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Abstract
Aortic aneurysm segmentation remains a challenge. Manual segmentation is a time-consuming process which is not
practical for routine use. To address this limitation, several automated segmentation techniques for aortic aneurysm have been
developed, such as edge detection-based methods, partial differential equation methods, and graph partitioning methods.
However, automatic segmentation of aortic aneurysm is difficult due to high pixel similarity to adjacent tissue and a lack of
color information in the medical image, preventing previous work from being applicable to difficult cases. This paper uses
uses a variable neighborhood search that alternates between intensity-based and gradient-based segmentation techniques. By
alternating between intensity and gradient spaces, the search can escape from local optima of each space. The experimental
results demonstrate that the proposed method outperforms the other existing segmentation methods in the literature, based
on measurements of dice similarity coefficient and jaccard similarity coefficient at the pixel level. In addition, it is shown to
perform well for cases that are difficult to segment.

Keywords Abdominal aortic aneurysm · Computed tomography · Multi-layer segmentation · Iterative · Graph cut ·
Variable neighborhood search · Probabilistic model

Introduction

The aorta is the largest vessel in the human body. It is
tubular in shape, emanating from the heart in the chest and
passing into the abdomen to supply blood to all organs in
the body. Aortic aneurysm is a dilatation of the aorta, which
can cause rupture leading to death. Epidemiological studies
in the USA have revealed that abdominal aortic aneurysm
(AAA) is a disease of increasing incidence and mortality,
with major risk factors being hypertension, high cholesterol
and smoking [1, 2]. More than 10,000 people die from
rupture each year [3, 4]. While aortic aneurysm can occur
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in the thorax or abdominal area, rupture is more common in
the abdominal region [3].

The aorta is composed of inner and outer walls. The
normal diameter of the aorta is typically not larger than
30 mm, with a patient considered to have an aneurysm
when the absolute diameter is increased more than 1.5 times
of the normal diameter. In general, the maximum cross
section diameter (outer to outer wall) is related to risk of
rupture due to increased wall tension with increased radial
growth. The risk of rupture is defined to be high when the
maximum diameter is greater than 5.5 cm and the rate of
increase is more than 1 cm/year [5]. The peak wall stress
has shown more reliability to predict rupture and is highly
dependent on the aneurysm shape [6]. A 3D model of
aneurysm can be used to calculate peak wall stress. In the
literature, such models have been built using the segmented
aneurysm in medical images via manual, automatic, or
semi-automatic processes. However, manual delineation is
a time consuming process that requires more than an hour
for each case.

In addition, because of slow and turbulent flow, blood
clots or thrombus are commonly found in aneurysms
separating outer wall from inner wall. During aneurysm
growth, the outer wall expands and the thrombus formation
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progressively increases non-uniformly. For this reason, the
inner wall grows in non-uniform proportion to the outer
wall, making the outer wall difficult to segment.

Segmentation of the outer wall of AAA is particularly
challenging due to three main factors. First, in most of the
cases, the outer wall is not symmetric around the inner wall.
Since only hard structure is in the back of aorta (spine), the
aneurysm grows non-uniformly with turbulent flow inside.
Some areas have slower flow and develop thrombus lining
along the inner wall in that region. This is the reason the
outer wall is not always symmetric around the inner wall.
Second, the aorta may not always be oval shaped due to
the tortuosity and severity of disease, as shown in Fig. 1.
Third, there is a lack of color information and a high degree
of similarity between foreground (aorta) and background
(surrounding tissue).

RelatedWork

Various imaging modalities have been studied for visualiza-
tion of aortic aneurysm such as ultrasonography, computed
tomography (CT), and magnetic resonance imaging (MRI).
Algorithms for aortic wall segmentation can be divided
into three categories based on region (thoracic/abdomen),
disease (aneurysm/non-aneurysm) and imaging modality.
In previous studies, several segmentation algorithms [7–
11] were developed for thoracic aorta without aneurysm in
non-contrast and contrast enhanced CT. Xie et al. [7] pre-
sented an algorithm using anatomical location and cylinder-
tracking in non-contrast enhanced CT images of the thoracic
aorta. Isgam et al. [8] proposed multi-atlas-based segmenta-
tion for non-contrast CT images of thoracic aorta. Kurugol
et al. [9, 10] proposed an algorithm to detect the outer wall
contour of non-contrast enhanced CT images of thoracic
aorta, using anatomical location and circular Hough trans-
form followed by 3D level set segmentation. Raman et al.
[11] developed an algorithm to define the outer wall con-
tour of thoracic and abdominal aorta without aneurysm on
contrast enhanced CT images by using a minimum cost path
through the graph constructed of the pixels. It starts from the
inner wall contour and searches a 10-mm search space in the
surrounding area. The algorithm was designed for arteries in

patients without aneurysm because the 10-mm search space
was not sufficient to find the outer wall contour, whereas
a larger search space could have more chance to be con-
founded by other strong gradient structures such as bone or
bowel. The detection of the outer contour for the thoracic
region of aorta is not difficult because of the strong gradient
difference to the adjacent lung tissue and fat.

A number of studies have addressed segmentations of the
aorta with and without aneurysm on MR images [12–16].
Bustamante et al. [12] proposed atlas-based segmentation of
thoracic aorta inMR images obtained fromdifferent time frames
of the cardiac cycle. Herment et al. [13] proposed a 2D deform-
able surface model in the manually defined region of interest
for segmenting thoracic aorta in MR images. Automatic
and semi-automatic methods for qualifying wall thickness
of the aorta have also been proposed for MR sequences.
Adame et al. [14, 15] developed an algorithm to detect inner
and outer walls of thoracic aorta without aneurysm and
carotid arteries in high resolution MR images. Geographic
model-matching is used to find contours using the image
gradient information. Wang et al. [16] proposed outer wall
segmentation of AAA in MRI using a geodesic active
contour (GAC) related method by adding registration-based
and prior shape terms to the GAC formulation.

Aneurysm segmentation from CTA is much more
difficult than from MR because the CTA is density-based
imaging which is not as distinct as the tissue-based MR
images. It is well known that the difference between soft
tissues is typically clearer on MR than CT images. A
number of studies have addressed outer wall segmentation
of abdominal aorta on contrast enhanced CT images [17–
23]. Shum et al. [17] described a semi-automated algorithm
to define wall thickness in patients with AAA based on
intensity histograms and neural network segmentation of
contrast enhanced abdominal CT images. The outer wall
is segmented by the neural network trained on intensity
and texture based-features of the images. Shang et al. [18,
19] tracked the outer wall using a semi-automated method
by detecting isointensity contours in contrast enhanced CT
images of abdominal aorta. If isolines do not fully enclose
the outer wall boundary, the isolines are eliminated. de
Bruijne et al. [20] proposed outer wall segmentation of

Fig. 1 Examples of CT images
of aortic aneurysm in various
shapes. a Oval shape with
eccentric thrombus. b Round
shape with eccentric thrombus.
The dotted green line indicates
the outer wall and the solid red
line indicates the inner wall
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AAA in CTA by manual delineation in the first slice. Then,
automatic segmentation of subsequent slices was done
using statistical shape model from labeled training images,
followed by addition interactive manual delineation. Lee et
al. [21] proposed outer wall segmentation of AAA in CTA
by graph search based on triangular mesh with additional
manual control point. Olabarriaga et al. [22] proposed
outer wall segmentation of AAA in CTA using discrete
deformable model based on grayscale level information.
The grayscale level perpendicular to the boundary was
classified into inside, outside and boundary. Zhuge et al.
[23] proposed automated level set segmentation of outer
wall of AAA in CTA. This level set segmentation required
appropriate initial contour as a starting point. Combination
of lumen region and possible outer wall region were used to
estimate the initial contour. The possible outer wall region was
derived fromgrayscale level. It can be seen that these existing
methods [17–22] relied on manual processing. In contrast,
this paper investigates the segmentation of the outer wall of
AAA using a fully automated process in CTA images.

Main Contributions

This paper introduces a new method for detection of the
outer wall of AAA in CT angiography (CTA), which is
currently the most widely used imaging modality in patients
with suspected aortic disease, particularly in emergency
situations. Grayscale medical images are difficult to be
segmented with a single segmentation technique because the
pixel similarity between foreground and background objects
is very high. In the real situation, many difficult cases were
found, which are irregular shaped and abundant soft tissue
structures contacting to outer wall. The segmentation of
difficult cases is yet an open problem. Thus, this paper
focuses on the segmentation of outer wall of AAA in
both easy and difficult cases. Our solution is to use two-
layer iterative segmentation, alternating between intensity-
based and contour-based segmentation techniques. The
proposed approach of iteratively combining two different
segmentation methods is developed based on the concept
of variable neighborhood search (VNS) [24–26]. The basic
idea of VNS is to change the neighborhood structure when
one algorithm gets trapped in its own local minimum. The
second algorithm changes the neighborhood search space
to help escape from the local minimum. If the algorithms
are properly chosen, a local minimum of one is not a local
minimum for the other. In our case, we combine two greedy
search algorithms that are both seeking the same solution
but are searching in different spaces. By interleaving the
two segmentations, they are able to move beyond the local
minima and may reach the globally optimal solution. This
paper is the first to apply the concept of VNS to solve the
problem of grayscale medical image segmentation.

To help with the segmentation of grayscale images,
we also introduce a new intensity-based segmentation
technique, called graph cut with probability density function
(GCPDF). Conventional graph cut or GrabCut [27] is not
well suited to grayscale image segmentation because of
the lack of information provided by color to distinguish
foreground from background. For this reason, graph cut is
augmented with a probabilistic model of pixel intensity to
assist in discarding undesirable pixel intensities in grayscale
images. The contour-based technique applied in this paper is
graph cut based active contour (GCBAC) which detects the
boundary of an object depending on the gradient difference
of the adjacent pixels [28]. In each iteration, GCPDF is used
to partition the image using pixel intensity and GCBAC
is then used to find the closest boundary in the closed
space from the initial contour using pixel gradient. This
combination enables segmentation of the outer wall of AAA
with high accuracy. The proposed method particularly helps
in the case of outer wall contiguous with adjacent soft
tissue structures (bowel, psoas muscles) and irregular shape
of aneurysm. This study also creates and evaluates the
3D model of AAA using the 2D segmentation results of
multiple slices of CT image. The experimental results show
an improvement of average accuracy and less variability,
when compared with recent studies [18, 19] and existing
well-known segmentation techniques [17–22].

Methods

The image domain P is partitioned into three regions (as
shown in Fig. 2): the aortic lumen L, the blood clot or
thrombosis region B, and the background G. Thus, P =

Fig. 2 Image domain of aortic aneurysm: aortic lumen (l), blood clot
or thrombus (b), background (g). The boundary between L and B is
inner wall and the boundary between B and G is outer wall
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L ∪ B ∪ G. The boundary between L and B is inner wall
and boundary between B and G is outer wall. The function
L(p) = Lp : P→{0, 1} is used to define a region in any
image I , where 0 represents the background region and 1
represents the foreground object.

The proposed framework is shown in Fig. 3. The segmen-
tation process begins with segmentation of the L region,
which can be carried out with simple thresholding because
the injection of the contrast medium causes the L region to

Fig. 3 Illustration of the proposed framework including two layers of
iterative segmentation, composed of graph cut with probability density
function (GCPDF) and graph cut based active contour (GCBAC). The
input of the segmentation is dilatation of the inner wall of the aorta

have a uniform contrast enhancement. Then the inner wall
segmentation is carried out as the boundary of the L region.
The inner wall is then used as a starting point for the next
step of segmenting the outer wall. The inner wall is dilated
to provide the initial region to be searched for the outer
wall. The B region between inner wall and outer wall is
difficult to segment because it has a pixel intensity similar to
the surrounding soft tissue. We utilize the prior knowledge
that the intensity in the thrombus (B region) is often
homogeneous and located adjacent to the aortic inner wall.
We leverage this property by first using GCPDF to focus on
the segmentation of the area with intensity close to the mean
value LGC(p) : P→{0, 1}. The GCPDF is used in the first
layer of the segmentation because most of the background
pixels can be removed at this first segmentation step. This
will make the segmentation process faster. The GCBAC
is then used to deform the contour to the global optimum
(i.e., new contour) in the contour neighborhood LAC(p) :
P→{0, 1}. The iteration continues with using GCPDF for
the first layer segmentation and then GCBAC for the
second layer segmentation. The algorithm terminates when
the difference between current and previous segmentation
results is less than a threshold.

Preprocessing

Segmentation of the aortic lumen L is performed by
thresholding LT (p) : P→{0, 1}.

LT (p) =
{
1, if p ≥ thres

0, otherwise
(1)

where thres is the optimum threshold value for the aortic
lumen.

To remove small debris after thresholding segmentation,
the mathematical morphological operations by Minkowski
operation [29] including erosion and dilation are applied.
The output is the binary image of the aortic lumen. The
erosion of A by B is given by the expression [29]

A � B =
⋂
b∈B

A−b (2)

where A is a binary image and B is a structuring element
in elliptical shape. The dilation of A by B is given by the
expression [29]

A ⊕ B =
⋂
b∈B

Ab (3)

where A is a binary image and B is a structuring element in
elliptical shape.

The initial contour is mandatory input in the next step.
From the binary image of the aortic lumen, this region is
dilated to be the initial contour for the next process. Because
the outer wall is located beyond the inner wall, the inner wall
contour must be dilated to be the initial contour. The size
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of the dilatation is a function of the lumen size, which has
been segmented in the preprocessing step. Then the outer
boundary of the dilated label D is the initial contour for the
next segmentation.

|D| = α|L| (4)

where α is the dilatation factor

Graph Cut with Probability Density Function

Graph cut is widely used for image segmentation. Its max-
flow/min-cut algorithm is applied on the graph to partition
the nodes in graph into two groups. The primary data
structure for the algorithm is an undirected weighted graph
G = (V , E) composed of a set of nodes V and a set of
directed edges E. The nodes in V consist of image pixels
p ∈ P and two additional terminal nodes: a source s and
sink t added for processing of graph cut segmentation. The
source node s is used to represent the seed of the foreground,
while the sink node t is used to represent the seed o the
background. G = (V , E) is used for the max-flow/min-cut
algorithm in graph cut, as shown in Fig. 4.

A graph cut construction was first used by Greig et al. [30].
Then, Boykov et al. [31] used it to address segmentation
in grayscale medical images (e.g., bones and contrast-
enhanced kidneys). All pixels in the image are nodes in the
graph. Each node has eight n-links and two t-links. For the

segmentation process, seed points (i.e., the brushed region
in images) are needed to initially represent the foreground
and background regions. Pixel intensities at the seed points
are used to create the color model by using a Gaussian
mixture model (GMM). One model is used to represent
the foreground intensity distributions and another model
is used to represent the background intensity distributions.
Then, the likelihood to be a source (i.e., the foreground) and
likelihood to be a sink (i.e., the background) are computed
from these intensity distributions. The n-links are calculated
based on pixel intensity similarity. The conventional graph
cut algorithm is not well suited to grayscale medical images
because the GMMs of the foreground and background are
too similar.

To address this problem, we modify the traditional graph
cut by adding a probability density function to discard
or partition the pixels which have intensity significantly
higher or lower than the mean value. The probability density
function is used to model the pixel intensity of possible
foregrounds. The graph G(V, E) is constructed with pixels
in the region inside the initial contour (RI ). The edge weight
to the source node w(u, s) is assigned according to the
probability of the pixel intensity of node u to be a source
node using the probability density function. This is shown
in Fig. 5.

f (x, μ, σ 2) = 1√
2σ 2π

e
− (x−μ)2

2σ2 (5)

Fig. 4 Illustration of the graph structure of the graph cut segmentation.
a All pixels in the image represent nodes (u, v) in the graph having
weighted edges (wu,v) to adjacent nodes, weighted edges to source

(wu,s) and to sink (wv,t ). The minimum cut through the edges yields
a partition into two regions. b Two partitions where one is connected
to the source and another is connected to the sink

J Digit Imaging (2018) 31:490–504494



Fig. 5 Illustration of graph cut
with probability density
function. (A) Initial input
contour. (B) Graph construction
by all pixels inside the input
contour. (C) Graph cut
segmentation using
max-flow/min-cut algorithm.
(D) Output contour is outer
boundary of partitioning source
node

μ = 1

n

n∑
i=1

(xi) (6)

σ =
√√√√ n∑

i=1

1

n
(xi − μ)2 (7)

where x is the pixel intensity, μ is the mean intensity, σ 2

is the variance, and n is the number of pixels in the region
inside the initial contour except inner lumen. Then, the
pixel intensities are converted to the probability using the
probability density function. The edge weight to the source
node w(u, s) is the normalized probability ranging from 0
to 100, and then the corresponding edge weight of the sink
node w(u,t) is 100 − w(u, s).

The edge weight w(u, v) is assigned by measuring pixel
similarity between two adjacent pixels. The simple image
gradient map using standard deviation σ ′ in small local
region (3 × 3 pixels) is used to measure the pixel similarity,
with

σ ′ =
√

E[x2] − (E[x])2 (8)

where E[x] is the expected value of x. Then, w(u, v) is
the inverse normalized value of σ ′ so it ranges from 100
to 0. Simple 4-connectivity to neighborhood pixels is used
in the graph. The max-flow/min-cut algorithm is performed

to partition the graph. The output region of segmentation
RO = {p ∈ P |LGC(p) = 1} defines the region of
thrombosis inside the aneurysm. The outer boundary of RO

is the output contour for the next iteration. From the input
contour, the pixels inside the contour are represented by
each node in the graph, except the aortic lumen region (L).
The source and sink nodes are constructed. The weighted
edges from node to source, sink and adjacent pixel are
calculated. The air and bone regions are also removed pixel
by pixel from the graph. The max-flow/min-cut algorithm is
performed to partition the graph. The new label is updated
to the regions which are connected to the source node to be
the outer boundary, as illustrated in Fig. 6.

Graph Cut Based Active Contour

Graph cut based active contour (GCBAC) is active
contour segmentation of an object using graph cut as the
optimization tool [28]. In each iteration, the algorithm
deforms the initial contour to find the new contour, which
is the minimum cut in favor of a shorter boundary.
The objective of GCBAC, similar to the classical active
contour, is to find the boundary of the object. The classical
active contour, also called Snakes [32, 33], has several
disadvantages. For instance, Snakes uses a number of

Fig. 6 An example of graph cut with probability density function cor-
responding to the diagram in Fig. 5. a The initial contour for the
segmentation. b The label region with bone and air removal. For
the graph construction, each pixel in the region is represented by a

node in the graph. c The output label region of segmentation using
max-flow/min-cut algorithm. d The output contour of segmentation
corresponds to the outer boundary of c
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Fig. 7 Illustration of the graph
cut based active contour. (A)
Initial with input contour. (B)
Dilate input contour to contour
neighborhood. (C) Define outer
boundary as source nodes and
inner boundary as sink nodes.
(D) Graph cut segmentation
using max-flow/min-cut
algorithm to yield the output
contour

control points which may lead to unequal spacing or self-
crossing during contour deformation. In addition, several
parameters to control the Snakes algorithm are difficult
to determine. GCBAC is much more practical to find a
contour in a desired space or contour neighborhood (CN).
Beginning from initial contour, the GCBAC algorithm
iteratively dilates the contour to be CN and then finds the
new contour within the CN until the contour attains a global
minimum. This behavior is similar to Snakes but overcomes
some of its limitations. The cost function in GCBAC is
minimized by using graph cut. Each pixel in CN represents
each node in the graph and edge weight is assigned based
on the gradient difference to its adjacent pixels. To solve
the problem of global minimum contour within the CN, the
pixels on the outer boundary are assigned to be multiple
sources and the pixels on the inner boundary of CN are
assigned to be multiple sinks. The final contour is the
shortest path or max-flow/min-cut in the graph following
the concept of the graph cut (Fig. 7).

In the proposed method, the second layer of the
segmentation is based on the GCBAC. The output region
of segmentation RO = {p ∈ P |LAC(p) = 1} defines
the region of thrombosis inside the aneurysm. The outer
boundary of RO is the output contour for the next step of the
segmentation. From the input contour, the contour is revised
by removing air and bone regions before running GCBAC.
The GCABC is performed by dilating the contour into CN.
The node in the graph is constructed by using each pixel in

the CN. The max-flow/min-cut algorithm is performed to
find the shortest path in the CN and the new output contour
is updated, as illustrated in Fig. 8.

Experimental Results

This experimental study was approved by the institutional
review board of Siriraj Hospital, Mahidol University
(certificate of approval number: Si 584/2016). The data
was obtained from the radiology information system by
identifying patients on whom contrast enhanced CTA
was performed and who had AAA. In routine practice,
CTA is widely used in patients with suspected aortic
disease. The exclusion criteria were post open surgery,
post endovascular aortic repair, impending rupture, rupture,
intramural hematoma, dissection, mycotic aneurysm and
poor contrast enhancement of abdominal aortic aneurysm.
All CTA acquisition was performed with a 64-slice multi-
detector row CT scanner (Somatom Definition; Siemens
Medical Systems, Forchheim, Germany or Lightspeed CVT;
GE Medical Systems, Milwaukee, Wisconsin, USA). All
CTA acquisitions were performed with contrast medium
enhancement using non-ionic monomer iodinated contrast
medium. The images were reconstructed at 2.5-mm slice
thickness. The size of the matrix was 512 × 512 pixels.

The patients were categorized into two groups of ten
patients each. The first group contained easy cases for the

Fig. 8 An example of graph cut based active contour corresponding to
the diagram in Fig. 7. a The input contour of the segmentation. bDilate
contour to contour neighborhood for the graph cut segmentation. c

Label outer and inner boundaries of contour neighborhood to be source
and sink nodes, respectively. d Output contour of the segmentation

J Digit Imaging (2018) 31:490–504496



Fig. 9 Examples of segmentation results at three levels in each of four patients. (A–C), (D–F), (G–I), and (J–K) are groups of images at three
levels in the each patient. (X-i) are initial contours for the segmentation. (X-o) are resulted contours of corresponding (X-i) images

segmentation, while the second group contained difficult
cases for the segmentation. The easy cases were defined
as outer wall non-contiguous with adjacent soft tissue
structures (bowel, muscle, other soft tissues), round or
minimal oval shaped aneurysm (aneurysm aspect ratio ≤
1.2) and thin thrombus (thrombus thickness ≤ 2.5 cm). This
makes a clear boundary of the outer wall. The difficult
cases were defined as outer wall contiguous with adjacent
soft tissue structures, pronounced oval shaped aneurysm
(aneurysm aspect ratio> 1.2) and thick thrombus (thrombus
thickness > 2.5 cm). This is difficult partly because the
outer wall is in contact with other structures with low
gradient and intensity differences at the boundaries. For
each patient, five images were selected equally distributed
from the beginning to the end of the AAA. We fix
the window and level of the CT image for each case
at the preprocessing step. The window and level of CT
images ranged from 400–700 and 50–150 Hounsfield units,
respectively.The source images were converted to 8 bits
grayscale. In this experiment, the threshold for the aortic
lumen segmentation was manually set and fixed for each

case. The value of the initial dilatation factor α was set in
the range 2 − 4, depending on the size of the aneurysm.
This value was set once and used for all slices in each case.
The dilatation for CN in GCBAC was fixed to 8 pixels. The
algorithm was run on each image until the global optimal
contour was found, as shown in Figs. 9, 10, and 11.

Examples of initial contours and segmentation results for
easy and difficult cases are shown in Fig. 9. The segmen-
tation terminated after only a few iterations with the resulting
contour successfully reaching to the outer wall in easy and
difficult cases as shown in Fig. 10. The input, updated, and
output contours in each loop of the iterative segmentation
progressively converged to the outer wall (Fig. 11). For
most of the cases, the contour converged to the outer wall
within 10 iterations, which is fast compared with classical
active contour alone. The accuracy of the segmentation
result was quantitatively evaluated by comparing the
segmentation result with ground truth. Ground truth
segmentations were obtained by manual segmentation by
an experienced cardiovascular radiologist using the GNU
image manipulation program (GIMP version 2.8.18).
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Fig. 10 Examples of output contours in each iteration. (A-i) and (B-i) are the initial contours for the segmentation in different patients. (A-1) to
(A-7) and (B-1) to (B-7) are the output contours of corresponding 1st–7th iterations. (A-7) and (B-7) are the final output contours

The segmentation of contiguous image slices was obtained
in two easy and two difficult cases. The sub-selected slices
were from the level of renal to iliac arteries using original
1- or 1.25-mm slice thickness (150–200 slices for each
case). 3D reconstructions were generated for visualization
and data correlation, as shown in Fig. 14. Ground truth
segmentations were also obtained by manual segmentation
with the 3D slicer version 4.7.0.

The algorithm output was quantitatively compared with
ground truth using the dice similarity coefficient (DSC)

%DSC = 2|X ∩ Y |
(|X| + |Y |) × 100 (9)

and Jaccard similarity coefficient (JSC)

%JSC = |X ∩ Y |
|X ∪ Y | × 100 (10)

where X and Y are regions in an image, which is output from
automatic segmentation and ground truth, respectively.

The performance of the proposed method is shown in
Tables 1 and 2. For easy cases, the average DSC and JSC
are 94.69±3.54 and 90.11±5.97% , respectively. For dif-
ficult cases, the average DSC and JSC are 92.71±5.49
and 86.84±8.60%, respectively. The proposed method was
applied to all slices in each case. All methods shown
in Tables 1 and 2 were tested on our dataset, so direct
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Fig. 11 Examples of resulting images in each loop of the iterations.
The left column is the input contour. The middle column is output con-
tour of the first layer segmentation: graph cut with probability density

function (GCPDF). The right column is output contour of the second
layer segmentation: graph cut based active contour (GCBAC). Each
row represents each loop of the iteration

comparison can be made. It can be seen that the proposed
method significantly outperforms the other existing meth-
ods. In addition, for the 3D dataset segmentation of the
easy cases, the proposed method achieves average DSC
and JSC of 92.47 and 86.00%, respectively. While for the
3D dataset segmentation of the difficult cases, the pro-
posed method achieves average DSC and JSC of 90.11 and
82.03%, respectively. The average number of iterations used
for each image in the easy and difficult cases was 8.96
and 10.82, respectively. The minimum number of iterations
for any image was 4 and the maximum was 20. The aver-
age running time for segmenting each image was only 0.51
and 0.54 seconds (Intel Xeon E5-2697 v3 2.6GHz, 128 GB
RAM) for the easy and difficult cases, respectively.

In addition, Table 3 shows performance comparisons on
the outer wall segmentation of AAA. The methods shown in
Table 3 were tested on different datasets. The performance
of the proposed method is shown to be promising when
compared with the existing methods. The proposed method
is a fully automatic, while the others [17–22] are semi-
automatic. Also, the proposed method is shown to work
effectively for difficult cases, while the others do not.

Discussion

The experimental results show high segmentation accuracy
of the proposed method (Tables 1 and 2) in both easy (DSC
= 94.69±3.54%) and difficult (DSC = 92.71±8.60%)
cases. The segmentation results tend to slightly overestimate
the outer wall as compared with the manual ground truth
because of the strong gradient difference at the rim of
the outer wall (Fig. 12). But if the initial contour is
underestimated, it will shrink to the inner wall and fail to
find the outer wall.

The comparison between the proposed method and other
conventional segmentation methods is shown in Fig. 13,
Tables 1 and 2. The active contour without edges [34]
can detect the nearest object edge from the initial contour
but far from the outer wall, with rather low DSC and
JSC of 48.94±10.46 and 33.04±9.56%, respectively. The
distance regularized level set evolution (DRLSE) [35] is
more advanced than the classical active contour without
edges but can achieve only slightly better results with DSC
and JSC of 59.70±10.86 and 43.44±11.47%, respectively.
Wang et al. [16] reported the accuracy of DRLSE on their

Table 1 Quantitative evaluation of aortic aneurysm segmentation compared with standard reference (ground truth) using dice similarity coefficient
(DSC), based on our dataset. AC = active contour without edges, DRLSE = distance regularized level set evolution, GC = graph cut, GCBAC =
graph cut based active contour, GCPDF = graph cut with probability density function

The proposed method AC [34] DRLSE [35] GC [27] GCBAC [28] GCPDF

Easy case 94.69±3.54 52.24±9.84 59.92±10.54 68.71±19.35 64.86±16.83 66.23±11.51

Difficult case 93.37±5.45 48.94±10.46 59.48±11.17 70.12±14.63 64.26±16.33 63.62±12.00

Mean 93.60±4.97 50.59±10.24 59.70±10.86 69.48±16.87 64.53±16.49 64.81±11.80
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Table 2 Quantitative evaluation of aortic aneurysm segmentation compared with standard reference (ground truth) using jaccard similarity
coefficient (JSC), based on our dataset. AC = active contour without edges, DRLSE = distance regularized level set evolution, GC = graph cut,
GCBAC = graph cut based active contour, GCPDF = graph cut with probability density function

The proposed method AC [34] DRLSE [35] GC [27] GCBAC [28] GCPDF

Easy case 90.11±5.97 35.99±9.70 43.64±11.53 55.62±23.01 50.12±17.75 50.62± 13.28

Difficult case 87.99±6.24 33.04±9.56 43.24±11.41 55.88±17.34 49.44±17.91 47.77±12.96

Mean 88.33±7.67 34.53±9.69 43.44±11.47 55.77±20.02 49.75±17.76 49.06±13.13

datasets with a DSC value of 55.56%, which is similar to its
accuracy to our dataset (59.70%).

The classical graph cut can partially detect the outer
wall, but other similar intensity pixels in the background
are also included. It has DSC and JSC of 69.48±16.87 and
55.77±20.02%, respectively. The result of GCBAC alone
has DSC and JSC of 64.53±16.49 and 49.75±17.76%,
respectively. The result of GCPDF alone is similar to the
conventional graph cut and GCBAC, with DSC and JSC of
64.80±11.80 and 49.06±13.13%, respectively. Among the
existing segmentation methods, the conventional graph cut
shows the best result. This is because the pixel intensity
is useful information for the grayscale segmentation.
However, none of the individual segmentation methods is
sufficiently accurate in detecting the outer wall for clinical
diagnostic purposes.

In fact, the classical active contour or GCBAC works
well if the initial contour is close to the object, but this
is not possible to achieve in practice. The addition of
GCPDF solves this problem since the GCPDF is able to
remove unwanted pixel intensity by using its simple prob-
ability model. GCPDF brings the contour close enough to
the object (Fig. 6) that GCBAC is then able to find the bound-
ary (Fig. 8). Our proposed method was also successfully
implemented in contiguous CT slices for 3D model recon-
struction. The branching iliac arteries are not a limitation for
the proposed segmentation technique (Fig. 14).

Previous studies [16, 20, 22, 23] performed 2D
segmentation for each slice of contiguous CT images and
then used these to construct a 3D model. The most effective
recent method of AAA segmentation [16, 23] is based on
active contour such as geodesic active contour or level set.
Zhuge et al. [23] proposed level set segmentation of outer
wall AAA in CTA. This level set segmentation required an
appropriate initial contour as a starting point. Information
of known lumen region and possible outer wall region were
used to estimate the initial contour. The possible outer wall
region was derived from grayscale level. They reported high
accuracy of segmentation (95.3%). However, the method
required a grayscale level map to generate the initial
contour, in which the neighbors connecting to the structure
with pixel intensity similar to aneurysmal thrombus were
identified as the possible region. If the impossible region has
overlap with the aneurysm, it results in missed detection.
In our experiment, it is shown that if the initial contour is
close to the outer wall, the level set or active contour seems
to get the best result. For this reason, it requires a complex
algorithm to get the most appropriate initial contour for
unknown outer wall.

Wang et al. [16] proposed outer wall segmentation of
AAA in MRI using a geodesic active contour (GAC)
related method by adding registration-based and prior shape
terms to the GAC formation. They reported high accuracy
of the segmentation with DSC value ranging from 84.16

Table 3 Summary of previous and this studies on detection of outer wall of abdominal aortic aneurysm. The methods are tested on different
datasets. More details are provided in the discussion section

Detection method Dataset Method Number of test cases Accuracy (%DSC) %Error

de Bruijne [20] CT Active shape model with 23 95.8% 3.5–3.9%

intervene manual contour

Olabarriaga [22] CT Discrete deformable model 17 95.0% (82.8–96.8%) 0.4–24.1%

Zhuge [23] CT Level set with morphological 20 95.3% (92.9–97.5%) 0.04–7%

based initial contour

Lee [21] CT Graph search-based with manual 9 No DSC reported (success in –

control point 4 cases from the total of 9 cases)

Wang [16] MR Registration based geodesic active 19 89.79% (85.35–93.24%) 2.46%

contour

The proposed method CT GCPDF+GCBAC 20 93.61% (79.09–98.40%) 4.78%
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Fig. 12 Quantitative evaluation of segmentation: The accuracy of the
segmentation algorithm is evaluated by comparison with manual seg-
mentation in easy cases (a) and difficult cases (b). The upper row
shows original images at five levels of the aorta for each case. The
middle row is overlayed contour image, corresponding to the upper
row. The cyan color contour represents manual segmentation and
the magenta color contour represents the result of the segmentation

algorithm. The lower row shows the areas of overestimation and under-
estimation of the segmentation algorithm: the green color region shows
the area of agreement between the algorithm and manual segmen-
tation, the red color shows the area of overestimation, and the blue
color shows the area of underestimation. The dice similarity coeffi-
cient for a and b is 96.69 and 90.94%, respectively. The jaccard similar
coefficient for a and b is 93.60 and 83.45%, respectively

to 92.27%. Since initialization with manual contour had
higher accuracy than automatic Hough circular transform
(DSC 90.37 vs 84.16%), they used manual delineation as
the initial contour in their experiments. The segmentation
result of GAC alone is strongly affected by the initial
contour. As previously discussed, results will be good only
if the initial contour is close to the foreground object. If
the initial contour is far from the object, GAC usually
gets trapped by adjacent tissue structure. The level set

or geodesic active contour is contour-based segmentation
composed of internal and external energies. The internal
energy represents continuity and smoothness of the contour,
whereas the external energy is based on image gradient. If
the initial contour was inside the aneurysm and the thrombus
was large, the final contour usually stopped inside the
thrombus. If the initial contour was outside the aneurysm,
the final contour was usually stopped at adjacent structures
which had stronger gradient difference.
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Fig. 13 Comparison of various segmentations in two different cases.
The upper row is a single easy case image and lower row is a sin-
gle difficult case image. Various segmentation methods are compared
with ground-truth (manual segmentation). Conventional active contour
(AC), distance regularized level set evolution (DRLSE) and graph-
cut based active contour (GCBAC) have similar result but GCBAC is

better. Conventional graph cut (GC) has better result in difficult case
and poor result in easy case. Graph cut with probability density func-
tion (GCPDF) using single color model has better result in easy case
as compared with GC, but the difficult case is worse. Combination
of GCPDF and GCBAC has excellent result compared with the other
methods and ground-truth

Shang et al. [18, 19] measured the wall thickness of
AAA in CT images. They performed simple outer wall
segmentation by subsequent growing an isoline from the
inner wall. The outer wall was obtained when the isoline

found a large change in intensity reflecting the transition
from aorta to surrounding soft tissue. This algorithm has
the limitation that if the outer wall is contiguous with
adjacent isointensity structures (bowel, muscle, soft tissue)

Fig. 14 3D reconstruction of
serial 2D segmentations
compared with ground-truth.
a–c An example of easy case
with DSC 93.04%. d–f An
example of difficult case with
DSC 91.55%
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or aortic wall calcification is present, it usually fails to
find the outer wall. They compared aortic wall thickness
in 16 aortic surgical specimens with CTA images. The
results showed high correlation between image-based and
pathologic measurement of wall thickness (R = 0.935) in
93.5%. But the error is still high, ranging from − 12.6 to
12.0%.

A number of approaches have made use of partial
manual guidance. de Bruijne et al. [20] proposed a method
for outer wall segmentation based on active shape model
with manually labeled training images. The first slice
was segmented by manual delineation. The subsequent
slices were segmented automatically using statistical shape
model from labeled training images. Then additional
interactive manual delineation was used. Olabarriaga et
al. [22] proposed outer wall segmentation by discrete
deformable model based on grayscale level model. Manual
segmentation was required for training the classifier. They
reported high accuracy of the segmentation (95.0%), but
the error was still high (0.4–24.1%). The 3D segmentation
of outer wall was proposed by Lee et al. [21] by a graph
search approach based on triangular mesh. They reported
successful segmentation in 4 of 9 cases. Manual intervention
was still required in the rest of the cases. Shum et al.
[17] measured aortic wall thickness in CT images based on
the luminal and outer wall segmentation using commercial
software. The reported accuracy of luminal segmentation
was 92.5% (with error range of − 28.19 to 65.28%). They
did not report accuracy for the outer wall segmentation.
Based on the above discussion, this proposed method
achieves the comparable segmentation performance to the
previous methods [15, 16, 18]. However, they required
manual intervention from the user. In contrast, the method
proposed in this paper is fully automatic. This proposed
method is also shown to handle difficult cases and cover a
longer range of the aorta when compared to these existing
methods. However, these previous studies were made on
different datasets, which limits the possibility for direct
comparison. The time complexity of the proposed method
is determined by the complexity of the max-flow/min-
cut algorithm used. The complexity for the GCPDF and
GCBAC is O(n) and O(n1.2) [28], respectively, where n is
the number of nodes in the graph. Thus, the total complexity
of the proposed method is O(n1.2).

A limitation of our study is that the neighboring structure
with strong edge gradient (spine, bowel) induces the
segmentation result to slightly overestimated. For example,
in the case of outer wall connecting to the spine, the spine is
included in the search space and the segmentation result is
stopped at the edge of the spine. Another limitation is at the
transition zone between non-aneurysmal and aneurysmal
portions of aorta, there is too steep on surface of aneurysm
that produces very low edge gradient between outer wall and

adjacent structures. The segmentation result is infrequently
underestimated in this region.

Conclusion

This study has introduced a fully automated process for
detection of the outer wall of AAA by using the new concept
of VNS that iteratively combines two different segmentation
techniques, with one searching through intensity space and
the other searching through gradient space. The interleaving
combination of GCPDF and GCBAC showed high accuracy
for outer wall segmentation in both easy and difficult cases.
This novel proposed method for the outer wall segmentation
is a highly promising tool to reduce the time and effort to
evaluate AAA.
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26. Mladenović N, Hansen P: Variable neighborhood search. Comput
Oper Res 24(11):1097–1100, 1997

27. Rother C, Kolmogorov V, Blake A: Grabcut - interactive fore-
ground extraction using iterated graph cuts. In: ACM SIGGRAPH
2004 Papers, SIGGRAPH 2004, Conference Proceedings, 2004,
pp 309–314

28. Xu N, Ahuja N, Bansal R: Object segmentation using graph cuts
based active contours. Comput Vis Image Underst 107(3):210–
224, 2007

29. Ghosh PK, Haralick RM: Mathematical morphological operations
of boundary-represented geometric objects. J Math Imaging
Vision 6(2):199–222, 1996

30. Greig DM, Porteous BT, Seheult AH: Exact maximum a-
posteriori estimation for binary images. J R Stat Soc Ser B
Methodol 51:271–279, 1989

31. Boykov YY, JollyMP: Interactive graph cuts for optimal boundary
& region segmentation of objects in N-D images. In: Proceedings.
Eighth IEEE International Conference on Computer Vision, 2001.
ICCV 2001, vol 1, Conference Proceedings, 2001, pp 105–112

32. Kass M, Witkin A, Terzopoulos D: Snakes: Active contour
models. Int J Comput Vis 1(4):321–331, 1988

33. Maksimovic R, Stankovic S, Milovanovic D: Computed tomogra-
phy image analyzer: 3D reconstruction and segmentation applying
active contour models–’snakes’. Int J Med Inform 58-59:29–37,
2000

34. Chan TF, Vese LA: Active contours without edges. IEEE Trans
Image Process 10(2):266–277, 2001

35. Chunming L, Chenyang X, Changfeng G, Martin DF: Distance
regularized level set evolution and its application to image segmenta-
tion. IEEE Trans Image Process 19(12):3243–3254, 2010

J Digit Imaging (2018) 31:490–504504


	Outer Wall Segmentation of Abdominal Aortic Aneurysm by Variable Neighborhood Search Through Intensity and Gradient Spaces
	Abstract
	Abstract
	Introduction
	Related Work
	Main Contributions

	Methods
	Preprocessing
	Graph Cut with Probability Density Function
	Graph Cut Based Active Contour

	Experimental Results
	Discussion
	Conclusion
	Acknowledgments
	References


