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Abstract— Physical Human-Robot Collaboration (pHRC) is
about the interaction between one or more human operator(s)
and one or more robot(s) in direct contact and voluntarily
exchanging forces to accomplish a common task. In any
pHRC, the intuitiveness of the interaction has always been
a priority, so that the operator can comfortably and safely
interact with the robot. So far, the intuitiveness has always
been described in a qualitative way. In this paper, we suggest
an objective way to evaluate intuitiveness, known as prediction
error negativity (PEN) using electroencephalogram (EEG). PEN
is defined as a negative deflection in event related potential
(ERP) due to cognitive conflict, as a consequence of a mismatch
between perception and reality. Experimental results showed
that the forces exchanged between robot and human during
pHRC modulate the amplitude of PEN, representing different
levels of cognitive conflict. We also found that PEN amplitude
significantly decreases (p < 0.05) when a mechanical resistance
is being applied smoothly and more time in advance before an
invisible obstacle, when compared to a scenario in which the
resistance is applied abruptly before the obstacle. These results
indicate that an earlier and smoother resistance reduces the
conflict level. Consequently, this suggests that smoother changes
in resistance make the interaction more intuitive.

I. INTRODUCTION

Human beings are highly adaptable and empowered by
intellectual skills. On the other end, robots feature mechan-
ical power and follow mathematical models that lead to a
controlled behavior. When human and robot work together,
the result is a confluent human-robot system that incorporates
the strengths of both, but also add complexity and safety
challenges. Collaborative robots are also referred as cobots
[1].

There are several ways that robots and humans can interact
with each other. Physical Human-Robot Interaction (pHRI)
happens when a human and a robot are in physical contact.
This pHRI can have a wide range of scenarios. The nature
of the contact and the collaborative task can help define
a more specific scope. This paper focuses on the physical
Human-Robot Collaboration (pHRC) scenario in which a
human operator and a robot are in contact (direct or through a
rigid body) and voluntarily exchanging forces to accomplish
a collaboration task. The human is fully or partially in control

1Stefano Aldini, Marc Carmichael and Dikai Liu are with the Centre
for Autonomous Systems, Faculty of Engineering and Information Technol-
ogy, University of Technology Sydney, 81 Broadway, Ultimo NSW 2010,
Australia stefano.aldini@uts.edu.au

2Ashlesha Akella, Avinash K Singh, Yu-Kai Wang and Chin-Teng
Lin are with the Centre for Artificial Intelligence, School of Soft-
ware, Faculty of Engineering and Information Technology, University
of Technology Sydney, 81 Broadway, Ultimo NSW 2010, Australia
avinash.singh@uts.edu.au

of the robot motions. It includes applications with the physi-
cal contact happening by means of haptic devices or objects
that are being manipulated, and with continuous exchange
of forces. Examples of pHRC with industrial robots include
a cobot for material handling [2], a human-robot system
for homokinetic joint assembly [3] and a wearable robot
tested for lifting and holding tasks [4]. Another application
of pHRC is rehabilitation robotics. Examples include a robot
for hand rehabilitation [5], a lower-limb exoskeleton [6] and
an exoskeleton to rehabilitate shoulder and elbow [7]. Figure
1 shows an example of an application involving pHRC, with
an operator controlling a robot in a collaborative task. In
this case, the operator is in physical contact with the handles
mounted on the robot end-effector. The operator moves the
robot through exchanged forces.

Fig. 1. An example of a pHRC application, with a human operator
physically controlling a robot manipulator.

In pHRC applications, the human normally controls the
robot through exchanged forces that are transformed into
robot motions. Force-based controllers, such as impedance
and admittance controls and their variants are normally used
in this type of application [8]. The impedance, or admit-
tance, of the human-robot system gives information about
how forces are rendered into velocities. Often, the robot
motion is also affected by other factors, such as collision
and singularity avoidance and assistive strategies ([9], [10],
[11], [12], [13]). Accounting for these factors means that
motions of the robot are not solely dictated by the force
interactions of the operator, but also by the result of the
implemented strategies. Consequently, the human operator
usually feels a variable mechanical resistance throughout
the robot workspace. Usually, the resulting resistance is
empirically adjusted based on factors such as smoothness
and intuitiveness.



The lack of a clear relationship between mechanical re-
sistance and intuitiveness makes a rigorous mathematical
approach impossible. In the literature, most of the pHRC
studies claiming an intuitive interaction do not try to assess
its intuitiveness. The few studies that addressed the intuitive-
ness, did it in a subjective way through surveys or verbal
questions, such as [14].

Intuitiveness can be defined as the ability to know or
understand things without rational thought. Bastick [15]
describes it as a cognitive process based on previously per-
ceived information, thus experience. In fact, intuition is based
on the human internal models and the ability of the person
to predict. Consequently, we can define that the intuitiveness
of an operator controlling a robot is proportionally related
to how easily they can predict its behavior. Experience and
training usually translate in tasks feeling more natural and
intuitive to the user. The level of intuitiveness of a robot
should however be independent of the operator’s experience.

Cognitive conflict is a phenomenon that can be the result
of a mismatch between perception and reality. The human
neuromotor control system uses internal models to contin-
uously predict actions and outcomes of a task. Cognitive
conflict happens when those internal models are proven
wrong, and, consequently, when expectations are not met.
This can be used as an indirect measure of intuitiveness.
Cognitive conflict can be represented by prediction error
negativity [16] detected in event related potential (ERP) [17]
using electroencephalogram (EEG) [18].

In the next section an overview of related works is
presented. Section III describes the approach used to detect
and extrapolate the cognitive conflict during pHRC and gives
insight of the robot control loop and how the mechanical
resistance is modeled. Finally the experimental setup and
results are presented and discussed.

II. BACKGROUND

The main challenges in pHRC are to ensure safety and
to have an intuitive interaction that can take full advantage
of the operator’s skills [19]. There are several possible
approaches to boost the interaction between human and
robot. One of them aims to close the gap between the human
and the robot by having a more natural flow of information.
A robot is aware of the state of the human operator through
its sensors. Biomedical devices that can measure physiolog-
ical parameters are becoming more reliable, less expensive
and user-friendly. Several research groups are looking into
integrating those devices to have an estimation of the human
state. During the interaction, galvanic skin responses can
be used to measure engagement [20] and comfort [21].
Devices to measure the heart rate are more common and
have been extensively used to measure the human state.
Examples are Rani et al. [22], Villani et al. [23] and Jelinek
et al. [24] that used it to estimate the psychological stress.
The heart rate is however affected by many factors, physical
and psychological. Combination of more than one biological
signal are used by Kulı́c and Croft [25], that used heart rate,
facial muscle contraction and skin conductance responses,

and Koenig et al. [26], that used heart rate, skin temperature
and skin conductance. Biomedical signals in pHRC are
mostly used to characterize the stress and comfort of the
user.

Electroencephalographs (EEGs) are devices that mea-
sure the electrical activity from the brain, using electrodes
placed on the scalp. The major advantages of EEG over
other neuro-physiological measurement devices are its non-
invasive nature, cost effectiveness, high temporal resolution
and the possibility to work in active motion. EEG has
been extensively used in cognitive science research [27] and
for designing Brain Robot Interaction (BRI) systems [28].
In recent years, EEG has been proven robust in detecting
specific features in the human state, such as prediction errors
during ongoing actions. Although prediction error due to
cognitive conflict has been investigated for a long time, only
few works have focused on ongoing prediction error. The
first case of research toward cognitive conflict was conducted
by Falkenstein et al [29]. In a bimanual-choice reaction
task, they found a feature in EEG signals known as error-
related negativity (ERN). Following this work, several other
researchers developed flanker tasks [30] to measure cognitive
conflict in different scenarios. Most of these tasks are based
on observational mismatch conditions on participants in a
passive state with limited motor movement. Recently, studies
that aimed to generate cognitive conflicts were conducted
in scenarios which involved active motor movement [16]
and found another EEG feature known as prediction error
negativity (PEN). Since PEN is not self-generated, the frontal
negativity is different from ERN and the resulting peak
is different from the observational error that appears at
approximately 300−400ms after a stimulus. Such cognitive
conflict for active motor movement are highly suitable for
real-world applications like pHRC.

Recently Salazar-Gomez et al. [31] and Ehrlich and Cheng
[32] used ERN during a human-robot interactive task. There
was however no physical interaction and the user was super-
vising the task performed by a robot in the first case, and
socially interacting in the second.

We propose that PEN can be used to adapt the robot
behavior and support the user during the interaction, rather
than using the brain activity to directly control the robot.
To do so, it is important to understand how the physical
interaction, in terms of forces, affects cognitive conflicts and,
consequently, intuitiveness.

III. EXPERIMENTAL METHOD

In pHRC, the interaction between human and robot is
mostly based on the force exchange and controls such as
impedance- or admittance-based controllers. Mechanical re-
sistance is often used as a way to guide the operator through
the robot workspace, and to encourage or discourage some
direction of motions. For example, a higher resistance can be
used to guide the user away from undesirable configurations
such as singularities and self-collisions. Since mechanical
resistance is not visible, and thus hard to predict, it affects
the intuitiveness of the human-robot interaction.



In our approach, we use a human-robot system to perform
a pHRC task. The operator will build an internal model of the
task with the perceived information. Randomly, the user will
experience a mechanical resistance opposing their motion.
Since the mechanical resistance is invisible, this will prove
wrong the human internal model previously created, causing
a cognitive conflict. This setup allows the relationship be-
tween the mechanical resistance and the resulting PEN to be
investigated.

A. EEG preprocessing

Raw EEG signals are filtered using a 1-Hz high-pass and
a 50-Hz low-pass finite impulse response (FIR) filter. Subse-
quently, the data is downsampled to 250Hz and independent
component analysis (ICA) [33] is applied. Independent com-
ponents (ICs) related to eye movement, muscle activity and
other noise are rejected using artifact subspace reconstruction
(ASR) [34] and automatic EEG artifact detection based on
the joint use of spatial and temporal features (ADJUST) [35].
Epochs are extracted from 500ms before the force stimulus
is applied to the user to 1000ms after the stimulus. In this
paper the force stimulus is represented by the mechanical
resistance.

Fig. 2. A 32-channel EEG cap used for experiment where the green
highlighted channel i.e. Fz has been used to extract PEN amplitude

B. Identification of cognitive conflict

Cognitive conflict is represented by PEN which is a
negative deflection in ERP happening around 150 − 250ms
in the frontal area of brain. Therefore, we focus on ERP in
Fz (see Figure 2), which is a mid-line frontal EEG channel.
The PEN peak is found by calculating the average of the
minimum peak happening in the time range of 150−250ms
with ±5 adjacent points in the extracted ERP.

C. Control system

An admittance control system is used to transform inter-
action forces into robot velocities. The scheme presented in

[36] is adapted for this specific application. The commands
to the robot are in terms of joint velocities and are calculated
using the inverse kinematic of the robot:

q̇ = J−1(q)ẋd (1)

With q̇ being the joint velocities of the robot, J being the
Jacobian matrix and ẋd the vector of desired velocities of
the robot end-effector in the Cartesian space. Because the
task uses only a small portion of the robot workspace, it
was possible to limit the robot motions to areas in which the
manipulator would always be in non-singular configurations,
so that the Jacobian matrix is always invertible. Thus, the
controller has no active singularity avoidance strategy, which
would induce unintended mechanical resistance. The desired
Cartesian velocities are calculated as follows:

ẋd = A(fH + fD − fR) (2)

With A the matrix containing the admittance gains, fH the
interaction forces exchanged with the operator, fR the force
responsible of the mechanical resistance and fD a force that
smoothen the velocities in the Cartesian space.

Fig. 3. The implemented admittance control.

In Figure 3 the block diagram of the implemented control
system is shown.

The force fD is described by:

fD = −Dẋr = −DJq̇ (3)

With ẋr being a vector containing the actual Cartesian
velocities of the robot end-effector, calculated multiplying
the Jacobian of the robot by the joint velocities. D is a matrix
of gains acting as a damper.

For this study, to reduce potential disturbances affecting
the operator and its mental state, the motion is limited to one
direction. The robot is free to move only along one axis of
the Cartesian space.

Position in the other directions and in orientation is
maintained using a basic P controller. If i is the direction,
and i = 1 is the direction of motion, the overall control
system can be summarized by:{

ẋi = A(f i
H + f i

D − f i
R), if i = 1

ẋi = KP (xi
d − xi

r), if 2 ≤ i ≤ 6
(4)

With KP = 0.2, expressed in N/m for i = 2, 3 and
N/rad for i = 4, 5, 6, as the proportional gains for the



position control. The desired Cartesian position of the i-th
direction is xi

d, and xi
r is the actual Cartesian position.

The force fR, responsible of the mechanical resistance, is
the result of Hooke’s Law:

fR = KRx̃ (5)

The stiffness KR is multiplied by x̃ which is the difference
between the position of the end-effector and a position
where the mechanical resistance is supposed to start. The
mechanical resistance is further described in Section IV.C.

IV. EXPERIMENTAL SETUP

A collaborative robotic system called ANBOT, was used
to perform the experiment. Figure 4 shows the ANBOT
system. It features a UR10 arm by Universal Robots [37]
and between the end-effector and the robotic arm, an ATI
mini-45 is used to measure the interaction forces and torques.
The operator is in physical contact with the robot through
handle bars mounted on the robot end-effector, as showed in
Figure 1. As mentioned above, only one direction of the robot
arm is enabled for this experiment. In fact, the operator can
move the robot only horizontally, parallel to the wall. The
use of a 6-degrees-of-freedom arm is justified by the will of
the authors to move this research to multi-dimentional tasks
in the next future.

Fig. 4. The ANBOT system.

A 32-channel wireless EEG system (Brain Product GmbH,
Germany) has been used. The placement of EEG system
electrode was consistent with the 10-20 international system
[38]. The contact impedance was maintained below 25kΩ
with a sampling rate of 500Hz.

Data were collected from four healthy participants, 3
male and 1 female between 27 and 33 years of age. This
experiment follows the procedure approved by the UTS
Ethical Committee with approval number ETH15-0038.

Each participant performed 4 sets of 125 trials (500 trials
in total), as detailed in Section IV-A. Two sets presented
a resistance starting right before the target or the obstacle,
while in the other two sets the resistance started earlier. The
4 sets were performed in random order.

Figure 5 shows one of the participants collaborating with
the ANBOT to perform the experiment.

Fig. 5. A participant running the experiment while his brain waves are
recorded.

A. The Swing Game

A game called the “Swing Game” was implemented to
build a repetitive task and is shown in Figure 6. It is mono-
axial, and as simple as possible to avoid giving too many
inputs to the user and to keep them focused on the task.

The blue circle represents the point the nozzle of the robot
is aiming at; from here on it will be referred as the cursor.
Three possible targets are available: center, left and right.
The current target, where the user is instructed to move
the cursor, is green, while the others are red. In order to
keep the user more engaged and to use both his hands, a
blasting scenario was emulated: holding pressed only the
back handle of the robot end-effector would move the robot
and the cursor, while holding pressed the front handle would
paint blue the area where the cursor is.

Fig. 6. The swing game. The red circles represent potential targets, the
green circle is the current target while the blue areas is where the user has
already blasted.

Because trials always start from the center, we will refer
to this as the starting point. One of the other two targets is
randomly turned from red to green. The user has 5 seconds
to reach the target otherwise the trial is reset and the center
target becomes green, to let the user know that they have to
go back.

With a probability of 40% an invisible obstacle is placed
halfway between the cursor and the target. This low proba-
bility was used to lessen the likelihood of operators creating
an internal model of where the obstacle was likely to be
encountered. This obstacle stops the motion of the robot and
consequently of the cursor. Since this obstacle is not shown
to the user, it causes a cognitive conflict: the operator will
keep aiming to the green target, but, unexpectedly, will not
be able to reach it. The robot will not move until the trial
time is over even if the operator reaches the obstacle or the



target.
The score displayed on screen is proportional to the blasted

area and inversely proportional to the distance from the target
when the time for the trial is over. It is only used to keep
the user slightly engaged in the game.

B. Mechanical resistance

The mechanical resistance is calculated in the projected
image space. Given Equation 5, the stiffness is set to KR =
0.5 and xr is transformed in xp, the point of the image aimed
by the nozzle of the ANBOT:

x̃ = xp − xs (6)

With xs being a point located before the target and the
obstacle. In two sets of trials, to have a sudden resistance,
xs is located 2.3cm before the obstacle and the target. In
the other two sets, to have a smoother resistance, starting
further away from the obstacle and the target, xs is positioned
9.2cm before the obstacle. KR and xs are set in a way to
have a clear difference between the different conditions. This
translates in the four conditions shown in Figure 7 and better
explained in the next section.

Fig. 7. The four conditions in the Swing Game.

V. RESULTS AND DISCUSSION

The total 2000 trials can be divided in four sets, given the
different conditions (Figure 7):

1) ‘Sudden Normal (Su-Nor)’: sudden force, without ob-
stacle;

2) ‘Sudden Obstacle (Su-Ob)’: sudden force, with obsta-
cle;

3) ‘Smooth Normal (Sm-Nor)’: smooth force, without
obstacle;

4) ‘Smooth Obstacle (Sm-Ob)’: smooth force, with ob-
stacle.

For sake of clarity, Normal conditions refer to trials
without an obstacle, while Obstacle conditions present the
invisible obstacle. The words Sudden and Smooth are used
to describe the used mechanical resistance. For example,
a Sudden Obstacle (Su-Ob) condition defines trials with a
sudden mechanical resistance and an invisible obstacle.

The average of the interaction forces in the direction of
motion for the four conditions are presented in Figure 8.
These forces are measured by the load cell mounted on
the robot. When a smooth resistance is applied the user
takes more time to reach the target (or the obstacle) when

Fig. 8. Interaction forces measured by the force/torque sensor in the
direction of motion for each condition. The curves are an average made
on all the trials with the same conditions.

compared to sudden resistance conditions. The interaction
force fH in (4) keeps increasing due to the resistance till
the operator reaches the obstacle or the target. Forces are
higher in case of smooth resistance due to the way fR
is modeled (5). Since the Obstacle conditions present an
invisible obstacle located halfway between the starting point
and the target, the related curves present a peak slightly
shifted on the left, when compared to the curves for Normal
conditions.

Fig. 9. Average of the ERP amplitude for each of the condition. The
zero-time corresponds to when the user enters the area with a mechanical
resistance.

Trials were grouped according to conditions and the ERP
computed for each set. The average of the ERP is calculated
using all the trials run by the different participants operating
in the same condition. The result are shown in Figure 9. For
the Sudden Obstacle condition it can be seen that there is a
significant (p < 0.05 using paired-sample t-test) negative
deflection around 200ms followed by a positive peak at
400ms, known as P300 and related to memory processing.
After a stimulus different from the expected one is received,
a P300 is generated to update the internal models [39]. The
ERP amplitudes of all the other conditions are comparable
to the baseline, relative to the time range going from -100ms
to 0ms. In this range the operator has not entered the area
where the mechanical resistance is applied.

As shown in Figure 10, the ERP amplitudes of a single
subject present a similar behaviour of the average, with
a clear negative peak in case of an obstacle with sudden
resistance.

We also investigated the PEN amplitude for all conditions
for each participant to make sure cognitive conflict is hap-



Fig. 10. ERP amplitude for each of the condition for a single partici-
pant. The zero-time corresponds to when the user enters the area with a
mechanical resistance.

pening at an individual level. As it can be seen from Table I,
for each participant, the PEN amplitude is significantly
higher (more negative) for Sudden Obstacle condition when
compared to Smooth Obstacle, Sudden Normal, and Smooth
Normal. These results further strengthen the concept that
PEN can be used to estimate the intuitiveness effectively
and objectively.

TABLE I
AVERAGE PEN AMPLITUDE FOR EACH PARTICIPANT ORGANIZED BY

CONDITION.

Participant PEN Amplitude (µV)

Su-Ob Sm-Ob Su-Nor Sm-Nor

S1 -1.0786 -0.0066 -0.2839 -0.6513

S2 -1.4791 -0.3895 -0.4473 -0.6795

S3 -1.7164 -1.0034 -1.1080 -0.4853

S4 -1.1466 -0.2015 -0.2420 -0.4035

Figure 11 shows the difference in amplitude of the ERPs
obtained in Normal conditions (without obstacle) from the
ones with the obstacle. The effect of the PEN around 250ms
becomes more prominent and significant (p < 0.05) in the
case of sudden resistance. In case of smooth resistance,
starting further away from the obstacle, the effect of the PEN
is negligible.

Fig. 11. Difference of the ERP amplitude between the conditions featuring
an obstacle and the ones without. The zero-time corresponds to when the
user enters the area with a mechanical resistance.

The results presented in Figure 9 and Figure 11 suggest
that the mechanical resistance modulates the PEN. In Smooth
Obstacle conditions, so with a wider, smoother resistance

around the invisible obstacle, the operator presented less
conflict in terms of PEN amplitude (less negative). On the
contrary, suddenly applied mechanical resistance results in
a more negative PEN (see Figure 12), thus in a greater
cognitive conflict.

Therefore, suddenly providing the operator with a sharp
resistance or abruptly interrupting the motion of a robot
during a pHRC task, creates a cognitive conflict. Since we
hypothesize cognitive conflict being a tool for estimating how
intuitive is the interaction, we conjecture that applying sud-
den resistance to the operator’s motion is counter-intuitive.

Fig. 12. ERP amplitude in case of sudden resistance and smooth resistance.

Consequently, results suggest that applying wider and
smoother resistive forces around undesired areas of the
workspace might reduce the level of conflict. This is probably
due to the fact that the operator is able to better predict the
change of conditions in the workspace is the robots starts
resisting the motion sooner and more gently.

VI. CONCLUSIONS
Achieving an intuitive interaction is the goal of most

systems in pHRC. Intuitiveness is however used as a sub-
jective feature of systems. Given that is possible to identify
PEN from EEG recordings, it is possible to quantify the
mismatch between predictions and reality. This can be used
as an estimation of intuitiveness. Since the interaction in
pHRC happens mainly through forces exchanged between
the operator and the robot, the behavior of these forces
greatly affects the whole interaction.

An experiment was designed to prove that the way me-
chanical resistance is designed in a robot workspace modu-
lates PEN. Results prove that a wider, smoother resistance
around an undesired area of the workspace helps the operator
predicting upcoming changes in the interaction. This may be
interpreted as a more intuitive interaction.

This opens possibilities for improving of control systems.
Having an on-line estimation of the intuitiveness can lead
to control systems that adjust the impedance of the robot
to achieve a given level of that intuitiveness. Also, having
an objective measure of system intuitiveness can be used to
guide the development of improved pHRC paradigms.
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