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DPIF: A Framework for Distinguishing Unintentional Quality
Problems From Potential Shilling Attacks

Mohan Li!, Yanbin Sun’ ¥, Shen Su', Zhihong Tian', Yuhang Wang"- “ and Xianzhi Wang?

Abstract: Maliciously manufactured user profiles are often generated in batch for shilling
attacks. These profiles may bring in a lot of quality problems but not worthy to be repaired.
Since repairing data always be expensive, we need to scrutinize the data and pick out the
data that really deserves to be repaired. In this paper, we focus on how to distinguish the
unintentional data quality problems from the batch generated fake users for shilling attacks.
A two-steps framework named DPIF is proposed for the distinguishment. Based on the
framework, the metrics of homology and suspicious degree are proposed. The homology
can be used to represent both the similarities of text and the data quality problems contained
by different profiles. The suspicious degree can be used to identify potential attacks. The
experiments on real-life data verified that the proposed framework and the corresponding
metrics are effective.

Keywords: Data quality, shilling attacks, functional dependency, suspicious degree, ho-
mology.

1 Introduction

Low quality data can severely impact on the usability of data, and may lead to huge losses
[Eckerson (2002)]. A lot of recent work has been proposed to evaluate the data quality
and a lot of data cleaning rules are proposed [Fan and Geerts (2012); Fan, Geerts, Jia et al.
(2008); Cao, Fan and Yu (2013); Fan, Geerts and Wijsen (2012); Chu, Ilyas and Papotti
(2013a); Interlandi and Tang (2015); Fan, Li, Ma et al. (2012); Li, Li, Cheng et al. (2018);
Li and Li (2016)]. However, most of these rules are adept at detecting errors, but not good
at fixing errors. For example, functional dependencies fd; : city, street — zip and
fda i IsMarried, Gender — Relationship can be used to clean the data shown by Fig.
1. A functional dependency ¢ is violated if two tuples ¢; and ¢; are same in the attributes
in the left-hand side, but different in the attribute in the right-hand side. By using the FDs,
we will be of the opinion that there may exist errors in the colored grids since these grids
violate the dependencies. However, it is difficult to know how to further locate and fix the
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Name Phn Street City Zip IsMarried Relationship Gender
t; | Alice | 8641123 | Shangxiajiu Street | Guangzhou | 511111 True Wife Female
t, Bob 8641325 Central Avenue Harbin 150010 True Husband Male
t; | Charlie | 8641465 Beijing Road Guangzhou | 510070 False Wife Female
t, | David | 8641465 Beijing Road Guangzhou | 510080 False None Female
ts | Emily | 8641465 Beijing Road Guangzhou | 510090 False Husband Female
ts | Frank | 8641000 Chunxi Road Chengdu | 610020 True None Male

FDs:

fd: city, street — zip
fd,: IsMarried, Gender — Relationship

Figure 1: The dataset containing user profiles

errors. For instance, to and tg violate fds, but modify each of the attributes IsM arried,
Gender and Relationship can make fds not violated. Repair the low quality data is
much more complex than locate the data quality problems. Since unreasonable repair is
not advisable, we may pay a lot of effort or even need human power, such as domain
experts or crowdsourcing to find the proper repairs [Garcia-Ulloa, Xiong and Sunderam
(2017); Zheng, Li and Cheng (2016); Zhang, Chen, Tong et al. (2015); Chu, Morcos, Ilyas
et al. (2015)].

Repairing low quality data is very expensive, thus we need to scrutinize the data and pick
out the data that really deserves to be repaired. One type of data that is not worth repairing
are the maliciously manufactured fake user profiles that ready to be used for shilling attacks.
The following example illustrates the situation.

Example 1.1. Consider the data shown by Fig. 1. By using fd; and fds, we will find that
(1) to and tg violates fds, (2) t3, t4 and t5 violate both of the two dependencies. However,
if we carefully check t3, t4 and ¢5, we will find that the three tuples are very similar in
the text. The similarity exists even in the attributes with different values and the violations
of dependencies. It is normal to have the correct values similar, but it is suspicious if the
wrong value is similar. A possible case is that someone is trying to automatically generating
some fake user profiles for shilling attack.

Shilling attacks [Gunes, Kaleli, Bilge et al. (2014)] aim to change the predictions of a rec-
ommender system by creating a set of fake users and the corresponding ratings. In modern
recommender systems, a user is always asked to enter some personal information when cre-
ating a new account. Since the value fields may be specified, a labor-saving way is to use
similar settings on these information when creating fake users. Moreover, fake users are
often created in batches and the creators may not be familiar with the semantic of different
attributes. Thus these fake profiles tend to make similar mistakes. In contrast, unintentional
data quality problems are often sporadic and do not get strong group similarities.

Based on the above ideas, this paper proposes a two-steps framework, named Dirty Pro-
file Identify Framework (DPIF for short), which aims to distinguish the unintentional data
quality problems from potential shilling attacks. First a set of candidates which may be
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erroneous are detected by data quality rules, and then clustering is utilized to find potential
shills. The contributions of this paper are as follows.

1. We provide a two-steps framework for distinguishing the unintentional data quality
problems from potential shilling attacks.

2. We propose the metrics of homology and suspicious degree. The homology is de-
fined to represent both the text similarity and the error similarities of different pro-
files. The suspicious degree is also defined to identify potential attacks.

3. The experiments on real-life data are carried out to verify the effectiveness of the
proposed framework and metrics.

The rest of this paper is organized as follows. Section 2 introduces the related works.
Section 3 provides an overview of the framework. Section 4 studies the process of finding
candidate dirty tuples. Section 5 gives the methods for distinguishing quality problems and
potential attacks. Section 6 shows the experimental study. Section 7 concludes the paper.

2 Related works
2.1 Data quality

There are currently a lot of works on data quality evaluation [Fan, Geerts, Jia et al. (2008);
Fan, Geerts and Wijsen (2012); Chu, Ilyas and Papotti (2013a); Interlandi and Tang (2015);
Fan and Geerts (2012); Ilyas, Chu et al. (2015); Chu, Ilyas and Papotti (2013b); Ramme-
laere, Geerts and Goethals (2017); Cao, Fan and Yu (2013); Kruse and Naumann (2018);
Li, Li, Cheng et al. (2018); Li and Li (2016); Garcia-Ulloa, Xiong and Sunderam (2017);
Li, Sun, Jiang et al. (2018)]. A lot of data quality rules, such as functional dependency,
conditional functional dependency, denial constraint and editing rule, are used to detect
data quality problems in the given datasets. The rules can be roughly classified into two
categories.

The first category includes functional dependency, conditional functional dependency, de-
nial constraints and some other similar dependencies [Fan, Geerts, Jia et al. (2008); Cao,
Fan and Yu (2013); Fan, Geerts and Wijsen (2012); Chu, Ilyas and Papotti (2013a)]. These
dependencies are good at finding quality problems but not good at fixing quality problems.
The reason is that these rules usually indicate which combinations of values in the data are
not correct, but do not indicate how to pinpoint and fix the errors.

The second category of dependencies tries to add information related to data repair in the
rules [Interlandi and Tang (2015); Fan, Li, Ma et al. (2012)]. These rules can effectively fix
errors in the data, but they are usually defined on small subsets of the data, which makes
them to be limited in the application scenario and expensive to obtain.

Some crowdsourced methods are also proposed to overcome the difficulties in data repair
[Chu, Morcos, Ilyas et al. (2015); Zhang, Chen, Tong et al. (2015); Garcia-Ulloa, Xiong
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and Sunderam (2017)]. These repair methods provide accurate repair results, but manpower
repairs are often expensive and inefficient, so we must check before the repair operation to
ensure that the data is worth repairing.

2.2 Shilling attacks

With the widespread use of big data analytics, security issues derived from big data are also
receiving attention [Liu, Peng and Wang (2018); Wang, Liu, Qiu et al. (2018); Wang, Tian,
Zhang et al. (2018); Tian, Cui, An et al. (2018); Chen, Tian, Cui et al. (2018); Zhang, Wang,
Wang et al. (2018); Tian, Su, Shi et al. (2018); Sun, Li, Su et al. (2018)]. Shilling attack
is a kind of attack on big data which negatively impacts the accuracy of a recommender
system. The attackers try to inject dirty profiles into the data set, and injected dirty profiles
may severely reduce the data quality. Existing techniques, including supervised and unsu-
pervised methods, are mainly focus on how to identify the user’s abnormal rating behavior
[Gunes, Kaleli, Bilge et al. (2014)]. The current research focus on shilling attacks is mainly
on how to manipulate the rating to influence the accuracy of the recommendation system.
The types of the attacks include random attack, average attack, bandwagon attack [Mobash-
er, Burke, Bhaumik et al. (2007)], and average-noise injecting attack, average-target shift
attack [Williams, Mobasher, Burke et al. (2006)], etc.

The methods of detecting shilling attack can be roughly classified into supervised and un-
supervised methods. Supervised methods [Wu, Wu, Cao et al. (2012); Yang, Xu, Cai et al.
(2016); Zhang and Zhou (2014)] require a well-labeled training data set. These data are
often hard to get in real-life applications, because even if for humans, it is difficult to
judge whether a score record is a malicious attack. Furthermore, supervised methods also
fall short in the scenario that the type of attack is not known in advance. Unsupervised
methods [Zhang, Zhang, Zhang et al. (2018); Bryan, O’Mahony and Cunningham (2008);
Bhaumik, Mobasher and Burke (2011); Yang, Cai and Guan (2016)] can overcome some
of the shortcomings of supervised methods. These methods are mainly based on clustering
user rating behaviors to discover shilling attacks.

The existing works basically pay attention to observing the abnormality of the user’s rat-
ing behavior, but ignores the abnormality of the user’s personal information (so-called user
profile). Dependencies between different attributes of a user profile are often readily avail-
able, and there are many existing works that can detect anomalous values on dependent
attributes. In order to inject fake ratings, attackers often need to create a lot of fake user
profile to register accounts. When creating these accounts, an attacker may ignore attribute
dependencies and cause many different types of data quality problems in user profiles. Ob-
serving the homology of these data quality issues can effectively help us detect abnormal
accounts and discover potential shilling attacks.

3 Overview of DPIF

Let R be a user profile table defined on a set of attributes attr(R). Each tuple ¢t € R corre-
sponds to the information of a user. ¢[A] is the values of ¢ on attributes A C attr(R). For



DPIF: A Framework for Distinguishing Unintentional Quality 335

Shills identifier
User profiles | Profile clustering ‘
Candidate dirty

@ ((8 user profiles | Suspiciousness caculating
& f

Dirty profile detector }

Unintentional
quality problems

Data quality rules

.

Potential attacks

Figure 2: A overview of DPIF

example, for the tuple ¢3 in Fig. 1, t3[city, street, zip] is (BeijingRoad, Guangzhou,
510070). A data quality rule set ® is defined on attr(R), and can be used to detect the
candidate dirty user profiles. The main idea two-steps workflow of DPIF is as follows, and
the main com-ponents are shown by Fig. 2.

1. Dirty profile detector uses ® to detect possible errors in R. The possible erroneous data
are collected and organized by the provenance, i.e., by the tuples they come from
(named candidate dirty user profiles) and the rules they violate.

2. Candidate dirty user profiles are given to the shills identifier. Shills identifier clusters
the dirty user profiles based on provenance, and calculates the suspicious degree of
each user profile. Based on the suspicious degree, the dirty user profiles are
distinguished, as either potential shilling attack or unintentional quality problems.

For example, if we use DPIF to process the table shown by Fig. 1, the candidate dirty user
profiles are {to,t3,t4,t5,ts} since the colored grids are detected as the violation of fd;
and fds. Then, shills identifier may identify that {t3, ¢4, t5} are potential attacks since they
are similar in both text and errors. {t2} and {t¢s} are identified as unintentional quality
problems because they have no suspicious analogues. Technical details of dirty profile
detector and shills identifier are discussed in Section 4 and Section 5.

4 Detecting candidate dirty profiles

For the ease of discussion, we choose function dependencies (FD) as data quality rules,
but it is easy to verify that other types of data quality rules discussed in Section 2 can also
apply to the dirty profile detector.

A FD is a constraint between two sets of attributes in a relation. Given two attribute sets X
and Y in relation attr(R), a FD ¢ : X — Y means that each X value in R is associated
with precisely one Y value in R. X is called the left-hand side of X — Y, denoted
by lhs(¢), and Y is called the right-hand side of ¢, denoted by rhs(¢). For example,
fdy : city, street — zip means that city and street can uniquely determine the value
of zip. Therefore, if two records ¢; and ¢; are the same in city and street, but different in
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zip, we can detect an error in t;[city, street, zip| and t;[city, street, zip|. We choose FD
to be the quality rule, because FDs are defined on the entire dataset rather than the subset
of data. Thus high recall can be obtained with a small number of rules.

Only a pair of tuples can violate a FD, thus the process of this step is as follows. For each
FD ¢ € @, scan R to find how many pairs of tuples violate ¢. Concretely, Vt;,t; € R,
if ¢;[lhs(@)] = tj[lhs(¢)] but t;[rhs(¢)] # tj[rhs(¢)], we say that ¢;,¢; violate ¢. Then,
tillhs(¢) Urhs(¢)] and t;[lhs(¢) U rhs(¢)] are marked as potential dirty area, and t;, ¢;
are marked as candidate dirty profiles.

The time complexity is O(|®||R|?). Some other existing techniques can also be employed

to speed up this step. Since the optimization of dirty data detection is beyond the scope of
this paper, we choose the easiest implementation.

4.1 Organization of the intermediate results

To make the subsequent process effective, we need to carefully organize the intermediate
results. Three kinds of lists need to be maintained, i.e., candi(R), vio(t) and vio(t;,t;).

* candi(R) stores all the candidate dirty profiles.

* vio(t) stores all the FDs that are violate by ¢, i.e., for each ¢;, tj violate ¢, ¢ is in both
vio(t;) and vio(t; ).

* vio(t;, t;j) stores all the FDs that are jointly violate by ¢; and t;, i.e. for each ¢;, ¢; violate
gf), gf) isin m'o(ti, tj )

Example 4.1. Let the dataset and FDs in Fig. 1 be R and @, respectively. Then, candi(R)=
{tQ, t3, t4, t5, tﬁ}, for tQ, t3 and t6, we have Uio(tg) = {fdQ}, Uio(tg) = {fdl, fdQ}, Uio(tg,
ts) = 0, vio(te, tg) = { fda}.

Please note that vio(t;,t;) is not necessarily equal to vio(t;) N vio(t;) since ¢; and ¢; can
violate the same FD joinly with other tuples. Actually, vio(t;,t;) C vio(t;)Nvio(t;). These
lists will be given to shills identifier and make the identifying process more effectively.

5 Distinguishing unintentional quality problems and potential attacks

The intermediate results are given to the shills identifier, and the aim of the shills identi-
fier is to divide candi(R) into two subsets, containing unintentional quality problems and
potential attacks respectively. The main idea of the division is that it is suspicious if two
profiles have similar errors. Therefore, this step can be further refining into two steps.

1. We propose a definition of the homology as the similarity of both the text and the
errors contained by two different profiles, and cluster the candidate dirty profiles
based on homology.
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2. Profiles for attacks are usually generated in batches, thus larger clusters clusters are
more likely to be potential attacks. Therefore, we can define the suspicious degree
based on the size of the clusters.

The following subsections provide details of the two steps.

5.1 Clustering the candidate dirty profiles

First we provide the definition of homology to reflect both the text similarity and the sim-
ilarities of the "errors" contained by different profiles. Homology is the similarity in trait
from shared ancestry. High homology of two profiles means that they are very similar in
text and the errors, thus they may be generated in batch and are considered as suspicious
attacks. The definition is as follows.

Definition 5.1 (profile homology). The homology of ¢; and ¢; is denoted by H (¢;,t;), and
can be computed by Formula (1).

H(t;,t;) = a x textSim(t;, t;) + (1 — ) x vioSim(t;, t;) (1)

where « is the normalization parameter, textSim(t;,t;) is the text similarity of ¢; and ¢;,
vioSim(t;,t;) is the similarity of the violations of ¢; and ¢;, that is,
[vio(ti, )]

vioSim(t;, t;) = lvio(t;) U vio(t;)| ”

Please note that the definition of vioSim(t;,t;) is different from the Jaccard similarity of
two sets, because vio(t;, t;) is not necessarily equal to vio(t;) Nvio(t;). However, when the
data has many quality problems, vio(t;,t;) might be much lower than vio(t;) and vio(t;),
which makes vioSim close to 0. In this case, we can use vio(t;) N vio(t;) instead of
vio(t;, t;), to avoid excessive low homology. The textSim(t;,t;) can be calculated by any
reasonable similarities. For example, normalized absolute error can be used to measure the
numerical attributes, normalized edit distance or cosine distance can be used to measure
the string attributes, etc.

A cluster is a set of profiles, thus the definition of the homology of clusters can be given
based on the definition of profile homology.

Definition 5.2 (cluster homology). The homology of a cluster c is the minimum homology
of the profiles in ¢, that is,

J— 3 /
H(c) = min H(t,t) 3)
The homology of two clusters ¢; and c; is the minimum homology of the profiles in ¢; Uc;,
that is,

H(eiyc) = min H(t, ) 4)
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Based on the homology, a single-linkage agglomerative clustering can be used to cluster
profiles that are similar in both error and text. Given a threshold # of homology, the ag-
glomerative clustering aims to generate a set of clusters C' = {cy, ca, ..., ¢; } which satisfies
three conditions, i.e., (1) H(c¢;) > 6 for each ¢; € C, (2) ¢; N ¢; = 0 for each ¢; # ¢;, and
(3) H(cj,cj) < O foreachc; # ¢; .

The procedure of the agglomerative clustering is shown by Algorithm 5.1. The clustering
process starts from the bottom layer and merges the two clusters with the highest homology
value each time. In Algorithm 5.1, Line 1 to 3 initiate the clusters in C, each cluster
contains exactly one element in candi(R). Please note that profiles not in candi(R) do not
need to be clustered, since there are no errors in these profiles. In the loop from Line 4 to
9, tmpcl and tmpc2 point to the two clusters with the highest homology. The union of the
two clusters tmpcl U tmpc2 is added to C, while tmpcl and tmpc2 are removed from C.

Algorithm 5.1 The single-linkage agglomerative clustering of candidate dirty profiles

Input: candi(R), 6

Output: C = {cy, ¢, ..., ¢;} which satisfies the three conditions
1: for each t; € candi(R) do
2 C; < {tl}

3: end for

4

5

: while 3¢, € C's.t. H(c,d') > 6 do

tmpcl, tmpc2 < arg max H (¢, ')
c,cleC

6 newclu = tmpcl U tmpc2

7. C+«+ C\ {tmpcl, tmpc2}

8: C «+ CU{newclu}

9: end while

0: return C

Example 5.1. For the dataset shown by Fig. 1, we define the textSim(t;,t;) as the per-
cents of same values in ¢; and ¢;, « = 0.5, and § = 0.8. The matrix in Fig. 3 shows
the homology of profiles. The grey grids shows the homology higher than 0. If we use
Algorithm 5.1 to cluster the profiles, we will get C' = {{t2}, {t3,t4,t5}, {t6}}.

5.2 Calculating the suspicious degree

As we discussed before, profiles for attacks are usually generated in batches, thus larg-
er clusters or tighter clusters in clustering results are more likely to be potential attacks.
Therefore, larger clusters are more likely to be suspicious. We provide a metric of suspi-
cious degree based on the size of the cluster.

Definition 5.3 (suspicious degree). The suspicious degree of a cluster is the ratio of its size
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Figure 3: The homology matrix

to the size of the largest cluster, that is,
]

max {|c/|}

max ([T}

The suspicious degree of a profile ¢ is the suspicious degree of the cluster it located in, that

is, susp(t) = susp(c®), where ¢*) is the cluster containing t.

susp(c) = &)

Based on the results of Example 5.1, the suspicious degree of the clusters can be calculated,
that is, susp({ts,t4,t5}) = 3/3 = 1, susp({t2}) = susp({ts}) = 1/3 ~ 0.33.

All clusters can be sorted according to the suspicious degree, so that we can check from
top to bottom which profiles might be potential attacks. We can set a parameter k, the top
k clusters with the highest suspicious degree are considered potential attacks, while the
remaining clusters are considered unintentional quality problems.

6 Experimental results

We conduct the experiments on real-life data set. The codes are written in Python and run
on a machine with 17 1.80 GHz Intel CPU and 8 GB of RAM. The dataset which was used
in the experiments is a UCI dataset! consisting of restaurant data with consumer ratings.

We use the DPIF proposed in this paper to distinguish the unintentional data quality prob-
lems from potential shilling attacks. We calculate the suspiciousness of each cluster and
check if the attack occurs in clusters of top-k suspicious degree. In this process, there are
four parameters that are very important, namely (p1) the methods of generating dirty pro-
files, (p2) the size of k when selecting top-k clusters, (p3) the threshold of the homology 6,
and (p4) the selection of the FD set. We tested the recall and precision for different cases
of the four parameters. In all experiments, there are 10% unintentional quality problems in
the data. The measure of effectiveness is recall and precision, which are defined as follows.

tp .y tp

, recision =
tp+fn " tp+ fp

where tp, fp, fn are the number of true positive attacks, false positive attacks and false

negative attacks.

recall =

Uhttps://archive.ics.uci.edu/ml/datasets
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Figure 4: Recall and precision when varying k and dr

6.1 Varying dirty profiles and k

We put (pl) and (p2) together for the experiment, because the two parameters are related.
There are numerous ways to generate dirty profiles. We choose to change some values
in the normal profile to generate dirty profiles in batches. More concretely, we use one
normal profile and random modify the profile in the range of dr (i.e., dr is the range that
the modification allowed to be appear) to get a set of fake profiles. The profiles in the same
set tend to be more similar to each other, and the set is called a batch. The number of
batches is denoted by b. Ideally, each cluster in the result of DPIF is corresponding to a
batch. Thus, to find all the potential attacks, k should be no less than b. Therefore, in the
experiment, we vary k/b(i.e., kK = b, k = 2b, etc) and dr. The recall and precision are
shown by Fig. 4.

We find that increase of dr has a more obvious impact on and will also slightly affect pre-
cision. This is because that a larger value of dr means higher randomness when generating
fake profiles, thus the quality issues that appear in the profile are more different. In other
words, vioSam will be lower, which decreases homology. dr also impact precision. How-
ever, the normal profiles are not very similar to each other, thus they have low homology
which makes them hard to be clustered together. Therefore, dr has less impact on precision.

The different value of k also impacts the recall and precision. Since we only check top-k
clusters, the higher £ is, the higher recall and precision we get. When k& = b and dr = 50%,
the recall is only 0.82, when k is increased to 3b, the recall is increased to 0.97. k does not
affect precision much. This is because most normal profiles are in the small clusters, which
are not likely to appear in top-k suspicious clusters.

6.2 Varying the homology threshold 0

As is discussed in Section 5, the higher the value of 6, the less likely the dirty profiles are
clustered. Since we only check the top-k clusters, the larger 6, the lower the recall. The
precision is less affected by 6. We test three different cases of , i.e., « = 1, « = 0.5
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Figure 5: Recall and precision when varying 6

and « = 0. The value of « is actually the weight of textSim and vioSim. a = 0 means
that we only consider vi0Stm. a = 0.5 means that we only consider textSim. o = 1
means that we only consider textSim. The experimental result is shown by Fig. 5. In the
experiments, dr is fixed to be 25%.

It can be observed from the result that when o = 1 the recall and precision are obviously
lower than the case that « = 0.5 and o = 0. This is because that in our scenario, even
if the fake profiles are inserted in batch, these fake profiles are somewhat different from
each other. Using high similarity threshold (greater than 0.9 in our experiments) is hard
to distinguish normal quality problems from batch produced fake profiles. In experimental
result shown by Fig. 4, the results of a = 0 are better than o« = 0.5. However, it does not
mean that lower « is always better. For example, as we have discussed, the increase of dr
will lead to the decrease of vioSam. In that case, higher o will be better.

6.3 Varying the FD set

We test three FD sets, consisting of 10, 20 and 30 different FDs, respectively. The results
of the recall and precision are shown by Fig. 6. It can be observed from the results that the
number of FDs cannot decide the effectiveness. That is, more FDs does not mean higher
recall and precision. For example, in our experiment the set consisting of 10 FDs achieved
the highest recall and precision. The recall the set consists of 20 FDs is higher than the set
consisting 30 FDs, but for precision, it is the opposite.

We further examined the performance of each FD throughout the process and found that in
general the FDs with shorter left-hand side (i.e., has more attributes in the left-hand side)
tend to be more effective than the ones with a longer left-hand side. This is because the
left-hand side is more easy to satisfy.
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Figure 6: Recall and precision when varying the FD set

7 Conclusions

This paper proposes DPIF, which aims to distinguish the unintentional data quality prob-
lems from potential shilling attacks. The process can be divided into two steps. First a set
of candidates which may be erroneous is detected by data quality rules, and then clustering
is used to find potential shills. In future work, we will explore different data quality rules,
and will study the methods of automatically learning the parameters.
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