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Abstract—A robot designed to climb truss structures such
as power transmission towers is expected to have adequate
tactile sensing in the grippers to identify a structural beam
member and its properties. Depending on how a gripper grasps
a structural member, defined as the Angle-of-Approach (AoA),
the extracted tactile data can result in erroneous identifications
due to similarities in beam cross-sectional shapes and sizes. In
these cases, further grasps at favourable Angles-of-Approach
(AoAs) are required to correctly identify the beam member
and its properties. This paper presents an information-based
method which uses tactile data to determine the next best AoA
for identification of beam members in truss structures. The
method is used in conjunction with a state estimate of beam
shape, dimension and AoA calculated by a Random Forest (RF)
classifier. The method is verified through simulation by using
data collected using a soft gripper retrofitted with simple tactile
sensors. The results show that this method can correctly identify a
structural beam member and its properties with a small number
of grasps (typically fewer than 4). This method can be applied
to other adaptive robotic gripper designs fitted with suitable
tactile sensors, regardless of the number of sensors used and
their layout.

Index Terms—Adaptive grasping, haptic glance, machine
learning, object classification, object feature extraction, soft
robotics, tactile sensors, transmission tower, truss structure.

I. INTRODUCTION

RUSS structures, such as power transmission towers (Fig.

la) are comprised mostly of extrusions of simple cross-
sectional shapes of varying dimension (Fig. 1b). A robot de-
signed to climb a power transmission tower is expected to have
appropriate tactile sensors in its grippers for safe and reliable
climbing and operation. Tactile sensing in the grippers is
crucial when considering the outdoor application environment,
as the robot will encounter many imperfect lighting conditions
for sensing with vision alone. In such scenarios, the sensory
modality of touch can be used to identify structural beam
members and their properties (such as cross-sectional shape,
dimension and grasping Angle-of-Approach (AoA)) during
climbing. Ideally, tactile data would be extracted by using the
most efficient method which can seamlessly integrate into the
climbing procedure. For this reason, a robotic “haptic glance”
approach [1] would be more practical than other methods such
as Exploratory Procedures (EPs) [2], [3].
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Previous work in object identification using a soft gripper
retrofitted with tactile sensors [4] showed that a single grasp,
commonly referred to as a haptic glance extracted unique
tactile data, or “tactile patterns” to identify a structural beam
member and its properties. Classification accuracies of ~95%
were directly related to the unique cross-sectional shapes of
beam members in the object set, which produced unique tactile
patterns during grasping. These results validated that simple
tactile sensors, such as Force Sensitive Resistors (FSRs), are
suitable sensors for this grasping application. However, in
some cases, a beam member could not be identified with
confidence using tactile data from a single haptic glance.
Uncertainty in the grasping AoA, cross-sectional shape or
dimension motivates the need for multiple strategic haptic
glances to extract sufficient tactile data to correctly identify
a beam member and its properties.

Naturally, the question that needs to be answered is how
to select the next best AoA for grasping to rapidly identify
the structural beam members. We answer this question by
developing an information-based method for selecting the next
best AoA (in a 2D plane) to identify a beam member and its
properties using raw tactile sensor readings alone. Without the
need for proprioception, this method can be applied to other
adaptive gripper designs (such as soft grippers) fitted with
suitable tactile sensors. As an example, this paper assumes
that an array of individual FSRs are used, however many
other analog tactile sensing options exist and could be used
in place of FSRs. In the proposed method, a trained Random
Forest (RF) classifier [5] provides an initial state estimate,
i.e. perceived beam member cross-sectional shape, dimension
and grasping AoA, after executing a single haptic glance and
collecting tactile data. If the result of this classification is
inconclusive, then the information-based method is used to
select the next best AoA. This method consults a database
of tactile data (obtained offline, also used to train the RF
classifier). Based on the current predictions, candidate AoAs
are generated and the next best AoA is determined as the
candidate AoA where the predicted tactile patterns have the
highest sum of variance (information score). Grasping at the
calculated next best AoA is expected to provide sufficient data
for unambiguous identification of the target beam member and
its properties. The proposed method is verified by performing
simulations with data collected using a soft gripper retrofitted
with FSRs.

The remainder of this paper is organised as follows. Section
II discusses the related state-of-the-art literature, with a focus
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towards touch based object identification methods by grasping
with soft robotic grippers. Section III describes an information-
based method to identify objects with similar cross-sectional
shape and dimension using tactile sensor data. Section IV
describes the grasping mechanism and sensors used, target
objects, data collection procedure and classifier training. Sec-
tion V presents the simulation results and details the method’s
performance in two case studies. Finally, section VI concludes
the paper and discusses future work.

(@) (b)

Fig. 1. (a) A power transmission tower in Melbourne, Australia, (b) Structural
beam member in the tower with cross-sectional shapes and sizes shown.

II. RELATED WORK

Literature relating to object identification and recognition
in robotics has predominantly focussed on vision sensing in
controlled, indoor environments. In practical outdoor settings,
however, many factors can reduce the reliability of vision
sensing. It can therefore be advantageous to use touch as
either a standalone or complementary sensory modality to
vision. Robotic touch-based object recognition has naturally
looked to mimic human EPs to extract as much information
about a target object as possible [6]. A multitude of sensing
configurations and hardware platforms can be combined with
data extraction techniques to recognise and identify objects.
Some methods use rigid robotic hands endowed with multiple
sensory modalities and the ability to perform multiple EPs
[7]-[14]. Whilst others focus on executing a single EP such
as contour following [15]-[17], or repeatedly probing a target
object to collect local “tactile images” [18]-[24]. Rigid grip-
pers performing haptic glances for object recognition are of
particular interest in this review. Early implementations used
superquadric model-based methods to determine the shape
of objects, using proprioceptive and tactile data [25], [26].
Recent developments have identified objects from a defined
set using classifiers trained with data from grasping with
anthropomorphic hands - using only joint sensor data [27] or
both joint sensor and tactile data [28]-[30].

For brevity, the remainder of this literature review focuses
on touch-based object identification and recognition methods
using soft robotic grippers; specifically, by executing haptic
glances. Methods and challenges for equipping soft robotic
grippers with sensors are discussed, before object recognition

techniques are analysed. Finally, strategies to perform multiple
data collection actions for confident object identification in
robotic grasping are compared and contrasted and the contri-
bution of this research paper is summarised.

A. Object Identification Using Soft Robotic Grippers

Soft robotic grippers are continuum type mechanisms which
inherently lack distinguishable and finite Degrees of Freedom
(DoF). Since these mechanisms are typically designed to bend
in plane during actuation, modelling their kinematics assumes
either a Constant Curvature (CC) approximation [31] or a
reduced kinematic Piecewise Constant Curvature (PCC) model
[32]. Due to structural compliancy, knowledge of a gripper’s
specific configuration at any given time is difficult. To further
complicate the problem, as a gripper interacts with the environ-
ment, unconstrained and unpredictable deformations can arise
which limit the accuracy of these models. Sensor selection is
therefore highly dependent on the gripper design, actuation
method and grasping application. Recent literature in soft
sensing has focussed on sensor design, with few integrations
in grippers for object recognition purposes.

Methods of equipping soft robotic grippers with sensors
have involved either retrofitting or embedding flexible or soft
sensors within a gripper’s structure during manufacturing -
a process which has become more viable as a result of
additive manufacturing technologies. By assuming CC, many
different methods of proprioceptive sensing in soft robotics
have emerged - where sensors typically change resistance with
respect to an input force or strain. Some examples include the
use of completely soft stretch and bend sensors embedded
with liquid metals [33]-[35] or conductive elastomers [36]-
[38]. Flexible bend sensors are also a popular off the shelf
solution for proprioceptive sensing in soft robotics [39], [40],
along with flexible force sensors for measuring point loads.

A number of factors prevent rigid robotic object recognition
methods from being directly translated to the soft robotic
domain. Uncertainty in kinematic models and interactions with
target objects has generally resulted in the use of machine
learning methods with sparse sensory inputs. Soft robotic
object identification methods reported in recent literature have
mostly used proprioceptive sensing only. For example, a soft
pneumatic gripper with two embedded sensors - an air pressure
sensor and a bend sensor - was able to recognise different
sizes of spherical objects by monitoring the inflation pressure
and bend sensor curvatures during pneumatic actuation [41].
A soft gripper with embedded resistive bend sensors [42] was
designed to classify (using a k-Nearest Neighbours (k-NN)
classifier) uniquely shaped and sized objects from a known set.
During grasping, bend sensor readings were used to predict the
hand configuration and classify the target object.

Few soft robotic grippers have incorporated both propri-
oceptive sensing and tactile sensing for object recognition.
Some recent examples include a custom sensor skin for mea-
suring deformation and contact, with the ability to construct
3D tactile object models [43]. Another design uses a four
fingered gripper [44] with resistive bend sensors along the
fingers and a force sensor in each of the fingertips for contact
detection. The configuration of both hand and object can be
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detected and objects are identified using a k-NN classifier. A
similar soft four fingered pneumatic gripper uses an embedded
multi-layered arrangement of curvature and pressure sensors
[45]. Using this system, objects are identified using a Support
Vector Machine (SVM) classifier, although only trained with
curvature sensor data. A related example uses an underac-
tuated hybrid (rigid/soft) robot hand equipped with an array
of barometric pressure sensors distributed along the grippers
phalanges [46]. Object identification is performed with a RF
classifier trained with grasping data from tactile sensors and
actuator positions.

To the best of our knowledge, there has been a significant
lack of soft or hybrid grippers possessing only an array of
tactile sensors for object recognition. One identified example
is a Fin Ray® style semi-rigid gripper with a retrofitted thin,
flexible tactile sensor pad on the inner side of only one of
the two fingers [47]. 50 tactile pressure images were collected
during grasping of each of the 15 target objects (of unique
shapes and sizes) and a Deep Convolutional Neural Network
was trained.

B. Selecting the Next Best Action for Confident Identification

Depending on factors such as the gripper design, sensors,
the types of target objects and how they are constrained
in the application environment, the amount and quality of
information obtained during a single haptic glance can vary.
Often, several grasps are required to gain confidence in an
objects’ identity, pose and/or location in the environment.

Various methods exist for selecting the next best action for
object identification or feature extraction using rigid robotic
grippers. To identify an object from a set of household and
industrial objects, a two fingered hand equipped with tactile
sensors was used to collect low-resolution intensity images
during grasping at various object heights [48]. Histogram
intersection was used to find the next action (height at which to
grasp the object) that would provide the highest expected infor-
mation gain. An alternative method for object recognition uses
a three-fingered robotic hand to actively explore objects [49].
Active behaviours are executed using a Bayesian approach to
explore object locations that will reduce uncertainty.

A texture discrimination algorithm using a process called
Bayesian exploration was used to determine a texture from a
candidate set [50]. The algorithm adaptively selected the next
optimal exploratory movement, based on previous experience
by calculating the Bhattacharyya coefficient for two probabil-
ity distribution functions. A decision to execute a movement is
dependent on the potential information gained and if a higher
level of confidence is worth the time and energy expenditure.

To localise an object in its environment, a tactile method
for an autonomous robot was developed [51]. The next best
touching action was determined using an information gain
metric calculated by the Kullback-Leibler Divergence (KLD).
Once the action which maximised the information gain was
executed, the state of the object’s pose was updated using
an estimator (Bayes filter). The uncertainty was then checked
against a threshold to determine if further actions were re-
quired for localisation.

C. Research Contribution

The discussed examples of robotic haptic perception have
focussed on classification of a pre-defined set of (typically
household) objects which vary greatly in their properties
of size, stiffness and cross-sectional shape. These unique
properties often result in rapid and reliable classifications
using data collected from a single haptic glance. Few soft
robotic grippers have been equipped with only tactile sensors
for object recognition, as proprioception has been the major
focus for soft robotic sensing. Existing methods combining
proprioceptive and exteroceptive force sensing can be limited
by a lack of informative data. For example, due to object
size or grasping angles, a fingertip sensor might not always
make contact with a target object [44]. In this paper, instead
of relying on potentially erroneous proprioceptive data and
a single fingertip sensor, the effectiveness of using an array
of tactile sensors is investigated, and an information-based
method is developed for confident object identification.

Our research focuses on identifying objects from a known
object set which have similar (or even identical) cross-
sectional shape at certain Angles-of-Approach (AoAs) and
identical stiffnesses. Whilst the problem is simplified by
having a well defined object set for a particular type of truss
structure (known a priori), the similarities of the different ob-
jects at particular AoAs increases the difficulty of the problem
and leads to confusion in object identification. There are many
scenarios where a single haptic glance is insufficient for con-
fident object identification. Thoroughly grasping the object at
differing AoAs for data collection is both time consuming and
impractical. Ideally, a simple strategy to minimise the number
of haptic glances and maximise the amount of information
extracted would be developed. The general approach to the
problem of where to touch next in object identification and
localisation has relied on selecting an action to maximise
the expected information gain (calculated probabilistically
by KLD, Bhattacharyya distance or an alternative histogram
comparison method) from a set of viable candidate actions. By
maximising the information gained from each touch or grasp,
a minimum number of touches is inherently achieved.

Our contribution in this work verifies the suitability of an
array of simple tactile sensors for identifying objects with
similar cross-sectional shape and dimension. In this paper,
a simple method is presented for soft or other adaptive
grippers which addresses the problem of selecting the next
best grasping AoA for confident beam member identification.
The next best AoA is selected based on the sum of the variance
of collected tactile sensor data for a known set of objects
(structural beam members). This method is generic in that it
is not limited to a specific case of robotic manipulation and
can therefore be used for other adaptive robotic grippers fitted
with suitable tactile sensors.

III. INFORMATION-BASED METHOD

This section details an information-based method which
can be implemented to identify objects with similar cross-
sectional shape and dimension by executing the minimum
number of required grasps (haptic glances). In the context of
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Fig. 2. Flow chart of beam identification using multiple haptic glances
(information-based method).

the application environment (e.g. power transmission towers)
there are two main scenarios where ambiguity arises in the
classification of a structural beam member from a single haptic
glance:

1) Multiple beam members can have similar cross-sectional
shapes at certain AoAs, making it difficult to determine
the true beam member shape e.g. disambiguating be-
tween a “T” beam and an “I” beam, and

2) Certain AoAs to a single beam member may also be
similar, making it difficult to determine the true AoA of
the gripper to the beam member e.g. due to symmetry.

Therefore, there are two key components to correctly iden-
tifying a beam member: determining the beam cross-sectional
shape and the grippers’ AoA to it. To narrow the field of
potential beam member AoAs, haptic glances are performed at
favourable AoAs, as determined by the information calculation
process. The state space of the problem consists of all possible
beam members (Bm) and AoAs (Na), or Bm X Na beam-angle
pairs. The most informative AoA is the one which has the
highest probability of eliminating the most beam-angle pairs
from the set of candidates.

The method proposed in this section is illustrated in Fig. 2
and assumes that the robotic gripper used is equipped with
appropriate tactile sensors, such as FSRs. An initial grasp
provides FSR data which is used to gain predictions about
the beam member using the RF classifier. Votes cast by the
RF classifier are sorted in descending order for analysis. If a
single vote exists above a user defined threshold, 7, then this

vote dominates the classification, the RF classifier is confident
and only one haptic glance is required to identify the beam
member and its properties.

If multiple votes exist above the threshold, then there may be
confusion in the classification. The only case where multiple
votes may exist above the threshold and result in confident
classification is when the beam member being grasped is
symmetrical. Symmetrical beam members contain repeated
AoAs, i.e. where the data obtained from a given AoA is
identical to another AoA shifted by a number of degrees,
depending on the axis or axes of symmetry. If all votes cast
above the threshold are for repeated AoAs to a symmetrical
beam member, then no further grasping actions could be
undertaken to disambiguate the AoAs. If there is confusion in
the classification, then additional haptic glances are required to
extract further data for confident identification of the structural
beam member. At this step in the process, information for
candidate AoAs is calculated.

Information is calculated by comparing the expected tactile
patterns across Na — 1 candidate AoAs (i.e. excluding the
current perceived AoA). The expected tactile patterns for
candidate AoAs are taken as the average of data from the
number of grasps (Ng) in the data collection phase - conducted
offline. The candidate AoA, i.e. the AoA shift with the highest
overall variance in the individual FSR analog readings (the
next best AoA) is expected to provide the best possible data
for unambiguous identification of the beam member and its
properties. An action is selected based on the calculated next
best AoA, and another grasp is performed. This process repeats
until a single vote dominates the classification output, i.e. only
one vote exists above the threshold and the beam member and
AoA can be confidently identified.

Candidate AoAs for a grasping action are comprised of
angle shifts in 3 increments from the current predicted beam
member AoAs. Therefore, to calculate information for candi-
date AoAs, the input matrix, I, of the FSR data differs, and is
directly dependent on the initial votes cast by the RF classifier
above the threshold.

Information is calculated (Equations 1, 2, 3) for the Na — 1
candidate AoAs (i.e. excluding the current perceived AoA,
I=1[L,Is,...,Iys—1]). Information for a candidate AoA, I, is
calculated by the sum of the variance (0?) in the N individual
FSR readings for the n predicted beam member AoAs.

1 n
pi=—> Fy (1)
j=1
2 1 = 2
of == (Fyj — ) 2)
j=1
N
In=>Y o} 3)
=1

The goal of the action selection is to choose the most
favourable AoA for grasping, i.e. the AoA corresponding to
max(I), which can provide sufficient data to unambiguously
identify a beam member and its properties.
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IV. EXPERIMENT SETUP AND DATA COLLECTION

A data collection procedure was performed to extract FSR
data during grasping of beam members from the object set
listed in Table I. The data extracted was then used to train a
RF classifier to be used in conjunction with the information-
based method described in Section III. This section further
details the experimental setup, data collection procedure and
classifier training.

TABLE I
BEAM MEMBERS IN THE TARGET OBJECT SET.

Cross-Sectional Cross-sectional AoAs for Data Collection

Shape Dimensions (mm) (in 8 = 10° increments)
> 50 x50 0° — £180°
75X 75 +180° — —10°
Square 51x51 0° — —80°
o 50 % 50 oy oo
+ 75 %75 0° — —80
> 50 x50 0° — +£180°
75%x75 +180° — —10°
e 50% 50 o o e
T 75 %75 0° — —170

A. Experiment Setup

1) Experimental rig: The experimental rig (shown in Fig.
3) consisted of a soft gripper manufactured from Polyurethane
elastomer F-180 A/B, Shore Durometer A 80 +5 (following
the manufacturing process outlined in [52]). As described in
[4], a customised linear actuator is used to generate grasping
actions and an angle measurement tool is fixed to a beam
member from the object set. The angle measurement tool was
used to enable repeatable grasps at desired AoAs and distances
from the surface of the beam members. The tool consisted of a
circular structure with alignment holes at 5 = 10° increments,
located at varying radii from the centre of the beam members.
These holes were used to lock the linear actuator to the angle
measurement tool at the desired AoA for data collection. Since
the information-based method only requires tactile sensor data,
many different types of tactile sensors, including FSRs, could
be used for data collection. In this research, the grasping
surfaces of the gripper’s fingers were retrofitted with Interlink
400 Short FSRs - three on each of the distal phalanges and
six on the proximal phalanges, backed with 3D printed support
pieces as shown in Fig. 3.

Encoder, motor, gearhead

Proximal, distal FSRs

Lead screw

Beam member

Soft gripper /

3D printed FSR
support pieces

Angle measurement tool .
Alignment holes for

target members of
differing sizes

3D printed beam
holder insert

Fig. 3. CAD model - experimental rig setup.

2) Target objects: Target objects were chosen to represent
a sample of possible power transmission tower structural beam
members. Depending on the symmetry of the beam members,
different AoAs were used for data collection in § = 10°
increments. For symmetrical members, fewer AoAs were used
for data collection, due to repetition. The collected dataset
is comprised of the Bm = 9 beam members with AoAs
defined in Table I, totalling 207 unique beam-angle pairs. Fig.
4 shows the beam member cross-sectional shapes and their
AoAs, defined as rotations about the z-axis of the structural
beam member. The complete dataset (populating the repeated
AoAs for symmetrical beam members) is comprised of a total
of Bm = 9 beams with Na = 36 (360°/3) AoAs, therefore
324 beam-angle pairs.

+180

Vi

”J;Zc)\mfinqie System
Y

(@) (b)

Fig. 4. (a) Possible beam member cross-sections and their AoA definitions,
(b) Co-ordinate frame for orientations - only consider rotations about the z-
axis i.e. gripper yaw.

B. Data Collection

The data collection procedure consisted of the following

steps:

1) Attaching the angle measurement tool to a beam member
using a 3D printed mounting piece,

2) Manually positioning the gripper to a desired AoA for
data collection and locking the linear actuator base into
the angle measurement tool,

3) Driving the linear actuator back and forth to open and
close the gripper Ng = 10 times, recording FSR data
for each haptic glance at the end of the actuator stroke
length.

4) Manually shifting the gripper by S = 10° and repeating
the above steps for each of the AoAs listed in Table I.

For the purpose of consistency during data collection, the

gripper was positioned to always approach beam members
perpendicularly (i.e. as shown in Fig. 3) and at a set distance
from the centre of the beam member. It should be noted that
the gripper also sagged due to gravity, which was uncorrected
during grasping.

The distance was selected by considering climbing in the

practical application environment, where power grasps [53]
are ideal. Executing power grasps typically results in strong
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and reliable grasps, with sufficient data for feature extraction
since the gripper can make significant contact with the beam
member surface/s. Increasing or decreasing the set distance
would result in precision (pinch) grasps [53] at either the distal
or proximal phalanges, respectively. Precision grasps are not
desirable for the practical application environment as they are
not sufficient for supporting the weight of a climbing robot.
Additionally, precision grasps involve contacting an object
at two points, which would not provide sufficient data for
object identification. The general purpose of a grasp is to
achieve maximum coverage of a beam member, resulting in the
maximum number of sensors in contact. However, it is difficult
to choose a distance that will result in power grasps being
performed for all the beam members in the object set. When
grasping the larger beam members, some precision grasps were
executed, which caused ambiguity in the identification of the
beam member (discussed further in Section V-C1).

C. Classifier Training

Previous research [4] found that for a similar beam iden-
tification problem, a variety of common classifiers, including
k-NN, Linear Discriminant Analysis (LDA), Multiclass SVM,
Naive Bayes, Bagged Trees Ensemble and RF were all suitable
candidates resulting in high classification accuracies. In this
previous work, from all of the classifiers trained and tested,
a RF classifier with 100 trees provided one of the highest
classification accuracies.

Any of these classifiers could be used for beam member
identification using the information-based method presented in
this paper. However, a RF classifier was chosen in this paper
for the reason that they do not overfit (because of the Law
of Large Numbers) and they are typically known as accurate
classifiers due to the randomness [5]. In future work, the
variable importance can also be examined to determine the
effectiveness of the sensor placement on the gripper and the
gripper design can be modified based on the results of this
analysis.

Using the raw analog FSR data collected from the procedure
described in Section IV-B, a RF classifier was trained with
the goal of classifying the AoA, cross-sectional shape and
dimension of beam members from within the defined target
object set. The complete data set (containing data from the
Ng = 10 repeated grasps at each of the 324 beam-angle pairs)
was partitioned, with 90% of the data for training the classifier
and 10% for testing the classifier. The 90:10 data split allowed
for tactile patterns from each individual AoA to be used as
haptic glance data.

V. RESULTS AND DISCUSSION
A. Beam Identification using a Single Haptic Glance

Since the votes cast by the RF classifier dictate if the
information-based method is required, the results of classi-
fication using the RF classifier alone are first analysed. This
analysis reveals the misclassified AoAs (see Fig. 5), therefore
providing insight into the AoAs which will provide interesting
case studies using the information-based method.

1) Classification with the RF classifier only: High classifi-
cation accuracies are expected when the objects being grasped
significantly differ in dimension and/or cross-sectional shape.
However, our dataset realistically represents the application
environment, which consists of beam members with identical
dimension and similar cross-sectional shape at certain AoAs.

The confusion matrix in Fig. 5 shows the RF classifier
accuracy (54.24%) for all of the possible Na = 36 AoAs to
each of the Bm = 9 beam members (324 beam-angle pairs)
using a single haptic glance. It can be seen that confusion
exists between multiple beam members, particularly those of
identical dimension or between different AoAs to a single
beam member.

AoAs to multiple
beam members

True Class
\

: Symmetrical
S o %% Beam Members

Ao0As to a single
beam member

Predicted Class

Fig. 5. Confusion matrix from the RF Classifier trained with 100 Trees on
90% of the complete dataset (training set). Results shown are the classifica-
tions of the remaining 10% of the data (test set). Total classification accuracy
is 54.24%.

Further analysis reveals that the confusion could be from
either repeated AoAs (for symmetrical cross-sectional shapes,
highlighted in red in Fig. 5), or from similar factile patterns for
given AoAs. The similarity in factile patterns was an outcome
of two possible grasping scenarios, where the gripper either:

« could not make adequate contact with the beam member
during a grasp, highlighted in green in Fig. 5. Example
data at these AoAs are shown in Fig. 6a, or

e was grasping a portion of a beam member with identical
cross-sectional shape and dimension to another beam
member, highlighted in blue in Fig. 5. Example data at
these AoAs are shown in Fig. 6b, and Fig. 7 shows the
gripper points of contact to the beam members which
yield this data.

Upon removal of the repeated AoAs for the symmetrical
beam members, the dataset could be reduced to 207 unique
Ao0As as listed in Table I. The classification accuracy with
this reduced dataset was 88.4%. For the 24 confused AoAs
from the reduced dataset, both the beam member (cross-
sectional shape and dimension) and the grippers AoA cannot
be confidently identified by using a single haptic glance.

Analysis of the RF classification results show that the clas-
sification output alone cannot be wholly trusted. By definition,
the most frequent vote cast by each of the trees in the RF is the
classification output. The classification result therefore simply
needs to be higher in confidence than all other votes cast. In
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Fig. 6. Similar tactile patterns due to (a) Insufficient contact with the beam
member during a grasp, (b) Grasping a portion of a beam member with
identical cross-sectional shape to other beam members.

many cases, multiple AoAs may receive a significant portion
of the votes, making the classification decision very close.
For these problematic “low information” AoAs, additional
grasps would be required to sufficiently and confidently
identify the beam member and its properties. This provides
motivation for developing the information-based method.

£.180 + 180

+ 180 £ 180

Fig. 7. Gripper points of contact when grasping beam members of similar
cross-sectional shape at 180°.

2) Classification with the proposed information-based
method: Similar to the RF classifier alone, using the
information-based method still results in the majority of AoAs
(82.4%-96.6%, depending on threshold value) being classified

confidently with a single haptic glance (see Table II). In these
cases, a single haptic glance provided unique tactile patterns
for rapid and accurate identification of a beam member and
its properties.

The RF classifier outputs the highest vote as the classifica-
tion result, regardless of the number of votes cast and their
confidence ratings. The information-based method, however,
is used to analyse the individual RF classifier votes and assess
whether or not the RF classifier output will be sufficient
for unambiguous classification overall. This allows for any
ambiguous AoAs to be flagged before they are classified
(either correctly or incorrectly) and for further haptic glances
to be executed as required. It is therefore possible that further
ambiguous AoAs would arise from using the information-
based method, depending on the threshold value (7) chosen.

An example of this can be observed by inputting FSR data
from the AoA of -120° to the 50 x 50 “T” shaped beam
member into the RF classifier. The three highest votes cast
are: 31% for -120° 50 x 50 “T”, 30% for -30° 50 x 50 “T”
and 11% for -120° 50 x 50 “L”. Whilst the RF classifier has
correctly classified the AoA, it was very close to incorrectly
classifying. According to the information-based method, this
is an ambiguous AoA in the dataset. This AoA, however, is
not considered ambiguous by the RF classifier alone, since it
was correctly classified and would appear along the diagonal
of the confusion matrix.

An example of misclassification by the RF classifier is the
Ao0A of -140° to the 50 x 50 “L” shaped beam member. The
three highest votes cast by the RF classifier are as follows:
21% for -110° 50x 50 “L”, 19% for -140° 50 x 50 “L” and
11% for -100° 50 x50 “L".

For both of the AoA cases identified above, the information-
based method will flag these cases as ambiguous and decide
to execute further strategic haptic glances to ensure that the
beam member and its properties can be correctly identified.
As shown by the results in Table II, in order to flag these
ambiguous AoA cases, a threshold value must be selected
appropriately.

B. Beam Identification using Multiple Haptic Glances

Table II summarises the results of the information-based
method across all of the 324 AoAs in the dataset, with varying
threshold values (7). It can be clearly seen that the majority of
beam member AoAs could be classified with a single haptic
glance, regardless of the threshold value.

For the remaining AoAs where more than one haptic glance
was required, typically the beam member and AoA could be
identified with less than four haptic glances. The remainder
of this section will further discuss the results obtained by
choosing 7 = 15% which was shown to be the highest
threshold that could achieve 100% successful identification of
the beam members and their properties.

When using the information-based method for beam mem-
ber shape and AoA identification, the 41 (12.65%) grasps
which could not be identified using a single haptic glance
could be classified confidently with more than 1, but typically
fewer than 4 haptic glances. One unique case existed where 5
haptic glances were required for beam member identification.
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TABLE II
RESULTS OF BEAM MEMBER IDENTIFICATION USING THE
INFORMATION-BASED METHOD ACROSS THE 324 UNIQUE AOAS WITH
VARYING THRESHOLD VALUES

Number of Haptic AoAs
- Glances Required Misclassified ~ with All
For Correct AoAs Votes
Classification <T
1 2 3 4 5

10% 267 36 6 12 3 0 0
15% 283 30 4 6 1 0 0
20% 297 20 3 2 0 1 1
25% 305 14 1 0o 0 1 3
30% 313 30 0 O 4 4

Across the complete dataset, an average of 1.19 haptic glances
were required for confident identification of the beam member
and its properties.

The cases where more than two haptic glances were re-
quired for confident identification were examined carefully to
determine if excessive grasping actions were executed as a
result of the selection of the next best grasping AoA by the
information-based method. In most of these cases, by greedily
choosing the AoA with the highest calculated information,
an ambiguous AoA was navigated to, therefore requiring
additional haptic glance/s to confidently identify the beam
member AoA.

C. Case Studies

The results are further examined in this section by analysing
the two cases identified in Section V-A1 where a single haptic
glance was not sufficient for the confident identification of
the beam member and its properties. The first case study
covers disambiguation between multiple beam member cross-
sectional shapes; where multiple AoAs to multiple beam
members may receive votes above the threshold. The second
case study covers disambiguation between multiple AoAs to
a single beam member cross-sectional shape; where multiple
Ao0As to a single beam member may receive votes above the
threshold.

1) Disambiguating between multiple beam member shapes:
Disambiguating between multiple beam member shapes refers
to the case identified by Fig. 6b and Fig. 7, where votes may
be cast by the RF classifier for multiple beam member cross-
sectional shapes and AoAs. The goal of the action selection
is to choose the next best AoA that will narrow down the true
beam member and AoA from the list of potential beams after
any haptic glance.

When executing a primary haptic glance at 180° to the
50 x 50 “T” beam member, the RF classifier casts votes (above
the threshold) for many different beam member cross-sectional
shapes (“T”, “L”, “I”’) and AoAs (180°, 0°, 90°). Upon initial
confusion in the beam member cross-sectional shape from the
first haptic glance, the information-based method calculates
that the AoA located at an angle shift of 90° Counterclockwise
(CCW) has the highest information. By navigating to this
AoA, there is a high probability of eliminating the largest
number of beam member cross-sectional shapes and AoAs
from the list of possibilities. The information-based method

also calculates that the AoA with the lowest information is
located at a 10° shift Clockwise (CW).

As summarised by Fig. 8, by implementing the information-
based method to select the next best grasping AoA, the
potential beam member cross-sectional shapes and AoAs are
eliminated with one additional grasp. After the second haptic
glance has been executed, the beam member and its properties
are confidently identified and no further haptic glances are
required for classification.

2) Disambiguating between multiple beam member AoAs:
Disambiguating between multiple beam member AoAs refers
to the case identified by Fig. 6a, where votes may be cast by
the RF classifier for multiple AoAs to a single cross-sectional
shape of beam member, e.g. -100°, -110°, -140° to the 50 x 50
“L” shaped beam member. The goal of the action selection is
to choose the next best AoA that will narrow down the true
beam member AoA from the list of potential beam AoAs after
any haptic glance.

Fig. 9a shows the votes cast by the RF classifier at the
first grasping AoA of -100° to the 50 x 50 “L” shaped beam
member. In this problem, the information-based method is
seeking to disambiguate between the AoAs of -100° and -
140° after the first haptic glance. The remaining sub figures
in column 1 of Fig. 9 show the votes cast by the RF classifier
after performing haptic glances at the high information AoAs
shown in column 2 of Fig. 9.

The high information cases for candidate grasps 3 and
4 show identical tactile patterns. After grasp 2 has been
executed, the votes cast are separated by 90°. When rotating
by 90° to navigate to the high information AoA for grasp 3,
the votes are still separated by 90° and the information-based
method is now seeking to disambiguate between 0° and 90°. It
should be noted that since only the 50 x 50 “L” beam is being
considered for AoA disambiguation, that the vote cast for the
50x50 “T” beam is discounted in grasp 3. Finally, by rotating
a further 90° to reach the high information AoA shown by
the tactile patterns in Fig. 9f, the RF classifier is once again
seeking to disambiguate between 0° and 90°, however with
this additional rotation, now has absolute confidence in the
identity of the beam member AoA. Thus, no further haptic
glances are required to determine the beam member and its
properties.

D. Limitations

As shown in Table II, the threshold value is a key limiting
factor in the accuracy and efficiency of the information-based
method. Setting this value too low can result in excessive
grasping actions being required. Setting this value too high
can result in erroneous classifications, or the information-based
method failing to function at particular AoAs where all votes
may be cast below the threshold value. Depending on the target
object set and the tactile patterns obtained during grasping,
an appropriate threshold value needs to be selected, such
that its impact on the performance of the information-based
method is optimal. This value can be selected by analysing
the classification performance using the RF classifier only
and observing the votes cast by the RF classifier for all
misclassified AoAs.
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Fig. 8. Information-based method for grasping at the initial AoA of 180° to the 50 x 50 “T” beam member.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an information-based method was presented
for selecting the next best grasping AoA, with the goal to
achieve rapid and confident identification of a structural beam
member and its properties by performing haptic glances. The
method was tested and evaluated by using raw analog FSR
data collected from grasping beam members of varying cross-
sectional shapes and dimensions with a soft robotic gripper.
Using this method and the data from FSRs, it was found that
for AoAs in the target object set, typically fewer than 4 haptic
glances were required to correctly identify a structural beam
member and its properties. Using the proposed method to
execute multiple grasps, it was verified that an array of simple
tactile sensors provided sufficient data for confident object
identification. Furthermore, since this method only requires
tactile sensing data, it can be used for other adaptive grippers
with different types and arrangements of tactile sensors.

Future work includes further expanding the target object
set to cover more structural beam members (i.e. to increase
Bm). The data collected could then be used to more rigorously
test the information-based method in a practical setting and
a threshold value (7) could be appropriately selected for a
more complete dataset. It is possible that with an expanded
dataset, multiple votes may still exist above the threshold, but
the beam member AoA can still be considered as confidently
identified. In this case, an upper threshold value may also need
to be defined to ensure that excessive grasping actions are not
undertaken. Additionally, we envisage attaching the gripper
to a robot arm and using the information-based method to

identify the orientation of the structural beam member about
the z-axis. Further investigation would also be conducted into
determining the effects of varying the gripper AoA in the x
and y axes (gripper roll and pitch).
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Fig. 9. Column 1: RF classifier votes above threshold (7 = 15%) for grasps 1-4. (a): Original grasping AoA of -100° to the 50 x 50 “L”” beam member.
(c).(e),(g): High information grasping AoAs shown in column 2. Column 2: High information candidate AoAs, based on 8 = 10° incremental angle shifts
from the initial grasp data obtained at the AoA of -100° to the 50 x 50 “L” beam member. (b),(d),(f): High information candidate AoAs based on the
classifications for grasps 1-3. (g): Beam member and AoA are correctly identified at this point, no further grasps required.
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