extracellular space (in vivo)
between cells (6). The term EVs generally represents all kinds of
vesicles released from any cell type, i.e. irrespective of the “donor”
producer cell type, the biogenesis mechanism, the particle size,
its composition or cargo. EVs are produced in normal cell
physiology as well as in many pathological conditions. With
respect to cancer, however, EVs play a role in tumor pathogenesis,
starting from cancer initiation, propagation, formation of a
pre-metastatic niche, and tumor migration, invasion and in
cancer metastasis (7–9). As recent research has enabled a more
in-depth understanding of the biology of EVs in cancer, it
has become evident that EVs offer significant diagnostic and
therapeutic potential. For example, cancer cell derived EVs can
be used as a cancer biomarker(s) or to monitor the efficacy of
cancer treatments (10). EVs are even being harnessed for cell-
targeted drug delivery. Indeed, EVs are already being utilized
in innovative biomedical and biotechnological applications
including regenerative medicine, and tissue engineering, where
they are being exploited for targeted drug delivery (11–13). So
too, many other novel uses of EVs in cancer are being developed
where they are being used for cancer drug monitoring or used
as a cancer vaccine (14). Here we review the biology of EVs with
respect to cancer and cancer treatments.

EXTRACELLULAR VESICLES: EXOSOMES,
MICROVESICLES, ONCOSOMES AND
MORE

There is no unanimous consensus on the nomenclature of EVs
largely because they are heterogeneous in nature. Generic terms
such as “exosomes” and “microvesicles” have been broadly used,
with different definitions depending on the context of the study.
For example, descriptors such as tolerosomes (15), prostasomes
(16), epididymosomes (17), etc., have been used to reflect tissue
origin or a specific EV function (6). Here we will adhere, as much
as possible, to the traditional nomenclatures of extracellular
vesicles (EVs): microparticles (MPs) (or microvesicles, MVs)
and exosomes.

EVs are best defined based on their physical nature, size
and biogenesis origin (Figure 1). Nevertheless, due to the
biogenesis mechanisms, EVs are classified as either endosomes
or ectosomes. The endosome as an organelle comprises internal
membranes within the mammalian cell that ultimately fuses
with the cells’ plasma membrane, forming multi-vesicular bodies
(MVB). These are categorized as intraluminal vesicles (ILVs)
when present in the cytoplasm, or as exosomes when released
into the extracellular milieu. Endosomal vesicles typically range
between 40 and 100 nm in diameter (18), whereas ectosomes

Abbreviations: EV, extracellular vesicles; LO, large oncosome; MP, microparticle;

MV, microvesicle.

are shed directly by blebbing and budding mechanisms
from the plasma membrane, and are considerably smaller,
ranging from 100 nm to 10µm (Figure 1). Ectosomes have
also been referred to as microvesicles (MVs), microparticles
(MPs), oncosomes, shedding vesicles, exosome-like vesicles or
nanoparticles. Ectosomes include apoptotic bodies that are
released from dying cells by blebbing and fragmentation of cell
membranes; apoptotic bodies are typically 50–5000 nm in size.

EV terminology is sometimes reflective of EV cargoes.
“Oncosomes” are 100–400 nm vesicles carrying abnormal and
transforming macromolecules such as oncogenic proteins (19,
20). In other cases, EVs are known as large oncosomes
(LO) since they are distinct from other EVs and typically 1–
10µm in size (21). LOs can be produced from tumor tissues
including human prostate cancer (22) and breast cancer (23).
However, naming EVs according to their tissue of origin raises
confusion because both malignant and non-malignant cells can
produce EVs. For example, prostate epithelial cells release EVs
that are present in semen (16, 24) and although these EVs
are sometimes referred to as “prostasomes,” they are either
exosomes or microvesicles—depending on their endocytic or
plasma membrane origin (16). Moreover, the term prostasome
broadly refers to all EV-like particles that are present in semen
plasma i.e., EVs produced from any male urogenital cell type
(16, 24). Indeed, the tendency of naming EVs based simply
on the biological fluid from which they were isolated has
resulted in a somewhat confusing set descriptive terms such
as epididymosomes, migrasomes, promininosomes, vexosomes,
dexosomes, cardiosomes, texosomes etc. (17, 25, 26). It is
important to realize that these terms show no relationship to EV
biogenesis or EV functions.

EV-like particles can also be produced from virus-infected
cells, such as Herpes virus and retrovirus infected cells. These
EVs are typically produced from the host cell plasma membrane
and they contain viral-gene encoded molecules (27, 28) but
generally lack viral genomes, making them non-infective (29) -
for review see (30). Additionally, Golgi organelle membrane-
derived EVs known as “gesicles” are released from vesicular
stomatitis virus (VSV) DNA transfected cells. These EVs contain
the VSV glycoprotein that confers fusogenicity (31, 32) and
have a lower density relative to conventional exosomes (33).
Nevertheless, non-infected cells can also produce Golgi vesicle
derived EVs that are present in body fluids, contain Golgi and
endoplasmic reticulum (ER) proteins, and are packaged and
secreted as transport vesicles (34). The extent to which virus-
induced oncogenesis influences EV production, for example,
in HPV-induced head and neck cancer, or HPV-induced
cervical cancer, is still unknown and this requires significant
further investigation.

SOURCES OF EXTRACELLULAR
VESICLES

EVs are secreted constitutively or following cellular activation
and are identifiable in in vitro cell culture supernatants and
in in vivo biofluids. EVs can be produced by virtually any
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FIGURE 1 | Schematic representation of major subtypes of EVs: exosomes, microparticles and apoptotic bodies. Exosomes, the smallest EVs, originate from within a

cell by fusion followed by exocytosis of multivesicular bodies (MVB) from the cell membrane into the extracellular space. MVB are formed by the accumulation of

luminal vesicles within endosomes. Ectosomes are assembled at, and pinched off from, the plasma membrane by a process of budding. Ectosomes include

microvesicles (or MPs) released from activated cells and/or apoptotic bodies (produced from dying cells).

mammalian cell type - irrespective of the health status of the
cell. EVs are present within blood (35) [plasma (36)], semen
(37), urine (38) saliva (39), sputum (40), breast milk (41),
amniotic fluid (42), ascites fluid (43), cerebrospinal fluid (44),
bile (45), bronchoalveolar fluid (46), malignant ascites (47),
lymphatic fluid (48), nasal secretions (49), in tears (50), and
are even abundant in feces (51). EVs in body fluids reflect the
normal biochemical and metabolic processes of their origin cells.
However, EVs may or may not primarily be representative of the
most predominant cell type within a specific tissue. For example,
EVs in blood have properties of blood vessel endothelial cells, or
of the cellular components of the blood itself such as leukocytes,
erythrocytes or platelets and the relative abundance of each of
these EVs can change depending on the physiological situation
(52). In humans EVs are often most abundant in biological
fluids that are released externally, such as breast milk, saliva
and urine, and they are less abundant in non-secretory type
fluids i.e. physically enclosed or contained fluids such as blood
and cerebrospinal fluid (53). The fact that EVs are molecularly
reflective of their tissue of origin is particularly significant in
the context of cancer because tumor cell derived EVs contain
molecules that are often specific to their neoplastic origin. For
example, exosomes in the blood of brain tumor patients contain
more neural cell adhesion molecules and brain tumor antigen
L1NCAM (CD171) relative to EVs in blood of healthy individuals
(54). In other examples, exosomes from melanoma patients
contain Melan-A/Mart1 (55), and EVs in urine from urogenital
cancer patients can contain elevated CD36, CD44, 5T4, basigin,
CD73, which are all markers of specific malignancies (56–59).

MODULATION OF EV PRODUCTION

EV production and release can be altered and regulated; EV
production can be triggered by internal cellular process or
external stimuli. On the other hand, normal EV production
can also be suppressed. Interestingly, there is evidence that
cancer cells produce greater numbers of EVs compared to non-
transformed healthy cells (60–62) and the likely stimuli for this
phenomenon are many. For example, EV production can be
enhanced by chemotherapy or photo-dynamic treatments, and
sometimes this contributes to the disease burden of the patient
(63). Interestingly, a single cell type can produce several types
of EVs, as shown for platelets (64), endothelial cells (65) and
breast cancer cells (66) that produce both exosomes and MVs.
Furthermore, different stimuli can change the production of
EV types and vary cargo levels, or even post-transcriptional
cargo modifications (67, 68). Thus, factors such as the stimuli
that triggers EV release, the donor cell type, and its normal
physiological or disease condition, or the biogenesis pathway(s),
influence the characteristics and abundance of the EVs present
in human biological fluids, especially in situations of pathology
including cancer.

Factors Stimulating EV Production
Multiple factors can influence EV shedding (see Table 1). The
involvement of fusion machinery such as the SNARE (soluble
NSF [N-ethylmaleimide-sensitive factor] attachment protein)
receptor SNAP, and tethering factors, are indicated in stimulating
EV biogenesis and release [reviewed in (98)]. However, factors

Frontiers in Oncology | www.frontiersin.org 3 March 2019 | Volume 9 | Article 125

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jaiswal and Sedger EVs: Implications in Cancer

TABLE 1 | Factors stimulating EV release.

Mechanism of induction of EV release EV size

(nm)

EV source EV content References

EXOSOMES AND EXOSOME-LIKE VESICLES/EXTRACELLULAR VESICLES

• Tumor necrosis factor (TNF) 20–50 Human bronchial epithelial cells TNF-R1, TRADD (69)

• Inhibition of oncogenic Epidermal

Growth Factor Receptor Kinase

30–100 Human cancer cell lines EGFR, P-EGFR, & exo-gDNA (70)

• Heparanase 30–120 Human myeloma cell line Syndecan-1, VEGF & HGF (71)

• Hypoxia 30–100 Human breast cancer lines Elevated miR-210 (72)

• Plasma membrane depolarization 40–100 Neurones and astrocytes Cell adhesion and membrane proteins (73, 74)

• Cross-linking of CD3

• (TCR activation)

50–100 Jurkat T cells or T lymphoblasts CD3/TCR, CD2, LFA-1, MHC-I and II,

& CXCR4

(75)

• Glutamate 50–100 Oligodendrocytes in the brain Cre-recombinase (4)

• Induction of the oncogene Wnt5A ND Melanoma cell line IL-6 & the pro-angiogenic factors

IL-8, VEGF & MMP2

(76)

• Activation of Her2 by ligands EGF and

Heregulin

ND Her2 overexpressing breast

cancer cells (BT-474)

Activated Her2 (77)

• GAIP interacting protein C

• Terminus (GIPC) depletion

40–100 Pancreatic cancer cell line Overexpression of drug resistance

gene ABCG2

(78)

EXOSOMES AND MICROVESICLES (MVs)

• Increasing intracellular Ca2+ by:

• Thrombin receptor activation via

• α-thrombin or thrombin-receptor

• Activating peptide (TRAP)

Exo:

40–100

MV:100–

1000

Platelets from human whole

blood

Exosomes: CD63

MV: Integrin & P-selectin

(64)

EXOSOMES AND GIANT MULTIVESICULAR BODIES (MVB)

• Increased intracellular Ca2+:

Monensin ionophore & activation of

transferrin receptor

60–100 Human erythro-leukemia cell line ND (79, 80)

INTRALUMENAL VESICLES

• Increasing intracellular Ca2+:

Calcium containing media

60–80 Mice bone marrow-derived mast

cells

MHC-II (81)

MVs AND APOPTOTIC VESICLES

• Increasing intracellular Ca2+:

P2X7 activation via ATP

250–2000 Microglia Pro-IL-1β (82)

MICROVESICLES (MVs)

• Increasing intracellular Ca2+:

1. P2X7-R activation by ATP

<0.5µm THP-1 monocytes Bioactive IL-1β (83)

2. ATP-mediated activation

of P2X7R

ND RAW MØ Intracellular isoform of IL-1ra (84)

3. Activation of PAK1/2 via Cdc42 &

Rac1-dependent pathways by thrombin

receptor-activating & collagen or calcium

ionophore

<1.0–

1.5µm

Platelets Cortactin, filamin A and actin (85)

• Hypoxia and gamma radiation <1µm MVs- Human & murine lung

cancer cell lines

ND (86)

• Elevated peptidylarginine

deiminases (PAD2 & PAD4)

induced by BzATP stimulation

of P2X7 receptors

200 nm

average

Prostate cancer cell line ND (87)

• EGF Treatment (activation of

Rho & ROCK)

≤0.22µm Human cervical HeLa cells ND (88)

• Phorbol 12-myristate 13-acetate

(PMA)

≤1µm Human cancer cell lines HLA Class- I, CD29, CD44v7/8,

CD51, chemokine receptors CCR6 &

CX3CR1, extracellular matrix

metalloproteinase inducer

(EMMPRIN), epithelial cell adhesion

molecule (EpCAM)

(89)

• Activation of P2X7 via ATP 0.5–1µm Macrophages Phospholipids (90)

(Continued)
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TABLE 1 | Continued

Mechanism of induction of EV release EV size

(nm)

EV source EV content References

• Respiratory Infections (LPS, live

H. influenzae bacteria

or viral mimetic Poly:IC)

20–

1000 nm

100–

400 nm

Broncho alveolar lavage fluid

(BALF) from mice

ND (91)

MICROVESICLES (MVs) OR MICROPARTICLES (MPs)

Overexpression of v-H-RAS ND Melanoma cells MMP-2 (92)

MICROPARTICLES (MPs)

• Thrombin induced activation of Rho &

ROCK-II pathway

<1 um Human microvascular endothelial

cell line

ND (93)

• Combination of ionizing radiation & TNF

(stimulation of ROS)

<1 um Human umbilical vein endothelial

cells

Tissue Factor (TF) (94)

• Activation of acid A-SMase by

benzoyl-ATP

100 nm−1µm Glial cells A-SMase (95)

EXTRACELLULAR VESICLES (EVs)

• Sub-lethal photodynamic treatment,

cytotoxic insult

300–

400 nm

Human prostatic cancer cells in

vitro and in in vivo in mouse

Apoptotic markers, drugs from their

parent cells, tumor membrane &

endosome contents

(63)

• Activation by LPS 0.1–5µm Dendritic cells ND (96)

GESICLES

• Overexpression of VSVglycoprotein 100 nm Human kidney and lung cell lines VSV-G (32)

ONCOSOMES

• Activation of EGFR & AKT

Pathways

0.5–5µm Prostate cancer cells Caveolin-1 (20)

• Silencing of the cytoskeletal regulator

diaphanous-related formin-3 (DIAPH3)

by ERK

>1µm Prostate cancer cell line (DU145) miR-125a (97)

ND, Not defined.

such as temperature, cell membrane receptor activation status,
infection, or stress, also contribute to the process. For example,
lipopolysaccharide-stimulated dendritic cells, and antigen or
mitogen activated B and T lymphocytes increase EV production
in vitro (75, 99). This has implications in the setting of
cancer immunotherapy where immune-modulating biologics
are showing impressive efficacy in previously difficult-to-treat
cancers, and where EVs are likely to be useful for cancer
treatment monitoring. Cell stress is a particularly important
factor in cancer because stress-induces intracellular calcium
triggers and increased EV production from cancer cells (79).
Interestingly, certain gene polymorphisms can correlate with
increased EV production capability. Mechanisms vary but in
the case of the A348T P2X7R polymorphism, this amino
acid substitution results in ATP increased IL-1β secretion
by monocytes, and IL-1α IL-1β and IL-18 which stimulates
increased secretion of EVs (100, 101).

Factors Attenuating EV Production
EV release may be negatively modulated. This can be important
in the context of EV-mediated disease pathogenesis since
decreasing production may alleviate the extent of disease burden,
e.g., in cancer patients. Drugs that block EV biogenesis, inhibit
EV release, EV uptake (by recipient cells), or that interfering with
EV-specific recipient cell signaling, are already known. Although

the potential to regulate EV production for therapeutic benefit
is still very much in its infancy, this approach appears to have
particular relevance to cancer pathology, as well as to cancer
detection, and cancer treatment outcomes—as is evident in the
latter sections of this review.

Blocking EV Biogenesis

Effector molecules that are associated with the membrane vesicle
formation or biogenesis processes may be targeted to inhibit
the microvesiculation process. As expected intracellular vesicular
transport is integral to EV biogenesis, as demonstrated in cells
treated with dimethyl amiloride (a drug for clinically managing
hypertension) that lowers the yield of tumor-derived EVs by
interfering with the recycling of endocytic vesicles (102). This
drug functionally abrogates EV-mediated immunosuppressive
effects in vivo in a mouse tumor model (102). The lipid
translocase enzyme systems are equally important. These include
the lipid membrane flippases, scramblases and floppases that
are involved in the process of plasma membrane processing
to maintain phospholipid symmetry, cytoskeletal modeling and
vesicle budding (5). The critical importance of scramblases
and sheddases to EV production has been demonstrated
via the reduction of MV shedding in human erythrocytes
in the presence of the R5421 scramblase inhibitor (103),
or the ADAM17 disintegrin metalloproteinase i.e., typical
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sheddase enzymes (104). Sphingomyelinase-2 plays an important
role, too, as it controls the accumulation of ceramide—a
physiological trigger for apoptotic cell membrane blebbing and
budding of exosomes frommultivesicular endosome membranes
(105). Indeed, sphingomyelinase-2 inhibitor GW4869 influences
exosome-mediated tumor growth, lowering the number of
lung metastases in tumor bearing mice (106, 107). Similarly,
neutral sphingomyelinase (N-SMase) contributes to exosome
biogenesis as demonstrated in oligodendrocytes whereas acid
sphingomyelinase (A-SMase) activity is required for MP release
from microglial cells (95, 105). Consistent with these findings,
an A-SMase inhibitor, imipramine, blocks microvesiculation
processes in prostate cancer cells by preventing the activation and
movement of A-SMase to the plasma membrane (108). Together
these studies demonstrate that different SMase-family enzymes
are specific for modulating the production and release of discrete
populations of EVs.

Endocytosis inhibitors can influence EV production.
Chlorpromazine and methyl-β-cyclodextrin impede the release
of exosomes in human prostate cancer cells in vitro (108).
The suppression of the RhoA/ROCK-dependent signaling
pathway by a ROCK inhibitor Y-27632 reduces the secretion
of MVs from human breast cancer cells, human primary
glioblastoma cells and EGF-stimulated HeLa cells in vitro
(88). RhoA and the highly-related GTPases Rac and Cdc42
are implicated in regulating MV shedding from transformed
cell lines and controlling the packaging of specific cargo into
MVs (109). Interestingly, the calcium-dependent activation
of peptidylarginine deiminase enzymes are elevated in cancer
(48) but this can be pharmacologically inhibited by Cl-amidine,
which is a peptidylarginine deiminase inhibitor that reduces
microvesiculation (108).

Blocking EV Release

Inhibition of vesicular release can be achieved in vitro by
targeting many steps of vesicular body processing at the
plasma membrane. For example, MV shedding is inhibited in
various tumor cell lines (including human melanoma, colon
cancer, prostate adenocarcinoma and breast tumor cell lines)
where the GTP-binding protein ARF6 activation is inhibited;
ARF6 regulates plasma membrane endosomal trafficking (66).
In vitro experimental knock-down of Rab27a or Rab27b
impairs exosomal secretion in Hela cells without effecting
normal physiological protein secretion (110), and Rab11 and
Rab35 GTPases prevent exosome release by compromising the
integration of multi-vessicular bodies with the cells plasma
membrane (111). Consistent with this, decreased endothelial
cell MP release can be achieved by treatment with the
Y27632 Rho-kinase inhibitor (112). Indeed, drugs such as
bisindolylmaleimide-I (a protein kinase C inhibitor) prevent
the release of EVs, by inhibiting the externalization of
phosphatidylserine (113); the subsequent non-externalization
results in the suppression of exosome and MV release from
prostate cancer cells (108).

Coincident with the many successful examples of in vitro
drug-induced suppression of EV production and/or release there
are now numerous exciting clinical examples where this has

also been achieved in vivo. The significance is both with respect
to EVs in disease pathogenesis, and as biomarkers of cancer
cure and/or relapse. For example, a decrease in platelet MV
production has been reported with calpain inhibitors calpeptin
(85), calpastatin, MDL 28, 170, E64d (114) or thiosulfinates
(115). Pre-treatment of endothelial cells with anti-oxidants
pyrrolidine dithiocarbamate and N-acetylcysteine reduces the
release of thrombogenic tissue factor-bearing MPs, and decreases
apoptosis and reactive oxygen species production (94). Other
therapeutic targets include intracellular Ca2+ channels because
channel inhibitors such as nifedipine and benidipine are effective
in decreasing EV release (116), and, moreover, proton-pump
inhibitors result in an acidic environment and thus inhibition of
melanoma cell exosome release (117). Furthermore, vitamin C
therapy inhibits MP plasma levels (118), and since a number of
cytokines including interleukin-1β and tumor necrosis factor can
induce EV release from specific cells, then, so too, suppression
of cytokine synthesis or blocking cytokine receptor function can
ultimately reduce EV production (95, 119).

Taken together there is a large body of data documenting a
diverse spectrum of EV inhibitory agents, which indicates that
certain drugs may tend to act on all types or categories of EVs.
There are, however, some pharmacological molecules have been
shown to impact the release of specific types of EVs. For example,
cytochalasin D appears to decrease in exosome size whilst
increasing the production in MV sized vesicles (108). The same
study also demonstrated the inhibition of exosome release (but
not MVs) by methyl-β-cyclodextrin, whereas Y27632 decreased
MV release alone (not influencing exosome production/release).
Because many proteins associated with the biogenesis and
trafficking of EVs are important in normal functions, therapeutic
inhibition of EV production may have unfavorable consequences
or off-target effects in vitro and in vivo. Achieving a therapeutic
inhibition of EV production is the focus of much research and
several clinical trials (see Table 2).

BIOCHEMICAL FEATURES OF
EXTRACELLULAR VESICLES

EVs package many bioactive materials such as nucleic acids
comprising of DNA and RNA molecules—including coding
RNAs (e.g., messenger RNAs), as well as non-coding RNAs
e.g., long non-coding RNAs (lncRNAs), microRNAs (miRNAs)
and circular RNAs (120). Transmembrane surface proteins e.g.,
signal-transducing receptors, or intracellular proteins including
a range of cytoplasmic transcriptional factors have all been
demonstrated to be present in EVs. Consistent with this,
even carbohydrates and glycans, and lipid-based molecules, are
packaged in EVs, along with biochemical metabolites (121).

The diverse range of EV cargo is well documented in online
listings: ExoCarta (www.exocarta.org) (122) and Vesiclepedia
(www.microvesicles.org) (123). Vesiclepedia currently lists
349,988 proteins, 27,646 mRNA, 10,520 miRNAs and 639
lipids, spanning 41 species (both animals and plants) from
approximately 1254 independent studies (database accessed
on January 2019). A review of this register reveals that certain
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TABLE 2 | Summary of clinical trials using extracellular vesiclesa.

Vesicle

type

Cancer

type

Trial

phase

Trial

aim|(s)

Trial

status

Application Trial

number

PART I: EXOSOMES

Plant exosome Colon cancer I Investigating the ability of plant exosomes to deliver

curcumin to normal & colon cancer tissue.

Active,

not

recruiting

Drug

delivery

NCT01294072

Urinary

exosome

Prostate cancer – Clinical validation of a urinary exosome gene

signature in men presenting for suspicion of

prostate cancer.

Completed Biomarker NCT02702856

Exosome Malignant solid tumors – Quantify a stress protein in the blood and in the

urine for the monitoring and early diagnosis of

malignant solid tumors.

Recruiting Diagnostic NCT02662621

Exosome Esophageal adenocarcinoma – Evaluation of MicroRNA expression in blood and

cytology for detecting Barrett’s esophagus &

associated neoplasia.

Recruiting Diagnostic NCT02464930

Exosome Ovarian cancer – To see if monocytes taken from the blood of people

with ovarian cancer can kill tumor cells (exosomes,

may influence outcome).

Completed Mechanistic NCT02063464

Urine exosome Thyroid cancer – Anaplastic thyroid cancer & follicular thyroid

cancer-derived exosomal analysis via treatment of

lovastatin and vildagliptin & pilot prognostic study

via urine exosomal.

Not yet

recruiting

Biomarker NCT02862470

Onco-

exosomes

Pancreatic cancer – Diagnostic accuracy of circulating Tumor cells

(CTCs) and onco-exosome quantification in the

diagnosis of pancreatic cancer.

Recruiting Diagnostic NCT03032913

Exosome Exosome – Circulating exosomes as potential prognostic and

predictive biomarkers in advanced gastric cancer

patients: A prospective observational study.

Unknown Biomarker NCT01779583

Exosome Cholangiocarcinoma – Characterization of the ncRNAs in tumor derived

exosomes from cholangiocarcinoma patients before

anti-cancer therapies & benign biliary stricture

patients.

Recruiting Recruiting NCT03102268

Exosome Oropharyngeal squamous cell

carcinoma

– Exosome testing as a screening modality for human

papillomavirus-positive oropharyngeal squamous

cell carcinoma.

Recruiting Screening

biomarker

NCT02147418

Plant exosome Head and neck cancer – Evaluation of the ability of edible plant exosome to

prevent oral mucositis associated with chemo

radiation treatment of head & neck cancer.

Recruiting Drug

delivery

NCT01668849

Exosome Head and neck cancer I Studies how well metformin affects cytokines

& exosomes in patients with head & neck cancer.

Recruiting Drug

effect

NCT03109873

Exosome Non-small cell lung cancer – Consistency analysis of PD-L1 in cancer tissue &

plasma.

Not yet

recruiting

Diagnostic NCT02890849

Exosome Non-small cell lung cancer – Consistency analysis of PD-L1 in cancer tissue &

plasma exosome.

Not yet

recruiting

Diagnostic NCT02869685

DC-derived

exosomes

Non-small cell lung cancer II Consistency analysis of PD-L1 in lung cancer tissue

and plasma exosome before & after radiotherapy.

Unknown Vaccine NCT01159288

Exosome Metastatic melanoma – Study of molecular mechanisms implicated in the

pathogenesis of melanoma. Role of exosomes.

Recruiting Mechanistic NCT02310451

Exosome Lung metastases osteosarcoma – Whether the profile of RNA from circulating

exosomes can be used as a biomarker for lung

metastases of primary high-grade osteosarcoma.

Recruiting Biomarker NCT03108677

Exosome Pancreatic cancer – Interrogation of exosome-mediated intercellular

signaling in patients with pancreatic cancer.

Recruiting Mechanistic NCT02393703

PART II: MICROPARTICLES

Microparticles Breast cancer II Assess the reduction of tissue factor bearing

microparticles in metastatic breast cancer treated

with rosuvastatin.

Active,

not

recruiting

Treatment NCT01299038

(Continued)
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TABLE 2 | Continued

Vesicle

type

Cancer

type

Trial

phase

Trial

aim|(s)

Trial

status

Application Trial

number

Microparticles Advanced pancreatic, colon,

lung, gastric and ovarian

The cumulative incidence of VTE at 2 months in the

higher venous thrombo-embolic events in cancer

patients with high levels of circulating tissue factor

bearing microparticles (TFMP).

Completed Diagnostic NCT00908960

Microparticles Deep vein thrombosis (DVT) and

cancer

Determine the prevalence of asymptomatic lower

extremity DVT detected by US-doppler and

pro-coagulant microparticles in a selected group of

cancer patients suffering from an advanced stage of

the disease.

Completed Diagnostic NCT00336258

Microparticles Myeloproliferative neoplasm

(MPN)

Platelet microparticles are involved in the

hypercoagulability of MPNs patients.

Completed Mechanistic NCT02862366

Microparticles Cancer, deep venous

thrombosis, pulmonary

embolism

To identify cancer patients at high risk for VTE

based on clinical characteristics, coagulation

biomarkers & the coagulant activity of tissue factor

bearing microparticles.

Completed Biomarker NCT02095925

Microparticles Malignant pleural effusion II To investigate the anticancer effect and the related

immunological mechanism of

methotrexate-autologous tumor derived

microparticles (MTX-ATMPs) in the treatment of

malignant pleural effusion.

Recruiting Drug

delivery

NCT02657460

Microparticles Venous thromboembolism,

pulmonary thromboembolisms,

cancer

Carrying out a study in

cancer-associated-thromboembolism patients in

order to decide the suitable anticoagulation time.

Pro-coagulant role of phospholipid-dependent

microparticles.

Completed Diagnostic NCT03134820

Tumor-derived

microparticles

Malignant pleural effusion,

malignant ascites

II Safety and effectiveness study of tumor cell-derived

microparticles to treat malignant ascites and pleural

effusion.

Unknown Treatment NCT01854866

Microparticles Colon cancer – Examining the relationship between relaxation

combined with biofeedback or wheat germ juice to

the immune indices and quality of life measures in

patients with colorectal cancer who receive

prophylactic chemotherapy after surgery.

Recruiting Mechanistic NCT01991080

Tumor-derived

microparticles

Pancreatic cancer III Safety and efficacy of clopidogrel in loc-ally

advanced & metastatic pancreatic adenocarcinoma

treated with chemotherapy.

Recruiting Drug

safety

&

efficacy

NCT02404363

Microparticles Hepatic, pancreatic and

colorectal neoplasms

– To investigate quantitative and qualitative aspects of

microparticles during cardiac and abdominal

operations.

Completed NCT00677781

Microparticles Acute lymphoblastic leukemia – Role of the microparticles and of tissue factor in the

pro-thrombotic phenotype and the thromboembolic

complications during the acute lymphoblastic

leukemia in children.

Completed Diagnostic NCT02862652

Microparticles Prostate cancer Evaluation of a novel circulating microvesicle-based

multi-analyte assay for the detection of prostate

cancer in men with elevated risk for prostate cancer.

Completed Diagnostic NT01499381

aRetrieved from https:clinicaltrials.gov/ct2/search as on 17/10/2018.

proteins appear to more frequently packaged and transported by
certain types of EVs. Furthermore, the EV registers enable the
identification of specific molecules as markers of the different
types of EV. For instance, exosome biomarker proteins comprise
ESCRT proteins Alix, TSG101, CD9, CD63, CD81, chaperones
HSC70 and HSP90, ceramide, flotillin, Rab, and tetraspanin
family members (67, 105, 124, 125), and MVs, owing to their
plasma membrane origin, appear to predominantly contain

integrins, glycoprotein-Ib, P-selectin, VCAMP3, and ARF6
(27, 64, 126). MVs are typically characterized by the presence
of externalized phosphatidyl serine—like apoptotic bodies
(127). (Of note: EVs are distinguishable from MPS because,
apoptotic bodies contain fragmented genomic DNA and
even histones,—unlike the exosomes or MPs—and additional
phenotypic markers of apoptotic bodies are thrombospondin,
and complement component C3b (27, 128–130).
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In the samemanner certain proteins andmiRNAs can identify
LO’s, including cytokeratin 18 (in prostate cancer derived LOs)
or the miR-1227 (in prostrate epithelial cell LOs), compared to
smaller sized EVs (21, 131). Of note: LO cargoes are functional
and fully capable of inducing an EV-recipient cell effect, just like
other EVs (131). However, various “EV type” markers are not
exclusive and considerable overlap exists. This is attributable to
the heterogeneity in the EV populations, and/or to imperfect EV
isolation procedures.

PACKAGING AND SORTING OF EV
CONTENT

The compartment of origin of EVs, and the EV cargo, are
both influential to the types of intercellular interaction and
information that is delivered to a recipient cell. For example,
MVB-derived exosomes (compared to plasmamembrane derived
MVs) differ in their cargo content (66, 132, 133). This
sorting or selective content packaging is regulated at multiple
levels. The endosomal sorting complex required for transport
(ESCRT)-dependent pathway is involved in the selection and
distribution of proteins within exosomes (134). CD63-dependent
process may also be involved in sorting EV cargo (135) and
ARF6-regulated recycling pathways affect the packaging of
major histocompatibility class I (MHC-I) molecules, integrin
receptors, vesicle associated protein-3 and membrane matrix
metalloproteinases, whereas ARF6 directs cargo selection inMVs
(66). The sorting of nucleic acids in EVs is less well understood
but ribonucleoproteins are involved in RNA molecule sorting
(136–138). So, too, the RNA-induced silencing complex (or
RISC) (136) and heterogeneous nuclear ribonucleoprotein
hnRNPA2B1, as these load miRNA into EVs (137), while the
Y-box protein-1 aides encasing of miRNA into exosomes (138).
The presence of the RNA biogenesis machinery in EVs, suggests
that miRNA biogenesis can occur within the EV, which provides
additional significance as this offers the capacity for altering
recipient cell gene expression (i.e., by newly produced miRNA
within the recipient cell) (139).

Since the protein and RNA content of EVs closely matches
the donor cell, thus the presence and absence of such molecules
offer a snapshot of the molecular circumstances of the donor
cell—precisely at the time when the EV is produced. However,
as noted earlier, certain conditions or factors, such as hypoxia,
heat stress, oxidative stress (140, 141), infection (142) or cell
activation (143) [including the activation of specific signaling
pathways (144)] result in alterations in EV cargos. Indeed,
hypoxia induces alterations of both protein and RNA from
endothelial (145) and tumor cell-derived exosomes (72). Also,
exosomes from human glioblastoma multiforme patients (serum
and tumor samples), or primary glioblastoma cell lines, are
elevated in VEGF2 and EGRFA2, in response to hypoxia, and
this induces endothelial cell sprouting (in vitro)—an indication
of in vivo angiogenesis potential (146). Furthermore, stress and
apoptosis induce modulation of mRNA content molecules in
exosomes (141), particularly heat-shock proteins (HSPs) (140).
In other cancer-related examples, the expression of oncogenes

such as mutant KRAS (147) or HRAS (148) modulates the
composition of exosomes, and cytotoxic chemotherapy induces
expression of phosphatidyl serine and tissue factor in MPs (149),
and ERBB2/Her2 oncogene overexpression in EVs mediates
transformation toward a malignant phenotype (150). Of note,
on a gram per gram basis many comparisons of donor cells
and their EVs show differential expression of certain molecules,
suggestive of molecule enrichment via a selective packaging
mechanism. Knowledge of why the EVs might contain more
or less of a specific molecule (relative to its donor cells) is still
incomplete. There may, however, be benefits or disadvantages to
the host organism, or these differences may merely be reflective
of the membrane: cytoplasm ratio and the inherent properties of
each molecule.

EV TARGET CELL INTERACTIONS

EVs have the capacity to interact with a wide variety of
recipient cells i.e., any cell that engages with EVs, be it within
tissue extracellular space, during or after blood or lymphatic
distribution. This means that either the original EV donor tissue
cells, or blood or lymphatic endothelium, or a distant tissue cell
can be influenced by EVs. EVs therefore serve as an important
vector of intercellular molecular exchange in diverse but both
physiologically linked and unrelated tissues.

EVs as Carriers of Nucleic Acids or
Proteomic Molecules
It has long been known that EVs are carriers of genetic
and proteomic information. It has not, however, always been
appreciated that EV trafficked molecules can be present in a
relatively concentrated form. In this regard EVs are frequently
said to be “rich” in expression of certain molecules, for example,
we and others have shown, EVs can contain high concentrations
of certain molecules, such as p-glycoprotein - relative to the
EV donor cells (151) Examples of this enrichment phenomenon
include proteins, miRNAs and even metabolites (58, 121, 152,
153) and this engenders EVs with genuine capacity to confer
functional effects on recipient cells.

The EV cargos influence the recipient cells in multiple
positive ways; in normal circumstances EVs are important
in tissue homeostasis and organogenesis (52). For example,
platelet derived microvesicles induce angiogenesis in vivo (in
mice) by facilitating the formation of endothelial capillaries
(154) (by virtue of their cytokines-VEGF, bFGF, and PDGF
cargo). In pathological situations, however, certain EV functions
are implicated in contributing to acute and chronic diseases.
In malignancies, the released EVs propagate cancer-signaling
molecules such as oncoproteins including epidermal growth
factor receptor-III (EGFRvIII), mutant Ras family members,
or c-Met etc. (19, 148, 155). Oncogenic transcripts potentially
contribute to the horizontal transformation mechanisms and
phenotypic reprogramming of the recipient cells (156). Clinically
they can serve as cancer biomarker(s) i.e., tumor presence, or as
an indication of cure or remission (21, 157). They can also be
indicative of cancer staging at the time of diagnosis (158).
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EV-Recipient Cell Uptake
The function(s) of EVs depends on their ability to interact
with a recipient cell in a manner that inherently involves
direct contact of membranes. When encountering a recipient
cell, EVs may simply adhere and stably associate with the
recipient cell membrane surface, then either dissociate, or
become incorporated within the recipient cell membrane
(159). Recipient cell EV internalization occurs via multiple
mechanisms. Both passive processes of membrane fusion (160),
and active processes involving clathrin- and caveolin-dependent
internalization, are used in EV-recipient cell interactions and the
process typically involves membrane lipid rafts and endocytosis
(161–163). EV internalization can also occur by phagocytosis
(164), micropinocytosis (165), or macropinocytosis (166). The
EV:recipient cell interaction can additionally involve specific
ligand-receptor type interactions, such as between membrane-
bound cytokines and their cytokine-specific receptors, including
TNF-family molecules TNF, TRAIL or FasL and their receptors
(167). The EV:recipient cell interaction is therefore both generic
and specific. Furthermore, the involvement of transmembrane
proteins explains the capacity of EVs to act as activators of
specific intracellular signaling pathways (168) that can can be
highly specific, even for receptor isoforms and downstream
signaling events, as has been shown for exosome VEGF in
activating VEGFR (159).

It is unclear whether EV internalization is selective or
a completely random process. Current evidence suggests a
degree of cellular control of EV internalization, dependent
on factors such as the target cell type, the location, or
physiological and environmental conditions, or even dependent
even on the molecule being received/internalized e.g., nucleic
acid, protein, carbohydrate, lipid. In most cases, however, the
recipient cell specific interactions with EVs are regulated by
adhesion molecules (161). For example, EV phosphatidyl serine,
tetraspanin (169), ICAM-1, galactin-5 and galectin-9 (170),
TIM4 phosphatidyl serine-specific receptors (164, 171) and
heparan sulfate proteoglycans, on the recipient cell surface are
involved in the internalization of EVs (172). Additionally, EVs
expressing syncytin 2 (also present on a number of tumor
cells) (173) bind to a recipient cell specific receptor MFSD2a
(Major Facilitator Superfamily Domain 2a), permitting fusion
of the EV:recipient cell membranes (168). Fusion permits
the exchange of transmembrane proteins such as transfer
major-histocompatibility class-II molecules, which, with respect
to cancer, will transiently change the antigenicity (antigen
presentation capacity) of the recipient cell (170) (also see section
Current Challenges in the Use of EVs in Oncology). It has
become clear that the number of EV transmembrane molecules
engage with, and are exchanged with, recipient cells, and the
temperature at which these interactions occurs contributes to the
efficiency of EV uptake and the types of molecular membrane
exchanges (165). The significance of these interactions is that
the release of EV cargo into the recipient cells’ cytoplasm can
confer a new functional capacity in the recipient cell. This
does not necessarily complete the intercellular communication
process as the transferred cargo may accumulate into recipient
cell vesicles that are subsequently released i.e. liberated to fuse

with yet another target cell. Again, in the context of cancer, the
EV-mediated intercellular dissemination of bioactive oncogene
proteins from one cell type to other cell may in turn contribute to
the development of secondary tumors at distant sites (155, 174).
This can occur even though the germline DNA mutation of
the oncoprotein is not germline encoded within the recipient
cell per se.

BIOLOGICAL EFFECTS OF
TUMOR-DERIVED EVs IN CANCER
PROGRESSION, MIGRATION AND
ONCOGENIC SURVIVAL

Tumorigenesis was historically attributed to genetic and
epigenetic alterations in the genome of an organism but there
is compelling evidence that EVs are integral to cancer cell
communication and cancer progression. This is essentially due
to EV contents because when produced from tumor cells
EVs are a reservoir of cancer-associated molecules. Not only
can EVs aide tumor cell survival (8, 175, 176) but certain
cargoes educate or condition the recipient cell toward a tumor-
promoting phenotype to facilitate the establishment of a pre-
metastatic niche, thus promoting metastasis (155, 174). In fact,
EVs can act as abettors of transformed cells, promoting their
proliferation, propagation, even their chemotherapeutic drug
resistance phenotype, their capacity for increased angiogenesis
and stromal remodeling, and even in the evasion of immune
detection (Figure 2).

Direct Oncogenic Phenotypes
EVs can exert a cargo-dependent oncogenic response in recipient
cells. For example, glioma cells display EGF-RvIII, the oncogenic
form of the EGF receptor, which induces mitogen-activated
protein kinase (MAPK) and Akt pathways promoting anchorage
independent growth and survival (19). When compared with
EV-donor cells deficient in EGF-RvIII expression, EGF-RvIII-
expressing EVs display EGF-R-dependent responses, i.e., AKT
and ERK signaling and oncogenic phenotype in EGF-RvIII-null
recipient cells (19). Moreover, EGF-RvIII was demonstrated to
subsequently present in the EV-interacting recipient cells (19). In
another example, apoptotic body type EVs derived fromH-rasV12

and c-myc oncogene transfected cells conferred tumorigenicity
in vivo (in mice) via a mechanism involving oncogene transfer
into recipient cells (177). The EV-donated DNA oncogene cargo
is likely present episomally (rather than inserted in cis), but
nevertheless transferred DNA can have oncogenic potential via
DNA-encoding oncogenes or the oncoproteins themselves, in
some respects resembling certain instances of non-integrating
viral transformation (178).

Other pro-tumor EV effects include the role of the pro-
coagulant transmembrane tissue factor molecule that modulates
angiogenesis as well as metastasis in cancer [reviewed in (179)]
and tissue factor-bearingMVs derived from colorectal carcinoma
cells can contribute to a K-ras dependent cancer progression
(180). These tumor EVs can be transferred between dissimilar
populations of cancer cells, meaning EVs can potentially
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FIGURE 2 | Tumor-derived EVs in pre-metastatic niche (PMN) formation and tumorigenesis. Tumor-derived EVs express surface and cytosolic molecules originating

from the primary tumor and are carried to recipient cell/organs via the circulation. The EV surface molecules and cargo confer pro-angiogenic, pro-migratory,

pro-inflammatory effects, and chemotherapeutic drug interfering or immune-regulatory effects. EV movement to target organs is generally organotropic and

determined by the inherent tumor cell and EV cargos. Finally, EVs contribute to the pre-conditioning of the target site via inducing extracellular matrix remodeling,

changes in blood and lymphatic vessels barrier integrity, transfer of immune inhibitory or activating factors and transfer of oncogenic factors. Together these

mechanisms explain EV contributions to cancer progression and the impact on cancer treatment efficacy including treatment failures.

enable the propagation of aggressive/oncogenic phenotype
between various sub-populations of cancer cells present within
heterogeneous tumors (181). Tissue factor-bearing EVs also
contribute to cancer-induced thrombosis (182). Thus, tissue
factor-expressing MPs are mediators of tumor aggressiveness, a
trigger of thrombogenesis and abnormal coagulation in cancer.
These types of EV interactions are now being targeted in cancer-
associated venous thromboembolism therapies (183, 184).

As alluded to above, tumor-derived EVs can cause the
activation of specific pathways that support tumor growth
and survival. Tumor proliferation can be promoted by
gastric cancer-derived exosomes through the activation of
the phosphoinositide 3-kinase (PI3K), Akt, and mitogen-
activated protein kinase/extracellular-regulated protein kinase
(MAPK/ERK) pathways (185). Cancer cell line-derived exosomes
can activate the mitogen-activated protein kinase Ras-Raf-MEK-
ERK pathway in monocytes, through the transport of receptor
tyrosine kinases EGFR and Her2, and promote the survival
of tumor-associated monocytes (186). This mechanism of
cancer progression alters monocyte survival prior to the

formation of tumor-associated macrophages and occurs directly
within the tumor microenvironment (186). Theoretically, this
mechanism would also have the capacity to action distally e.g.,
via circulating monocytes.

Pro- and Anti-inflammatory Effects
Malignant cells modulate the tumor microenvironment via both
their pro- or anti-inflammatory effects. The immunomodulatory
effects of EVs are particularly well studied in macrophages due
to their high propensity for endocytosis and the abundance and
accessibility of their precursors - blood monocytes. Melanoma-
derived exosomes have been shown to be capable of inducing
a pro-inflammatory recipient cell effect by altering the cytokine
and chemokine profiles of the target macrophage cells (187).
Similarly, breast cancer-derived exosomes can induce increases in
mRNAs of pro-inflammatory cytokines such as interleukin (IL)-
6, tumor necrosis factor (TNF), granulocyte colony stimulating
factor (G-CSF) and chemokine CCL2, through a Toll-like
receptor (TLR)-2 stimulation and NF-κB in macrophages (188).
In a separate study, NF-κB-dependent expression of IL-6 and
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TNF was present in gastric cancer-derived exosome cultured
macrophages (189). We have also recently demonstrated that
MPs secreted from both drug-resistant and drug-sensitive breast
cancer cells polarize macrophages toward a pro-inflammatory
state, producing increased IL-6 and TNF, and we hypothesize that
this contributes to the establishment of a pre-metastatic niche
(PMN) especially at secondary tumor sites (176). Furthermore,
lung tumor-derived exosomes express surface HSP70 and
activates a pro-inflammatory phenotype defined as elevated IL-
6, IL-8, and monocyte chemoattractant MCP-1 (190), and TLR-
dependent NF-κB activation (190).

There are also reports of an anti-inflammatory role of
tumor cell-derived EVs. Melanoma and colorectal carcinoma
cell line derived EVs can stimulate the release of transforming
growth factor-β (TGFβ) from tolerogenic T-cells that promotes
the generation of myeloid-derived suppressor cells (191). This
suggests a mechanism that establishes an “immunosuppressive
circuit” within the cancer, but with this knowledge comes the
potential als for therapeutic modulation, e.g., by interfering
with or blocking the interaction, i.e., to re-arm T-cell control
of tumors (191). The challenge, however, resides in how
to specifically inhibit only EV:TGFβ-producing tolerogenic T
cells and not tumor-specific cytotoxic T lymphocytes, and
or anti-tumor Natural Killer (NK) cells. Such interventions
would need to be cytokine-specific. Other anti-inflammatory
mechanisms of EVs includes gastric carcinoma cell-derived MPs
interacting with monocytes resulting the production of the
immunosuppressive cytokine IL-10. This is directly immune
suppressive and additionally acts indirectly to decrease pro-
inflammatory cytokines GM-CSF and TNF (via feed-back loops).
Hence, EVs skew the tumor cytokine milieu to either an anti-
or pro-inflammatory signature (192). Interestingly, EVs have
been artificially packaged to deliver anti-inflammatory agent
curcumin, i.e. to be delivered to distant site for the treatment
of inflammatory conditions (193); curcumin has potent anti-
inflammatory properties such as being capable of inhibiting the
production of TNF (194). In fact the idea and potential potency
of curcumin as an anti-cancer agent has led to the generation of
synthetic curcumin analogs and these are being investigated in
cancer (195, 196). Of note, however, curcumin itself appears to be
capable of altering the EV cargo e.g., for enrichment of miRNAs
with anti-cancer properties (197).

Drug Interference and Resistance
Tumor-derived EVs can act as direct mediators of cancer
resistance to chemotherapy, via amultimodal process. Horizontal
transmission of drug resistance occurs through transfer of
drug-resistance conferring molecules: the ATP-binding cassette
(ABC) transporter p-glycoprotein (MDR1/ABCB1) (58, 139,
151), multi-drug resistance associated protein-1 (MRP1/ABCC1)
(198), the multidrug resistance efflux transporter ABCG2 (199),
the ABC transporter-3 (ABCA3) (200), the P-gp inducer- of
Ca2+-permeable channel transient receptor potential channel-
5 (TrpC5) (201), and the Her2 receptor protein ERBB2/EGFR2
(77). The significance is that EVs containing these cargoes
confer a cancer drug resistance phenotype to recipient cells i.e.,
resistance to multiple tumoricidal drugs (58, 151). Moreover,

we and others have demonstrated that modulation and transfer
of certain miRNA, lncRNA and mRNA nucleic acids in EVs
further regulate drug-resistance traits of tumor cells (139,
202, 203). EVs also function to attenuate the effectiveness
of chemotherapeutics by sequestering the administered drug
before it reaches the intended tumor. This occurs through the
presence of the drug receptor or a drug-interacting protein
within the EV, that essentially creates a sublethal concentration
of the drug in the circulation of the patient (204). Others
have shown that in the case of cisplatin-containing exosomes
produced from melanoma cells this helps to generate a cisplatin-
resistant melanoma phenotype (117). It is thus appears that
cancer cells can directly accumulate drugs within the vesicular
compartment and then eliminate the drug by EV shedding, and
furthermore, that enhanced shedding correlates with increasing
EV drug concentrations (205). In the case of Her2-expressing
breast cancer, exosomes bind to trastuzumab antibody, resulting
in drug resistance (77). Indeed, in vitro activation of Her2
(by heterodimerisation with EGFR or Her3) with ligands
epidermal growth factor (EGF) and heregulin results in the
increased production of exosomes (77). This suggests that
cancer cells specially upregulate their EVs secretion in the
presence of the drug. In the case of Her2-positive tumors, EV
sequestration of trastuzumab also inhibits leucocyte activation
and cytotoxic effector mechanisms for Her2-expressing tumors
(206). Similar effects have been shown for B-cell lymphoma
exosomes displaying CD20 with subsequent resistance to the
anti-CD20 chimeric antibody rituximab (200).

EFFECTS ON IMMUNE REGULATION
FACILITATING TUMOR PROGRESSION

The production of EVs constitutes a mechanism of tumor-
specific immune suppression. This is a complex situation
involving multiple mechanisms. Firstly, the packaging of
immunosuppressive soluble mediators such as TGFβ in EVs, can
directly incapacitate cytotoxic anti-tumor T lymphocytes and NK
cells (207, 208), or EV-derived IL-10 can activatemyeloid-derived
suppressor cells (MDSCs) (191, 209). So too, EVs carrying
death-inducing cytotoxic cytokines TNF, TNF-related apoptosis-
inducing ligand, TRAIL, and Fas ligand (FasL) induces apoptosis
of tumor-specific T cells (210), and exosomal EVs block NKG2D
to inhibit NK cell activation and NK tumoricidal activity (211–
213). In other examples, MV surface TGF-β1 suppresses NK
cell and T cell proliferation through adenosine production, and
miRNAs such as miR-23a (214) and miR-4498 regulates CD83
expression (215)(CD83 is a dendritic cell activation/maturation
molecule). Furthermore, tumor EVs are similar to the tumor
cells themselves, in that they can contain tumor specific antigens
such as melan-A and carcinoembryonic antigen (CEA) that are
capable of suppressing tumor-specific responses (216). This has
been dramatically demonstrated in vivo (in mice) using a model
tumor antigen of ovalbumin (OVA)-in melanoma cell derived
exosomes (217). Likewise, circulating, tumor-derived MHC
Class-II bearing exosomes suppressed tumor-antigen specific
responses in tumor-bearing mice (218).
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EV-derived immunosuppression also occurs via tumor cell
EVs promoting FoxP3+ T regulatory (Treg) cell proliferation
or enhancing their suppressive capacities (219). Moreover,
nasopharyngeal carcinoma-derived exosomes cause the
conversion of naïve T-cells into the immunosuppressive
Treg cells and promoted Treg recruitment via chemokine CCL20
(220). This is well demonstrated in an in vivo mouse study
where the presence of metastatic breast cancer-derived exosomes
leads to the establishment of a microenvironment augmenting
cancer metastasis to the lungs and liver, in mice (221). Here, the
continuous uptake of breast cancer exosomes in these organs
led to the recruitment of immature myeloid cells, decreased
numbers of T-cells and NK-cells, correlating with increased
cancer progression and mortality (221). Similarly, glioma stem
cell-derived exosomes suppresses T cells through monocytes (or
myeloid-derived suppressor cells) leading to glioma immune-
evasion (222). These are not considered uncommon findings
or physiologically unlikely effects in humans, since the tumor-
specific EV immunosuppressive effects can be demonstrated for
EVs present in body fluids such as malignant effusions or the
sera of cancer patients (191).

Finally, cancer-derived EVs can influence macrophage
phenotype, converting M1 pro-inflammatory anti-cancer
macrophages into M2 phenotype macrophages that better
support tumor survival. For example, colorectal cancer-
derived MVs regulated the differentiation of monocytes into
regulatory M2 macrophages after prolonged contact (223), and
glioblastoma-derived EVs induced a modified phenotype of
monocytic cells to resemble myeloid-derived suppressor cells
(MDCS) in the brain cancer patients (224). Finally, miRNA are
potent regulators of immunity, and epithelial ovarian cell-derived
exosomal miR-222, and pancreatic cancer-derived exosomes,
have both been demonstrated to promote M2 macrophage
phenotypes (225, 226). Conversely, over-expression of miR-155
and mI-125b-2 promotes an M1 macrophage phenotype (225).
Thus, immunosuppressive tumor-derived EVs and their miRNA
cargos modulate tumor immune responses and potently direct
tumor immune evasion. A deeper investigation of EV-directed
immune evasion mechanisms will be needed in order to harness
EVs as effective adjunct cancer therapeutics.

PRO-TUMOR EFFECT ON
MICROENVIRONMENT

The interplay between the malignant cells and their neighboring
healthy cells, stromal cells, endothelial cells, and the immune
cells that girt and infiltrate a tumor, comprise the tumor
microenvironment. Outcomes of such interactions are
fundamental to the growth and spread of the tumor (227),
and in this context EVs and EV-derived molecules critically
modulate this microenvironment in a number of ways, including
via an angiogenic effect, an invasive effect, and a metastatic effect.

Angiogenic Effects
Tumors release angiogenic factors that support the development
of new blood vessels to provide an adequate nutrient supply that

facilitates tumor growth and metastasis. Tumor angiogenesis is
stimulated by the proliferation of endothelial cells within the
tumor (228) and also by the recruitment of precursor endothelial
cells (from bone marrow) (229), where vessel endothelial cell
pericytes aide blood vessel function and the capacity to generate
new capillary structures. A role for EVs in microvasculature
biology is evident within the tumor microenvironment where
tumor-derived EV cargo molecules impact on angiogenic-
modulating processes. For example, tumor-derived EVs carry
pro-angiogenic factors such as IL-6 and VEGF stimulate
endothelial cell proliferation and neo-vascularization within the
growing tumor (71, 230), and EV nSMase2 stimulates endothelial
cells and angiogenesis (231). Endothelial cell tube formation
is stimulated by exosomes when the EVs are released from
leukemic cells under hypoxic conditions, and develop within
the central regions of growing necrotic tumors (146, 232).
A deeper and more precise understanding of the molecular
interactions between EV from cancer cells are currently being
revealed: a recent mass spectrometry examination of EVs from
Glioblastoma cell lines identified over 1000 proteins, including
EGFRvIII, to exert angiogenic and tumor-invasive characteristics
(233). Other EV angiogenesis promoting molecules include
sphingomyelin (234), tetraspanin (235), and miRNAs miR-210,
miR-9, miR-92a (232), viral oncoproteins (236), clotting factors
and tissue factor (237), cytokines (238), and the oncogene
Wnt5A (76) that promote tube formation by human vascular
endothelial HUVEC cells (239). The list of clinically used
and newly trialed chemotherapeutic agents for cancer, must
therefore now consider not only the effect(s) of the drug
on the tumor cells, but the effects of EVs on blood vessel
endothelium physiology. Blood vessel permeability is particularly
important in the setting of brain cancer, where increased
intracranial blood pressures is an important clinical presentation,
requiring clinical management through the co-delivery of anti-
hypertensive agents. It is not surprising therefore that exosomes
are also of interest in a number of related settings in neurology
including cerebral ischemia where vascular function is integral to
the pathology (240).

Invasive Effects
The process of tumor cell invasion is assisted by matrix-
degrading proteases and because EVs act as a constant
inter-cellular communication system between the tumor and
the stroma, EVs play an important role facilitating tumor
invasiveness. Tumor-derived EVs promote extracellular matrix
degradation, thereby assisting in tumor tissue infiltration.
Such molecules include matrix metalloproteinases (MMP)-2,
MMP-9, and MT1-MMP (241), their zymogens urokinase-
type plasminogen activator (uPA) (242) and extracellular
matrix metalloproteinase inducer EMMPRIN (89). Interestingly,
malignant ovarian ascites samples from patients with stage-I to
-IV ovarian cancer contain proteases MMP-2-, MMP-9-, and
uPA- loaded EVs with highly invasive properties (61). In fact,
there is a correlation between proteolytic and in vitro invasive
capacity of EVs from breast cancer cell lines (242). Moreover,
we have shown that breast cancer-derived MP cargo modulates
miRNA-503 and proline-rich tyrosine kinase-2, leading to an
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ennhanced tumor migratory and invasive capacity (243), and it
is well known that lung tumor derived-MVs modulate stromal
fibroblasts and endothelial cells to promote tumor growth in vitro
(86, 244). Indeed, tumor exosomes exert both stromal inducing
pro-angiogenic effects as well as pro-invasive effects (245, 246)
that aides tumor growth in vivo.

Signaling Tumor Growth and Metastatic
Effects
Metastasis involves the dissemination of cancer cells to adjacent
or distant tissue sites. Tumor-derived EVs can deliver autocrine,
paracrine, endocrine signals facilitating tumor growth and
metastasis. Gastric cancer-derived exosomes stimulate the
proliferation of other recipient gastric cancer cells, at least in
part, through the activation of the PI3K/Akt and MAPK/ERK
kinase pathways (185), and exosomes mediate the disposal
of a tumor suppressor miRNA miR-23b that aids in the
dissemination of cancer cell metastasis (247). Hypoxia-inducible
factors and small GTPase Rab22A that mediate microvesicle
biogenesis also facilitate breast cancer invasion and metastasis
(248). So, too, overexpression of the ERBB2/Her2 oncogene in
breast cancer-derived EV alters the vesicular contents toward
a malignant phenotype (150). There are several examples of
this phenomenon from in vivo models of cancer. Pancreatic
carcinoma cell derived exosomes carrying CD44v6 promote
tumor growth and metastasis in lymph nodes and lungs of rats
(249). One of the main mechanisms for metastasis promotion
appears to involve EV signaling in the tumor-surrounding
stroma i.e., in the tumor microenvironment, with or without
a role for transforming viruses. For example, gamma herpes
virus Epstein-Barr virus infected cells secretion EVs containing
integrins, actin, interferons and NF-κB that directly modulate
the tumor microenvironment (236). In other in vivo examples,
miRNAs such as miR-181c and miR-105 EV cargos of breast
cancer cell-derived exosomes induce, or facilitate, metastasis
to the brain by modulation blood-brain-barrier function (250,
251). Furthermore cancer-derived exosomes that promote lung
metastasis use mechanism(s) involving the activation of TLR-
signaling by the MyD88 adaptor protein, producing IL-6 and
TNF-mediated activation of MDSCs (252). In yet a final example,
lung cancer MVs promote metastasis via their expression of
proteolytic matrix metalloprotease-9 (MMP-9) from fibroblasts
(86) and through a fibronectin-integrin based pathway (253).
Hence, it is generally accepted that EVs can enhance the creation
circumstances that pre-conditions or educates the secondary
metastatic site [for another recent review see (254)].

Tumor-Secreted Effectors of
Cross-Boundary Communication Leading
to Organotropism and Pre-metastatic
Niche Formation
EVs can influence remote organs and distal sites that are
otherwise protected by physiological barriers. The creation
of a pre-metastatic niche, i.e., a tumor supportive pre-
conditioned environment, generally involves bone marrow-
derived immunosuppressive cells - and a complex interplay
between tumor cell determinants such as tumor-derived factors,

and colonization pathways, and changes to metastatic site cells.
In certain circumstances tumor-derived EVs can dictate the
organ-specific migration of tumors (255–257), or, pre-metastatic
niche creating EVs may originate from non-transformed healthy
cells (258). It is generally thought that organ- or tissue-
specific metastatic preference is due to endogenous niche
components within the target organ (259–261). The role of EVs
in organ-specific metastasis has been demonstrated by i.v. (tail
vein) melanoma-derived exosomes that preferentially migrate
to common melanoma metastatic sites of lung, spleen, bone
marrow, and liver (155). Fusion of integrin-expressing exosomes
(derived from lung-, liver-, and brain-tropic cancer cells) with
organ-specific inhabitant cells results in Src-phosphorylation and
pro-inflammatory S100 gene expression (174). In this example,
the specificity follows the general rules of integrin-homing, where
the exosomal integrins α6β1 and α6β4 determines metastasis to
the lung, while integrin αvβ6 promotes liver metastasis (174).

Metalloproteases are important in in cancer metastasis and
tumor derived-EVs modulate the expressions of MMP-2, MMP-
9, and VEGF-A directly at the metastatic site (241, 262, 263).
MMPS can also act on blood (or lymphatic) vessels that
aiding tumor cell recruitment and tissue matrix remodeling
(264). There are also reports of pancreatic cancer exosome-
mediated transfer of macrophage migration inhibitory factor
(MIF) to liver Kupffer cells, subsequent to increasing TGF-β
and fibronectin production, thus aiding tissue remodeling and
future tumor metastasis (265). In breast cancer, MV-mediated
transfer of miR-122 and inhibition of pyruvate kinase prevents
glucose uptake and favors brain metastasis (266). Other examples
of EV cargos that influence metastasis are miR-200 (267),
tyrosine-kinase receptor expression and silenced Rab27A (155),
and mesenchymal stem cell marker CD105- containing MVs
(262); these factors all function to prime distant organs for
tumor migration.

Essentially the ex vivo isolated tumor EVs have a pro-tumor
effect by inducing modifications in remote organs, followed by
the relocation of metastatic tumor cells. Thus there is a need
to design strategies that manipulate pre-metastatic niche and
thereby to prevent seeding and metastasis in vivo [for review
see (268)]. Recent exciting advancements in this area highlight
the capacity for oncomaterials that modulate tumor cell behavior
at the metastatic engraftment site. Several oncomaterials, both
natural products such as bone fragments, silk, collagen, lung/liver
matrix, as well as synthetic derivatives including poly-L-lactic
acid, hydroxyapatite, polyacrylamide, are already approved by
the US Federal Drug Administration for their application to
humans for tissue bio-engineering applications (268). This is
a particularly exciting area of EV research and translational
medicine for cancer patients, as it offers the future potential to
prevent tumor metastasis.

TUMOR-DERIVED EXTRACELLULAR
VESICLES: CANCER’S FRIENDS OR FOE?

One application of tumor-derived EVs is that they can constitute
novel tumor-specific diagnostic targets, where their contents
are diagnostic targets that indicate the presence (or absence)
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of a tumor. The EVs themselves, or the EV cargo molecules,
can be used to track cancer risk, cancer presence, and as
marker of treatment outcomes—cancer cure or relapse. In certain
circumstances it would be highly beneficial to selectively diminish
or deplete tumor-specific EVs in circulation, without affecting
non-tumor EVs that have other physiologically important
functions. A technology currently in development is capable
of removing soluble factors and exosomes from the peripheral
blood circulation (269) and is marketed under the term

ADAPT
TM

(adaptive dialysis-like affinity platform technology).
It is capable of removing soluble factors and exosomes from the

peripheral blood circulation (269). For example, Her2osome
TM

therapy diminishes tumor-derived Her2-containing exosomes
that functional inhibit Her2-binding drugs. This is an impressive
example of the potential of this approach, however, there are
many other exciting opportunities to selectively target EVs,
or their contents, in acute or chronic disease—not just in
cancer patients.

On the other hand, the production and presence of tumor-
derived EVs can have undesirable effects for the host organism,
although, the deleterious effects can also be modulated for better
treatment outcomes for cancer patients. Thus, there can be
benefits to developing and using compounds that inhibit or
interfere with tumor cell EV biogenesis, release and recipient cell
uptake. These include reagents that block phosphatidyl serine,
surface heparan sulfate, proteoglycans, ICAM1 interactions
with their receptors i.e., molecules that are critical for EV
engulfment (172). For example, the blocking EV phosphatidyl
serine by diannexin suppresses the growth of human glioma
in murine xenografts (270, 271). In another example, targeting
of exosomal FasL (via FasL-specific monoclonal antibodies) can
reduce melanoma tumor growth (272). There are actually many
such reagents that are being investigated by biotechnology and
pharmaceutical companies worldwide; many are currently being
assessed in human clinical trials (Table 2).

EVs as Disease Biomarkers
EV cargoes are stable and have a long half-life to their
encapsulation within the vesicular membrane. Even the EV
themselves are relatively stable in bodily fluids, and they
withstand long-term in vitro storage conditions including several
freeze-thaw cycles, making them excellent biomarkers of disease
(273). Indeed, the EV stable biomarker cargo, be it protein, lipid,
nucleic acid, can include molecular entities that relatively short-
lived or highly labile in the cytoplasm of donor cells. In cancer
these molecules can be reflective of both the tumors presence and
also of cancer staging. For example, EVs in blood and urine of
prostate cancer patients contain unique prostate-cancer specific
contents that are biomarkers of prostate cancer (274, 275) but
even where the diagnosis per se does not necessarily equate to
a need for treatment (as in prostate cancer), markers of cancer
metastasis are particularly valuable to cancer clinicians. Periostin,
is an example of an EV metastatic cancer bio-marker. Periostin
is concentrated at high levels in EVs derived from metastatic
cells in vitro and abundantly present in plasma exosomes
in breast cancer patients with lymph node metastasis (276).

Periostin is also present in muscle-invasive bladder cancers,
and urinary EV from patients is a prognostic biomarker of
muscle invasiveness (277). Moreover, in vitro periostin knock-
down experiments demonstrate reduced tumor migration and
invasion, in model systems (277), thus EV periostin maybe also
functionally important in tumor progression. EVs are proving
to be valuable diagnostic biomarker in pancreatic cancer; flow
cytometry coupled with mass spectrometry analysis of exosome
glypican-1 can distinguish benign disease from early and late
stage cancer (278). The challenge now is how to implement these
technologies into routine laboratory testing.

Where the important EV cargo is nucleic acids quantitative
PCR and/or next-generation sequencing is easily possible. To
date, ssDNA, dsDNA and retrotransposon content of EVs have
been profiled by PCR (279). However, the presence of 8 miRNAs
of diagnostic importance in ovarian cancer, can be specifically
amplified and detected by reverse-transcription PCR, even in as
yet asymptomatic patients (56). Other similar examples continue
to be reported: human lncRNAs profiling of prostate cancer
cell lines and their exosomes has identified several cancer-
specific RNAs in exosomes (280). Independent validation of these
markers is required to progress the development of diagnostic
assays for future routine use in pathology laboratories.

EV DNA nucleic acid is not transcriptionally competent since
whilst in the EV as there is no RNA-polymerase-II transcriptional
complex present there. The EV DNA is simply present and
potentially being transferred to a recipient cell. Once transferred,
this DNA may have potential for nuclear import and at some
point, could theoretically regain transcriptional potential, even if
only present episomally. Similarly, EV mRNAs are not translated
whilst within EV, as cellular ribosomes are not present within
EVs. There is evidence, however, that once transferred, mRNA
can potentially be expressed in the recipient cell (281). In
contrast, however, we have shown that EV miRNA has the
potential to be carried and produced within the EV, because
the miRNA biogenesis molecules are also present within the
EV (139). The significance of EV RNA transfer, including non-
coding RNAs, is clearly that it may bring a regulatory RNA into
the recipient cell i.e. that is otherwise not expressed endogenously
within the recipient cell. EV transferred nucleic acids can
therefore change the protein expression profiles of recipient cells.

EVs as Therapeutics for Targeted Cancer
Drug Delivery and More
That EVs strongly preserve diverse bioactive cargos immediately
places them as high-utility delivery vehicles, targeted to
particularly recipient cells. Arguably one of the most easily
achievable applications of therapeutic EVs is that they can be
manufactured to deliver cancer chemotherapeutic drugs, such
as doxorubicin, paclitaxel, methotrexate or cisplatin, etc., singly
or in combination. This can be achieved by an approach as
simple as preparing the EVs from cells that are cultured in
the desired chemotherapy drug, or combination of such drugs
(282) and early indications are that this targeted delivery may
reduce toxicity-related adverse effects (283–285). At this stage
there would seem to be a broad range of molecules that can

Frontiers in Oncology | www.frontiersin.org 15 March 2019 | Volume 9 | Article 125

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jaiswal and Sedger EVs: Implications in Cancer

be manufactured for delivery via therapy EV. Examples to
date include anti-cancer agents such as the angiogenesis and
cancer growth inhibitor withaferin A (286), or the plant-based
triterpenoid-celastrol (287). In both of these cases, delivery
of the therapy EV resulted in a stronger anti-tumor effect in
a human lung tumor mouse xenograft model compared to
the free drug alone, presumably due to better tumor-specific
drug targeting (286, 287). In other examples, curcumin, has
been loaded into EL-4 lymphoma cell-derived exosomes and
delivered to activated myeloid cells, for protection against LPS-
induced inflammation in mice (288), and intra-nasal exosomal
delivery of curcumin, or a signal transducer and activator of
transcription-3 (STAT3) inhibitor JSI124, has been shown to
cross the blood-brain-barrier and suppress GL26 brain tumors in
a syngeneic C57BL mouse model of brain cancer (193). Others
have prepared EVs directly from plants, and a clinical trial
of plant-derived EVs is already underway (see Table 2). While
these results are exciting developments, especially for patients
with poor-prognosis tumors like glioblastoma, much more
information is required to better understand the immunological
ramifications of EV therapy, especially in the central nervous
system. Although it might be necessary to employ one or
more monocyte/macrophage phagocytosis blocking strategies,
the small size of EVs has been demonstrated to bypass the blood-
brain-barrier endothelium for CNS tissue delivery (289) (for
review see (240).

EVs are being pursued as intercellular vectors for RNA-based
therapy (both miRNAs and siRNAs), with efficacy documented
in animal models of disease. For example, in vivo suppression
of breast cancer and prostate cancer has been achieved through
exosome delivery of the tumor suppressor miRNAs miR-let-7a
andmiR-143 inmice (290, 291). Other examples include exosome
transfer of miR-146b to glioma cells to inhibit glioma cell growth
(292), or exosomes released synthetic miR-143 to osteosarcoma
cells to limit migration (293). In these circumstances the RNA
cargo need not be a naturally occurring miRNA within the
recipient cell. Moreover, siRNA-loaded EVs can specifically
deliver anti-tumor effects (294). siRNAs targeting RAD51 (295),
c-Myc (296), and PLK-1 (297) inhibit the proliferation of
breast cancer, lymphoma, and bladder cancer cells, and “suicide
gene” mRNA MVs have efficacy for treatment of pre-established
nerve sheath tumors (schwannoma) in an orthotopic mouse
model (298).

Although there is an expanding list of these proof-of-principle
type experiments, there are currently also a list of challenges that
remain, especially in the era of individualized or person-specific
targeting of cancer. There is also the issue of what happens
in situations of cancer recurrence, and whether chemotherapy-
loaded EVs can be re-administered or have immunogenicity in
their own right. This is especially of concern, if or when EVs
are phagocytosed by macrophages and tissue-resident dendritic
cells as this could work to raise antigenicity of the tumor-specific
EV-delivered molecule, or the (modified) EVs themselves. If the
therapy EVs were autologous (and patient specific) this would
help address the potential for immunogenicity. Interestingly, the
present thinking appears not to consider EV HLA-expression
as being a significant factor, but we have evidence of some

degree of immune cell activation by non-HLA-matched EVs
(Jaiswal and Sedger, unpublished). A deeper understanding of the
benefits and/or limitations of EV immunogenicity may prove to
be beneficial to the success of therapy EVs, and it may prove to be
beneficial to examine this more deeply in current cancer clinical
trials and more human data is desperately needed.

The issue of immunogenicity is a double-edged sword.
The potential for therapy EVs to enhance immunogenicity is
particularly useful given that EVs are well known to carry tumor-
associated antigens (TAAs). Therapy EVs have a documented
capacity to elicit TAA-specific anti-tumor immune responses,
which improves cancer survival in primary andmetastatic mouse
tumor models (299). Furthermore, the tumor antigen human
mucin-1 (hMUC1), delivered via therapy EVs, has been utilized
in dendritic cell-based immunotherapy (300). Hence, TAAs can
elicit a strong anti-tumor immune response when fused with the
C1C2 domain of lactadherin that binds to the phosphatidyl serine
on the EV surface (301, 302). Significantly, the TAA laden EVs
can result in “cross-presentation” of tumor-specific antigens in
recipient cells (301, 302) in a manner that closely resembles that
of apoptotic bodies. This means that an endogenous pathway of
antigen processing and presentation can be affected by EVs for
tumor cytotoxic T cell recognition. The enhanced immunogenic
potential of this approach has been demonstrated for the TAAs
carcinoembryonic antigen (CEA) and Her2 (303, 304). Also,
tumor-derived MPs inducing the type-I interferons (through
the cGAS/STING pathway) resulted in increased dendritic cell
maturation, and in enhanced tumor specific T-cell tumor lysis
(305). Hence there are many ways in which tumor MPs exert
adjuvant effects. Indeed, there is already exciting evidence that
exosomes isolated from the ascites fluid of cancer patients can
function as a personalized vaccine for cancer (43) and phase-
I clinical trials have been performed to evaluate autologous
dendritic cell-derived cancer exosome therapy for lung and
melanoma cancers (306). This is an active area in clinical cancer
medicine; a list of current human clinical trials utilizing EVs in
cancer is provided in Table 2.

CURRENT CHALLENGES IN THE USE OF
EVs IN ONCOLOGY

As with any new or emerging biotechnology there are technical
issues surrounding its use in the clinic. For EVs these include
difficulties in standardization of EV isolation techniques and EV
detection methodologies, as well as issues related to the GMP
production of therapy EVs.

Challenges in Assessing Biomarker EVs of
Clinical Relevance
The potential uses of EVs as biomarkers is exciting but
caution is needed as there are many different methods of
isolating, detecting and using EVs in cancer detection and
treatment (307, 308). This immediately highlights the need
for methodological standardization for EV assessment and its
introduction into routine pathology laboratories, in order to
achieve reproducibility and clinician confidence in the data.
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Secondly, the assessment methodologies require determination
of the level of sensitivity, and the false discovery rate, as these
are important for accurate clinical use (309, 310). Detection
of proteins can be problematic unless there are high quality
monoclonal antibodies for affinity methods, whereas nucleic acid
is easily quantified with high degree of accuracy. Furthermore,
EV isolation methods and detection efficiencies are integrally
linked, because the EV isolation method can impact on EV
phenotype and cargo detection capabilities (311). This is partly
due to inherent heterogeneity of the EVs in the starting
biological sample, and the remaining sample heterogeneity after
EV purification [see Table 3 and 4 in (310)]. Traditionally,
centrifugation-based methods have been used for EV isolation
in research settings. However, the type of centrifuge (with fixed
or swinging bucket rotors), the centrifugation matrix/medium,
centrifugation speed and time, influences the quality of the
EV isolation [thoroughly reviewed in (312)]. The viscosity
of the starting sample (and hence both the sample and
centrifugation temperature) also impacts on centrifugal methods
(313). Step-wise density centrifugation and ultrafiltration offers
some improvements (314), including the capacity to add artificial
standards, but density gradient centrifugation is time-consuming
and has limitations in laboratory scale up (312). Other methods
for EV isolation include size-exclusion chromatography, or
polymer-based precipitation especially by substances such
as polyethylene glycol and sodium chloride or commercial
products. The number of methods highlight the difficulties in
standardization for EV preparation, and several groups are
now reporting optimized isolation methodologies based on
the biological sample type and the intended EV use (315),
including EV isolation for miRNA or protein profiling (316, 317).
Furthermore, given the known presence of specific molecules
in certain EVs, immuno-affinity-based methods are also now
common, with both “positive” or “negative” affinity selection
methods available, offering high selectiivity and high purity
(318, 319). The advantage of the immune-affinity approach is
that EV particle size heterogeneity is no longer an issue; any
particle with the antibody-targeted molecule can be purified. One
disadvantage, however, is that not all EVs produced from a cancer
may express the designated isolation marker(s), such that certain
useful EVs will be lost by antigen-specific immune-affinity based
isolation procedures [reviewed in (312)].

Additional innovative methods of EV detection and
characterization include various microfluidic (e.g., “lab-on-
chip”) approaches that allow for efficient molecular capture
and quantification from relatively small volumes of circulating
exosomes (320). Indeed, EVs can now be detected even as
little as one microliter of patient plasma, which is achieved by
coupling antibody-conjugated gold nanospheres and chip-based
microfluidic technology (321). In this regard innovative nano-
plasmonic sensors (322), or tunable-resistive pulse sensing have
been developed (323) and a nanoplasmon-enhanced scattering
assay has been successfully applied to staging tumor progression
and therapy responsiveness (324). However, despite these
successes, there is still the significant problem that few detection
assays incorporate biological reference materials - required
for inter-laboratory standardization. It is currently possible to

produce an EV reference material from synthetic sources, such
as liposomes; these can be relatively easily prepared to a desired
size by either ultrasonication or polycarbonate filtration (310).
EV reference material can also be produced from naturally
occurring biological sources such as mammalian erythrocytes
(310). Various biological reference materials are currently being
investigated for diagnostic assay purposes [for a recent review on
this topic see (310)]. Hence, despite the available technologies to
detect EVs, there is a clear need to establish assay performance
quality control and “best-practice” for clinical laboratory EV
detection and quantitation.

Challenges in Using Therapeutic EVs
One of the earliest applications of EVs in cancer was the
use of dendritic cell secreted exosomes. The idea is that
cancer-peptide-loaded major histocompatibility together with
co-stimulatory molecules born by exosomes confer EVs with
the properties required for use as a cancer vaccine (299).
Their size, structure, cargo, and mode of recipient cell uptake,
make EVs prime vehicles to induce antigen cross-presentation
to enhance tumor antigenicity (55). Pre-clinical mouse tumor
studies showed efficacy of dendritic cell EVs, and now a number
of human clinical trials are underway [(308, 325, 326) see
Table 2]. Nevertheless, one of the limitations of using therapy
EVs is obtaining sufficient quantities i.e. of tissue- or disease-
specific, and functionally intact, preparations of EVs from body
fluids. Even the relative abundance of urine as an EV bio-
fluid source has a limit, and both patient and cell culture-
derived EVs need to be “defined,” measured, and determined
with high assurance for safe use in patients. Also, the use of
EVs as cancer vaccines, requires a priori the existence of true
immunogenic “cancer antigens” but these are usually not well
defined, if defined at all. The “antigen” might constitute a re-
activated endogenous retroviral antigen or cancer-specific neo-
antigen. Whether cancer-EVs are pan-specific (i.e., for a selected
cancer type) or whether they must be individually identified
and isolated and used autologously, i.e., each individual patient,
currently remains unclear. Furthermore, the optimal mode of
EV delivery is also unclear in terms of achieving optimal clinical
outcomes; delivery might be via i.v. infusion (single or repeated
dose), or via an implanted medical device—for sustained release.
Indeed, optimal delivery will possibly depend on the setting in
which the EV vaccine is to be applied—an infectious disease, a
certain cancer type, a primary cancer diagnosis or a cancer re-
occurrence. On the other hand, the potential clinical use of tumor
EVs carries with it potential dangers because of certain cargoes.
For example, cancer cell derived EV can contain p-glycoprotein
that confers resistance to chemotherapy drugs (5, 151), and
certain EV cargo molecules enhance a tumor’s metastatic
characteristics (327, 328) (as discussed earlier). Clearly, therapy
EVs require careful evaluation prior to their use in cancer
clinical trials. Finally, in order to address the limited supply,
and the various safety issues, plants and various food substances,
including milk, have been investigated as a source of therapy
EVs (286, 329, 330). An advantage of this source of EVs is the
ease of scalability for clinical production. However, there is also
the capacity to produce engineered EVs for specific purposes
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[recently reviewed in (331)], e.g., cancer chemotherapeutic agents
such as paclitaxel and taxol can be easily incorporated into EVs
(332). Finally, EV engineering has demonstrated the possibility
to load the EV with a biosensor agent for sensitive in vivo
monitoring to track EV bio-distribution (333).

CONCLUSIONS

A vast repertoire of proteins and nucleic acid molecules
are present within EVs and this reflects the broad potential
of EV as therapeutic and diagnostic (and/or prognostic)
agents. With the value of more precise analysis technologies,
our understanding of the biological interactions of EVs for
intercellular communication is rapidly expanding. This new
knowledge has high relevance and high value for the use of EVs in

cancer, including for innovative, even patient-specific “designer”
cancer treatments. These developments offer the promise ofmore
specific, less toxic, high-efficacy cancer treatments, especially in
this era of personalized medicine.
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