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Abstract.—BEAGLE is a high-performance likelihood-calculation library for phylogenetic inference. The BEAGLE library
defines a simple, but flexible, application programming interface (API), and includes a collection of efficient implementations
for calculation under a variety of evolutionary models on different hardware devices. The library has been integrated
into recent versions of popular phylogenetics software packages including BEAST and MrBayes and has been widely
used across a diverse range of evolutionary studies. Here, we present BEAGLE 3 with new parallel implementations,
increased performance for challenging data sets, improved scalability, and better usability. We have added new OpenCL
and central processing unit-threaded implementations to the library, allowing the effective utilization of a wider range
of modern hardware. Further, we have extended the API and library to support concurrent computation of independent
partial likelihood arrays, for increased performance of nucleotide-model analyses with greater flexibility of data partitioning.
For better scalability and usability, we have improved how phylogenetic software packages use BEAGLE in multi-GPU
(graphics processing unit) and cluster environments, and introduced an automated method to select the fastest device
given the data set, evolutionary model, and hardware. For application developers who wish to integrate the library, we
also have developed an online tutorial. To evaluate the effect of the improvements, we ran a variety of benchmarks on
state-of-the-art hardware. For a partitioned exemplar analysis, we observe run-time performance improvements as high as
5.9-fold over our previous GPU implementation. BEAGLE 3 is free, open-source software licensed under the Lesser GPL
and available at https://beagle-dev.github.io. [Bayesian phylogenetics; GPU; maximum likelihood; multicore processing;
parallel computing.]

Statistical phylogenetic analyses based on
maximum likelihood (ML) and Bayesian inference
are computationally challenging because of the
intensive nature of the calculations required. At the
core of statistical phylogenetics is the calculation of
the likelihood (probability) of the observed molecular
sequence character states under a specific model of
evolution using a recursive algorithm (Felsenstein 1981),
and the computation of this calculation comprises most
of the running time for analyses. Decreasing the time
(wall clock) for this computation is the raison d’être for
the BEAGLE library, a parallel computing platform
for high-performance calculation of phylogenetic
likelihoods that makes efficient use of the fine-scale
parallelization capabilities of computer processors,
especially graphics processing units (GPUs)(Suchard
and Rambaut 2009; Ayres et al. 2012). Here, we describe
and evaluate important changes made to BEAGLE in
the time since we introduced Version 1.0 of the library
in this journal in 2012. We also set out general scalability
and usability expectations for users.

KEY IMPROVEMENTS

The most significant improvements to the library
can be broadly divided into two categories: new
implementations that expand the breadth of parallel
computing hardware that can be efficiently exploited,
and parallel-algorithm advances that improve the GPU
implementation for nucleotide-model analyses.

New Implementations for Broader Hardware Support
BEAGLE offers a single application programming

interface (API) backed with a wide range of hardware-
specific implementations that aim to provide efficient
use of available resources. For GPUs, previous versions
of BEAGLE only used the CUDA parallel computing
framework. Although this remains the most efficient
way to target NVIDIA devices, CUDA is proprietary and
incompatible with GPUs from other manufacturers. For
the CPU (central processing unit), previous versions of
the library have included single-core implementations
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using vectorization intrinsics (e.g., SSE) to achieve
efficient performance (SSE [Streaming SIMD {Single
Instruction, Multiple Data} Extensions] and AVX
[Advanced Vector Extensions] are two of several
sets of processor intrinsics for vectorizing numeric
computation). Additional parallelization across multiple
cores required the calling software to partition data into
multiple data subsets, each of which is computed in
a separate BEAGLE instance executing in separate a
thread (threading is a method of achieving concurrent
processing within or among processor cores). Although
this approach (of CPU threading at the program level)
is a natural fit for independently modeled subsets, it
is ill-suited for finer-grained parallelization. Moreover,
it places the nontrivial task of managing threads on
the application developer. BEAGLE 3 adds new GPU
and CPU implementations to target a wider range
of manycore processors and to facilitate multicore
parallelism.

OpenCL.—Based on our existing CUDA implementation
for GPUs (Suchard and Rambaut 2009; Ayres et al. 2012),
we have added new GPU and CPU implementations
that use the OpenCL framework, an open standard
for parallel computing devices. We achieved this by
modifying the previous CUDA host-side code to a
framework-independent one that is usable for both
CUDA or OpenCL implementations. This generic
parallel-implementation model communicates with the
CUDA and OpenCL APIs through a single internal
interface that, in turn, has an implementation available
for each framework. Further significant sharing of
code between CUDA and OpenCL exists at the
device kernel level. There is a single set of kernels
for both frameworks, with keywords for each being
defined at the preprocessor stage. Although there
is a common kernel code-base across frameworks,
functions that impart a crucial effect on performance
are differentiated for each hardware type. This allows
for distinctly optimized parallel implementations:
one for CUDA GPUs, one for OpenCL GPUs and
one for modern ×86 devices such as multicore
CPUs with vectorization extensions. The level of
specialization among evolutionary models, processors,
and frameworks results in over 1300 distinctly compiled
device kernels (Ayres and Cummings 2017b).

CPU threading.—Despite the open nature and broad
industry support for OpenCL, we recognize that it is
an external framework that is not always available to
users of the library. Thus, we have added a native
threading option to our CPU implementation. This
allows BEAGLE to harness the increasing capability of
modern CPUs for parallel processing, in a more portable
manner. Specifically, we have added an implementation
for multicore CPUs that uses a pool of C++ threads
(C++ Standards Committee and Others 2011) to process
independent site patterns concurrently. We found that
this approach, using native functionality in the C++

standard, allowed us to add thread-parallelism to our
existing, low level, SSE vectorization of character states
(Ayres et al. 2012; Ayres and Cummings 2017b) in an
efficient and well-performing manner. The number of
threads created varies automatically with problem size,
up to the core count of the processor. Alternatively, client
programs can set a limit on the number of threads.

Improved GPU Implementation for Nucleotide Analyses
Previously, strong GPU performance (speedup >2×)

for nucleotide-model phylogenetic analyses required
data sets that shared the same evolutionary model across
many (>103) unique site patterns. Due to the low number
of states each nucleotide character can assume, smaller
sequences failed to saturate the large number of cores
available on GPUs. This resulted in poor performance
for many analyses. In order to increase core utilization
and improve GPU performance, we have identified
additional opportunities for parallel computation with
nucleotide-model analyses and implemented them in
BEAGLE 3.

Data partitions.—Statistical phylogenetic analyses benefit
from increases in modeling flexibility. One clear way of
improving model flexibility is to allow (conditionally)
independent estimation of model parameters for distinct
character data subsets (e.g., genes, codon positions).
This is typically referred to as a partitioned model and
is a technique available in all phylogenetic software
packages that currently support BEAGLE. Until Version
3, partitioned analyses with BEAGLE have required the
client program to create multiple instances of the library,
one for each data subset defined by the partitioning
scheme. When BEAGLE instances shared the same
GPU, they were executed in sequence, thus incurring
significant performance and memory inefficiencies,
especially for nucleotide problems with small (<103

unique site patterns) data subsets.

Tree traversal.—Another category of analysis that
performed inefficiently on GPUs was that of nucleotide
data sets with many sequences (tips) but without a large
number unique site patterns (<103). The amount of
parallelization afforded by the limited number of unique
sites failed to saturate the hardware capacity of GPUs.
The GPU parallelization of the phylogenetic likelihood
function only acted on a fine scale, exploiting parallelism
to accelerate the calculation of partial likelihood arrays
at each internal node in the proposed tree, with the
traversal of the tree itself occurring in a sequential
manner. Thus, problems with few unique site patterns
were always small for parallel processing purposes and
thus not amenable to speedups, independent of tree size.

Parallel computation of partial likelihood arrays.—What
these two previously underperforming categories of
nucleotide-model problems, partitioned data sets and
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large trees with shorter sequence lengths, have in
common is that they include many independent
partial likelihood arrays that were being computed
in series. We have augmented the BEAGLE API
(in a backwards-compatible manner) and developed
new parallel implementations for CUDA and OpenCL
frameworks to identify and execute the concurrent
computation of independent partial likelihood arrays.

Our solution for concurrent computation of partial
likelihood arrays involves different approaches
depending on problem size and hardware type.
For nucleotide sequences with more than 103 unique
site patterns on NVIDIA devices, we use multiple
CUDA streams, directing independent computation
to separate streams. The use of CUDA streams also
benefits analyses that employ multiple Markov chains,
as these can now be more efficiently computed in
parallel on a single GPU. For data sets with fewer
unique site patterns, on both CUDA and OpenCL, we
use newly developed device kernels that can process
multiple partial likelihood arrays concurrently in a
single execution launch (Ayres and Cummings 2017a).

Although the BEAGLE API remains backwards-
compatible, programs that use the library will require
adaptation to enable the above improvements. For
partition-defined data subset concurrency, independent
subsets need to share a library instance. For parallel tree
traversal, partial-likelihood operations need to be sent
to BEAGLE in a reverse level-order manner (in contrast
to the typical postorder approach). Further tree traversal
parallelism can be gained by rerooting the proposed tree
when appropriate (Ayres and Cummings 2018).

Enabling this further concurrency of computation
in BEAGLE 3 allows a wider range of phylogenetic
inferences to benefit from parallel computing hardware.
Nucleotide-model analyses with many small data
subsets or with large trees but few site patterns, can
now achieve higher levels of hardware utilization.
Additionally, memory usage for partitioned analyses
is significantly reduced as the overhead imposed by
multiple library instances is eliminated. For data sets
with many subsets this improvement can cut memory
usage by more than half (see Scalability section).

PERFORMANCE EVALUATION

Here, we explore the performance effect of the key
improvements to the library using a computationally
challenging data set. We compare speedups for the
previous and current versions of BEAGLE on various
parallel hardware resources, using BEAST (Suchard
et al. 2018) (v1.10.5) and MrBayes (Ronquist et al. 2012)
(v3.2.7), two popular programs for Bayesian statistical
phylogenetics.

Benchmark Setup
For these benchmarks, we examine a dengue virus

data set with 997 genomes spanning the global dengue

diversity and a total of 6869 unique site patterns across
10 gene-based subsets (data set available in source code
repository, see Availability section). Although we use the
same data set for both BEAST and MrBayes analyses,
some model parameters and prior assumptions differ, so
we make no attempt to compare inference across these
software packages.

We specifically choose a data set with a large number
of sequences and with many independent subsets, each
with few unique site patterns, to best showcase the gains
in concurrency achieved in this version of the library.
Previously, data sets with these characteristics have
been the most challenging for effective parallelization.
BEAGLE-enabled peak performance for data sets with
many more patterns and using higher state-count
models are reported in the Scalability section below
as well as elsewhere (Ayres et al. 2012; Ayres and
Cummings 2017b; Baele et al. 2018). To analyze this data
set, we use a nucleotide-model and assume that each
subset evolves at a different relative rate, according to an
independent HKY substitution model (Hasegawa et al.
1985) and with rate variation among sites in each data
subset modeled by a discretized gamma distribution
with four rate categories (Yang 1996). For BEAST, we
employed a recently developed adaptive multivariate
normal transition kernel that allows the concurrent
estimation of a large number of parameters, split across
partitioned data, by exploiting parallel processing (Baele
et al. 2017).

For each inference benchmark, we run a single
Markov chain for 105 iterations and use the double-
precision floating-point format in the BEAGLE-enabled
runs. We assess speedups relative to the double-
precision likelihood calculator for each program. For
MrBayes, we also show results for the native, AVX +
fused multiply-add (FMA) vectorized, implementation
in single precision, which is the default when not
using BEAGLE. For BEAST, the use of BEAGLE is
required, and thus we use the default, non-vectorized,
CPU implementation in BEAGLE as the performance
baseline. For the BEAST benchmarks we use Version
1.10.5 and for MrBayes we use Version 3.2.7. These
versions use the latest API methods in BEAGLE 3 to
improve performance.

As a basis for comparison we include results for
BEAGLE 2, the previous major release of the library.
Version 2 was released in 2014, however, there was no
accompanying application note. The main improvement
in Version 2 relative to the first release is the addition
of an OpenCL implementation. Specifically, we compare
Versions 2.1.3 and 3.1.2 of BEAGLE and report results
for three implementations of the library, under different
hardware resources on two different systems. The
CPU-SSE implementation on System 1 (an HPC [high-
performance computing] platform) runs on two Intel
Xeon E5-2697v4 processors, with a total of 36 cores.
On System 2 (a high-end desktop machine), it uses an
Intel i7-8700K CPU with 6 cores. This implementation
uses SSE vectorization, and in BEAGLE 3 it additionally
uses CPU threads to parallelize computation. This
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FIGURE 1. Relative performance gains (fold-speedup) for
a challenging highly partitioned nucleotide-model analysis using
various combinations of implementations and versions of the BEAGLE
library, and hardware resources, with BEAST and with MrBayes. We
report fold-speedup on the log-scale, relative to the total run time when
using the native double-precision likelihood calculator on the slowest
system (denoted with an asterisk) for each program.

threading is in addition to that performed by BEAST,
which by default employs one thread per partition-
defined data subset (MrBayes does not natively support
multithreading). We benchmark the CUDA version of
BEAGLE on System 1 using the NVIDIA GP100 GPU.
For System 2, we test on the current state-of-the-art
NVIDIA GPU, the Tesla-generation Titan V. We test
the OpenCL implementation on an Advanced Micro
Devices (AMD) R9 GPU on System 1. On System 2, we
use the top-of-the-line AMD GPU, the Radeon Vega
Frontier. We do not include results for our OpenCL
implementation on the CPUs for nucleotide data, as we
have found it to consistently underperform the threaded
version for nucleotide-model analyses (for codon-model
benchmarks using OpenCL on the CPU see Fig. 3).

Benchmark Results
Figure 1 shows that for both BEAST and MrBayes,

and for all hardware resources and corresponding
implementations, total run time for this challenging
data set improves when using BEAGLE 3. The biggest
improvement we observe is for the NVIDIA Titan V
GPU under CUDA on System 2, where the speedup over
the baseline likelihood calculator went from 1.4-fold to
8.2-fold when using BEAST. This corresponds to a 5.9-
fold increase in performance due to the improvements
in BEAGLE 3. For this same GPU with MrBayes, we
observe an improvement from 7.5-fold to 15-fold, which
represents a 2-fold gain from using Version 3 of the
library.

For the OpenCL implementation in BEAGLE, running
on the AMD R9 and Vega GPUs, we also observe
clear performance gains from Version 3 of the library.
However, we note that in our experience the current

version of the AMD OpenCL platform is less mature
than the CUDA platform from NVIDIA, and we have
observed inconsistent performance with the AMD
solution. This issue is especially notable for the BEAST
result on System 2 under BEAGLE 3, where we expected
better than the observed 1.1-fold improvement over the
previous version of the library.

Another notable result is the performance
improvement for the CPU implementation of BEAGLE
when using the multicore processor on System 1. For
both BEAST and MrBayes, we observe gains on the
order of 2-fold when using Version 3 of the library.
Despite the fact that GPUs can achieve significantly
better performance, CPU performance remains highly
relevant. Many systems do not have a high-end GPU
or might have compatibility issues with the external
frameworks required for GPU computing (i.e., CUDA
and OpenCL). The CPU implementation in BEAGLE
3 remains highly portable and provides a reliable, yet
well-optimized level of performance.

SCALABILITY

Phylogenetic analysis problems span a range of sizes
with dimensions quantified in numbers of characters
(e.g., nucleotides, amino acids, codons) and number
of operational taxonomic units (OTUs). Therefore, it
is pertinent to know if any specific analysis problem
fits within available memory, how it might scale across
hardware devices, and what are the expectations for
performance for the problem size and type. These issues
are explicitly addressed in the following subsections.

Scaling Memory
Memory usage is a relevant concern when evaluating

the suitability of GPU acceleration for a phylogenetic
analysis. Typically GPUs have less memory than what
is available to CPUs, and the high cost of transferring
data between CPU and GPU memory prevents direct
use of CPU memory for GPU acceleration. Thus it can
be important to consider if the GPU being used has
sufficient on-board memory.

BEAGLE memory usage depends on the data
type (e.g., nucleotide, codon), evolutionary model
characteristics (e.g., number of rate categories),
computational precision (i.e., single or double floating-
point format), and data set size. Here, we provide some
precise estimates of GPU memory requirement for
BEAST and MrBayes nucleotide-model analyses with
four rate categories and double precision floating-point
arithmetic, over a range of problem sizes in terms of
number of OTUs and of unique site patterns (Fig. 2).

For perspective, a current model single GPU designed
for HPC can have as much as 32 GB of memory (e.g.,
AMD FirePro S9170, NVIDIA Tesla V100), a single node
on the Comet Supercomputer with four NVIDIA Tesla
P100 GPUs has 4×16 GB for 64 GB of total GPU memory,
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FIGURE 2. Log–log contour plot depicting BEAGLE-GPU memory
usage for BEAST and MrBayes nucleotide-model analyses with four
rate categories and double precision floating-point arithmetic, over a
range of problem sizes in terms of number of OTUs and of unique site
patterns. The amount of memory depicted as values below the dashed
isolines convey the upper boundary for the memory size indicated.

and single chassis-multiple GPU systems are available
currently with up to 512 GB of total GPU memory. We
also note that BEAST can distribute data sets across
multiple GPUs; thus, each GPU will only require as
much memory as necessary for the data subset assigned
to it (Fig. 3 shows results for a benchmark that makes use
of this feature).

Data partitioning.—Memory requirements shown in
Figure 2 assume an unpartitioned data set. Precise
requirements for multiple data subsets depend on many
factors, and involve additional memory for independent
modeling of each subset, as well as an overhead
factor. Compared with previous versions, BEAGLE 3
is more memory efficient and significantly decreases
the memory overhead requirement for multiple data
subsets. As an example, for the previously described
dengue virus data set with 10 partition-defined data
subsets (see Performance Evaluation section) BEAGLE
2 requires 7.2 GB, Version 3 requires 3.3 GB. An
unpartitioned version of the same data set requires 3.0
GB with BEAGLE 3 and 3.7 GB with Version 2.

Scaling Computation
BEAGLE has been designed so that a library instance

efficiently uses the computing potential of a single
hardware resource (i.e., a GPU, or set of CPUs on
a single system). In this way, the library makes use
of up to tens of cores available in or among CPU(s)
or up to thousands of cores available from a GPU
within a chassis. Phylogenetic analyses with small and
intermediate-sized data sets fit within the memory
capacity of a single device (Fig. 2) and can achieve
decreased time to results by using a single library

FIGURE 3. Relative performance gains (fold-speedup) on two
systems for analysis with BEAST v1.10.5 and BEAGLE v3.1.2 for an
unpartitioned codon analysis of the previously described dengue virus
data set (see Performance Evaluation section), comprising 3330 codons.
For the BEAGLE GPU implementation, this data set requires 21.5 GB
of memory, and thus we scale computation by pattern block across two
library instances, each running on a separate GPU. Benchmarks are for
10,000 iterations, and the single-threaded, non-vectorized, version of
BEAGLE CPU running on System 1 is used as a reference.

instance, when compared with distributed computing
approaches. For analyses that benefit from additional
computational capacity (from a memory usage or
performance standpoint), it is necessary to consider
how computation can be distributed and how it scales
(over multiple GPUs or over multiple nodes). Here, we
explore two approaches to distributing the likelihood
computation at the core of phylogenetic analyses.

By pattern block.—Data sets with a sufficiently high
number of unique site patterns may saturate the many
cores on a GPU or its memory capacity (see Figs. 2 and 5
for nucleotide-model examples). A natural approach to
distributing the likelihood calculation is to break up
the site patterns into blocks or subsets and to compute
these independently. With BEAGLE, pattern blocks can
be computed on distinct devices by creating multiple
library instances, one for each block. This method is
available in BEAST and allows for data sets to be
distributed for computation on multiple GPUs.

Figure 3 shows relative performance results for a
codon-model analysis with BEAST on a variety of
BEAGLE implementations and serves as an example of
pattern block scaling. For the benchmarks running on
the GPU-CUDA implementation, the required memory
exceeded the capacity of a single GPU on either of the two
systems tested. Thus, we distributed the computation
across two GPUs by splitting the data set into two
pattern blocks, each running on a separate library
instance (and under a separate thread in BEAST). On
both systems, we observe strong performance for the
distributed test on two GPUs. On System 1, which has
36 CPU cores, the dual-GPU speedup over the best-
performing CPU implementation is 4.7×. On System
2, which has a latest-generation 6-core Intel processor,
this speedup is 21×. We also highlight the significant
performance advantage of the CPU-based OpenCL
implementation available in BEAGLE 3 over other CPU
approaches. In contrast to traditional implementations,
the OpenCL version also parallelizes the character
state-count dimension (see Key Improvements section),
enabling concurrent computation of the distinct states
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FIGURE 4. Relative performance gains (fold-speedup) for analysis
with MrBayes v3.2.7 and BEAGLE v3.1.2, demonstrating the scalability
across a range of MPI processes and hardware devices on nodes of the
Comet Supercomputer available via CIPRES. Results denoted with a
(+) were benchmarked on nodes with a newer-specification CPU and
GPU (the CPU executed non-BEAGLE code). As reference, we use the
double-precision MrBayes calculator, running as a single CPU process.
We use the same dengue virus data set as before (see Performance
Evaluation section), with an increase in the number of Markov chains
to four and replicate runs to two.

each sequence character can assume (61 for this codon-
based analysis).

By Markov chain or run replicate.—For Bayesian inference
programs that support Metropolis-coupled Markov
chain Monte Carlo (Geyer 1991) or multiple runs, another
approach to distribute computation is through parallel
Markov chains or replicate runs. MrBayes employs
this method via Message Passing Interface (MPI) to
distribute computation over multiple processes running
on a multicore CPU or more widely on a computer
cluster (Altekar et al. 2004). This MPI-based approach
can be combined with BEAGLE such that each process
can use separate library instances and can run on a
different device or node, increasing scale in terms of both
computation and memory.

To demonstrate the use of the BEAGLE library with
MPI for distributing computation, we here provide
an example of multi-node benchmarks, performed by
Dr. Wayne Pfeiffer of the San Diego Supercomputer
Center, on the Comet supercomputer available via
CIPRES. Figure 4 shows MPI scalability available with
MrBayes v3.2.7 and BEAGLE 3 for Markov chains
and run replicates on an increasing number of MPI
processes. For the GPU implementation, we contributed
improvements to MrBayes so that each process ran on
a separate device (an NVIDIA K80 GPU is seen as two
devices) and up to 8 GPUs were used simultaneously
(over two nodes). For the CPU-based implementations,
each MrBayes process ran on a separate core on a single
node. For all implementations tested, we observe that
performance scales similarly as we increase the number
of MPI processes from one to eight and that the relative
performance advantage of using BEAGLE is retained,
independent of the number of processes used.

Scaling Performance
Relative performance for the different likelihood-

calculation implementations available in BEAGLE varies
significantly with data set size and evolutionary model
employed. In this section, we focus on how performance
scales with the number of unique site patterns,
the primary dimension of independent likelihood-
calculation that is parallelized by all implementations
in BEAGLE. Version 3 of the library also parallelizes
likelihood computation on the tree toplogy on GPUs
(see Key Improvements section) and we have found
performance to scale strongly with tree size, resulting
in speedups of up to ∼8× for trees with over 1000 tips
(Ayres and Cummings 2017a).

Nucleotide models.—We have conducted tests to evaluate
how likelihood-calculation performance in BEAGLE
scales with the number of unique site patterns for a
typical nucleotide-model analysis. For comparison, we
also include results using the Phylogenetic Likelihood
Library (PLL) (Flouri et al. 2015) Version 2 (commit
eda16a6). Currently, there are no phylogenetic analysis
programs that can use both BEAGLE and the PLL,
and comparing across different programs would involve
confounding factors and impacts of the phylogenetic
software integrating the library. Thus, performance
evaluations were done using a dedicated testing
program (synthetictest) that generates synthetic data
and exercises the core functions of the libraries. This
test program is available with the BEAGLE source
code and comparison to the PLL can be replicated by
setting the with-pll compilation option. Here, the
evaluations performed were facilitated because recent
versions of the PLL have an API that is similarly modeled
to the one in the BEAGLE library. For double-GPU
benchmarks, we used recently added functionality in
BEAGLE that enables asynchronous API calls to the
library, thus allowing concurrent computation on two
devices from a single-threaded program. This approach
is less efficient than using multithreading to manage
multiple library instances (as is done with BEAST) but
avoids complexities associated with threading.

The PLL does not support single-precision arithmetic,
whereas the BEAGLE library supports both single and
double-precision arithmetic, hence all tests used double-
precision floating-point arithmetic (single-precision
arithmetic is used, often optionally, by some Bayesian
analysis programs). The tests also did not perform
numerical value rescaling, as there are numerous ways
such rescaling procedures can be effected, and this
is a design feature that differs among phylogenetics
programs. Rescaling is often necessary as the likelihood
values for many data sets lead to arithmetic underflow, a
state where floating-point numbers are smaller than the
limit of what is representable by the processor, and hence
have to be rescaled to maintain necessary precision. With
BEAGLE we typically observe an 8% cost on overall
performance when using numerical rescaling factors for
likelihood evaluation.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/6/1052/5477405 by U

niversity of Technology, Sydney user on 31 O
ctober 2019



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:37 25/9/2019 Sysbio-op-sysb190019.tex] Page: 1058 1052–1061

1058 SYSTEMATIC BIOLOGY VOL. 68

Dr. Wayne Pfeiffer of the San Diego Supercomputer
Center independently executed the benchmark tests on
the Comet supercomputer, which is among the resources
backing the CIPRES Science Gateway (Miller et al.
2010), and thus available to the broader systematics
community. He employed a Comet node with dual
Intel Xeon E5-2690v4 processors and four NVIDIA Tesla
P100 GPUs (only two GPUs were used in the tests
shown). We make the benchmark scripts used available
in the BEAGLE source code repository (see Availability
section).

The tests first simulated nucleotide data for a tree of
128 OTUs using an evolutionary model with 4 (arbitrary
value) rate categories and then computed the likelihood
for 10 variations of the tree and model parameters
(specifically, the tests varied topology, branch lengths,
category rates, category weights, and pattern weights).
The tests did not include branch-length optimization,
a ML specific operation. BEAGLE can compute first
and second branch-length derivatives (at a performance
cost of ∼4% for a data set with 128 OTUs running
on the GPU implementation); however, the numerical
optimization procedure to propose new branch-lengths
needs to be carried out by the client program and thus
would not be a measure of library performance. The
tests replicated each run 10 times with different starting
random seeds and reported the mean performance
across the replicates. The number of unique site patterns
ranged from 1×102 to 1×106. Note that for most data
sets the number of unique sites is substantially less
than the aligned sequence length, and hence these
values correspond to larger data sets of actual nucleotide
sequences.

We collected performance results for the two best-
performing implementations of the PLL and for all
implementations of BEAGLE that are appropriate for
the CIPRES hardware. These comprised the following
implementations: the PLL CPU with AVX2; the PLL
CPU with AVX2, and using a novel algorithm to reduce
computation associated with repeated site states (Kobert
et al. 2017); the BEAGLE library CPU with SSE; the
BEAGLE library CPU with SSE and threading; and
the BEAGLE library GPU with CUDA, a programming
framework for computing on NVIDIA GPUs. We note
that the PLL Version 2 does not include multi-core
implementations (e.g., via multithreading or MPI).

We measured both absolute performance, defined
as throughput in units of billions of partial likelihood
calculations per second, and relative performance,
defined as fold-speedup relative to the slowest
performance observed for the BEAGLE library CPU
with SSE at any number of unique site patterns. The
comparative performance results for the BEAGLE library
and the PLL are presented in Figure 5.

For problem sizes greater than 102 site patterns,
best performance is achieved with the BEAGLE CUDA
implementation running on one or two NVIDIA P100
GPUs. With a single GPU, performance increases
until 104 patterns, where the hardware reaches a
saturation point at ∼25.6 B partial-likelihood operations

FIGURE 5. Absolute (throughput in billions of partial likelihood
calculations per second) and relative (fold-speedup relative to the
slowest performance observed at any number of unique site patterns)
performance scaling with problem size for implementations of the
BEAGLE library Version 3.1.2 and the Phylogenetics Likelihood library
Version 2 on nodes of the Comet Supercomputer available via CIPRES.
The data are simulated nucleotide sequences for a tree of 128 OTUs.

per second (representing a speedup of ∼32× over
single-threaded CPU implementations). When using
two GPUs (in asynchronous mode with our single-
threaded test program), this saturation point is shifted
further towards larger problem sizes. On the CPU, we
find the BEAGLE-SSE implementation with threading
achieves best performance at any problem size, with the
relative gain increasing with problem size. For single-
threaded CPU implementations, BEAGLE-SSE is fastest
up to 103 patterns, and the PLL AVX-2 site-repeats
implementation performs best for problems above 103

patterns (up to a peak of ∼2× over other single-threaded
implementations, for very large problems).

In order to more comprehensively assess the
performance of the PLL site-repeats implementation,
we repeat the comparative benchmarks described in
this section on a sample of empirical multiple sequence
alignments with corresponding parsimony trees, each
with a high proportion of repeated sites (>90%) (Kobert
et al. 2017). Table 1 shows fold-speedups for each of
these data sets, defined relative to the performance
observed for BEAGLE CPU with SSE. We find that the
BEAGLE GPU implementation is fastest at any problem
size, with speedups of up to 37× over the reference
serial implementation. On the CPU, the multithreaded
approach in BEAGLE is fastest for all but the smallest
data set (measured by number of unique site patterns).
If we only consider single-threaded CPU approaches,
the PLL solution using site-repeats performs best,
with speedups of up to 3.1× over the single-threaded
BEAGLE implementation.

Other models.—For amino acid and codon-based models,
we observe GPU performance to be less sensitive to the
number of unique site patterns (Ayres and Cummings
2017b; Baele et al. 2018). This is due to the better
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TABLE 1. Relative performance for implementations of BEAGLE
Version 3.1.2 and the PLL Version 2 for a sample of empirical data
sets with an increasing number of unique site patterns and a high
percentage of repeated sites

Unique site patterns 348 3224 7418 19,437

OTUs (sequences) 354 59 404 128
Repeated sites (%)a 94.65 92.04 96.49 91.78

Sp
ee

du
p

vs
.

BE
A

G
LE

SS
E

PLL AVX2-pattern-tip 0.88 0.92 0.96 0.98
PLL AVX2-site-repeats 2.28 1.85 3.10 2.31
BEAGLE SSE-threaded 1.63 5.72 5.24 5.23
BEAGLE GPU-CUDA 3.36 21.82 35.49 37.06

Note: Benchmarks performed on an Intel Xeon E5-2697v4 CPU and on
an NVIDIA GP100 GPU. All implementations use a single CPU thread
except for the BEAGLE SSE-threaded implementation that uses up to
eight threads. Data sets are a sample of those used in Kobert et al.
(2017). We generated trees by running a parsimony tree search with
Parsimonator (Stamatakis 2014) with arbitrary rooting.
aRepeated sites denote the number of sites over all nodes that are
repeats of another site at the same node, and thus depends on the
tree topology, the selected root, and the data set. As an approximate
reference, we reproduce the percentage of repeated sites for each data
set that Kobert et al. (2017) report, where they used an independently
generated parsimony tree and indeterminate random rooting.

parallelization opportunity afforded by the increased
number of states that can be encoded by an amino
acid or codon. The higher state count of these data
types compared to nucleotide data increases the ratio
of computation to data transfer, resulting in increased
GPU performance (Fig. 3).

USABILITY

Since the first release of BEAGLE, we have received
occasional feedback from researchers performing
analyses where use of the library did not meet
performance expectations or that it failed to work at
all. In general, such issues occur due to the use of
under-powered GPUs, such as those found on notebook
computers, or due to incorrect or missing installation
of the necessary CUDA or OpenCL frameworks. For
guidance, users can refer to the online documentation
(see Availability section) for the library and to the specific
instructions for each application.

Automatic Resource Selection
Beyond the issues described above, which relate

to the configuration of the system being used, the
characteristics of the data set and evolutionary model
employed can also have a significant impact on
performance or even preclude the use of a GPU
(see Scalability section). Choosing the best-performing
implementation across various hardware devices has
previously required the user to evaluate available
resources (e.g., CPU, GPU) with analysis parameters and
data set characteristics specific to the problem at hand.
To eliminate this additional level of complexity for the
user, we have extended the BEAGLE library API so that
it now supports benchmarking that provides a ranking

of available hardware resource and implementation
combinations for the analysis parameters to be used in
the target analysis. Furthermore, we have added this
automatic resource selection feature to BEAST (Version
1.10.5) and MrBayes (Version 3.2.7).

Support in Phylogenetic Software Packages
The current extent and status of BEAGLE integration

with different phylogenetic software packages is varied.
The latest versions of Bayesian-inference programs
BEAST (Suchard et al. 2018) (v1.10.5) and MrBayes
(Ronquist et al. 2012) (v3.2.7) feature the most complete
support for the library and for the improvements
here described. BEAST2 (Bouckaert et al. 2014), an
independent project to BEAST, also features extensive
support for the library but does not make use of the latest
advances such as increased parallelism for nucleotide-
model analyses on GPUs. Specific advice on how to use
BEAGLE with these programs is available through their
documentation (online and at runtime).

The BEAGLE API and library implementations (CPU
and GPU based) also provide support for ML programs
via methods specific to this approach (such as branch-
length derivative calculation). These methods have
been available since the first release of the library
and significant speedups have been observed with a
development-version of GARLI (Zwickl 2006; Ayres et al.
2012). At present, support for BEAGLE in ML-based
programs remains experimental or in-development.
Development branches supporting the library are
publicly available in the GARLI and PHYML (Guindon
et al. 2010) source code repositories, and work is in-
progress for PAUP* (Swofford 2003). The considerable
performance benefits of using the BEAGLE library
on even desktop computers provide an incentive for
continued development of these projects and for other
software developers to explore doing so.

DOCUMENTATION FOR DEVELOPERS

Creating software that uses any library can be
challenging without sufficient documentation, and the
complexity of both the BEAGLE library itself and
the phylogenetic applications for which it is designed
can make entry difficult for beginning users. An
online tutorial (see Availability section) shows how
to use the BEAGLE library to greatly simplify the
efficient calculation of the likelihood of sequences on
a phylogenetic tree. The tutorial explains how to 1) set
up a project that links the BEAGLE library under
two common freely-available integrated development
environments, 2) construct C++ classes that manipulate
trees and process data, and 3) use the BEAGLE library to
calculate the likelihood under the GTR+G (Tavaré 1986;
Yang 1996) substitution model as well as arbitrary rate
matrices. This tutorial serves to augment the BEAGLE
library API documentation with an extensive example
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application in C++. The same principles can also be
applied to write applications in other languages for
which BEAGLE includes wrappers (currently Java, and
Python with partial functionality).

CONCLUSION

The BEAGLE library addresses a common bottleneck
across phylogenetic inference programs by accelerating
likelihood computation. Among other improvements,
Version 3 of the library includes additional parallel
computing advances and combines CUDA, OpenCL,
and native CPU-threading implementations in a single
codebase to address a wider-range of hardware
resources. Additionally, increased concurrency of
computation for large trees and partitioned data sets
allows a wider range of phylogenetic inferences to
benefit from GPU acceleration. These advances serve
as an important step in combining the capabilities of
increasingly parallel hardware with the demands of
progressively more sophisticated phylogenetic analyses.

AVAILABILITY

The BEAGLE library is free, open-source software
licensed under the Lesser General Public License (GPL).
The source code, benchmark files, documentation, as
well as binary installers for macOS and Windows,
are available at https://beagle-dev.github.io. An online
tutorial for application developers is available at
https://stromtutorial.github.io.
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