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User Cooperation in Wireless-Powered Backscatter
Communication Networks

Bin Lyu, Dinh Thai Hoang, and Zhen Yang

Abstract—In this paper, we introduce new user-cooperation
schemes for wireless devices in a wireless-powered backscatter
communication network with the aim to improve communication
and energy efficiency for the whole network. In particular,
we consider two types of wireless devices which can support
different communication modes, i.e., backscatter and harvest-
then-transmit (HTT), and they can cooperate to deliver the
information to the access point. To improve energy transmission
efficiency for the devices, energy beamforming is deployed at the
power beacon. We then formulate the weighted sum-rate (WSR)
maximization problem by jointly optimizing time schedule, power
allocation, and energy beamforming. Due to the non-convex issue
of the optimization problem, we employ the variable substitutions
and semidefinite relaxation (SDR) techniques to obtain the
optimal solution. Simulation results show that the proposed
cooperation framework can improve up to 33% communication
efficiency compared with non-cooperation approach.

Index Terms—Energy harvesting, backscatter communication,
user cooperation, energy beamforming.

I. INTRODUCTION

Wireless power transfer (WPT) has been considered to be

a promising way to supply wireless devices with sustain-

able energy. In a wireless-powered communication network

(WPCN), wireless devices can first harvest energy from a

power beacon (PB), and then transmit their information to

the dedicated access point (AP) following the harvest-then-

transmit (HTT) protocol [1]. In [2], [3], user cooperation

was applied in WPCNs to enhance system performance by

exploiting cooperative diversity. However, since both devices

in [2], [3] are the HTT devices, the dedicated energy harvesting

(EH) phase is required, which may reduce the duration of the

information transmission (IT) phase.

Recently, backscatter communication (BackCom) has been

introduced as a novel communication method for IoT net-

works [4]. The BackCom device transmits information to

the AP by modulating and reflecting the incident signals,

which requires less circuit power consumption and makes

its instantaneous harvested energy be sufficient to power its

circuit operation [5]. Hence, the dedicated EH phase is not

necessary, which avoids the limitation of the HTT proto-

col. However, one of the limitations of BackCom is that if

the incident signal is unavailable, information backscattering

(IB) is impossible. To fully exploit the advantages of both

the HTT and BackCom, BackCom has been introduced in

WPCNs [6], [7], where each device can choose to operate
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in either the HTT or BackCom mode. However, IoT devices

are energy-constrained and functionality-constrained devices,

the backscatter and energy harvesting circuits and an adaptive

switch required to support the HTT and BackCom modes may

not be available in practice. Hence, the assumption that the

devices can support both the two modes may not be practical.

Furthermore, both user cooperation and energy beamforming

are not considered in these works, hence the communication

and energy efficiency can not be maximized.

In this paper, we introduce two user cooperation schemes

for the WPCN with BackCom with the aim to optimize

communication and energy efficiency for the network. In

particular, we consider two wireless devices, denoted by HD

and BD, supported to operate in two different modes, i.e., HTT

and BackCom, respectively. We then consider two important

scenarios, i.e., the HD (BD) is located nearer the AP and

can be served as a relay node to assist the BD (HD) to

transmit information due to the low channel quality of the BD

(HD). For each scenario, we formulate the weighted sum-

rate (WSR) optimization problem by jointly optimizing the

time schedule, power allocation, and energy beamforming. To

deal with the non-convex issue of the optimization problem,

we first employ the variable substitutions and design the

optimal energy beamforming vector only for IB or information

forwarding (IF). After that, the energy beamforming matrix

is derived based on semidefinite relaxation (SDR) [11] for

the joint IB and EH which satisfies the rank-one constraint.

Simulation results then show that our proposed cooperation

framework can achieve up to 33% communication efficiency

than that of non-cooperation approach.

II. SYSTEM MODEL AND NOTATIONS

As illustrated in Fig. 1, we consider the WPCN with

BackCom, including a PB, an AP, and two devices, denoted by

HD and BD, supported to operate in two different modes, i.e.,

HTT and BackCom, respectively. The PB with stable power

supply has N antennas, and the two devices are with single

antenna. We consider two cases: (i) the HD is located nearer

the AP than the BD, and it can operate as a relay node,

and (ii) the BD is located nearer the AP than the HD, and

it can work as a relay node. Note that the relay node also

needs to deliver its own information to the AP. Moreover, we

assume the relay node decodes the information transmitted by

the other device more easily than the AP, which is useful for

cooperative communication [2]. The channel vectors between

the PB and the BD/HD/AP are denoted as h0,1, h0,2, and

h0,3, respectively. The channel variables between the BD-HD,
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(a) Case i. (b) Case ii.

Fig. 1: System model.

BD-AP, HD-AP, and HD-BD links are denoted as h1,2, h1,3,

h2,3, and g1,2, respectively. Denote the received signal and

signal-noise-ratio (SNR) at the BD/HD/AP during the p+1-th

phase for Case q as ym,p,q and γm,p,q , where m = bd, hd, ap,

p = 0, 1, 2, 3, and q = i, ii. The achievable rates of the BD/HD

for Case q is denoted by Rm,q . The system is considered within

a normalized transmission time block, denoted by T = 1.

A. Case i: the HD is located nearer the AP

In this case, we divide the transmission block into four

phases with duration denoted by τi (i = 0, · · · , 3), where∑3
i=0 τi ≤ 1. During τ0, the BD backscatters information to

the AP, while the HD harvests energy. Denote the transmitted

signal of the PB during τ0 as w0,i(τ) which is expressed

by w0,i(τ) =
√

Pŵ0,is(τ), where P is the transmit power

of the PB, s(τ) is a known sequence with unit power, and

ŵ0,i is the energy beamforming vector during τ0 and satisfies

| |ŵ0,i | |2 ≤ 1. The received signal at the BD during τ0, denoted

by u0,i(τ), is expressed as u0,i(τ) = hH
0,1w0,i(τ) + nan(τ),

where nan(τ) is the antenna noise. Denote the own signal

of the BD for Case i as ci(τ), which is modulated on

u0,i(τ) by controlling the reflection coefficient α0,i , where

E[|ci(τ)|2] = 1, α0,i is a complex coefficient and |α0,i |2 ≤ 1.

The received signal at the AP during τ0 is then given by

yap,0,i(τ) =
√

Pα0,ih1,3h
H
0,1ŵ0,is(τ)ci(τ)+h1,3α0,ici(τ)nan(τ)+√

PhH
0,3ŵ0,is(τ)+nap(τ), where h1,3α0,ici(τ)nan(τ) is the noise

backscattered to the AP,
√

PhH
0,3ŵ0,is(τ) is the interference

signal from the PB, nap(τ) represents the additive white

Gaussian noise (AWGN) with zero mean and variance σ2
ap .

The backscattered noise power is much smaller than that of

nap(τ) due to channel attenuation and is typically negligible.

Moreover, since the AP can also receive ŵ0,is(τ), the perfect

self-interference cancellation (SIC) technique1 is employed

to subtract the interference signal from yap,0,i(τ) [8]. The

SNR at the AP during τ0 is thus expressed as γap,0,i =
P |α0,i |2 |h1,3 |2 |hH

0,1ŵ0,i |2/σ2
ap . Similarly, the received powers

from the backscattered signal and noise at the HD are much

smaller than those of the PB and are negligible. Hence, the

harvested energy at the HD is given by Eh,i = ηP |hH
0,2ŵ0,i |2τ0,

where η is the energy harvesting efficiency.

During τ0, the direct IB rate from the BD to the AP

may be limited due to the energy beamforming tradeoff

between IB and EH and the far distance between the BD

and the AP. Hence, during the second and third phases, the

1 Generally, the interference can not be canceled completely. However, even
if there exists the residual interference after cancellation, the structures and
conclusions of the aftermentioned results will not be changed.

HD operates as a relay node to transmit IF of the BD,

where the HD first receives the backscattered signal and then

forwards it to the AP via decode-and-forward (DF) operation

following [2]. Since the transmitted signal at the PB during

τ1 only focuses on IB of the BD, we let the normalized

energy beamforming vector be ŵ1,i . The transmitted signal

is thus expressed as w1,i(τ) =
√

Pŵ1,is(τ). The backscattered

signal is received by both the HD and the AP, and SIC is

operated. The SNRs at the HD and the AP during τ1 are

respectively given by γhd,1,i = P |α0,i |2 |h1,2 |2 |hH
0,1ŵ1,i |2/σ2

hd

and γap,1,i = P |α0,i |2 |h1,3 |2 |hH
0,1ŵ1,i |2/σ2

ap , where σ2
hd

is the

noise power at the HD. During the third phase, the HD decodes

the received signal from the BD [9] and forwards it to the

AP. The forwarded signal received by the AP during τ2 is

expressed as yap,2,i(τ) =
√

P1,ih2,3ci(τ)+nap(τ), where P1,i is

the transmit power of the HD for IF, and the SNR is expressed

as γap,2,i = P1,i |h2,3 |2/σ2
ap . During the fourth phase, the HD

transmits its own information to the AP. Similarly, the SNR

at the AP during τ3 is expressed as γap,3,i = P2,i |h2,3 |2/σ2
ap ,

where P2,i denotes the HD’s transmit power for its own IT.
Based on the above analysis, the achievable rates of the BD

and the HD are expressed as Rbd,i = τ0 log2(1 + ξγap,0,i) +
min{τ1 log2(1 + ξγap,1,i) + τ2 log2(1 + ξγap,2,i), τ1 log2(1 +
ξγhd,1,i)} [10] and Rhd,i = τ3 log2(1 + ξγap,3,i), respectively,

where ξ is the performance gap due to the practical modulation

and coding scheme [1], [7]. Note that since there exists the

backscattered noise at the AP, the above expressions are the

approximation of the real transmission rate of the BD [5].

B. Case ii: the BD is located nearer the AP
In the second case, we divide the transmission block into

three phases with duration denoted by ti (i = 0, 1, 2), where∑2
i=0 ti ≤ 1. During the first phase, the HD harvests energy

and the BD backscatters information. Denote the normal-

ized energy beamforming vector, the own signal of the BD,

and the reflection coefficient during t0 for Case ii as ŵ0,ii ,
cii(t), and α0,ii , respectively, where E[|cii(t)|2] = 1 and

|α0,ii |2 ≤ 1. The harvested energy at the HD is given by

Eh,ii = ηP |hH
0,2ŵ0,ii |2t0. Similarly, the backscattered noise

is not considered and the SIC is adopted in this case.

The SNR at the AP during t0 is thus given by γap,0,ii =
P |α0,ii |2 |h1,3 |2 |hH

0,1ŵ0,ii |2/σ2
ap . During the last two phases,

the IT of the HD is transmitted by the BD. During the second

phase, the HD transmits its information to both the AP and

the BD based on the harvested energy, and the PB keeps idle.

The SNRs at the AP and the BD are thus given by γap,1,ii =
P1,ii |h2,3 |2/σ2

ap and γbd,1,ii = P1,ii |g1,2 |2/σ2
bd

, where P1,ii is

the transmit power of the HD and satisfies P1,iit1 ≤ Eh,ii , and

σ2
bd

is the noise power at the BD. During the third phase, the

PB is activated, and the BD can forward the information from

the HD to the AP via DF. The subsequent SNR after SIC

is given by γap,2,ii = P |α2,ii |2 |h1,3 |2 |hH
0,1ŵ2,ii |2/σ2

ap , where

ŵ2,ii is the normalized energy beamforming vector during t2,

α2,ii is the reflection coefficient during t2 and |α2,ii |2 ≤ 1.
Then, the achievable rates of the HD and the BD for Case

ii are given by Rhd,ii = min{t1 log2(1 + ξγap,1,ii) + t2 log2(1 +
ξγap,2,ii), t1 log2(1 + ξγbd,1,ii)}, and Rbd,ii = t0 log2(1 +
ξγap,0,ii).
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III. WEIGHTED SUM-RATE MAXIMIZATION

A. Case i

We first set the time and energy constraints for network

as follows: C1:
∑3

i=0 τi ≤ 1, C2: τi ≥ 0, ∀i, C3: P1,iτ2 +
P2,iτ3 ≤ Eh,i , C4: | |ŵ0,i | |2 ≤ 1, and C5: | |ŵ1,i | |2 ≤ 1. Then,

the optimization problem can be formulated by

max
ŵ0, i,ŵ1, i,Pi,τ

ω1Rbd,i + ω2Rhd,i

s.t. C1, C2, C3, C4, C5,
(P1)

where τ = [τ0, τ1, τ2, τ3], Pi = [P1,i, P2,i], ω1 and ω2
denote the nonnegative rate weights for the BD and the

HD, respectively. Problem P1 is not a convex optimization

problem because ŵ0,i , ŵ1,i , τ , and Pi are coupled with

each other. To solve P1, we introduce some new variables

and apply the SDR technique [11]. First, we introduce R̄bd,i ,

R̂bd,i , e0,i , and let e1,i = P1,iτ2, e2,i = P2,iτ3, Wi =

τ0ŵ0,iŵ
H
0,i . Hence, we have the following new constraints:

C6: R̄bd,i ≤ τ1 log2(1 + ξP |α0,i |2 |h1,3 |2 |hH
0,1ŵ1,i |2/σ2

ap) +
τ2 log2(1 + ξe1,i |h2,3 |2/(σ2

apτ2)), C7: R̄bd,i ≤ τ1 log2(1 +
ξP |α0,i |2 |h1,2 |2 |hH

0,1ŵ1,i |2/σ2
hd
), C8: R̂bd,i = τ0 log2(1 +

ξP |α0,i |2 |h1,3 |2e0,i/(σ2
apτ0)), C9: Rhd,i = τ3 log2(1 +

ξe2,i |h2,3 |2/(σ2
apτ3)), C10: e0,i ≤ Tr(h0,1h

H
0,1Wi), C11: e1,i +

e2,i ≤ ηPTr(h0,2h
H
0,2Wi), C12: Tr(Wi) ≤ τ0, C13: Wi � 0,

and C14: rank(Wi) = 1. Then, P1 is recast as

max
Wi,ŵ1, i,ei,τ,R̂bd, i,R̄bd, i,Rhd, i

ω1(R̂bd,i + R̄bd,i) + ω2Rhd,i

s.t. C1,C2,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,
(P2)

where ei = [e0,i, e1,i, e2,i]. However, Problem P2 is still not a

convex optimization problem due to the rank-one constraint

and the couple of τ1 and ŵ1,i . To handle this, we first

give the following proposition. Denote the optimal solution

for P2 as {W ∗
i , ŵ

∗
1,i, e

∗
i , τ

∗, R̂∗
bd,i
, R̄∗

bd,i
, R∗

hd,i
}, where e∗i =

[e∗0,i, e∗1,i, e∗2,i] and τ ∗ = [τ∗0, τ∗1, τ∗2, τ∗3 ].
Proposition 1. The optimal energy beamforming vector during
τ1 is given by ŵ∗

1,i = h0,1/| |h0,1 | |.
The proof of Proposition 1 can be done by contradiction

theory and is omitted due to the limited space. Then, based on

Proposition 1, C6 and C7 are recast as C15: R̄bd,i ≤ τ1 log2(1+
ξP |α0,i |2 |h1,3 |2 | |h0,1 | |2/σ2

ap)+τ2 log2(1+ξe1,i |h2,3 |2/(σ2
apτ2))

and C16: R̄bd,i ≤ τ1 log2(1 + ξP |α0,i |2 |h1,2 |2 | |h0,1 | |2/σ2
hd
),

respectively. With Proposition 1, P2 is still non-convex due

to the rank-one constraint. The SDR technique is an efficient

approximation technique to convert the non-convex problem

to a convex problem [11]. By relaxing C14 following SDR,

P2 is recast as follows:

max
Wi,ei,τ,R̂bd, i,R̄bd, i,Rhd, i

ω1(R̂bd,i + R̄bd,i) + ω2Rhd,i

s.t. C1,C2,C8,C9,C10,C11,C12,C13,C15,C16.
(P3)

Proposition 2. Problem P3 is a convex problem [12].

According to Proposition 2, the optimal solution for P3
can be solved by some standard optimization techniques. In

this paper, we use CVX tools [13] to derive the optimal

solution. The optimal power allocations are further given by

P∗
1,i = e∗1,i/τ∗2 and P∗

2,i = e∗2,i/τ∗3 . Then, we compute the

optimal solution ŵ∗
0,i from W ∗

i . Note that if W ∗
i satisfies

the rank-one constraint, ŵ∗
0 computed from W ∗

i /τ∗0 by eigen-

decomposition is the optimal energy beamforming vector

during τ0. Hence, we proceed to show that W ∗
i always has

the rank-one property in the following proposition.

Proposition 3. The optimal solution W ∗
i derived from P3 is

a rank-one matrix.

Proof. To show W ∗
i is a rank-one matrix, we first give the

following optimization problem.

min
Wi

Tr(Wi)
s.t. e∗0,i ≤ Tr(h0,1h

H
0,1Wi), Wi � 0,

e∗1,i + e∗2,i ≤ ηPTr(h0,2h
H
0,2Wi).

(P4)

Denote the optimal solution for Problem P4 as W †
i , which

is also a feasible solution for P3. The reason is that there are

more constraints in P3 than in P4, which guarantees that a

feasible solution for P3 is also feasible for P4. Hence, we can

derive that Tr(W †
i ) ≤ Tr(W ∗

i ) ≤ τ∗0 , which shows that W †
i

is a feasible solution for P3. Furthermore, since the objective

function of P3 is a function of ei , τ , R̂bd,i , R̄bd,i and Rhd,i ,

we can derive that {W †
i , e

∗
i , τ

∗, R̂∗
bd,i
, R̄∗

bd,i
, R∗

hd,i
} is also the

optimal solution for P3, i.e., W †
i = W ∗

i . According to the

theorem given in [[14], Theorem 3.2], we then show that W †
i

is a rank-one matrix. Since there exists an optimal solution

W †
i satisfying (rank(W †

i ))2 ≤ 2, we derive that W †
i � 0 is

rank-one. Hence, rank(W ∗
i ) = 1. �

B. Case ii

Similar to the first case, we add the following constraints:

C17:
∑2

i=0 ti ≤ 1, C18: ti ≥ 0, ∀i, C19: P1,iit1 ≤ Eh,ii ,

C20: |ŵ0,ii |2 ≤ 1, and C21: |ŵ2,ii |2 ≤ 1. Then, the optimiza-

tion problem for Case ii is formulated by:

max
ŵii,P1, ii,t

ω1Rbd,ii + ω2Rhd,ii

s.t. C17, C18, C19, C20, C21,
(P5)

where ŵii = [ŵ0,ii, ŵ2,ii] and t∗ = [t∗0, t∗1, t∗2].
Following the similar approach for Case i, Problem

P5 can be solved as follows. We introduce auxiliary

variables R̄hd,ii , e0,ii , e1,ii , and let e2,ii = P1,iit1,

Wii = t0ŵ0,iiŵ
H
0,ii . Then, we introduce the following

new constraints C22: t1 log2(1 + ξe2,ii |h2,3 |2/(σ2
apt1)) +

t2 log2(1 + ξP |α2,ii |2 |h1,3 |2 |hH
0,1ŵ2,ii |2/σ2

ap) ≥ R̄hd,ii ,

C23: t1 log2(1 + ξe2,ii |g1,2 |2/(σ2
bd

t1)) ≥ R̄hd,ii ,

C24: e0,ii ≤ Tr(h0,2h
H
0,2Wii), C25: e1,ii ≤ Tr(h0,1h

H
0,1Wii),

C26: Rbd,ii = t0 log2(1 + ξP |α0,ii |2 |h1,3 |2e1,ii/(σ2
apt0)),

C27: e2,ii ≤ ηPe0,ii , C28: Tr(Wii) ≤ τ0, C29: Wii � 0, and

C30: rank(Wii) = 1. Then, P5 is recast as:

max
Wii,ŵ2, ii,eii,t,Rbd, ii,R̄hd, ii

ω1Rbd,ii + ω2 R̄hd,ii

s.t. C17,C18,C21,C22,C23,C24,

C25,C26,C27,C28,C29,C30,

(P6)
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where eii = [e0,ii, e1,ii, e2,ii]. Denote the optimal solution for

Problem P6 as {W ∗
ii, ŵ

∗
2,ii, e

∗
ii, t

∗, R∗
bd,ii
, R̄∗

hd,ii
}, where e∗ii =

[e∗0,ii, e∗1,ii, e∗2,ii], and t∗ = [t∗0, t∗1, t∗2]. Similar to Case i, we can

derive the following Proposition 4.

Proposition 4. The optimal energy beamforming design dur-
ing t2 is given by ŵ∗

2,ii = h0,1/| |h0,1 | |.
Based on Proposition 4, C22 is rewritten as

C31: t1 log2(1 + ξe2,ii |h2,3 |2/(σ2
apt1)) + t2 log2(1 +

ξP |α2,ii |2 |h1,3 |2 |h0,1 |2/σ2
ap) ≥ R̄hd,ii . P6 is then reformulated

as P7 without considering C30.

max
Wii,eii,t,Rbd, ii,R̄hd, ii

ω1Rbd,ii + ω2 R̄hd,ii

s.t. C17,C18,C23,C24,C25,C26,C27,C28,C29,C31.
(P7)

It can be proved that P6 is a convex problem [12], hence the

optimal solution of which be solved by CVX tools [13]. Based

on the derived solution, the optimal power allocation is given

by P∗
1,ii = e∗2,ii/t∗1 , and the optimal energy beamforming vector

during t0 is derived from W ∗
ii/t∗0 by eigen-decomposition since

W ∗
ii is a rank-one matrix.

IV. SIMULATION RESULTS

In this section, simulation results are given to evaluate the

performance of the proposed schemes. The simulated network

topology is a 2-D plane, where the position of each node is

described with its coordinate (x,y). The coordinates of the PB,

the AP and the two devices are given as (0,10), (10,0), (0,0),

and (2,1), respectively. All channels are modeled following

Rayleigh fading with distribution CN(0, d−κ
m,n), where κ de-

notes the path-loss exponent and is set at 2, and dm,n is the

distance between two nodes m, n. We assume σ2
ap = σ

2
hd
=

σ2
bd
= −40 dBm, η = 0.7, |α0,i |2 = |α0,ii |2 = |α2,ii |2 = 1,

ξ = −5 dB [7], and N = 10. The proposed schemes under Case

i and Case ii are denoted as ‘proposed scheme i’ and ‘proposed

scheme ii’, respectively. The scheme that both devices are the

HD devices [3] and the non-cooperation schemes for Case i
and Case ii are used as the benchmark schemes.

Fig. 2a shows the WSR versus P with ω1 = ω2 = 0.5.

It can be observed that the results obtained by two proposed

schemes are superior to those of the benchmark schemes. This

is because the time of information delivery is extended since

the dedicated EH phases for both proposed schemes are not

required and user cooperation can enhance the system WSR.

Moreover, the WSR of the proposed scheme ii is larger than

that of i. This is because for the proposed scheme i, the channel

conditions of the BD for IB are worse and the harvested energy

of the HD are used for transmitting its own information and

forwarding the information of the BD, which limits the WSR.

While, for the proposed scheme ii, the channel conditions of

the BD for IB are better, and the harvested energy of the HD

is only used for its own IT. Hence, the proposed scheme ii
can achieve a larger WSR. Fig. 2b shows the effect of ω1
on the system WSR with P = 20 dBm. From Fig. 2b, we

observe that the WSR of the proposed schemes are larger than

those of the benchmark schemes, which shows the superiority

of the proposed schemes. Since changing ω1 can guarantee
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Fig. 2: Performance evaluation.

user fairness, we conclude that guaranteeing user fairness may

degrade the system WSR.

V. CONCLUSION

We have proposed two user cooperation schemes in the

WPCN with BackCom, where one device is the BD and

another device is the HD. We have considered two cases

in which either HD or BD is located nearer the AP and it

can serve as the relay node for another node in forwarding

information to the AP. Two WSR optimization problems have

been formulated to jointly optimize the time schedule, power

allocation, and energy beamforming vectors. Then, the variable

substitutions and SDR technique have been developed to ob-

tain the optimal solution. Finally, simulation results have been

provided to evaluate the efficiency of the proposed schemes.
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