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Abstract 

In this study, three semi-pilot scale systems (vertical flow constructed wetland, multi-soil layering, and 

integrated hybrid systems) for treating real rice noodle wastewater were operated parallelly for the first 

time in a tropical climate at a loading rate of 50 L/(m²·d) for more than 7 months to determine the 

optimal conditions and to compare their treatment performance. The results demonstrated that these 

systems were appropriate for the removal of organics, suspended solids, and total coliform (Tcol). The 

highest reductions in chemical oxygen demand (CODCr,73.2%), phosphorus (PO4-P, 54%), and Tcol 

(4.78 log MPN/100 mL inactivation) were obtained by the integrated hybrid system, while the highest 

removal efficiencies of ammonium (NH4-N, 60.64%) and suspended solids (80.49%) were achieved in 

the vertical-flow-constructed wetland and multi-soil layering systems respectively. 

Keywords: constructed wetland; multi-soil layers; rice noodle wastewater; decentralized wastewater 

treatment system. 
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1. Introduction 

Untreated or incompletely treated wastewaters from the rice noodle villages in central Vietnam have 

been of great concern because they pose a serious impact on community health and ecological 

functions (MONRE, 2008). The production process of rice noodles releases a large volume of 

wastewater containing high concentrations of complex organic and nutrient compounds and high C/N 

ratios (Karmee, 2018; Siripattanakul-Ratpukdi, 2012; Suwan et al., 2014). The biggest challenge 

regarding a handicraft village wastewater is not only the technological solutions but also the costs of 

the treatment. Despite the significant advances in wastewater treatment technology, low-cost natural 

wastewater treatment methods have attracted more attention in recent years, especially in low and 

middle-income countries. These technologies are considered feasible tools for addressing the 

wastewater contamination in traditional handicraft villages, where centralized wastewater treatment 

plants might be impractical due to the high cost of construction, maintenance, and operation (Tang et 

al., 2019). Among the natural- wastewater treatment systems (WWTS), two types have generated 

considerable research interest: constructed wetland (CW) (Corbella et al., 2017; Luo et al., 2014; 

Marzo et al., 2018; Sgroi et al., 2018) and multi-soil layering (MSL) systems (Latrach et al., 2018; 

Shen et al., 2018; Song et al., 2018). Technically, both are designed based on mimicking natural 

processes, including filtration, adsorption, plant uptake, volatilization, and microbial degradation 

precipitation, in a controlled manner to neutralize pollutants in wastewater and enhance microbial 

activity in packed or filled beds (Jia et al., 2018; Luanmanee et al., 2001; Wei & Wu, 2018). The 

components and filter materials (sand, gravel, charcoal, zeolite, rice straw, soil, biochar, metal, and 

plants) constituting these systems are usually locally available and inexpensive (Ho and Wang, 2015). 

In addition, they are easily constructed and require simple operation and maintenance (Ho and Wang, 

2015; Li et al., 2017). 
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Many studies have investigated CW (Uggetti et al., 2016; Valipour and Ahn, 2015; Vo et al., 2018; 

Vymazal, 2005; Wu et al., 2015) and MSL (Chen et al., 2009; Guan et al., 2015; Guan et al., 2018; 

Masunaga et al., 2007) for the removal of suspended solids, organic matter, nutrients, pathogens, and 

metals from various kinds of common wastewater (sewage, domestic wastewater, grey-water, river 

water, etc.) and have achieved a satisfactory removal performance (Bonanno et al., 2018; Licciardello 

et al., 2018). Recently, a study of Koottatepand co-workers (2018) integrated CW with MSL for 

treating septic tank effluent and called it novel multi-soil layer constructed wetland. However, there are 

currently very few or no reports comparing the effectiveness of these technologies in a similar context. 

In particular, no information is available on the evaluation and comparison of these technologies for 

rice noodle wastewater treatment (RNWWT) to date. Therefore, the comparison of data between 

studies with different experimental and operational conditions is often unsuitable and may lead to 

incorrect conclusions. For example, several studies concluded that MSL has more advantages and 

higher removal efficiency of pollutants than the other systems in terms of percentage, mass loading 

rate, and hydraulic loading rate (HLR) (Guan et al., 2012; Wakatsuki et al., 1993). However the 

application of MSL in practice is a less utilized method (Guan et al., 2012). Therefore, it is necessary 

to investigate these gaps about WWTS.  

In this scenario, three semi-pilot scale systems, namely a vertical flow constructed wetland (VF-CW), 

MSL system, and integrated hybrid (IH) system, were parallel operated for a long period of time to 

compare their treatment efficiency for treating the wastewater from the rice noodle village under the 

same conditions of configuration in terms of size (height and volume), plants, and operational 

parameters. This experiment is also the first attempt to use of VF-CW, MSL, and IH systems for 

RNWWT. Furthermore, a parallel comparison at the same condition contributes to limit the bias in 

assessing WWTS which previous researches have done separately. 
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The specific objectives of this study were to determine optimal operating parameters and to evaluate 

and compare the performance of the VF-CW, MSL, and IH systems. Therefore, the results obtained 

could be used to plan appropriate technologies for treating rice noodle wastewater, which could allow 

greater versatility in choice of technology, design, installation, and operation to treat wastewater. 

2. Materials and methods 

2.1. Raw wastewater 

The rice noodle wastewater used to feed the experimental systems in this study was randomly collected 

from a storage tank of a household producer in Cam Thach traditional noodle handicraft village, Cam 

Lo District, Quang Tri Province, north-center Vietnam. The wastewater obtained from the storage tank 

was pre-treated in a septic tank biogas basin. The characteristics of the rice noodle wastewater used in 

this study and effluent discharge requirements are depicted in Table 1. 

Table 1. Characteristics of raw wastewater used in this study (n = 36). 

Parameter Units 
Rice noodle wastewater quality 

Vietnam’s standard* 
Mean ± SD  Min - Max 

CODCr mg/l 338.61 ± 114.83  197.50 - 766.25 150 

NH4-N mg/l 72.10 ± 30.95  24.55 - 135.35 10 

NO3-N mg/l 0.44 ± 0.57  0.11 - 2.54 50 

PO4-P mg/l 16.70 ± 3.25  8.56 - 24.20 10 

TSS mg/l 87.27 ± 21.41  37.60 - 132.00 100 

Tcol MPN/100 ml 78.547 ± 30.373  34.300 - 12.940 5.000 

pH - 7.29 ± 0.11  7.02 - 7.45 5.5-9 

SD: Standard deviation 
*Vietnam’s standard includes the National Technical Regulation on Domestic Wastewater (QCVN 
14:2008BTNMT) and Industrial Wastewater (QCVN 40:2011/BTNMT). 
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2.2. Experimental setup and description  

Three parallel experimental systems were set up in similar rectangular steel tanks that were protected 

by double layer epoxy coating (Supplementary material). All three tanks were the same size with 

dimensions of 0.6 m in length (L), 0.4 m in width (W), and 0.6 m in height (H). Then, the systems 

were constructed and filled with bed media with different levels, sizes, and densities and marked as the 

VF-CW system, MSL system, and IH system respectively. The VF-CW system consisted of three 

layers of 10 cm of coarse gravel (3–5 cm in diameter) at the bottom, 12 cm of fine gravel (2–3 cm in 

diameter) in the middle, and 20 cm of coarse sand (1–2 cm in diameter) at the top. The MSL system 

was composed of soil mixture layers (SMLs < 2 mm diameter) and a permeable gravel layer (3–5 cm 

in diameter) with a height of 50 cm. The SMLs were composed of mixed local garden soil (70%), 

zeolite powder (12%), coconut activated charcoal (12%), and rice straw (6%) based on a dry weight 

basis. The obtained mixture was packed into rectangular burlap/canvas bags (40 cm L × 15 cm W × 5 

cm H). Ten bags of SMLs were arranged into four layers in the form of a brick-like wall pattern, and 

alternating bags were filled with permeable river gravel layers (1–2 cm in diameter). 

An IH system is a combination of MSL into a VF-CW system, and its structure was designed and 

installed comprising a 5-cm coarse gravel layer (3–5 cm in diameter) at the bottom, a 30-cm permeable 

gravel layer (2–3 cm in diameter) with two lines of SMLs in between, and 15-cm coarse sand layer (1–

2 cm in diameter) at the top. The average porosity of the filter in the VF-CW system, MSL system, and 

IH system was 41%, 36%, and 37.5% respectively. Colocasia esculenta was planted in two rows on 

each filled bed of the VF-CW system and IH system, in which the plants were spaced in rows of 10 cm. 

A perforated drainage pipe with an internal diameter of 25 mm with the holes pointing down was 

installed at the bottom of the three tanks and covered by a coarse gravel bed of diameter 3–5 mm to 

easily collect and convey the treated wastewater from the system to discharge. In addition, all three 

tanks were equipped with a vertical tube to control the water level in the tank. 
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2.3. Operational procedures and conditions  

The experimental procedures were the same in the three experimental systems. These systems were 

placed at room temperate (from 18 to 33 °C) and run in parallel for more than 7 months, including a 3-

month start-up operation to establish proper growth in each tank, after which they were operated at 

design capacity for 4 months.  

The start-up operation period of the systems was divided in two phases. In the first phase, the systems 

were operated at a constant HLR of approximately 66.67 L/(m²·d) for 5 weeks. Corresponding to 

operational weeks 1, 2, 3, 4, and 5, the systems were fed with rice noodle wastewater diluted with tap 

water at the rates of 100%, 75%, 50%, 25%, and 0% respectively. The observed results (e.g., plant 

growth parameters, the color of bubbles that appeared on the top surface of each tank, etc.) during the 

first 5 weeks indicated that the systems could achieve a stable operating level during week 4, which 

corresponded to 75% diluted rice noodle wastewater. The second phase prolonged about 6 weeks, 

which was from 6th week to 11th week and the systems were fed with rice noodle wastewater diluted to 

25% with tap water at a HLR of 50 L/(m²·d). The dead and weakened plants in the VF-CW and IH 

systems were also replanted. 

After the start-up period, the rice noodle wastewater was pumped intermittently into the three systems 

twice a day at 7:00 and 17:00 at an average inflow of 12 L/d (giving a HLR of 50 L/(m²·d)) during the 

4 months of the experiment (August 14 to September 12), and the wastewater was waterlogged at 3 cm 

above the filter line. The influent wastewater was evenly distributed by horizontally perforated pipes 

that were installed on the top of each treatment tank. The hydraulic retention times (HRTs) of the VF-

CW, MSL, and IH systems were 3.3, 3.6, and 3.4 days, respectively. The treated wastewater from the 

three systems was manually drained prior to re-feeding wastewater to the systems. 
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2.4. Removal mechanisms 

The removal mechanisms and biochemical reactions are results of the interaction between multiple 

components in WWTS such as bacteria, filtration materials, plant, characteristics of influents, 

environmental parameters, operating conditions (hydraulic loading rate, influent fed regime, 

recirculation, organic carbon addition, etc.), etc. Each pollutant parameter may be removed by different 

mechanisms. For example, organic compounds of wastewater can be degraded aerobically and 

anaerobically by bacteria attached to plant underground organs (roots and rhizomes) and media area 

(Kadlec and Knight, 1996; Vymazal, 2005). However, nitrogen removal is quite complicated, 

including several pathways such as biological (e.g. ammonification, nitrification, denitrification, 

biomass assimilation, plant uptake), and physicochemical routes (i.e. ammonia volatilization, and 

adsorption) and others (i.e. anammox and canon processes) (Saeed and Sun, 2012). Whereas, the 

removal of fecal indicators happens by physical (e.g. filtration, sedimentation and sorption), chemical 

(e.g. oxidation), and biological factors (e.g. antimicrobial activity, predation and activity of lytic 

bacteria or viruses), in combination or alone. WWTS usually show both aerobic and anoxic conditions 

which depends on the depth and type of wetland (Nguyen et al., 2018). The abundant oxidant, electron 

donors (mainly organic matter and ammonia), are oxidized and this reduction of O2 to H2O is carried 

out by true aerobic microorganisms, and CO2 is evolved as a waste product. After oxygen is depleted, 

organisms capable of reducing 3 2NO ,  MnO  and 2
4SO  develop and other reactions might occur in 

response to the decrease in oxygen and the redox potential (Nguyen et al., 2018, Kadlec and Knight, 

1996). 

2.5. Sampling and analyses  

Total 36 wastewater samples were collected every 3 days or weekly from the effluent of the treatment 

tanks and influent of the storage tank. They were analyzed immediately after sampling without filtering 
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or pretreatment. The water quality parameters BOD5 (5220D), CODCr (5210B), NO3-N (4500 NO3-B), 

NH4-N (4500-NH3 F), PO4-P (4500P-D), TSS (2540D), and Tcol (9221 B), were determined according 

to the standard methods (APHA/WEF/AWWA, 2005). Devices used to analyze the wastewater quality 

included water quality meter (Model: HQ40d, Hach Co., USA), spectrophotometer (Model: Carry 60 – 

Agilent, USA), incubator (Model: TC 135S - Aqualytic, Germany), water bath (Model: WNB 22 – 

Memmert, Germany), oven (Model: Won- 50: Daihan Scientific, Korean), colony counter (Model: 

ColonyStar - Funke Gerber, Germany), and Medical Clean Bench (SW-CJ-1EP, Airtech, China). 

2.6. Statistical analysis  

All statistical analyses were carried out using the R statistical environment (R Statistical Software 

Version 3.2.2). An analysis of variance (ANOVA) was used for the relationships between the treatment 

tanks and removal efficiencies, and a post-hoc test (Tukey's Honest Significant Difference (HSD)) was 

used for comparing the multiple means at a 95% confidence level. Post-hoc tests determined which 

levels were causing these differences.  

3. Results and discussion 

3.1. Wastewater characterization  

In general, the concentrations of contaminants in rice noodle wastewater were high, unstable, and 

varied such as the CODCr, BOD, and total Kjeldahl nitrogen concentrations, which varied from 4,200 

to 29,000 mg/L, 5,400 to 23,200 mg/L, and 68.70 to 198.00 mg/L respectively (Jijai and Siripatana, 

2017; Nanta et al., 2018; Siripattanakul-Ratpukdi, 2012). The key characteristics of the raw rice noodle 

wastewater are summarized in Table 1. According to a survey conducted by the Vietnam Ministry of 

Natural Resources and Environment on wastewater from traditional noodle handicraft villages, the 

average concentrations of CODCr, BOD5, and Tcol for Cam Thach village were 3,550 mg/L, 500 mg/L 
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and 11.000 MPN/100mL respectively (MONRE, 2008), in which, CODCr and BOD5 were much higher 

compared to those of the wastewater used in this study (Table 1). This suggests that the septic tank 

contributed significantly to reduce the organic concentrations in the wastewater effluent from rice 

noodle manufacturing (338.6 ± 114.8 mg/L CODCr). However, nutrient concentrations remained 

relatively high in the effluent (72.1 ± 24.5 mg/L NH4-N and 16.7 ± 8.6 mg/L PO4-P), which must be 

further treated before being reused or discharged legally into the environment. 

3.2. System performance  

3.2.1. Organic matter removal  

The overall results obtained from the three WWTS are shown in Table 2. To compare the treatment 

efficiency of the units, an ANOVA and Tukey's HSD analysis were applied to identify the statistical 

differences between the units. The ANOVA analysis indicated that there was a statistically significant 

difference between the three systems (p < 0.05, F = 4.13), whereas Tukey's HSD analysis indicated 

only a significant difference between the IH system and MSL system in effluent concentrations of 

CODCr (p < 0.05) (Table 2). It suggests that other similar conditions such as plants and media materials 

in the MSL and IH systems may influence the efficiency of CODCr removal. An indication of the 

difference was that the CODCr effluent concentration of the IH system (84.02 ± 32.68 mg/L) was much 

lower than that of the MSL system (107.00 ± 39.27 mg/L). In addition, the substantial mass removal 

for CODCr were noticed through the experimental systems with a mean of 11.58 to 12.73 g/(m2·d) 

(Table 2). These mass removal rates were lower than the results of the MSL system (Attanandana et al., 

2000; Latrach et al., 2016) and higher than those of the VF-CW system (Wu et al., 2013). This 

difference may be explained because the height in MSL is usually larger and use better filter layers, 

while the plants in VF-CW are quite sensitive to high hydraulic rate and pollution load.  

Table 2. The mean CODCr effluent concentration, removal rate, and statistical analysis. 
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System Effluent Removal rate (g/(m2·d)) p value for Tukey’s method 

MSL system 107.00 ± 39.27 11.58 ± 5.36 MSL vs. VF-CW 0.717 

VF-CW system 100.58 ± 34.14 11.90 ± 5.62 MSL vs. IH 0.017 

IH system 84.02 ± 32.68 12.73 ± 5.27 VF-CW vs. IH 0.115 

MSLa 57 21.9   

MSLb 140 42.9   

VF-CW c 7.2 – 75.5 1.51 – 56.07   

VF-CW d 19.7 10.9   
a MSL for domestic water treatment (Latrach et al., 2016). 
b MSL for food service wastewater treatment (Attanandana et al., 2000). 
c VF-CW for domestic and nitrified wastewater treatment (Chang et al., 2015). 
d VF-CW for domestic wastewater treatment (Wu et al., 2013). 

 

The variation in CODCr influent and effluent concentrations and the CODCr removal efficiency of each 

system during operation of experiments for 113 days are illustrated in Figure 2. The experimental 

results showed that there was significant variation in influent CODCr concentrations (high fluctuations 

in the CODCr loading rate in the influent) throughout the experiment. However, the effluent CODCr 

concentrations decreased substantially through all the systems with an average reduction of more than 

66%, which corresponded to CODCr concentrations in the final effluent of less than 107 mg/L, which 

were much lower than that of the standard for waterbody discharges in Vietnam (150 mg/L, Fig. 1a), 

Italia (DLgs 152/2006) (160 mg/L) (Ghimpusan et al., 2017), Malaysia (200 mg/L) (NRE, 2009) and 

European Community (125 mg/L) (EU, 1991). The CODCr removal percentage of the IH system 

(73.23%) was higher and more stable than that of the MSL system (66%) and VF-CW system 

(67.42%) (Fig. 1c), which corresponded to their average CODCr concentrations remaining in the 

effluent of 84.02 mg/L, 107.00 mg/L, and 100.58 mg/L respectively. Conversely, previous studies 

conducted by Lu and co-workers (2015) and Luanmanee and co-workers (2001) concluded that the 

CODCr reduction efficiency of the MSL system was higher than that of conventional filters or natural 

soil systems, such as sand filters and CWs. 
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Some outliers suggested that the removal efficiencies of the VF-CW and MSL systems were not stable 

(Fig. 1c). The higher CODCr treatment efficiency achieved by the IH system was attributed to the 

different media layer configurations with high absorbability and porosity, which adsorbed organic 

pollutants in wastewater onto the media and provided good environmental conditions that allowed easy 

decomposition by organisms and plant uptake (Ávila et al., 2015; Marzo et al., 2018; Nguyen et al., 

2018). 
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Figure 1. Temporal variations in CODCr concentrations (a), influent CODCr loading rate (b), and 

overall CODCr removal efficiency (c) in each system during operation. 

 

3.2.2. Nutrients removal  

The results obtained (Fig. 2a) indicate that although the concentration of NH4-N in the final effluent of 

the IH system remained at approximately 35.93 ± 20.01 mg/L, which was slightly higher than that in 

the effluent of the MSL and VF-CW systems (31.59 ± 16.56 mg/L and 30.95 ± 24.94 mg/L, 

respectively). In general, these values did not differ significantly based on post-hoc analysis and 

ANOVA (p > 0.05, F = 0.51). Similarly, this trend occurred with NH4-N removal rates in these 



  

13 

systems. This meant that the extent and process of removing NH4-N in the three systems were 

relatively similar. On the contrary, the effluent concentration of NO3-N increased slightly through all 

three tanks from 0.40 ± 0.57 mg/L to 1.50 ± 1.51 mg/L for MSL, 1.33 ± 1.03 mg/L for VF-CW, and 

1.66 ± 1.63 mg/L for IH (Fig. 2b). It was expected because parallel processes occurred in the WWTS, 

including ammonium removal and nitrification, which were enhanced by intermittent water flow into 

the units through the perforated pipes. Nitrogen was reduced in these systems by the two main 

processes of nitrification and denitrification due to the simultaneous existence of aerobic and anaerobic 

conditions with various microbial abundances, which facilitated the conversion of NH4-N to NO3-N 

and nitrogen gas and the adsorption of NH4-N. This occurred mainly in SMLs (including zeolite, soil, 

and charcoal) (Chen et al., 2009; Guan et al., 2012; Zhang et al., 2015). 

In addition, Figure 3a shows that the NH4-N concentration in the effluent of the three systems was still 

higher compared to Vietnam's standard  (<10 mg/L) and Italy’s standard (<15 mg/L) (Ghimpusan et al., 

2017). This could be ascribed to the high concentration of influents (average of 72.1 ± 30.95 mg/L) 

that was beyond the inherent capacity of these WWTS. However, throughout the operation, the average 

NH4-N removal efficiency of the VF-CW system was 60.64%, which was higher than that obtained 

from the MSL system (53.1%) and IH system (49.3%) (Fig. 2d). These results were not in line with 

previous reports, that highlighted the nitrification and adsorption capacities of MSL in NH4-N 

reduction for treatment of municipal wastewater, domestic wastewater, and unsanitary landfill leachate 

as shown by Chen et al. (2009), Guan et al. (2012), Latrach et al. (2016), and Attanandana et al. (2000). 

The higher NH4-N removal efficiency reported in these studies (Chen et al., 2009; (50-70%), Guan et 

al., 2012; (82.4%), Latrach et al., 2016 (83%), and Attanandana et al., 2000) (61.2%)) could possibly 

be due to the characteristics of the material composition in MSL systems. It offers a number of 

advantages, such as larger porosity, high cation exchange and adsorption capacities, better oxygen 
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diffusion, which could help to enhance the wastewater distribution, microbial growth rate and activity, 

and, as a consequence, an increase in the removal of NH4-N. 
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Figure 2. Temporal variation in concentrations of NH4-N in the influent and effluent. (a) Influent NO3-

N concentration. (b) Influent NH4-N loading rate. (c) Overall NH4-N removal efficiency. (d) IH, VF-

CW and MSL system during operation.  

 

The PO4-P concentration in the influents and effluents and the PO4-P removal efficiency throughout 

the experiments are depicted in Fig. 3. These results showed that the average concentration of PO4-P 

remaining in the final effluent of the VF-CW system was high at 12.35 ± 2.01 mg/L, which was higher 

than that obtained in the final effluent of the IH and MSL systems at 7.26 ± 1.99 mg/L and 8.92 ± 1.63 

mg/L respectively (while Vietnam and Malaysia’s phosphorus discharge standard is 10 mg/L). The 

PO4-P removal efficiencies in the VF-CW, IH, and MSL systems were 23.88%, 54.02%, and 44.73% 

respectively, regardless of the significant fluctuation in influent concentration in the range of 8.56 to 

24.2 mg/L with a PO4-P loading rate in the range of 0.43 to 1.21 g/(m2·d). The higher removal 
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efficiencies found for PO4-P in the MSL (44.7%; p < 0.0005) and IH (54%; p < 0.005,) systems may 

be due to the adsorption capacity in the SMLs of the MSL system, in which phosphorus could be 

adsorbed on the Al and Fe hydroxides in the soil (Chen et al., 2009). In contrast, the mechanism for 

reducing PO4-P in the VF-CW system (23.9%, p < 0.0005) was limited may be because the gravel 

substrate was not capable of binding phosphorous (Arias and Brix, 2005; Brix et al., 2001). The results 

of the PO4-P reduction obtained in this study were consistent with the experimental data of a VF 

system acquired by O’Hogain (2003) (39%) and lower than those of MSL systems studied by Latrach 

et al. (2016) (84%) and Masunaga et al. (2007) (56-85%). Moreover, the results of the statistical test 

indicated that the differences between the effluents of the three systems were statistically significant (p 

< 0.005, F = 70.1). It means that the SMLs in the IH and MSL systems contributed greatly to the PO4-P 

reduction in the experimental units. 
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Figure 3. Temporal variations in PO4-P concentrations in influent and effluent. (a) Influent PO4-P 

loading rate (b) Overall PO4-P removal efficiency. (c) IH, VF-CW and MSL system during operation. 
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3.2.3. Total suspended solids and total coliform removals 

During the operation of the systems, the TSS and Tcol concentrations in the influent and effluent of 

each system were measured (Fig. 4). The fluctuation in TSS concentrations in the influent ranged from 

37.60 to 132.00 mg/L with an average value of 87.27 ± 21.41 mg/L (Fig. 4a, e). Despite the large 

variations in TSS in the influent, the TSS removal efficiencies of the VF-CW, MSL, and IH systems 

were consistently stable and fairly high, and were 75 ± 16%, 80 ± 11%, and 72 ± 15% respectively. It 

corresponded to the average concentrations of TSS in the effluent of approximately 20.76 ± 9.52 mg/L, 

15.85 ± 7.16 mg/L, and 24.11 ± 12.76 mg/L respectively. These effluent concentrations were lower 

than the discharge limit of Vietnam and EU’s standard for TSS of less than 150 mg/L and 60 mg/L 

respectively (Fig. 4a, e). In addition, post-hoc analysis and ANOVA test revealed that the TSS 

effluents did not differ significantly between the three systems (F = 0.55, p > 0.05). 

The average Tcol inactivation efficiencies of the VF-CW, MSL, and IH systems were not high, with 

values of 4.57, 4.54, and 4.78 log MPN/100 mL respectively, which corresponded to the average 

coliform concentrations remaining in the effluent of 2.63E+04 ± 1.11E+04 MPN/100 mL, 3.61E+04 ± 

0.82E+04 MPN/100 mL, and 9.22E+03 ± 3.48E+03 MPN/100 mL respectively (Fig. 4c, d, f). The 

remaining coliform concentrations were still at high levels that exceeded the allowable discharge 

standard of Vietnam (5,000 MPN/100 mL). This was also reasonable because these systems only used 

biological methods. Thus, to achieve more effective disinfection, the further combination of other 

treatment techniques is encouraged, such as a tertiary treatment. Therefore, these systems are suitable 

for TSS reduction rather than coliform treatment, and the highest TSS removal efficiency was achieved 

in the MSL system. 
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Figure 4. Temporal variations in total suspended solids (TSS) and total coliform (Tcol) concentrations 

in influent and effluent and their overall removal efficiency in each system during operation. 

 

3.3. Correlations between parameters 

Three main important parameters, namely CODCr, NH4-N, and PO4-P, were monitored and further 

evaluated by analyzing the correlation between variables of the initial loading rate and removal loading 

rate or removal efficiency (organics and nutrients removal) during the operation of the systems, which 

could explain the relationship and influence between these parameters as well as predict the output of 

these systems. 

The linear relationships between the outputs in terms of effluent quality, removal rates, and influent 

loading rates for CODCr and NH4-N are presented in Fig. 5. The results indicate that there was a high 

correlation between removal loading rate (Lr) and influent mass loading rate (Li) in the three systems, 

with a high coefficient of determination (R2) that varied from 0.88 to 0.92 (p < 0.05) (Fig. 6a). This 
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confirmed that the three equations in the plot could apply for predicting the output of systems or 

designing a new system. In addition, the correlations between effluent CODCr and Li were relatively 

low (Fig. 5b), in which R2 ranged from 0.02-0.15, and were not statistically significant compared with 

the data obtained in the VF-CW system. It seemed that the CODCr concentration in the effluent was not 

influenced by Li, and their correlation in the systems of this research did not follow first order linear 

equations. 
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Figure 6. Correlations between Li, Lr, and effluent concentrations of CODCr and NH4-N in each system. 
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For NH4-N, the relationship between NH4-N removal rate, NH4-N concentration in the effluent, and 

NH4-N influent loading rate was statistically significant (p < 0.0001) (Fig. 5c, d). Nevertheless, only 

the R2 values above 0.5 were acceptable for the linear regression (Hijosa-Valsero et al., 2011). The 

correlations between NH4-N removal rate and NH4-N influent loading rate (Fig. 5c) and those between 

NH4-N concentration in the effluent and NH4-N influent loading rate (Fig. 5d) in the MSL system were 

clearer than those obtained in the IH and VF-CW systems. Weak relationships between Lr and Li and 

between Li and the effluent NH4-N were observed. Therefore, they were not very meaningful in the 

analysis of the linear regression. In addition, the results of the correlation analysis for PO4-P indicated 

that there was no proof to reject the null hypothesis (p > 0.05) and suggested that the relationships 

between Li and Lr and between Li and effluent PO4-P were not statistically significant. This mean that 

the PO4-P concentration in the effluent might not be predictable through influent loading rates.  

In summary, the results showed that these technologies were suitable for the removal of organic matter 

and SS and could meet the regulation limits of Vietnam. However, the nutrients and Tcol 

concentrations were reduced modestly through all three treatment units, with removal rates of 49.3% to 

60.6% for NH4-N and 23.9% to 54.0% for PO4-P. Consequently, a further study with two stages of 

tank might be required in the future. The IH system obtained the highest reduction with an average 

value of 73.2% for CODCr, 54.0% for PO4-P, and 4.78 log MPN/100 mL inactivation for Tcol, while 

the highest removal efficiencies of NH4-N (60.64%) and TSS (80.49%) were achieved in the VF-CW 

and MSL systems respectively. Generally, the IH system is recommended for RNWWT due to higher 

treatment performance in comparison with the VF-CW and MSL systems. Moreover, the system with 

two stages of IH and a kind of WWTS such as the polishing pond, free water surface constructed 

wetland, which support to treat the nutrients and Tcol, might be needed for application of RNWWT to 

fulfill strictly the effluent regulations. Finally, this study also offers an additional choice and allow 
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greater versatility in choice of technology, design, installation, and operation to treat rice noddle 

wastewater.  

4. Conclusions  

Three RNWWT systems using natural physical, biochemical, and microbiological processes were 

parallel operated in a tropical climate to compare and evaluate their treatment performance. The results 

showed that these technologies are suitable for the removal of organic matter and SS, and could meet 

the regulation limits of Vietnam. However, the nutrients and Tcol concentrations were reduced 

modestly through all three treatment units, further treatment might be required. Generally, the IH 

system is recommended for RNWWT due to higher treatment performance in comparison with the VF-

CW and MSL systems. 
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