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Abstract

The stability in financial markets is important to promote economic growth. Due

to its fundamental importance, the causes of market instability are of broad in-

terest. The purpose of this dissertation is to propose plausible explanations of

financial market phenomena related to market stability such as prices, liquidity,

volatility, information value, welfare, and market efficiency. The premise in the

analysis is that uncertainty in financial markets is multidimensional and informa-

tion structure is complex. To be more precise, in modern financial markets, form-

ing consistent beliefs about the fundamental values of securities, the composition of

market participants, and other market characteristics are complex and uncertain.

On the basis of this premise, this dissertation investigates the trading decisions,

order sizes, liquidity, security prices, information value, welfare, and market ef-

ficiency to shed light on the causes of financial market instability (fragility) and

makes a number of empirical predictions some of which provide explanations for

results that have been reported in the empirical market microstructure literature

and others are yet to be tested. The dissertation also identifies conditions under

which markets are vulnerable to instability and thus also has important policy

implications.

The first phenomenon investigated in this dissertation is sudden liquidity deteri-

orations and improvements in financial markets. Chapter 2 presents a security

price formation model with ambiguous liquidity provision. The model provides a

unified and parsimonious framework to explain the empirically documented fea-

tures that market liquidity can suddenly deteriorate during market crashes and

improve during trading reforms. Consequently, ambiguity in liquidity provision

can increase the value of information and social welfare. The ambiguous price

formation model helps to understand (i) the dynamics of ambiguity, (ii) the deter-

minants of time-varying ambiguity aversion of liquidity providers, (iii) the price

and liquidity dynamics during various order flow patterns, and (iv) the effect of

trade size on security prices during ambiguous market episodes.

Chapter 3 develops a model in which traders face uncertainty about the composi-

tion of informed and uninformed traders (composition uncertainty) to investigate

the “crowded-trade” problem (not being able to know how many others are taking
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the same position) in financial markets. This chapter characterizes the equilibrium

in the information market where both types of traders are affected by composi-

tion uncertainty and in the financial market where only uninformed traders are

affected, leading the uninformed traders to be disadvantaged in the face of com-

position uncertainty. This composition uncertainty distorts traders’ information

acquisition, demands, and perceived equity premium, resulting in undervalued

(resp. overvalued) stock when traders are sufficiently (resp. insufficiently) uncer-

tainty averse. The model helps to understand a linkage between liquidity and asset

prices, proposes plausible explanations for large price swings, and demonstrates

how regulations to enhance market efficiency may not work when the composition

of traders is uncertain.

Chapter 4 shows that when market participants learn about the level of adverse

selection from order flow, a large order imbalance can be destabilizing, causing

sharp price movements and evaporation of liquidity, as it signals high “toxicity”

(adverse selection). While such effect is consistent with the practitioner view that

order flow is informative about toxicity, it contrasts with standard microstructure

models in which the level of adverse selection is assumed to be known and thus

order imbalance improves liquidity by revealing private information. The model

helps to understand when markets are most susceptible to imbalance-induced in-

stability and the dynamic process of how markets digest order imbalance.

Chapter 5 examines the implications of the true complexity of real-world informa-

tion on market efficiency. Using the literature of decision theories and information

sciences, Chapter 5 discusses how accounting different attributes of information

can unify two controversial views, efficient markets hypothesis and behavioral fi-

nance. The main thesis advanced is that the roots of behavioral anomalies are

the imprecision and reliability of information. By exemplifying different decision

scenarios, Chapter 5 argues that the decision making is rational with precise and

reliable information, whereas becomes more behavioral in nature as the informa-

tion becomes more imprecise and unreliable.

Overall, the results of this dissertation suggest that multiple dimensions of uncer-

tainty formalized in different languages can illuminate on various aspects of market

stability that we otherwise label as anomalies and offer a promising middle ground

between efficient markets hypothesis and behavioral finance.
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Chapter 1

Introduction

An educated mind is satisfied with the degree of precision that the nature of the

subject admits and does not seek exactness where only approximation is possible.

Aristotle

1.1 Introduction

Information is fundamental to our understanding of financial markets. The funda-

mental importance of information in finance has resulted in an extensive literature

on asset pricing and market microstructure investigating its role in determining

security prices. Yet the theoretical market microstructure and asset pricing liter-

ature are dominated by standard models with simple information structures (e.g.,

Grossman and Stiglitz (1980), Kyle (1985), Glosten and Milgrom (1985)). These

models are popular because of their clear economic intuition and mathematical

simplicity. While these models have provided a number of important insights into

numerous financial market phenomena, they lack to capture the complex informa-

tion structures in modern financial markets.

Very often the information available to the majority of market participants is

imprecise and partially reliable. Liquidity-providing market participants often lack

the ability to form consistent beliefs about the fundamental values of securities.

In extremely uncertain market episodes, forming beliefs can even become hardly

possible. When investors trade with each other, it is often the case that they

do not know who they are trading with. The composition of financial market

1



Chapter 1 2

participants and the quality of their information have never been more complex

and uncertain.1

Similarly, the stability in financial markets is fundamentally important to promote

economic growth. Despite its fundamental importance, however, it is surprising

that we know little about what causes market instability, why markets are vulner-

able to instability and when they are most vulnerable. Paradoxically, the standard

models with simple information structures (e.g., Kyle (1985), Glosten and Milgrom

(1985)) can predict counterintuitive results about the stability in financial mar-

kets. This thesis proposes plausible explanations to financial market phenomena

related to market stability.

The premise in the analysis is that uncertainty in financial markets is multidimen-

sional and information structure is complex. To be more precise, in modern finan-

cial markets, forming consistent beliefs about the fundamental values of financial

securities, the composition of market participants, and other market characteris-

tics are complex and uncertain (e.g., Romer (1993), Banerjee and Green (2015)).

On the basis of this premise, this thesis sheds light on the causes of financial mar-

ket instability and makes a number of empirical predictions about what causes

market instability and when markets are most vulnerable to instability. The the-

sis identifies conditions under which markets are vulnerable to instability and thus

also sets forth how to cope with instability by suggesting important policy implica-

tions. Understanding what, why, when, and how questions of the market stability

and instability is the main objective of this thesis. The thesis proposes to take the

multiple dimensions of information uncertainty (either defined probabilistically or

in a more general way such as ambiguity and fuzziness) in financial markets into

account to investigate the trading decisions, prices, liquidity, volatility, value of

information, welfare, and efficiency in financial markets.

This chapter briefly discusses the main focus of each chapter of the thesis and

outline the modeling approaches and the main results to show the bigger picture

before going into the details of each chapter. For the same purpose, this chapter

also discusses where this thesis fits in the general financial economics literature

and leaves the direct comparison of each chapter with existing subliterature as a

section in the corresponding chapter.

1See, for instance, “When Silicon Valley came to Wall Street” (Financial Times, October 28,
2017) and “The big changes in US markets since Black Monday” (Financial Times, October
19, 2017). Even some of the data analytics firms entered into a hedge fund business (e.g.,
Cargometrics).
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1.1.1 Chapter 2: Ambiguous price formation

Financial crisis and market crashes are often associated with elevated volatility,

evaporation of liquidity, and extreme price inefficiency (e.g., Easley, López de

Prado and O’Hara (2012), Kirilenko et al. (2017)). For example, recently, during

the infamous May 2010 Flash Crash, the spread of the June 2010 E-mini (S&P 500

futures) contracts widened to 11 ticks (2.75 index points) and declined to about 1

tick (0.25) in a matter of minutes (CFTC - SEC (2010a, 2010b)). On the contrary,

historically, financial markets also experienced liquidity improvements following

the trading reforms in financial markets (e.g., Jones (2002)). For example, the

spreads experienced a sudden decline after NYSE reduced the minimum tick size

from eighths ($0.125) to sixteenths ($0.0625) of a dollar in 1997 and from sixteenths

to one cent ($0.01) per share in 2001 (e.g., SEC (2012)).

Such scenarios of sudden liquidity deteriorations and improvements are hard to

reconcile with the standard price formation models of market microstructure the-

ory. What is causing such peculiar market behavior? Is there a unified approach

that can explain both the liquidity deteriorations and improvements in financial

markets? How does the behavior of market participants change during such peri-

ods? What are the implications for the value of information and total welfare of the

market participants? What are the impacts on the price-order size relationship?

To answer these questions, building on the sequential trading model of Glosten and

Milgrom (1985), Chapter 2 proposes an ambiguous price formation model in which

liquidity providers are subject to ambiguity. Unlike the standard sequential trading

model, in this model the market makers have ambiguous (uncertain) beliefs about

the security payoffs. To model uncertainty in market makers’ beliefs about the

fundamental values, we adopt the Choquet Expected Utility (CEU) framework

of Schmeidler (1989) with non-additive probabilities to capture the uncertainty

and uncertainty aversion. We use non-extreme-outcome-additive (neo-additive)

capacities proposed by Chateauneuf, Eichberger and Grant (2007) which is the

convex combination of a probability and a constant parameter, measuring the

degree of uncertainty aversion. Instead of Bayesian updating, we use generalized

Bayesian updating (GBU) of the beliefs (e.g., Walley (1991)). Consistent with the

CEU framework, we take Choquet expectation with respect to the market maker’s

beliefs about the payoffs.
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The ambiguous price formation model in Chapter 2 provides a unified explanation

for the sudden liquidity changes in financial markets and investigates its implica-

tions for value of information, welfare, and price-quantity relationship thoroughly.

In this model, a liquidity distortion relative to the standard probabilistic model

arises because ambiguity and ambiguity aversion of the market maker influence the

perceived adverse selection risk (i.e., perceived proportion of informed traders). To

be more precise, in the presence of ambiguity, when the market maker is insuffi-

ciently (resp. sufficiently) ambiguity averse, she perceives the number of informed

traders less (resp. more) than the actual number of informed traders, resulting in

a liquidity improvement (resp. deterioration). Chapter 2 characterizes the nec-

essary and sufficient condition of ambiguity aversion for the market maker to be

sufficiently ambiguity averse.

A liquidity distortion (a deterioration or improvement) relative to the standard

model has an immediate consequence for the value of information to the financial

market participants. Chapter 2 shows that ambiguity can make private informa-

tion more or less valuable in financial markets. Thus it can distort information

acquisition decisions of traders and ultimately impact the informativeness of prices

in financial markets. This chapter also introduces trading motives to uninformed

traders and investigates the total welfare of market participants. Consequently,

by comparing the total welfare of market participants in the presence and absence

of ambiguity, Chapter 2 shows that when the market maker is insufficiently (resp.

sufficiently) ambiguity averse, ambiguity can contribute to a welfare gain (resp.

loss) to society.

To investigate the relationship between the security prices and order sizes, Chapter

2 also distinguishes between the separating equilibrium, in which informed traders

trade only large quantities, and the pooling equilibrium, in which informed traders

trade either small or large quantities with positive probabilities. The presence of

ambiguity makes the separating equilibrium to be prevalent in financial markets.

In extremely ambiguous market episodes, the separating equilibrium becomes the

only equilibrium. This implies large orders are more likely to be placed by informed

traders during ambiguous market episodes, consistent with the empirical market

microstructure literature.
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1.1.2 Chapter 3: Pricing of composition uncertainty

Based on the intuition of Chapter 2, Chapter 3 develops a rational expectations

equilibrium (REE) model to explicitly investigate the impacts of uncertainty about

the number of informed traders in financial markets. Indeed, when investors trade

with each other, it is often the case that they do not know whether or not they

trade against better-informed counterparties. The “quant meltdown” of August

2007 and subsequent unfolding of the global financial crisis also highlighted the

importance of this problem. In his presidential address, Stein (2009) emphasizes

this as a “crowded-trade” problem (i.e., not being able to know how many others

are taking the same position). The fundamental of the crowded-trade problem is

that the actual number of informed and uninformed traders is hard to observe.

Chapter 3 investigates how uncertainty about the composition of market partici-

pants (i.e., composition uncertainty) affects the traders’ trading decisions, equity

premium, stock prices, and the value of information.

Chapter 3 constructs an REE in the presence of composition uncertainty for a

formal treatment of the crowded-traded problem. The model extends the stan-

dard CARA-normal REE model where market prices perfectly communicate in-

formation (e.g., Grossman (1976), Radner (1979)) along two dimensions. First,

it introduces private investment opportunities only available to informed traders

with a return correlated to idiosyncratic noise to provide motivation for informed

trading as in Easley, O’Hara and Yang (2014) and Wang (1994). Second, to reflect

the practical challenges of the crowded-trade problem, the model introduces com-

position uncertainty so that traders do not precisely know the number of informed

and uninformed traders in the market. This uncertainty naturally generates devia-

tions from the “fair” benchmark price without such uncertainty. The informational

inefficiency of asset prices stemming from composition uncertainty helps to under-

stand a linkage between liquidity and asset prices, proposes plausible explanations

for large price movements, and demonstrates how regulations to enhance market

efficiency may not work during uncertain composition of traders.

Chapter 3 first models the traders’ preferences with the maxmin model of Gilboa

and Schmeidler (1989) to investigate the impacts of composition uncertainty on the

market and then extends the analysis to the α−maxmin model of Marinacci (2002)

and Ghirardato, Maccheroni and Marinacci (2004) to investigate the impacts of

traders’ uncertainty aversion. In this model, traders first decide whether they want
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to be informed or uninformed as in the standard model and then trade. During the

trading stage, the uninformed traders with maxmin preferences reduce their risky

stockholdings relative to the informationally efficient benchmark and demand a

composition uncertainty premium to be compensated. This occurs because com-

position uncertainty affects the uninformed more than the informed, leading them

to be disadvantaged in the face of the composition uncertainty. Consequently,

the perceived equity premium is higher and thus the stock is undervalued relative

to the benchmark. An extension to the α−maxmin model shows an undervalu-

ation is robust as long as the traders are sufficiently uncertainty averse and an

overvaluation can occur when they are not sufficiently uncertainty averse.

Chapter 3 characterizes the cost range for the unique information market equi-

librium with maxmin preferences and shows that multiple equilibria can arise

when traders have α−maxmin preferences, offering predictions under both unique

and multiple information market equilibria. When a unique information market

equilibrium exists, Chapter 3 decomposes the benefit of informed trading into a

standard and an uncertain “Knightian” component. The standard component sat-

isfies all the standard results and the “Knightian” component reduces the value of

information. The overall value of information is monotonically decreasing in the

number of informed traders (i.e., strategic substitutability in information acquisi-

tion) as in the standard models.

In the extended α−maxmin model, Chapter 3 derives the comparative statics

with respect to composition uncertainty as well as the traders’ uncertainty aver-

sion. This model shows that the results of the maxmin model are the same (resp.

reversed) when traders are sufficiently (resp. insufficiently) uncertainty averse.

Chapter 3 also shows that the sufficient uncertainty aversion condition decreases

in the number of informed traders. That means traders with a given uncertainty

aversion can be sufficiently uncertainty averse when the proportion of informed

traders is high but not as sufficient when it is low. Consequently, the value of be-

coming informed can be decreasing (resp. increasing) in the number of informed

traders when traders are sufficiently (resp. insufficiently) uncertainty averse during

the high (resp. low) informed market, leading to complementarity in information

acquisition and multiple information market equilibria. Strategic complementari-

ties and multiple information market equilibria propose an explanation for sharp

price movements in financial markets and demonstrate the importance of exchange-

specific uncertainty for regulations to enhance market efficiency.
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1.1.3 Chapter 4: Learning about toxicity

Market microstructure theory is composed of two standard reference frameworks

for modeling price formation process (Kyle (1985) and Glosten and Milgrom

(1985)). In these frameworks, an imbalance between buyer- and seller-initiated

trades (order imbalance) stabilizes markets ex post. Order imbalance reveals pri-

vate information, moves prices towards the fundamental values and decreases un-

certainty, thereby reduces adverse selection risks and increases liquidity in the form

of lower price impacts in the framework of Kyle and narrower bid-ask spreads in

the framework of Glosten-Milgrom. We should, therefore, expect calmer, more

liquid, and more informative markets following periods of large order imbalances.

Yet, in practice, order imbalance can often be highly destabilizing for markets.

In the extreme, order imbalance can trigger ‘flash crashes’ —episodes of extreme

price movements accompanied by evaporation of liquidity and elevated volatility

(e.g., Easley et al. (2012), Kirilenko et al. (2017)). Despite the fundamental im-

portance of market stability in promoting economic growth, it is surprising that

the standard models offer little about why order imbalance can destabilize markets

and when markets are most vulnerable to destabilizing order imbalance.

To answer both of these questions, Chapter 4 proposes to model the process by

which market participants learn about adverse selection risk (‘toxicity’) from or-

der flow, in particular order imbalance, and study the implications of this learning

process. To an otherwise standard sequential trade model, Chapter 4 adds uncer-

tainty about the proportion of informed traders (composition uncertainty) and/or

the quality of their signals (signal quality uncertainty), resulting in uncertainty

about the level of adverse selection. Consequently, liquidity providers must learn

about toxicity, rather than knowing the probability of informed trading and the

quality of informed traders’ information. This learning occurs from order flow.

Intuitively, because informed trading tends to result in order imbalance, observing

an episode of highly unbalanced order flow acts as a signal that there is likely

to be a high proportion of informed traders or that informed traders have very

precise information. This upward revision in perceived adverse selection risk can

cause liquidity providers to set wider spreads to protect themselves from higher

toxicity, as well as sharp price adjustments as the information contained in past

order flow is reassessed. Such effects, which all follow from learning about adverse

selection, oppose the standard stabilizing effect of order imbalance (learning about
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fundamental value). The tension between these stabilizing and destabilizing ef-

fects is what allows the model to illustrate why order imbalance can sometimes be

destabilizing and offer insights about when the destabilizing effects are likely to

dominate the stabilizing effects.

Using the model with uncertain level of adverse selection, Chapter 4 also explores

how markets respond to various order flow patterns. Unlike the standard models

with no change in liquidity in the face of balanced order flow, liquidity improves

when the market maker with uncertain adverse selection risk receives balanced

orders. This occurs because the market maker receiving balanced order flow main-

tains her initial belief about the security value, but revises her belief about the

high adverse selection risk (high probability of informed trading or probability of

high-quality information) downward, leading the bid-ask spread to be narrower

than the initial bid-ask spread.

The market maker receiving sequences of sell (resp. buy) orders revises her belief

about the security value downward (resp. upward), but revises her belief about the

high adverse selection risk upward. This means, unlike the standard models, order

imbalance can be destabilizing. Chapter 4 shows that order imbalance destabilizes

the market when the initial belief about the toxicity (adverse selection risk) is

sufficiently low, implying that financial markets are more susceptible to instability

in response to order imbalance in low perceived toxicity periods.

Lastly, an order in the direction of the sequence is less informative than the reversal

in the order flow due to a property we term “repricing history”. During consecutive

buy (resp. sell) orders, an additional buy (resp. sell) order contributes less than

an additional sell (resp. buy) order in revising the market maker’s belief about

the security value. The reason for this is that in the presence of the consecutive

buy (resp. sell) orders, the market maker receiving an additional buy (resp. sell)

order confirms what she already knew, whereas an additional sell (resp. buy) order

makes her to realize that the past order flow may not have been as informed, and

hence, a reassessment of the previous learning. The large price movements and

liquidity dry-ups similar to ‘flash crashes’ therefore naturally arise in this model,

offering an explanation for the prevalence of flash crashes in modern financial

markets. All these results follow from the fact that order flow in the presence of

the composition and the signal quality uncertainty, in addition to revealing some

information about the fundamental value, reveals information about the level of

adverse selection risk of the market participants.
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1.1.4 Chapter 5: General model of financial markets

The models in the first three parts of this dissertation (i.e., ambiguous price for-

mation, ambiguous composition of traders, and learning about toxicity) provide

useful characterizations of different dimensions of uncertainty in financial markets.

Nevertheless, they require some informational structure to obtain closed-form so-

lutions. This motivates us to ask “how complex the real-world information can

get?” and “what are the implications of such information complexity for financial

markets?” in the last part of this dissertation.

With increasingly complex information in financial markets, it is now more impor-

tant to understand different roles played by different dimensions of information

uncertainty in determining market outcomes. However, in doing so, we should

also be cognizant about the true complexity of the real-world information and fi-

nancial decision-making process with such information. To address the last issue,

in Chapter 5, we incorporate information science, decision theory and financial

economics literatures together, and discuss information in the broadest possible

way that lends itself to possible quantitative scrutiny. In our discussion, we use

Zadeh (2011) classification of information - numerical, interval-valued, second-

order uncertain, fuzzy and Z information - based on its generality. We argue that

individuals are subjectively rational if they apply “correct” decision technique to

each class of information separately. We exemplify candidate decision theories in

each information class and show that financial decision making becomes more be-

havioral in nature as information becomes imprecise and unreliable. We present a

general approximation for subjective rationality in decision making and suggest a

general framework of financial markets. We argue that efficient markets hypothesis

and behavioral finance pioneered by Eugene Fama and Robert Shiller (e.g., Fama

(1965), Shiller (1981)) become special cases of this framework with the imprecision

and reliability of information approximately connecting them. That is, imprecise

and partially reliable information generates “anomalies”, whereas precise facts lead

to efficient markets.

In summary, the main argument we develop in this chapter is that uncertainty is

multidimensional and the real-world information to cope with multidimensional

uncertainty is ambiguous (vague or imprecise), and unreliable. Accounting these

attributes of information proposes a middle ground between two extreme views in

finance literature and has a potential to unify these views.
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1.2 Literature Review

In this section, we review the general literature on uncertainty and its impact on

financial markets, and leave the comparisons of each chapter with related papers

as a section in the corresponding chapter. The purpose is to provide the idea

of an uncertainty (risk, ambiguity, fuzziness) as a broad concept and show how

the focus of this thesis fits in the recent applications of uncertainty to financial

markets. The thesis is related to four main strands of literature.

1.2.1 Decision making under uncertainty

The idea of ambiguity or Knightian uncertainty dates back to Knight (1921) and

Keynes (1921), where they distinguish between risk (when relative odds of the

events are known) and uncertainty (when the degree of knowledge only allows the

decision maker to work with estimates). However, the argument that “the decision

makers behave as if they assign (subjective) odds even when they do not know the

odds” prevailed in much of the literature following Ramsey (1931) and Savage

(1954). The experimental evidence of Ellsberg (1961) on the ambiguity aversion

of decision makers revived the tentative ideas of Knight and Keynes. The behavior

of ambiguity aversion documented by Ellsberg (1961) has been first axiomatized in

the decision making context by Choquet expected utility of Schmeidler (1989) and

maxmin expected utility of Gilboa and Schmeidler (1989). Since then, different

approaches such as unanimity preferences of Bewley (2002), smooth preferences of

Klibanoff, Marinacci and Mukerji (2005), variational preferences of Maccheroni,

Marinacci and Rustichini (2006), α−maxmin model of Ghirardato et al. (2004)

have been taken to model information ambiguity. We refer to Gilboa and Marinacci

(2013), Epstein and Schneider (2010), and Machina and Siniscalchi (2014) for

extensive surveys of this literature.

1.2.2 Uncertainty and financial markets

This thesis is closely related to recent papers studying ambiguity of the finan-

cial market participants and its effects on market characteristics by modeling the

preferences of traders with the above decision theories (e.g., Epstein and Schnei-

der (2008), Caskey (2009), Easley and O’Hara (2010a, 2010b), Routledge and Zin
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(2009), Easley et al. (2014), Condie and Ganguli (2017), Ozsoylev and Werner

(2011), Mele and Sangiorgi (2015)). Chapters 2 and 3 contribute to this liter-

ature by modeling market participants with Choquet expected utility, maxmin,

and α−maxmin models to show that information ambiguity in different dimen-

sions such as beliefs about the fundamental values and the composition of traders,

in addition to the risk associated with the fundamental values, can explain a

number of empirical regularities in financial markets. More precisely, Chapter 2

contributes to this literature by showing the ambiguity about the payoffs as a

unifying mechanism to explain sudden liquidity deteriorations and improvements

in financial markets, and its consequences for value of information and welfare to

market participants. Chapter 2 also investigates the price-order size analysis in

the presence of ambiguity. In addition, unlike the most of the existing studies

with ambiguity about the fundamental values, Chapter 3 models an ambiguous

composition of traders as a novel source of ambiguity and investigates its impacts

on asset prices and value of information.

1.2.3 Multiple dimensions of uncertainty

Another closely related strand of literature to this thesis is multidimensional un-

certainty quantified by probability distributions (e.g., uncertain risk aversion, un-

certain wealth of traders, uncertain composition of traders, uncertain quality of

informed traders’ information) other than the fundamental values of securities and

its effects on financial markets (e.g., Easley and O’Hara (1992), Leach and Mad-

havan (1992, 1993), Romer (1993), Gervais (1997), Avery and Zemsky (1998),

Gao, Song and Wang (2013), Banerjee and Green (2015), Goldstein and Yang

(2015), Banerjee, Davis and Gondhi (2018)). Chapter 4 contributes to this lit-

erature by modeling uncertain composition of traders and uncertain quality of

informed traders’ information in a sequential trading model to reconcile financial

practice and empirical evidence associated with order imbalances with market mi-

crostructure theory. Unlike the existing studies, Chapter 4 shows how uncertainty

about the adverse selection risk (either in the composition of traders, the quality

of traders’ information or both) combined with uncertainty about the fundamental

value and why learning about different dimensions of uncertainty from the order

flow can lead to market instability (liquidity evaporations, large price swings, and

elevated volatility) in the face of large order imbalances.
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1.2.4 Market efficiency

Lastly, the thesis is also related to the controversial debate among the two schools

of thoughts, efficient markets hypothesis and behavioral finance, which shaped

much of the modern finance literature (e.g., Osborne (1959), Samuelson (1965),

Fama (1965, 1970, 2014), Rubinstein (2001), Thaler (1980), De Long et al. (1990),

Shiller (1981, 2003, 2014)). Chapter 5 contributes to this debate by proposing a

middle ground between efficient markets hypothesis and behavioral finance on the

basis of above decision theories under ambiguity as well as fuzziness (e.g., Aliev

and Huseynov (2014)) and information science literature (e.g., Zadeh (1965, 2011),

Klir (2005)).
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Ambiguous Price Formation

The action which follows upon an opinion depends as much upon the amount of

confidence in that opinion as it does upon the favorableness of the opinion itself.

Knight (1921) “Risk, Uncertainty and Profit” [p. 227].

2.1 Introduction

Liquidity provision in modern financial markets is a complex process. Modern

liquidity providers (e.g., algorithmic market makers) are subject to multiple di-

mensions of uncertainty. The complexity in modern liquidity provision (e.g., due

to the proliferation of HFT and demise of the designated market makers) has a

first-order impact in fluctuations in the security prices and market liquidity. Given

the fundamental importance of these fluctuations in promoting market stability

and social welfare, understanding the mechanics of such fluctuations is of broader

interest.

In particular, market crashes are often associated with an increase in volatility,

evaporation of liquidity and extreme price inefficiency. For example, during 1997-

1998 financial crisis, the spreads over treasuries widened on U.S. AAA bonds,

AAA commercial mortgage pools, credit instruments and swap contracts (e.g.,

Scholes (2000)). Similar features are associated with the global financial crisis,

in which for some assets virtually all markets have been characterized by large

spreads and lack of trading. On the contrary, financial markets also experience

liquidity improvements following landmark reforms in trading rules. For example,

13
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the spreads fell dramatically after the SEC implemented new trading rules (e.g.,

permit the public to submit binding limit orders, displaying the superior quotes

placed by dealers in private trading venues) in Nasdaq on January 20, 1997 (e.g.,

Barclay et al. (1999)).

Such scenarios of sudden liquidity deteriorations and improvements are hard to

reconcile with the standard price formation models of the market microstructure

theory (e.g., Kyle (1985), Glosten and Milgrom (1985)). In this chapter, we present

a security price formation model to provide an explanation for such peculiar market

behavior. Our premise is that the liquidity provision in the standard market

microstructure models is too simple to capture the underlying complexity in the

modern liquidity provision. The standard price formation models are designed

for well-defined gambles, in which a single probability distribution captures the

uncertainty of liquidity providers. We argue that this is in contrast to the real-life

price formation, where ambiguity plays an important role in liquidity provision.

We propose a sequential trading model, in which market makers providing liquidity

to the market have ambiguous beliefs about the final security payoff. In modeling

ambiguity, we adopt the Choquet Expected Utility (CEU) framework of Schmei-

dler (1989). Specifically, we use non-extreme-outcome-additive (neo-additive) ca-

pacities proposed by Chateauneuf et al. (2007) to capture the ambiguity and am-

biguity aversion of the market makers. A neo-additive capacity is the convex

combination of a probability and a constant parameter, measuring the degree of

ambiguity aversion. In addition, instead of Bayesian updating, we use generalized

Bayesian updating (GBU) of the beliefs. Consistent with the CEU framework, we

take Choquet expectation with respect to the market maker’s beliefs about the

final payoff of the security. The fundamental strength of our modeling approach

is that it is consistent with a coherent axiomatic theory. Additionally, it parsimo-

niously allows for the separation between ambiguity and ambiguity attitude of the

market makers.

In this setting, we first investigate the impacts of ambiguity and ambiguity aver-

sion of the market maker on the quotes and bid-ask spread at a given point in

time. In the presence of ambiguity, the bid-ask spread can be wider or narrower

than the standard bid-ask spread depending on the combination of ambiguity and

ambiguity aversion. More precisely, we introduce a concept of “bid-ask spread neu-

trality”, in which the equilibrium bid-ask spread with ambiguity is the same as the

one without ambiguity. Consequently, we show that the equilibrium spread can
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be decomposed into the standard spread and an “ambiguity premium/discount”

component characterizing the ambiguity and ambiguity aversion of the market

maker. For the sufficiently ambiguity-averse market maker, the resulting ambi-

guity premium on the spread provides a potential explanation to drying liquidity

and price inefficiency during the periods of extreme market stress. On the other

hand, the ambiguity discount prevails when the market maker is optimistic (or

not as sufficiently ambiguity averse) about the ambiguity. The liquidity distortion

(either in the form of ambiguity premium or discount) relative to the standard

model arises in our model because ambiguity and ambiguity aversion influence the

market maker’s perceived adverse selection risk.

We use our model to explore the market dynamics during continuous sell and

balanced orders. When the ambiguity-averse market maker receives continuous

sell orders, her perceived adverse selection risk (adverse selection risk after taking

into account ambiguity) increases, which tends to make the market less liquid. This

is consistent with the experience of the U.S. financial markets during the infamous

May 2010 Flash Crash, in which the spread of the June 2010 E-mini (S&P 500

futures) contracts widened to 11 ticks (2.75 index points) in the face of selling

pressure. This basic effect intrinsic to market crashes is in contrast to standard

microstructure models in which liquidity improves (lower price impacts in the Kyle

framework and narrower bid-ask spread in the Glosten-Milgrom framework) in the

face of selling pressure due to the resolution of uncertainty about the payoff. Our

model also shows that the market maker’s ambiguity aversion increases in the face

of selling pressure. Even if the market maker is initially not ambiguity averse, she

can become ambiguity averse during the selling pressure, resulting a switch from

an ambiguity discount to an ambiguity premium on the standard spread.

The prediction of our model is also different from the standard model during

balanced orders. In the standard model, balanced order flow reveals no new infor-

mation and thus has no effect on prices or liquidity. In our model, balanced orders

can be stabilizing and destabilizing depending on the ambiguity attitude of the

market maker. We show that balanced orders improve liquidity when the mar-

ket maker is optimistic about her belief assessments, whereas deteriorate liquidity

when she is pessimistic. In contrast to continuous sell orders, balanced orders have

no effect on the ambiguity aversion of the market maker.
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Next, we investigate the consequences of liquidity distortions due to the market

maker’s ambiguity on the value of information to informed traders and the to-

tal welfare of all market participants. The ambiguity in liquidity provision can

make private information more or less valuable in financial markets. Intuitively,

information becomes more (resp. less) valuable when it leads to more (resp. less)

profits. To verify this intuition we decompose the value of information in our

model into the standard and ambiguous components due to the market maker’s

ambiguity. Consequently, we show that the ambiguity premium (resp. discount)

on the standard bid-ask spread is associated with a value discount (resp. pre-

mium) on the standard value of information. To investigate the total welfare of

market participants we introduce trading motives to uninformed trading based on

the distribution of private valuation of the security. When the private valuation

of an uninformed trader arriving at the market lies inside the bid and ask quotes,

he chooses not to trade, resulting in a welfare loss to society. By comparing the

total welfare of market participants in the presence and absence of ambiguity, we

show that when the market maker is insufficiently (resp. sufficiently) ambiguity

averse, ambiguity contributes to a welfare gain (resp. loss) to society.

We also consider the possibility of different trade size and examine the behavior of

liquidity providers and informed traders (e.g., Easley and O’Hara (1987)). To do

this, we distinguish between the separating equilibrium, in which informed traders

trade only large quantities and the pooling equilibrium, in which informed traders

trade either small or large quantities. For the sufficiently ambiguity-averse market

maker, the order size ratio (i.e., the ratio of large order size to small order size) for

the separating equilibrium to exist reduces with ambiguity in liquidity provision.

In extreme ambiguity, the separating equilibrium becomes the only equilibrium.

This arises because the ambiguity-averse market maker behaves according to her

worst case scenario and the informed traders with the knowledge of the market

maker’s pricing rule trade only large quantities to maximize their profits.

During the market crashes the liquidity-providing market participants often with-

draw their quotes (e.g., Chordia, Roll and Subrahmanyam (2002), Anand and

Venkataraman (2016)). The withdrawal of liquidity by some electronic market

makers and enhanced uncertainty about the actions of the market participants ex-

acerbate the magnitude of the crash. This is often associated with the “toxicity”

(adverse selection risk) in the order flow (e.g., Easley et al. (2012)). In our model,



Chapter 2 17

the ambiguity-averse market maker regards the order flow as “toxic” since her per-

ceived adverse selection risk increases with ambiguity. Our model also captures

the flip side of the story in which the ambiguity leads to liquidity improvements

when the liquidity providers are sufficiently optimistic. The dual role of ambiguity

and ambiguity aversion, in turn, generates the seemingly peculiar market behavior

(liquidity deteriorations for the events that the market makers are pessimistic and

liquidity improvements for the events that they are optimistic).

The next section relates this chapter to the existing literature. In Section 2.3,

we present the ambiguous price formation model. In Section 2.4, we investigate

the effects of ambiguity in liquidity provision on the properties of the market.

In Section 2.5, we examine the consequences of ambiguous price formation on

the value of information to informed traders and the total welfare to society. In

Section 2.6, we incorporate different order sizes to our baseline model to explore the

joint impact of order sizes and ambiguity in liquidity provision on the behavior

of market participants. Section 2.7 examines the empirical implications of our

results and concludes. Proofs and other extensions to relax the assumptions of

our baseline model are relegated to the appendices.

2.2 Related Literature

This chapter contributes to various strands of literature. Market liquidity is the

focus of market microstructure. Classic market microstructure models involve

a dealer who provides liquidity at a cost that arises from the risk of holding

inventory (e.g., Stoll (1978)) or trading against a better-informed trader (e.g.,

Kyle (1985), Glosten and Milgrom (1985)). Theoretically, there are several factors

(with possibly overlapping reasons) that can result in liquidity crashes.

(i) Brunnermeier and Pedersen (2008) provide a model in which traders’ liq-

uidity provision depends on the availability of funding and vice versa. They

show that the market liquidity and funding liquidity are mutually reinforcing

and can lead to liquidity spirals.

(ii) Huang and Wang (2009) extends Grossman and Miller (1988) framework to

link the cost of maintaining continuous market presence with market crashes.

Thus the need for liquidity and market crashes emerge endogenously when
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selling pressure overwhelms the insufficient risk-bearing capacity of market

makers.

(iii) Duffie (2010) extends the standard dynamic general equilibrium model of

Stapleton and Subrahmanyam (1978) to show that prices respond to supply

or demand shocks with a sharp reaction and liquidity dries up due to the

presence of inattentive investors.

(iv) Cespa and Foucault (2014) extend the standard CARA-Normal REE model

to allow learning about the fundamental value of one asset from another

asset. This cross-asset learning generates a self-reinforcing positive relation-

ship between the price informativeness and liquidity, leading to liquidity

spillovers and crashes.

(v) Aliyev, He and Putnins (2018) extend the standard sequential trading model

of Glosten and Milgrom (1985) to show that large buying or selling pressure

can lead to sharp price adjustments and evaporation of liquidity due to

learning about the level of toxicity (adverse selection) in the market.

This chapter contributes to this literature in various ways. First, we explore ambi-

guity and ambiguity aversion of liquidity providers during uncertain market events

to capture both liquidity deteriorations during financial crisis and improvements

during trading reforms. Second, we investigate the implications of such ambigu-

ity and ambiguity aversion on information value and welfare. Third, we examine

the price-order size-ambiguity relationship when traders can trade different order

sizes. More importantly, we provide different set of predictions about the im-

pacts of ambiguity and ambiguity aversion of liquidity providers on the market

outcomes.

This chapter is related to a subset of the market microstructure literature that

investigates the impacts of ambiguity on the market liquidity. Routledge and Zin

(2009) focus on a monopolist market maker for a derivative security. Ozsoylev and

Werner (2011) develop a static rational expectations equilibrium model following

maxmin expected utility of Gilboa and Schmeidler (1989). Similarly, in a static

CARA-normal framework, Easley and O’Hara (2010a) use incomplete preferences

of Bewley (2002) to show that no trade region naturally arises for a certain price

range, resulting in an ambiguity spread. We model trading as a sequential trading

process with a competitive market making and adopt CEU framework with neo-

additive capacities. This allows us to investigate the impacts of ambiguity as
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well as the ambiguity aversion of liquidity providers on both the static prices and

liquidity as well as their dynamics.

There are three ways to explicitly allow for this separation: the α-maxmin ex-

pected utility (α-MEU) model of Marinacci (2002), the smooth ambiguity model

of Klibanoff et al. (2005) and Choquet expected utility model of Schmeidler (1989)

combined with neo-additive capacities. Both α-MEU and smooth ambiguity mod-

els do not have an axiomatization in terms of preference over Savage acts. In

the smooth model, the ambiguity attitude is determined by a second-order prefer-

ence over second-order acts. Our approach of separating ambiguity and ambiguity

attitude is much simpler (tractable), axiomatically coherent and intuitive.

Another related branch of literature explores the impacts of ambiguity on the

value of information and welfare (e.g., Mele and Sangiorgi (2015), Aliyev and

He (2018b), Easley et al. (2014)). In a rational expectations framework, Mele

and Sangiorgi (2015) show that traders’ ambiguity about the asset fundamentals

can make the value of information to increase in the number of informed traders

(i.e., strategic complementarities) and drive large price swings. Easley et al. (2014)

develop a static model with ambiguity-averse mutual funds facing ambiguity about

the effective risk tolerance of hedge funds to show that this ambiguity decreases

the welfare. In our model, market makers are subject to ambiguity as opposed to

traders. This is natural because in today’s fast and fragmented market, effectively

monitoring market conditions in real time is challenging and liquidity providers

are vulnerable to the presence of ambiguity. Our analysis contributes to this

literature by showing that ambiguity can increase the value of information to

informed traders and the welfare to society.

The chapter is also related to the market microstructure literature investigating

the price-quantity relationship (e.g., Easley and O’Hara (1987), Ozsoylev and

Takayama (2010)). Our contribution here is to characterize the conditions on

ambiguity under which order size does separate informed and uninformed traders

in equilibrium and show the price-quantity-ambiguity relationship. This is the first

research, to our knowledge, to show the association between the order size and

ambiguity. Finally, this chapter is related to recent papers studying the ambiguity

and financial markets (e.g., Caskey (2009), Easley and O’Hara (2010b), Condie

and Ganguli (2017)).
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2.3 Ambiguous Price Formation

This section presents the model of ambiguous price formation to investigate the

role of market making and price formation during extreme market events. The

assumption that the uncertainty around this time can be explained by a single

probability distribution is neither natural nor realistic. Taking this into account

allows us to develop the underlying intuition of price formation during extreme

market events. The next subsection introduces necessary concepts.

2.3.1 Preliminaries

We assume that the uncertainty can be described by a non-empty set of finite

states, denoted by S. A non-additive probability is a real-valued set function

defined on the set of events E that is normalized (v(∅) = 0, v(S) = 1) and

monotonic (for all A, B in E , A ⊆ B ⇒ v(A) ≤ v(B)). We specifically use

neo-additive capacities of Chateauneuf et al. (2007) to capture the ambiguity and

ambiguity aversion during extreme market events. Given an additive probability π

on E , a neo-additive capacity is defined by v(A) = (1−δ)·π(A)+δ·α for ∅ ( A ( S
and α, δ ∈ [0, 1]. The weight (1− δ) given to π(A) is a degree of confidence which

the individual holds in her probabilistic belief π(A). The parameter δ is thus a

measure of ambiguity. When δ = 0, the standard probabilistic analysis with no

ambiguity applies, whereas when δ = 1, the individual has no confidence (full

ambiguity) in her probability assessment.

The parameter α measures the individual’s attitude toward ambiguity. When

α = 0, the individual exhibits pure pessimism (ambiguity aversion) since v(A) ≤
π(A) and when α = 1, she exhibits pure optimism (ambiguity seeking) since

v(A) ≥ π(A). The belief (v) is revised by the generalized Bayesian updating, i.e.,

v(A|B) =
v(A ∩B)

v(A ∩B) + 1− v(A ∪Bc)
. (2.1)

It is straightforward to check that Eq. (2.1) reduces to Bayes’ rule when v is

additive; that is, 1 − v(A ∪ Bc) = v(Ac ∩ B) and v(A ∩ B) + v(Ac ∩ B) = v(B),

and hence Bayes’ rule. Lastly, we introduce the Choquet expectation with respect

to the beliefs. Without loss of generality, rank a non-negative function f on S
as f(s1) ≥ f(s2) ≥ ... ≥ f(sn) and f(sn+1) = 0. The Choquet expectation
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(i.e., integral) of the non-negative function f on S with respect to a non-additive

probability v follows from Choquet (1955) as

Ev[f ] :=

∫
S
f · dv =

n∑
k=1

(
f(sk)− f(sk+1)

)
· v
(
{s1, s2, ..., sk}

)
. (2.2)

To provide an intuition, we consider the following example.

Example 2.1. Consider an asset (a) that pays either $2 in low state (l) or $5 in

high state (h) with non-additive probabilities of vl = 0.2 and vh = 0.4 respectively.

The (Choquet) expected payoff of buying a unit of this asset is then given by

Ev[ab] = 0.6 · 2 + 0.4 · 5 = 3.2. The (Choquet) expected payoff of selling a unit of

this asset is given by Ev[as] = 0.2 · (−2) + 0.8 · (−5) = −4.4.

In Example 2.1, the expected payoffs of buying and selling the asset follow from Eq.

(2.2). The expectation is equivalent to adding the probability gap (1−vl−vh = 0.4)

to the beliefs about the worst case scenarios. When buying the asset the worst

case scenario is the low state (l), whereas when selling the asset the worst case

scenario is the high state (h).

2.3.2 Setup

We consider a Glosten-Milgrom framework with one risky security and three dif-

ferent groups of traders; informed traders, uninformed traders and market makers

(traders within each group are identical). Trade takes place in t = 1, ..., T periods

and the risky security pays off in period T + 1. The final payoff of the security

is represented by a random variable V̂ which either takes low value (Vl) with an

initial prior probability of πl or high value (Vh) with a probability of πh = 1− πl.2

Consistent with the standard Glosten-Milgrom framework, in each period, the risk-

neutral and competitive market maker posts bid (Bα,δ) and ask (Aα,δ) quotes for a

fixed amount (normalized to one unit) to earn zero expected profit. Additionally,

in our model, the ambiguity-averse market maker’s beliefs about the final payoff

are ambiguous. Her initial beliefs about the low and high outcomes of the payoff,

2The two-point distribution of the security payoff is certainly unrealistic. In Appendix 2.2,
we extend the two-point distribution of the security payoff to the trinomial distribution to show
that our results are robust to this distributional assumption.
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respectively, are

vl = (1− δ) · πl + δ · α and vh = (1− δ) · (1− πl) + δ · α, (2.3)

where δ is the amount of ambiguity and α is the market maker’s ambiguity attitude.

The amount of probability “lost” by the presence of ambiguity is 1−vl−vh = δ·(1−
2 · α), representing the confidence in the market maker’s probability assessment.

It measures the deviation of the belief v = {vl, vh} from the additive probabilistic

belief π = {πl, πh}. To capture the ambiguity aversion of the market maker, we

assume 0 ≤ α ≤ 0.5. When α = 0, the market maker is fully ambiguity averse

and when α = 0.5, she is ambiguity neutral.

At each trading round, a trader arrives at the market to buy or sell a fixed amount

(normalized to one unit) of the security at the ask or bid quote. With a probability

of µ the trader arriving at the market is informed and with a probability of 1− µ
is uninformed. The informed traders are risk neutral and maximize their expected

profits by trading on a perfect signal Θ = {H,L} about the payoff of the risky

security.3 They buy one unit of the security when Θ = H and sell one unit when

Θ = L. The uninformed traders trade according to their liquidity needs or hedging

purposes, which are exogenous to the model.4 For convenience, we assume that,

with equal probabilities, they buy and sell with perfectly inelastic demand. The

structure of the model is common knowledge to all market participants.

2.3.3 Equilibrium

The standard Bertrand competition argument that the competitive market maker

expects a zero profit implies that the market maker’s bid and ask quotes are the

expected final security payoff conditional on receiving a sell (s) or buy (b) order

respectively. She, therefore, sets ask price as Ev[V |b] and bid price as Ev[V |s]
by revising her beliefs (v) about the final payoff with the generalized Bayesian

3In Appendix 2.3, we show that our results hold as long the informed traders’ signal is
sufficiently informative. We also show that the sufficiency condition for the information quality
increases with ambiguity and ambiguity aversion of the market maker.

4Our results are robust to exogenous uninformed trading assumption. We show this in Sec-
tion 2.5.2 when we model endogenous uninformed trading to investigate the welfare implications
of ambiguity. Also assuming ambiguity about other market features (such as the trader compo-
sition) do not qualitatively change our results. Moreover, imposing ambiguity to other market
participants is not binding in our baseline model since, in this model, the informed traders do
not use the price function to extract information about the security payoff and the uninformed
traders are assumed to trade exogenously.
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updating.5 This implies that she applies Eq. (2.1) to update her beliefs given

in Eq. (2.3). Let πb denote the probability of a buy order. The next lemma

formally derives the updating of the market maker’s belief about the low outcome

conditional on a buy order, v(V̂ = Vl|b) = vbl . The beliefs vbh, v
s
l and vsh can be

defined and calculated similarly.

Lemma 2.2. Suppose πb > 0. The market maker’s revised belief about the low

outcome conditional on a buy order is given by

vbl = (1− δb) · πbl + δb · α, (2.4)

where δb = δ
(1−δ)·πb+δ

and πbl is a Bayesian update of πl conditional on a buy

order. In addition, the updated ambiguity, δb, increases with the ambiguity, δ,

and decreases with the probability of a buy order.

Several features of Lemma 2.2 deserve comments. First, note that the revised

belief reduces to the Bayesian updated probability when there is no ambiguity,

δ = 0. Second, the market maker’s revised belief, vbl , is also a convex combination

of the posterior probability, πbl , and the ambiguity aversion, α. This means the

market maker’s ambiguity attitude stays the same, the probability is revised by

Bayes’ theorem, while the market maker’s posterior belief is the weighted average

of the two. Third, conditional on the buy order the ambiguity itself, however, is

updated upward (i.e., δb ≥ δ). The enhanced ambiguity irrespective of the type

of trade is natural, especially during the crisis and trading reform periods. This is

so because, during these periods, the market makers become less confident about

their information processing with additional information. The updated ambiguity

δb increases with the prior belief about the ambiguity δ. This means that for

the given probability of a buy order, the updated ambiguity will be higher if the

prior ambiguity is higher. Moreover, the updated ambiguity decreases with the

probability of a buy order. This means that the more likely it was for the buy

order to occur probabilistically, the updated ambiguity conditional on a buy order

5The intuition of the quotes in the presence of ambiguity follows the same intuition as in the
standard model. When someone buys from the market maker the expected profit of the market
maker is Aα,δ − Ev[V |b] and when someone sells it is Ev[V |s] − Bα,δ. The competition drives
down the profits to zero, leading to Aα,δ = Ev[V |b] and Bα,δ = Ev[V |s]. In our analysis, we an-
alytically characterize the initial quotes and spread and numerically investigate their evolutions
by evaluating Ev[V |b] and Ev[V |s] iteratively using the generalized Bayesian updating in Eq.
(2.1). In Appendix 2.4, we also investigate other (optimistic updating of Gilboa and Schmei-
dler (1993) and pessimistic updating of Dempster (1968) and Shafer (1976)) ways of updating
Choquet beliefs.
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will be lower. In extreme, when πb = 1, the market maker’s updated ambiguity

and the prior ambiguity are equal. This type of probability tilting, though less

structured, is characterized as a behavioral bias in behavioral finance (e.g., Gervais

and Odean (2001)). Next, we define the equilibrium.

Definition 2.3. An equilibrium consists of the market maker’s prices, informed

traders’ trading strategies, and posterior beliefs such that:

(i) The bid and ask prices satisfy the zero-expected-profit condition, given the

market maker’s posterior beliefs;

(ii) The informed traders maximize their expected profits given the signal Θ =

{H,L};

(iii) The market maker’s belief satisfies the generalized Bayesian updating.

2.4 Ambiguity, Ambiguity Aversion and Market

Properties

Our model allows us to analyze the effects of ambiguity on the market maker’s

behavior and the properties of the market in two different ways. First, we can

vary the size of the market maker’s ambiguity and ambiguity aversion to get an

idea of their impact on the quotes and bid-ask spread (i.e., comparative statics).

Second, we can fix the initial ambiguity δ and ambiguity aversion α and determine

the effects of different trading histories on the evolution of quotes and spread in

the presence of ambiguity.

2.4.1 Effects of the ambiguity on the initial quotes/spread

Given the conditional expectations, the market maker can set initial bid and ask

quotes. The bid is the expected value of the final payoff conditional on a sell order,

Bα,δ =Ev[V̂ |s] =
[
vsl + δs · (1− 2 · α)

]
· Vl + vsh · Vh

=Vl + vsh · (Vh − Vl).
(2.5)
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Similarly, the ask is the expected value of the final payoff conditional on a buy

order,

Aα,δ =Ev[V̂ |b] = vbl · Vl +
[
vbh + δb · (1− 2 · α)

]
· Vh

=Vh − vbl · (Vh − Vl).
(2.6)

Eqs. (2.5) and (2.6) directly follow from the definition of Choquet expectation

given in Eq. (2.2). The intuition follows from Example 2.1. Since Vh > Vl for

buying and (−Vl) > (−Vh) for selling, the minimum probability when evaluating

an expectation is the probability that puts the most possible weight on Vl and

(−Vh) respectively. Therefore, the probability gap, δs · (1−2 ·α) and δb · (1−2 ·α)

are added to vsl and vbh in the calculation of Bα,δ and Aα,δ respectively. The

standard probabilistic bid and ask quotes are given, respectively, as

B = Vl + πsh · (Vh − Vl), (2.7)

A = Vh − πbl · (Vh − Vl), (2.8)

where πsh = (1−µ)·πh
(1+µ)·πl+(1−µ)·πh

and πbl = (1−µ)·πl
(1−µ)·πl+(1+µ)·πh

follow from Bayes’ rule.

Having described the structure of the model and determined the equilibrium quotes

in the presence and absence of ambiguity, we now combine these quotes in the

following proposition.

Proposition 2.4. The equilibrium bid/ask in the presence of ambiguity is a con-

vex combination of the standard probabilistic bid/ask and α-weighted payoff,

Bα,δ =
(
1− δs

)
·B + δs ·

(
α · Vh + (1− α) · Vl

)
, (2.9)

Aα,δ =
(
1− δb

)
· A+ δb ·

(
(1− α) · Vh + α · Vl

)
, (2.10)

and the bid-ask spread takes the form of

Sα,δ = S +

(
δb ·
(
πbl − α

)
+ δs ·

(
πsh − α

))
·
(
Vh − Vl

)
, (2.11)

where Sα,δ and S denote the bid-ask spread in the presence and absence of ambi-

guity respectively.
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The quotes of the ambiguity-averse market maker in Proposition 2.4 diverge from

the standard quotes as ambiguity increases, leading the bid-ask spread to reflect

more the ambiguity and ambiguity aversion of the market maker. In our ambiguous

price formation model, there is an ambiguity premium effect on the standard bid-

ask spread (i.e., Sα,δ−S > 0) when α ≤ min{πsh, πbl }. Thus an ambiguity premium

effect always prevails when the market maker is fully ambiguity averse (α = 0).

This is because, for the non-zero conditional probabilities, the bid Bα,δ is lower

than the standard bid B and the ask Aα,δ is higher than the standard ask A,

widening the bid-ask spread. However, there is also an ambiguity discount effect

(i.e., Sα,δ − S < 0), in which the bid-ask spread with ambiguity is less than the

bid-ask spread without ambiguity when α ≥ max{πsh, πbl } . In this scenario, the

bid is higher than the standard bid and the ask is lower than the standard ask

quote, narrowing the spread.

In Figure 2.1, we illustrate the equilibrium bid/ask quotes and spreads in the

presence and absence of ambiguity against the amount of ambiguity δ and am-

biguity aversion α of the market maker. The bid/ask quotes and spread in the

absence of ambiguity (fixed black layers) obviously do not respond to changes in

ambiguity and ambiguity aversion of the market maker. The quotes and spread

in the presence of ambiguity (curved layers), however, have two distinct areas, in

which ambiguity premium and ambiguity discount on the standard bid and ask

quotes and therefore on the standard spread prevail. An ambiguity premium adds

premium over the standard spread, while an ambiguity discount reduces it due to

the optimistic behavior of the market maker.

Panels (A)-(C) show that when there is no ambiguity (δ = 0), the bid/ask quotes

and spread in our model reduces to the standard quotes and spread. Additionally,

Panel (A) shows that when exposed to full ambiguity (δ = 1), the fully ambiguity-

averse market maker (α = 0) sets the highest ask, whereas the ambiguity-neutral

(α = 0.5) sets the lowest. In contrast, Panel (B) shows that when δ = 1, the fully

ambiguity-averse market maker sets the lowest bid, whereas the ambiguity-neutral

sets the highest. Thus as illustrated in Panel (C), the highest and lowest bid-ask

spreads correspond to the fully ambiguity-averse (α = 0) and ambiguity-neutral

(α = 0.5) cases when the market maker has full ambiguity in her beliefs about the

final payoff.
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(A) Asks in the presence Aα,δ (curved layer) and ab-
sence A (fixed layer) of ambiguity

(B) Bids in the presence Bα,δ (curved layer) and ab-
sence B (fixed layer) of ambiguity

(C) Spreads in the presence Sα,δ (curved layer) and
absence S (fixed layer) of ambiguity

Figure 2.1: The relation between the bid/ask prices and spread in the presence
(curved layers) and absence of ambiguity (fixed black layers) with respect to
ambiguity, δ, and ambiguity aversion, α, of the market maker. Panel (A) plots
bids, (B) plots asks and (C) plots the resulting bid-ask spreads. The parameter
values are Vl = 0, Vh = 1, πl = πh = 0.5 and µ = 0.3.
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Panel (C) of the figure also shows that there is a combination of ambiguity δ∗

and ambiguity aversion α∗ that generates a bid-ask spread equal to the standard

bid-ask spread (i.e., Sα,δ = S). We define this combination as a “bid-ask spread

neutrality condition” and formally derive the condition in the following corollary.

The condition sets an upper (resp. lower) bound for α that yields an ambiguity

premium (resp. ambiguity discount) over the standard bid-ask spread. Put differ-

ently, the condition obtains the necessary and sufficient level of ambiguity aversion

for the market maker to widen the bid-ask spread relative to the standard spread.

Corollary 2.5. In equilibrium, there is an ambiguity aversion α∗ defined by

α∗ = w · πbl + (1− w) · πsh, w =
δb

δb + δs
, (2.12)

which equalizes the bid-ask spreads with and without ambiguity (i.e., Sα,δ = S )

and divides the bid-ask spread with ambiguity into ambiguity premium, α < α∗,

and ambiguity discount, α > α∗, areas.

Corollary 2.5 is very intuitive. Suppose the bid-ask spreads in the presence Sα,δ

and absence S of ambiguity given in Eq. (2.11) are, respectively, characterized by

Sα,δ = β · µα,δ · (Vh − Vl) and S = β · µ · (Vh − Vl), (2.13)

where µα,δ is the market maker’s perceived probability of informed trading after

taking into account the ambiguity and β = 1−(1−2·πh)2·µ
1−(1−2·πh)2·µ2 is a parameter that follows

from writing the conditional probabilities explicitly in the bid and ask (Eqs. (2.7)

and (2.8)) and finding their difference. Combining Eqs. (2.11) and (2.13) obtains

the perceived probability of informed trading as

µα,δ = µ+
δb ·
(
πbl − α

)
− δs ·

(
α− πsh

)
β

. (2.14)

Condition (2.12) is the necessary and sufficient condition that equalizes the per-

ceived probability of informed trading µα,δ (probability of informed trading after

accounting for ambiguity) and the actual probability of informed trading µ. The

intuition is more clear by re-expressing Eq. (2.14) as

µα,δ = µ+
δb + δs

β
· (α∗ − α). (2.15)
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When α < α∗, the perceived probability of informed trading is greater than the

probability of informed trading, leading to the ambiguity premium on the bid-ask

spread. When α > α∗, however, the opposite prevails, leading to the ambiguity

discount on the bid-ask spread.6

To see the intuition more clearly assume that the market maker initially has naive

priors (i.e., πl = πh = 0.5) and the security payoffs are normalized (i.e., Vl = 0 and

Vh = 1). It is well-known that in such a scenario, the bid B = πsh =
(

1−µ
2

)
and the

ask A = πbh =
(

1+µ
2

)
lead to the bid-ask spread of the standard model given by the

probability of informed trading, S = µ (this immediately follows from Eq. (2.13)

since β = 1 when πl = πh = 0.5). This is because the bid-ask spread stems from

the probability of informed trading due to the adverse selection risk of the market

maker. In our model, the same argument holds. However, it is the market maker’s

perceived adverse selection risk, µα,δ, that characterizes the spread. Substituting

πbl = πsh = 1−µ
2

into Eq. (2.14) yields

µα,δ = µ+ δb · (1− 2α− µ) (2.16)

where δb = δs = 2·δ
1+δ

. Let φ ∈ [0, 1] be the normalized degree of ambiguity aversion

given by φ = (1−2·α), where φ = 0 is the case of no ambiguity aversion (ambiguity

neutrality) and φ = 1 is full ambiguity aversion. It follows from Eq. (2.13) that the

spread is given by the market maker’s perceived probability of informed trading,

i.e.,

Sα,δ = µα,δ = µ+ δb · (φ− µ). (2.17)

When the market maker has no ambiguity (δ = δb = 0), the perceived probability

of informed trading, µα,δ, corresponds to the actual probability of informed trading,

µ. When the information about the final payoff is fully ambiguous (δ = δb = 1),

the bid-ask spread of the ambiguity-averse market maker is fully characterized

by her degree of ambiguity aversion, φ. The spread in the non-extreme scenarios

6Note that the bid-ask spread neutrality condition only equalizes the bid-ask spreads with
and without ambiguity, not the bid and ask quotes. In that sense, we can differentiate between
the “strict form neutrality”, where the bid, ask quotes with ambiguity (naturally the spread) are
equal to the probabilistic bid, ask quotes and the “weak form neutrality”, where only the bid-
ask spreads are equal. The strict form bid-ask spread neutrality for the ambiguity-averse market
maker is only attained when πl = πh = 0.5. The market maker can be a “weak form neutral”
by increasing or decreasing the bid/ask mid price. The necessary and sufficient condition to be
a “weak form neutral” by increasing (decreasing) the mid price is πl > 0.5 (πl < 0.5). That
means, by changing the mid price, the ambiguity-averse market maker maintains the bid-ask
spread with ambiguity the same as the probabilistic bid-ask spread even though the probabilistic
beliefs suggest otherwise.
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is determined by the interplay between the degree of ambiguity aversion of the

market maker and the actual probability of informed trading. When the degree

of ambiguity aversion exceeds the probability of informed trading, φ > µ, the per-

ceived probability of informed trading is greater than the probability of informed

trading, µα,δ > µ, and hence a wider bid-ask spread. There is, however, a flip

side of the story, in which the market maker sets the spread lower than the stan-

dard spread when her degree of ambiguity aversion is less than the probabilistic

belief about the informed trading. This occurs because she is optimistic (not as

pessimistic) about the level of informed trading in the presence of ambiguity.

The current application of information ambiguity to financial markets mainly fo-

cuses on the ambiguity premium through non-participation of traders (e.g., Easley

and O’Hara (2010a, 2010b)). While this approach has provided a number of im-

portant insights into financial market phenomena, our model shows that ambiguity

premium effect is not the full picture and non-participation of traders is not the

only economic channel. Our results suggest a link between the ambiguity, ambigu-

ity aversion, and perceived adverse selection risk of liquidity providers. This link

can explain the observed ambiguity premium (mainly during crash periods when

liquidity providers are sufficiently pessimistic) and ambiguity discount (mainly

during trading reforms when liquidity providers are sufficiently optimistic).

In Figure 2.2, we plot two extreme scenarios of informed trading (i.e., µ = 0 in

Panel (A) and µ = 1 in Panel (B)) to emphasize the type of price inefficiency and

liquidity distortion during extreme market events. In contrast to the standard

models, Panel (A) shows that the perceived probability of informed trading can

be very high due to liquidity providers’ ambiguity even when the actual probability

of informed trading is at its minimum (µ = 0), which is useful in understanding

the ambiguity premium effect during financial crashes. Panel (B) shows that the

perceived probability of informed trading can be very low even when the actual

probability of informed trading is at its maximum (µ = 1), which is useful in

understanding the ambiguity discount effect during reforms in trading rules.

We only observe the ambiguity premium in Panel (A) since φ ≥ µ = 0 and am-

biguity discount in Panel (B) since φ ≤ µ = 1. An increase in the ambiguity δ

of the market maker leads to an increase in the perceived probability of informed

trading µα,δ in Panel (A) and a decrease in Panel (B). That is, when φ > µ,

ambiguity increases the level of ambiguity premium, whereas when φ < µ, am-

biguity increases the level of ambiguity discount. In extreme ambiguity, δ = 1,
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(A) µ = 0 (B) µ = 1

Figure 2.2: The relation between the perceived probability of informed trading
(curved layer), µα,δ, and the probability of informed trading (fixed black layer),
µ, with respect to ambiguity, δ, and ambiguity aversion, φ, of the market maker.
The parameter values are Vh − Vl = 1, πl = πh = 0.5.

which is almost always the case with all the financial crashes and controversial

trading reforms, the liquidity is determined by the ambiguity aversion of the mar-

ket maker, φ. Panels (A)-(B) also show that for the given level of ambiguity the

spread is wider when the market maker is more ambiguity averse. Therefore, the

liquidity dries up in crash episodes during which the liquidity providers face the

extreme level of ambiguity and display extreme ambiguity-aversion, whereas the

liquidity improves during trading reforms in which they also face ambiguity, but

are optimistic toward this ambiguity. Formally we have the following corollaries.

Corollary 2.6. If the market maker is sufficiently ambiguity averse (i.e., α ≤
min{πsh, πbl });

(i) there is an ambiguity premium on the bid-ask spread,

(ii) incremental ambiguity increases the ambiguity premium,

(iii) the magnitude of increase in the ambiguity premium is decreasing with am-

biguity.

If the market maker is not sufficiently ambiguity averse α ≥ max{πsh, πbl };

(i) there is an ambiguity discount on the bid-ask spread,

(ii) incremental ambiguity increases the ambiguity discount,

(iii) the magnitude of increase in the ambiguity discount is decreasing with am-

biguity.
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Corollary 2.6 provides an intuition about the evaporation of liquidity during the

historical flight-to-liquidity episodes such as shorting ban, transaction taxes or in

extreme, market crashes and liquidity improvements during the historical trading

reforms such as permitting the public to compete directly with dealers and dis-

playing the superior quotes placed by dealers in private trading venues to public

in Nasdaq. It suggests a possible channel of the extreme liquidity dry-ups and

liquidity improvements during uncertain market events. Corollary 2.6 establishes

the impact of ambiguity on the bid-ask spread and squares with the intuition and

empirical observations during uncertain market events.

The intuition that the presence of ambiguity induces an ambiguity premium is

not new in the literature. Ju and Miao (2012), by three-way separation among

risk aversion, ambiguity aversion and intertemporal substitution, calibrate an as-

set pricing model to match the mean equity premium of asset prices by adding

an ambiguity premium. Epstein and Schneider (2008) show that investors require

compensation for low future information quality, and therefore, expected excess

returns are higher in the presence of ambiguity. The contribution of this chapter

lies in delineating the roles of ambiguity and ambiguity aversion of the market

maker in distorting the liquidity and generating aberrant market behavior during

uncertain market events through the channel of adverse selection by providing the

full picture of ambiguity premium and discount. At first, an ambiguity discount

effect may seem intuitively dubious concept. One interesting aspect of this result,

however, is that ambiguity can provide a unified approach in explaining the pos-

itive or negative liquidity distortions in financial markets and lead to interesting

financial market phenomena. The next corollary relates the liquidity distortions

to the ambiguity aversion of liquidity providers.

Corollary 2.7. For any non-zero level of ambiguity, δ > 0, a higher ambiguity-

aversion leads to a higher bid-ask spread.

Corollary 2.7 is consistent with the intuition that the liquidity providers’ ambigu-

ity aversion leads to an increase in the bid-ask spread. Combining Corollaries 2.6

and 2.7, we obtain, in extreme ambiguity, a fully ambiguity-averse market maker

sets the maximum spread (Vh − Vl). Since there is no room for exploiting private

information, in that scenario, the informed traders stop trading and the trading

volume collapses. This is indeed what has happened during the recent global fi-

nancial crisis. Although market makers continued to post bid and ask prices on
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mortgage-backed securities and collateralized debt obligations, the trading vol-

ume of these securities decreased substantially (Easley and O’Hara (2010a)). We

conclude this subsection by examining some important special cases of our model

before investigating the impacts of trading histories on the evolution of prices and

spread.

Case 1 (δ = 0): When there is no ambiguity, the bid and ask quotes reduce to the

probabilistic bid and ask quotes. This is because the market maker’s perceived

probability of informed trading, µα,δ, reduces to the actual probability of informed

trading, µ.

Case 2 (α = 0, δ > 0): This case represents the quotes of the fully ambiguity-

averse market maker in the presence of ambiguity. It follows from Eqs. (2.9) and

(2.10) that, for non-zero level of the conditional probabilities, the bid is lower than

the standard bid and the ask is greater than the standard ask (i.e., Bα,δ < B and

Aα,δ > A). Following Corollary 2.6, an incremental ambiguity adds an ambiguity

premium over the bid-ask spread by reducing the bid and increasing the ask.

Case 3 (δ = 1): In this case, the quotes of the ambiguity-averse market maker is

characterized only by her degree of ambiguity aversion,

Bα,δ = α · Vh + (1− α) · Vl, and Aα,δ = (1− α) · Vh + α · Vl. (2.18)

Put differently, the market maker posts quotes fully based on her optimism and

pessimism toward the ambiguity irrespective of the intensity of informed trading

in the market.

Case 4 (δ = 1 and α = 0): The results obtained in this case resemble what is

indeed observed during the market crashes. In this case, the market maker has

no confidence in her probability assessment of the final payoff (i.e., vl = vh = 0).

Therefore, she sets the minimum bid, Bα,δ = Vl, and the maximum ask, Aα,δ = Vh.

In probabilistic beliefs, a little evidence supporting Vl implies a large amount of

evidence supporting Vh. This is not necessarily the case in our representation of

the beliefs about the final payoff. In Case 4, the market maker does not have any

evidence (or she has inconsistent evidence) supporting Vl or Vh (i.e., vl = vh = 0).

Case 5 (α = 0.5): The market maker is ambiguity neutral in the sense that she

posts the quotes as if she has a probabilistic belief since there is no probability

gap (i.e., δ · (1− 2 · α) = 0).
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Case 6 (δ = 1 and α = 0.5): This is a combination of Cases 3 and 5, in which the

market maker is ambiguity neutral in the presence of full ambiguity. In this case,

the conditional beliefs about the risky payoff always correspond to vsh = 0.5 and

vbl = 0.5. Therefore, the bid and ask of the market maker converge to (Vl+Vh)
2

with

zero bid-ask spread.

2.4.2 Effects of the trading history on the evolution of

quotes and spread

The effects described thus far focus on ambiguity and ambiguity aversion of the

market maker on the initial quotes and spread, and therefore are static in the

sense that they do not depend on the past trading history. We now investigate

the dynamic behavior of the market maker’s quotes and spread in the presence

of ambiguity conditional on the trading history. To do this we assume naive

initial priors at t = 1 and normalized security payoffs (i.e., πl,1 = πh,1 = 0.5 and

V̂ ∈ {0, 1}).

Let Dt denote the trade direction, Dt = −1 for a sell, Dt = +1 for a buy, and

Pt denote the transaction price at time t. Public information at time t consists

of the sequence of past buys and sells and their transaction prices, denote by

ht = {Dτ , Pτ}t−1
τ=1 for t > 1. The other variables are denoted the same as in the

static analysis, the only difference being a t subscript to denote the variable of

interest at time t. Similar to the initial quotes (see Eqs. (2.9 and 2.10)), the bid

and ask quotes of the market maker at time t are given by

Bα,δ,t = Ev[V̂ = 1|ht, Dt = −1] =
(
1− δst

)
·Bt + δst · α, (2.19)

Aα,δ,t = Ev[V̂ = 1|ht, Dt = +1] =
(
1− δbt

)
· At + δbt · (1− α), (2.20)

and the standard bid and ask quotes are

Bt = E[V̂ = 1|ht, Dt = −1] = Pr{V̂ = 1|ht, Dt = −1} =
πh,t

πh,t + 1+µ
1−µ · (1− πh,t)

, (2.21)

At = E[V̂ = 1|ht, Dt = +1] = Pr{V̂ = 1|ht, Dt = +1} =
πh,t

πh,t + 1−µ
1+µ · (1− πh,t)

, (2.22)

where

πh,t = Pr{V̂ = 1|ht} =
Pr{ht|V̂ = 1}

Pr{ht}
· Pr{V̂ = 1} =

1

1 +
(

1+µ
1−µ

)bt−st (2.23)
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follows from the Bayes’ rule given the difference between number of buys bt and

sells st (i.e., order imbalance) up to time t, and δst and δbt follow from the iterative

applications of the generalized Bayesian updating given the past order flow.

In Figure 2.3, we plot the dynamics of the quotes and spread using Eqs. (2.19)-

(2.23) during two order flow patterns — continuous sells and balanced orders.

Panel (A) plots the quotes and spread during continuous sell orders when the

market maker is fully ambiguity averse (α = 0) and ambiguity neutral (α = 0.5)

and contrasts them with the standard model. Panel (B) plots the same when the

market maker receives perfectly balanced order flow (we provide a spreadsheet to

investigate different order flow patterns in Appendix 2.5).

Panel (A) illustrates that in the standard model, continuous sell orders reduce

the ask more than the bid. This improves liquidity since selling pressure reveals

private information that the fundamental value is low (informed traders all tend

to sell when prices are too high), thus reduces uncertainty about the fundamental

value, and thereby increases liquidity (narrows bid-ask spread) over time — an

effect that drives price discovery in the standard model. These standard results

are at odds with what we observe in financial markets during large selling pressure

during which market practitioners, in particular algorithmic market makers, often

withdraw their quotes in the face of selling pressure, making markets less liquid

and more volatile (e.g., Chordia et al. (2002), Anand and Venkataraman (2016)).

The experience of the U.S. financial markets on May 6, 2010, (“Flash Crash”)

and treasury markets on October 15, 2014, (“Flash Rally”) are the recent extreme

examples.

While the standard price discovery effect is also present in our model, an additional

effect emerges due to the evolution of ambiguity and the market maker’s ambiguity

attitude. Unlike the paradoxical result in the standard model, Panel (A) in Figure

2.3 shows that, in our model, when the market maker is fully-ambiguity averse (α =

0), she reduces the bid and increases the ask, leading to a liquidity deterioration

in the face of selling pressure, similar to those observed empirically during flash

crashes (e.g., CFTC-SEC (2010a, 2010b)). In contrast, when the market maker

is ambiguity neutral (α = 0.5), initially there is an ambiguity discount on the

standard spread which can switch to an ambiguity premium during the selling

pressure. The reason for both of these effects is illustrated in Panel (A) of Figure

2.4. When the fully ambiguity-averse market maker (α = 0) receives a sequence of

sell orders, she revises ambiguity (δst and δbt ) upward over time and the dynamic
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Figure 2.3: Panel (A) plots the bids, asks and spreads of the market maker that receives continuous sell orders up to time t = 10 in
the standard model (dashed line) and in the presence of ambiguity when she is fully ambiguity averse (α = 0) and ambiguity neutral
(α = 0.5). Panel (B) plots the same variables when the market maker receives perfectly balanced orders (D1 = −1, D2 = 1, D3 = −1,
...., D10 = 1). The other parameter values are Vl = 0, Vh = 1, πl,1 = πh,1 = 0.5, δ1 = 0.1 and µ = 0.4.
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version of the sufficient ambiguity aversion condition in Corollary 2.5, i.e.,

α < α∗t =
δbt · Pr{V̂ = 0|ht, Dt = +1}+ δst · Pr{V̂ = 1|ht, Dt = −1}

δbt + δst
(2.24)

is always satisfied, resulting in an increase in the bid-ask spread during the selling

pressure.7 When α = 0.5, a selling pressure can make α∗t to switch from α∗t < α to

α∗t > α, leading to a switch from an ambiguity discount to an ambiguity premium.

In essence, α̂t = α∗t − α is the “effective” time-varying ambiguity aversion of the

market maker. When α̂t > 0 (resp. α̂t < 0), the market maker is ambiguity averse

(resp. ambiguity seeking) with an ambiguity premium (resp. ambiguity discount)

on the standard spread. The effective ambiguity aversion α̂t of the market maker

increases during selling pressure, leading to a switch from an ambiguity discount

to an ambiguity premium on the standard spread.
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Figure 2.4: Panel (A) plots the evolution of the market maker’s ambiguity
conditional on a buy δbt and a sell δst and the sufficient ambiguity aversion
condition α∗t over time during a sequence of sell orders up to time t = 10. Panel
(B) plots the same during perfectly balanced order flow. The parameter values
are the same as in Figure 3.

7During the sell sequence the revised ambiguity conditional on a buy δbt is higher than the
ambiguity conditional on a sell δst since a sequence of sell orders increases the probability of a
sell and decreases the probability of a buy (recall from Lemma 2.2 that the more likely it was
for an order to occur probabilistically, the updated ambiguity conditional on that order will be
lower). The opposite is true when there is a buy sequence.
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The prediction of our model is also different from the standard model during bal-

anced order flow. Panel (B) in Figure 2.3 shows that, in the standard model

with no ambiguity, balanced orders reveal no new information, and thus has no

effect on prices or liquidity (i.e., B1 = B10, A1 = A10 and S1 = S10). However,

balanced orders lead to a liquidity improvement when liquidity providers are op-

timistic about their belief assessments, whereas to a liquidity deterioration when

they are pessimistic. Panel (B) in Figure 2.4 complements the quotes and spread of

the market maker by plotting the dynamics of ambiguity and sufficient ambiguity

aversion condition during balanced order flow. Similar to continuous sell orders,

balanced orders increase the amount of ambiguity (i.e., δbt and δst ). In contrast

to continuous sell orders, balanced orders do not change the effective ambiguity

aversion α̂t of the market maker.

2.5 The implications for value of information and

welfare

We now investigate how the market maker’s ambiguity about the final payoff and

her ambiguity aversion impact the value of information to the informed traders

and the welfare to society. We focus on the naive initial priors and normalized

security payoffs (i.e., πl = πh = 0.5 and V̂ ∈ {0, 1}) and the initial bid/ask quotes

and spread of the market maker.

2.5.1 Value of information

There are two possible scenarios for the informed traders. First, when the true

state of the final payoff is V̂ = 1, they buy one unit of the asset and obtain a

profit of 1 − Aα,δ. Second, when the true state is V̂ = 0, they sell one unit of

the asset and obtain a profit of Bα,δ. Summing over the two possible scenarios

with probabilities πh and 1− πh obtains the value of information (or the expected

profits of informed traders) as

Vα,δ = (1− πh) ·Bα,δ + πh · (1− Aα,δ). (2.25)
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Substituting Eqs. (2.9) and (2.10) into Eq. (2.25) obtains the value of informa-

tion. We decompose the value of information into the standard and ambiguous

components in the following proposition.

Proposition 2.8. In the presence of the market maker’s ambiguity, the value of

information about the final payoff is

Vα,δ = K +Kα,δ, (2.26)

where

K = (1− πh) ·B + πh · (1− A) (2.27)

and

Kα,δ = δs · (1− πh) · (α− πsh) + δb · πh · (α− πbl ) (2.28)

are the standard and ambiguous components of the value of information.

The standard value of learning the realization of V̂ (i.e., K in Eq. (2.27)) is always

positive and decreasing with the probability of informed trading µ, meaning, all

else equal, the greater the number of informed traders the less information is

valuable for each informed trader. The ambiguous component (i.e., Kα,δ in Eq.

(2.28)) can be negative and increasing with the probability of informed trading µ.

In fact, the sign of the ambiguous component is dependent on the market maker’s

ambiguity aversion. When the market maker is sufficiently ambiguity averse (i.e.,

α ≤ min(πsh, π
b
l )), the ambiguous component is negative. This occurs because the

sufficiently ambiguity-averse market maker widens the bid-ask spread that results

in the expected profits of the informed traders to decrease. The opposite prevails

when the insufficiently ambiguity-averse market maker (i.e., α ≥ max(πsh, π
b
l ))

narrows the bid-ask spread.

Figure 2.5 illustrates the value of information in the presence and absence of

ambiguity against the amount of ambiguity δ and ambiguity aversion α of the

market maker. Consistent with the changes in liquidity illustrated in Figure 2.1, in

the figure, the highest and lowest value of information correspond to the ambiguity-

neutral (α = 0.5) and fully ambiguity-averse (α = 0) cases in the presence of full

ambiguity (δ = 1). The value of information attains its lowest (resp. highest)

value when the market is the most illiquid (resp. liquid) due to the ambiguity

premium (resp. ambiguity discount) on the standard spread.
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Figure 2.5: The relation between the value of information in the presence of
ambiguity (curved layer), Vα,δ, in the absence of ambiguity (fixed black layer),
K, with respect to ambiguity, δ, and ambiguity aversion, α, of the market maker.
The parameter values are πl = 0.35 and µ = 0.55.

When πl = πh = 0.5 and V̂ ∈ {0, 1}, the revised ambiguity and conditional

probabilities (δb = δs =
(

2δ
1+δ

)
and πbl = πsh =

(
1−µ

2

)
) and the standard bid and ask

quotes (B =
(

1−µ
2

)
and A =

(
1+µ

2

)
) lead the standard and ambiguous components

to be

K =
1− µ

2
and Kα,δ =

δ

1 + δ
· (µ− φ), (2.29)

where φ = (1 − 2 · α). When the market maker is sufficiently ambiguity averse

(i.e., φ > µ), she widens the spread, leading to the negative ambiguous component.

Conversely, when the market maker is not sufficiently ambiguity averse (i.e., φ < µ

), she narrows the spread, leading to the positive ambiguous component. Conse-

quently, the opposites of Corollaries 2.6 and 2.7 apply to the value of information.

For completeness, we formally state them in the following corollaries.

Corollary 2.9. If the market maker is sufficiently ambiguity averse (i.e., α ≤
min{πsh, πbl });

(i) there is a value discount on the value of information,

(ii) incremental ambiguity increases the value discount,

(iii) the magnitude of increase in the value discount is decreasing with ambiguity.

If the market maker is not sufficiently ambiguity averse α ≥ max{πsh, πbl };

(i) there is a value premium on the value of information,
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(ii) incremental ambiguity increases the value premium,

(iii) the magnitude of increase in the value premium is decreasing with ambiguity.

Corollary 2.10. For any non-zero level of ambiguity, δ > 0, a higher ambiguity-

aversion leads to a lower value of information.

2.5.2 Welfare

We now model uninformed traders as fully maximizing agents trading for noninfor-

mational motives with elastic demand sensitive to trading costs (i.e., endogenize

uninformed trading) for two main reasons. First, we want to ensure that the liq-

uidity deteriorations and improvements in the baseline model are robust to the

exogenous uninformed trading assumption. Second, when the uninformed traders

act as fully maximizing agents, sometimes they may choose not to trade because

their valuation lies inside the bid and ask quotes, resulting in a welfare loss to

society. Therefore, we are able to explicitly study the welfare implications of the

ambiguity and ambiguity attitude of liquidity providers.

The standard device to endogenize uninformed trading is modeling them as hedgers

with a risk exposure correlated with the security payoff, leading to a distribution of

private valuation of the security (e.g., Spiegel and Subrahmanyam (1992), Glosten

and Putnins (2016)). We assume that the private valuation Ω of an uninformed

trader who arrives at the market with a probability of 1 − µ is uniformly dis-

tributed (i.e., F (ω) = ω for 0 ≤ ω ≤ 1).8 Given the uniformly distributed private

valuations, an uninformed trader arriving at the market buys (resp. sells) if his

private valuation is greater (resp. less) than the ask (resp. bid), and otherwise

does not trade. That is, he buys with a probability

Pr{ω > Aα,δ} = 1− F (Aα,δ) = 1− Aα,δ, (2.30)

sells with a probability

Pr{ω < Bα,δ} = F (Bα,δ) = Bα,δ, (2.31)

8Glosten and Putnins (2016) provide a micro foundation (a utility function and an endowment
shock) for the general distribution of private valuations which reduces to the uniform distribution
when πl = πh = 0.5.
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and does not trade with a probability

Pr{Bα,δ ≤ ω ≤ Aα,δ} = F (Aα,δ)− F (Bα,δ) = Aα,δ −Bα,δ. (2.32)

Unlike the exogenously specified uninformed trading, in this setting, the amount

of informed trading determines the bid/ask quotes and spread, which in turn

determine whether an uninformed trader chooses to trade. Eq. (2.32) shows that

when the ask Aα,δ is higher and the bid Bα,δ is lower (i.e., the spread is wider), it is

more likely that uninformed chooses not to trade. The equilibrium follows from the

profit maximizations of informed (i.e., buy when Θ = H and sell when Θ = L) and

uninformed traders (i.e., buy with a probability of 1−Aα,δ, sell with a probability

of Bα,δ and no trade with a probability of Aα,δ − Bα,δ) and zero-expected-profit

condition of the market maker (i.e., Bα,δ = Ev[V |s] and Aα,δ = Ev[V |b]).

Proposition 2.11. (i) In the absence of ambiguity, the market maker’s bid B and

ask A are respectively given by

A =
1

2 · (1− µ)
, (2.33)

B =
1− 2µ

2 · (1− µ)
, (2.34)

and the bid-ask spread S takes the form of

S =
µ

1− µ
. (2.35)

(ii) In the presence of ambiguity, the market maker’s bid Bα,δ and ask Aα,δ are

respectively given by

Aα,δ =
3− δ · (1− µ)2 − µ · (4− µ)−√γ

4 · (1− δ) · (1− µ)2
, (2.36)

Bα,δ =
1− 3δ · (1− µ)2 − µ · (4− 3µ) +

√
γ

4 · (1− δ) · (1− µ)2
, (2.37)

and the bid-ask spread Sα,δ takes the form of

Sα,δ =
1

2
·
(

2 · (1− µ)−√γ
(1− δ) · (1− µ)2

− 1

)
(2.38)

where γ is given in Eq. (A2.1.27).
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Proposition 2.11 shows that, in the absence of ambiguity, the market is open for

µ < 1
2
. This is because when the informed traders have perfect signals, for µ ≥ 1

2

there are no quotes that will allow trade and nonnegative expected profits to the

market maker.9 In the presence of ambiguity, however, the market is open when

µ < µ∗, where µ∗ is given in Eq. (A2.1.28) in Appendix 2.1. When the market

maker is fully ambiguity averse (φ = 1), the market is open at µ < 1
2

(i.e., µ∗ = 1
2
)

irrespective of ambiguity δ. That is, the pessimistic market maker always closes

the market for the high informed trading. When the market maker is ambiguity

neutral (φ = 0), the market is open at µ < 1 when δ = 1 and µ < 1
2

when

δ = 0. That is, the optimistic market maker leaves the market open for the high

informed trading when ambiguity is high. We focus on the open market. The

following corollary ensures that the effects of ambiguity and ambiguity aversion of

the market maker on the spread are robust to the exogenous uninformed trading

assumption in the baseline model.

Corollary 2.12. (i) Higher ambiguity increases (resp. decreases) the spread when

the market maker is sufficiently (resp. insufficiently) ambiguity averse; that is,
∂Sα,δ
∂δ

> 0 when φ > S and
∂Sα,δ
∂δ

< 0 when φ < S. (ii) Higher ambiguity aversion

always increases the spread; that is,
∂Sα,δ
∂φ

> 0.

The welfare effects of ambiguity arise because ambiguity can increase or decrease

the bid-ask spread, and consequently affect the uninformed trading decisions.

More precisely, the wider (resp. narrower) spread compared to the standard spread

leads the uninformed traders more (resp. less) likely to refrain from trading com-

pared to the standard model (the uninformed traders refrain from trading when

their private valuation ω lies inside the bid and ask quotes). The welfare effects

arise due to this lack or excess of uninformed trading, constituting a loss or gain to

society stemming from the market maker’s ambiguity. The welfare effects of am-

biguity is calculated by the difference between the total welfare of all participants

in the presence and absence of ambiguity.

The welfare gain of an informed trader is 1 − Aα,δ when Θ = H and Bα,δ when

Θ = L. Similarly, the welfare gain of an uninformed trader is ω − Aα,δ when

ω > Aα,δ and Bα,δ − ω when ω < Bα,δ. The market maker loses when trading

9When the information signal of the informed traders are not perfectly informative, the market
is open as long as µ < 1. Imperfect information signal produces qualitatively similar results, and
therefore in the interests of simplicity, we focus on the perfect information signal in this section.
We extend the baseline model to account for imperfect information signals in Appendix 2.3.
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against an informed, but gains when trading against an uninformed trader. More

precisely, the welfare of the market maker trading against an informed trader is

Aα,δ − 1 when Θ = H and −Bα,δ when Θ = L. Similarly, the welfare of the

market maker trading against an uninformed trader is Aα,δ − 0.5 when ω > Aα,δ

and 0.5 − Bα,δ when ω < Bα,δ since πl = πh = 0.5. The total welfare of market

participants are the sum of these components; the net welfare Wα,δ = ω−0.5 when

ω > Aα,δ and Wα,δ = 0.5−ω when ω < Bα,δ, only arising when the arriving trader

is an uninformed trader. Thus the total welfare in the presence of ambiguity is

given by

Wα,δ = 1u[(ω − 0.5) · 1{ω>Aα,δ} + (0.5− ω) · 1{ω<Bα,δ}], (2.39)

where 1u is an indicator function for the arrival of uninformed and 1{·} is an

indicator function for {·}. Similarly, the total welfare in the absence of ambiguity

is

W = 1u[(ω − 0.5) · 1{ω>A} + (0.5− ω) · 1{ω<B}]. (2.40)

The welfare effect of ambiguity is given by

∆W = Wα,δ −W (2.41)

and implies a welfare gain (resp. loss) when ∆W > 0 (resp. ∆W < 0). The

following proposition characterizes the expected welfare change stemming from

the market maker’s ambiguity.

Proposition 2.13. The expected welfare change due to the presence of ambiguity

is given by

E[∆W ] = (1− µ) ·
(∫ A

Aα,δ

(w − 0.5) · dw +

∫ Bα,δ

B

(0.5− w) · dw
)
, (2.42)

where the expectation is conditional on πl = πh = 0.5.

Evaluating Eq. (2.42) obtains Eq. (A2.1.33) in Appendix 2.1. which shows that

ambiguity of the market maker can improve or deteriorate the total welfare of

the market participants. Similar to the value of information, this is also in line

with the change in liquidity. Ambiguity of the liquidity providers can improve

(resp. deteriorate) the liquidity in the market resulting in the excess (resp. lack)

of uninformed trading compared to the standard model. It is this excess (resp.

lack) of uninformed trading that constitutes a gain (resp. loss) to society due to
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the liquidity providers’ ambiguity. Figure 2.6 illustrates the welfare gain and loss

against ambiguity and ambiguity aversion of the market maker.

Figure 2.6: The relation between the expected welfare change, E[∆W ], and
ambiguity, δ, and ambiguity aversion, φ = 1− 2 · α, of the market maker when
uninformed traders trade endogenously. The parameter values are Vl = 0, Vh =
1, πl = πh = 0.5, and µ = 0.3.

The figure shows that when the market is sufficiently (resp. insufficiently) ambi-

guity averse, ambiguity reduces (resp. increases) the welfare of the market partic-

ipants. The intuition of this result follows from the liquidity effects of the market

maker’s ambiguity and ambiguity aversion. When the market maker is sufficiently

ambiguity averse, the liquidity deterioration causes a welfare loss to society due

to a lack of uninformed trading, whereas when the market maker is insufficiently

ambiguity averse, the liquidity improvement causes a welfare gain to society due

to an excessive uninformed trading compared to the standard model. Formally,

we have the following corollary.

Corollary 2.14. (i) Ambiguity results in a welfare gain (resp. loss) when the mar-

ket maker is insufficiently (resp. sufficiently) ambiguity averse; that is, E[∆W ] > 0

when φ < S and E[∆W ] < 0 when φ > S. (ii) Higher ambiguity aversion of the

market maker always reduces the welfare; that is, E[∆W ]
∂φ

< 0.

Similar to the ambiguity discount on the spread, a welfare gain of ambiguity

may seem counter-intuitive. By extending Rothschild and Stiglitz (1976) model

of competitive insurance market, Koufopoulos and Kozhan (2014) also present an

example where an increase in ambiguity can increase the utility of low-risk insurees,

and ultimately result in a strict Pareto improvement. In our model, a welfare gain

occurs when the optimistic market maker narrows the spread in the presence of
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ambiguity, reflecting the empirical observations during reforms in trading rules.

This reduces the lack of uninformed trading and result in a gain from trade, and

thus a welfare gain to society.

2.6 Ambiguous Price-Quantity Analysis

In this section, we examine how ambiguity and ambiguity aversion of the market

maker affect prices and the trading strategies of informed traders when they can

trade different quantities. To do this, we enrich the ambiguous price formation

model described in Section 2.3 by allowing the traders to trade two different quan-

tities for both buys with 0 < b1 < b2 and sells with 0 < s1 < s2. The market

maker sets the quotes by taking into account that the traders can trade differ-

ent quantities, the informed traders’ strategy is dependent on the market maker’s

pricing rule and the uninformed traders trade exogenously.

We distinguish between the separating equilibrium, in which informed traders

trade only large quantities and the pooling equilibrium, in which informed traders

trade either small or large quantities with positive probabilities (e.g., Easley and

O’Hara (1987)). We explore the separating and pooling equilibria when the market

maker has ambiguous beliefs about the eventual security payoff. This allows us

to provide the intuition about the behavior of the market participants (especially

market makers and informed traders) during extreme market events.

2.6.1 The Separating Equilibrium

The market maker now revises her beliefs about the final payoff given the direc-

tion and size of the trade by GBU. Let γ denote the probability of large orders

submitted by the informed traders. That means, when the informed traders have

a high signal, they submit a large buy (b2) and when they have a low signal, they

submit a large sell (s2) with a probability of γ. In the separating equilibrium, the

informed traders refrain from trading with a probability of 1−γ. The uninformed

traders submit large orders with a probability of θ and small orders with a proba-

bility of 1−θ. The probabilities are divided equally among the buy and sell orders

(i.e., Pr(b1) = Pr(s1) = 1−θ
2

and Pr(b2) = Pr(s2) = θ
2
).
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In the separating equilibrium, small trades cannot be information based since the

informed traders only submit large orders. Therefore, the conditional probabilities

about the final payoff do not change with small orders (i.e., πb1h = πs1h = πh). This

leads the market maker’s conditional beliefs about the payoff to be

vb1h = (1− δb1) · πh + δb1 · α and vs1h = (1− δs1) · πh + δs1 · α, (2.43)

where δb1 and δs1 follow from Lemma 2.2. Although the probabilities of the payoff

outcomes are not revised with small orders, the ambiguity is revised upward (i.e.,

δb1 > δ for 0 < πb1 < 1).

For the large orders, however, the probabilities as well as the ambiguity are revised,

leading the market maker’s revised beliefs about the low payoff to be

vb2h = (1− δb2) ·
((

2 · µ · γ + (1− µ) · θ
)
· πh

2 · µ · γ · πh + (1− µ) · θ

)
︸ ︷︷ ︸

π
b2
h >πh

+δb2 · α, (2.44)

vs2h = (1− δs2) ·
( (

1− µ
)
· θ · πh

2 · µ · γ · (1− πh) + (1− µ) · θ

)
︸ ︷︷ ︸

π
s2
h <πh

+δs2 · α, (2.45)

where πb2h and πs2h follow from Bayes’ rule, and δb2 and δs2 follow from Lemma 2.2.

Let Bi
α,δ, A

i
α,δ (resp. Bi, Ai) denote the bid and ask quotes of the market maker

given the order size i = {1, 2} in the presence (resp. absence) of ambiguity. It

follows from Eqs. (2.9) and (2.10) that the bid and ask quotes in the presence of

ambiguity are, respectively, given by

Bi
α,δ = Bi + δsi · (α− πsih ) · (Vh − Vl), (2.46)

Aiα,δ = Ai + δbi · (πbil − α) · (Vh − Vl), (2.47)

for each order size i. In the standard model, the market maker reduces the bid and

increases the ask since with large orders since πs2h < πh and πb2h > πh, leading to

a wider bid-ask spread. Therefore, large trades are made at less favorable prices.

The intuition, in the presence of ambiguity, is the same as in our baseline model.

There is an additional ambiguity premium when the market maker is sufficiently

ambiguity averse (i.e., α ≤ min{πsih , π
bi
l }) and an ambiguity discount when she is

not (i.e., α ≥ max{πsih , π
bi
l }).
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In the separating equilibrium, the market maker sets the quotes by assuming

that informed traders only submit large orders. For the separating equilibrium

to exist, the profit maximization condition of the informed traders must always

correspond to large orders, since their trading strategy is also dependent on the

market maker’s pricing rule. For the informed traders with a high signal, the

separating equilibrium exists if and only if

b2 · (Vh − A2
α,δ) ≥ b1 · (Vh − A1

α,δ), (2.48)

and for the informed traders with a low signal, the separating equilibrium exists

if and only if

s2 · (B2
α,δ − Vl) ≥ s1 · (B1

α,δ − Vl). (2.49)

The next proposition formally derives the necessary and sufficient conditions for

the separating equilibria to exist on both sides of the market.

Proposition 2.15. There is a separating equilibrium on the ask side, if and only

if
b2

b1

≥ vb1l
vb2l

, (2.50)

and on the bid side if and only if

s2

s1

≥ vs1h
vs2h

. (2.51)

Proposition 2.15 demonstrates that the order size ratios (i.e., b2
b1

and s2
s1

) have lower

bounds for the separating equilibrium to exist. The lower bound of the order size

ratio is the ratio of the market maker’s conditional beliefs. The immediate result

that follows from this proposition is that, in the absence of ambiguity, the order

size ratios for the separating equilibria to exist on both sides of the market reduce

to
b2

b1

≥ πl

πb2l
and

s2

s1

≥ πh
πs2h

. (2.52)

To compare the conditions of the separating equilibrium in the presence and ab-

sence of ambiguity, we assume that the market maker is sufficiently ambiguity-

averse. Formally we have the following corollary on the ask side. A similar result

holds for the bid side.
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Corollary 2.16. For the sufficiently ambiguity-averse market maker, where the

sufficiency is defined as

α < w · πl + (1− w) · πb2l and w =
δb1 · πb2l

δb1 · πb2l − δb2 · πl
, (2.53)

the lower bound of the order size ratio ( b2
b1

) for the existence of a separating equi-

librium in the presence of ambiguity is lower than its unambiguous counterpart. In

addition, under full ambiguity, the market is always in the separating equilibrium.

Corollary 2.16 implies that higher ambiguity leads to the separating equilibrium

to prevail more in financial markets, and in extreme, it becomes the only equi-

librium. This is because, in our model, ambiguity has a direct influence on the

market maker’s quotes, whereas an indirect influence on the informed traders’

trading strategy since their strategy is affected by the market maker’s pricing

rule. Condie and Ganguli (2017) investigate the direct impact of ambiguous pri-

vate information on the informed traders’ trading strategies to show that asset

prices may be informationally inefficient in rational expectations equilibrium. In

the separating equilibrium, the ambiguity-averse market maker behaves according

to her worst case scenario and the informed traders only trade large quantities

with the knowledge of the market maker’s pricing rule. This is supported by the

recent empirical research by Gradojevic, Erdemlioglu and Gençay (2017). By an-

alyzing the tick-by-tick foreign exchange transaction prices and the corresponding

volumes for several exchange rates, they find that large currency orders are likely

to be placed by informed traders during more volatile episodes, which in our model

are associated with high ambiguity.

2.6.2 The Pooling Equilibrium

We now examine the pooling equilibrium when the order size ratios violate the

existence of the separating equilibrium. In the pooling equilibrium, the informed

traders submit a large order with a probability of γ and a small order with a

probability of 1− γ. The uninformed traders trade the same as in the separating

equilibrium.

For the pooling equilibrium to exist, the informed traders must be indifferent

between submitting a large or a small order, meaning that they expect to have



Chapter 2 50

equal profits from trading a small or large quantity. The informed traders with a

high signal must be indifferent between submitting a small buy order at the ask

A1
α,δ or a large buy order at the ask A2

α,δ,

b2 · (Vh − A2
α,δ) = b1 · (Vh − A1

α,δ), (2.54)

and with a low signal must be indifferent between submitting a small sell order at

the bid B1
α,δ or a large sell order at the bid B2

α,δ,

s2 · (B2
α,δ − Vl) = s1 · (B1

α,δ − Vl). (2.55)

For the pooling equilibrium to exist, there must be 0 < γ < 1 satisfying conditions

(4.32) and (2.55) for the informed traders and the zero-expected-profit condition

for the market maker. The next proposition establishes the existence of the pooling

equilibrium.

Proposition 2.17. There is a pooling equilibrium on the ask side, if and only if

b2

b1

<
vb1l
vb2l

, (2.56)

and on the bid side if and only if

s2

s1

<
vs1h
vs2h

. (2.57)

The upper bound of the order size ratio in the pooling equilibrium corresponds

to the lower bound of the order size ratio in the separating equilibrium. This is

because the pooling equilibrium only occurs when the order size ratio to guarantee

the separating equilibrium is violated. Therefore, there is always a separating or a

pooling equilibrium in the market. However, with the sufficiently ambiguity-averse

market maker, the pooling equilibrium becomes less prevalent as the ambiguity

increases, and in extreme ambiguity, there is no pooling equilibrium.
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2.7 Empirical Implications

Our analysis thus far has examined the effects of the liquidity providers’ ambigu-

ity about the final payoff on the market behavior. In this section, we discuss the

empirical implications of our model. To state our predictions, we need a few mea-

sures of ambiguity. Thus we first describe some measures of ambiguity proposed

in the literature and then elaborate on the predictions of our model.

2.7.1 Measuring ambiguity

A number of ambiguity measures have been developed in the literature some of

which are independent of risk.

(i) Brenner and Izhakian (2018) propose to measure the degree of ambiguity (de-

noted f2) by the expected volatility of uncertain probabilities across the rele-

vant outcomes and aversion to ambiguity by the aversion to mean-preserving

spreads in uncertain probabilities. The intuition of f2 is that ambiguity and

ambiguity aversion can independently be measured in the same way as the

risk and risk aversion.

(ii) Hansen and Sargent (2001) propose to measure ambiguity (or model uncer-

tainty) independent of risk by relative entropy. Relative entropy is measured

by the distance of a probability distribution from a reference distribution

(reference model).

(iii) Anderson, Ghysels and Juergens (2009), Ilut and Schneider (2014), and An-

toniou, Harris and Zhang (2015) use the degree of disagreement among pro-

fessional forecasters as a proxy for ambiguity.

(iv) Driouchi, Trigeorgis and So (2018) extract option implied ambiguity from

the prices of options written on the S&P 500 Index.

Alternatively, the literature uses the variance of the variance (e.g., Faria and

Correia-da Silva (2014)), the variance of the mean (e.g., Izhakian and Benninga

(2011)) or the volatility index (VIX) (e.g., Williams (2015)) as measures of ambi-

guity.
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2.7.2 Model predictions

Our model makes a number of empirical predictions. Some of these predictions

have been reported in the empirical market microstructure and asset pricing liter-

ature, others are yet to be tested.

(i) Perhaps the most fundamental prediction of our model is that the ambiguity

and ambiguity aversion of liquidity providers impact their quotes and spread

(Proposition 2.4). More precisely, when the market maker is sufficiently

ambiguity averse, she decreases the bid and increases the ask with ambiguity,

resulting in a wider bid-ask spread due to the ambiguity premium. When she

is insufficiently ambiguity averse the opposite prevails, resulting in a lower

bid-ask spread due to the ambiguity discount (Corollary 2.6). In fact, by

using f2 measure as a proxy for ambiguity, Brenner and Izhakian (2018)

provide evidence, in an asset pricing context, that the ambiguity premium

embedded in the equity premium can be positive or negative depending on

the attitude toward ambiguity. Brenner and Izhakian (2018) also document

that even when the ambiguity premium is negative, it is smaller than the risk

premium such that the equity premium as a whole remains positive. This

is consistent with our analysis of the bid-ask spread that, even when there

is an ambiguity discount on the standard spread, the spread in our model is

always positive.

(ii) Our analysis also predicts the determinants of ambiguity aversion (Corol-

lary 2.5). In our analysis, the “effective” ambiguity aversion of liquidity

providers is determined by the difference of α∗ in the bid-ask spread neutral-

ity condition and the given ambiguity aversion α (i.e., α̂ = α∗ − α). When

α̂ > 0 (resp. α̂ < 0), the market maker is effectively ambiguity averse (resp.

seeking) with an ambiguity premium (resp. discount) on the spread. When

πl = πh, α̂ = (φ− µ)/2, leading the effective ambiguity aversion to decrease

with the probability of informed trading (i.e., ∂α̂
∂µ

< 0). This means that

the ambiguity premium (resp. discount) is more likely to happen when the

probability of informed trading is low (resp. high). Brenner and Izhakian

(2018) also presents evidence that for a high expected probability of favor-

able returns (low informed trading in our setting), the ambiguity premium is

positive, implying an ambiguity aversion and for a high expected probability

of unfavorable returns (high informed trading in our setting), the ambiguity
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premium is negative, implying an ambiguity-seeking. Moreover, the magni-

tude of the premium increases with the ambiguity aversion (Corollary 2.7).

(iii) Our model also has important empirical implications about the dynamics

of the quotes and spread during various order flow patterns. When the

ambiguity-averse market maker receives continuous selling pressure, the bid

moves downward faster than the ask (or the ask moves to the opposite di-

rection), leading the spread to continuously increase (Panel (A) in Figure

2.3). This effect is not possible in the standard model because a sell order

during selling pressure always impacts the ask more than the bid, leading

to a liquidity improvement due to a resolution of uncertainty about the fun-

damental value. This is consistent with the empirical results of Engle and

Patton (2004) who find that sells impact the bid more than the ask, which

stands in contrast to the standard results. Additionally, a cursory exami-

nation of the transactions data series of E-mini and SPY (S&P 500 ETF)

confirms that a similar phenomenon was present during the May 2010 Flash

Crash (e.g., CFTC-SEC (2010a, 2010b)). Our model also predicts that, in

a completely polar case, the ambiguity-neutral market maker receiving bal-

anced order flow will reduce the bid-ask spread as opposed to the standard

result of no change in the quotes and spread (Panel (B) in Figure 2.3).

(iv) The analysis provides insights about the time-varying ambiguity aversion

of liquidity providers. During continuous sell orders the effective ambiguity

aversion, α̂t = α∗t − α, increases with an additional sell order (Panel (A) in

Figure 2.4), whereas it is constant during balanced order flow (Panel (B) in

Figure 2.4). Thus the initial ambiguity discount on the spread can switch to

the ambiguity premium due to the increasing ambiguity aversion of liquidity

providers during continuous selling pressure. In fact, by incorporating am-

biguity into Black-Scholes option pricing, Driouchi et al. (2018) document

shifts in ambiguity aversion among US SPX index put option (options writ-

ten on the S&P 500 index) holders in the period leading up to the fall 2008

crash.

(v) The analysis in Section 2.5 shows that the impact of ambiguity on the value

of information and welfare is ambiguous. The ambiguity can increase or

decrease the value of information and welfare depending on the ambiguity

aversion of liquidity providers. It is not clear whether reducing ambiguity by

regulations such as a mark-to-market accounting (i.e., fair value accounting)
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implemented in 2007 will increase the welfare. Thus it remains an empirical

question whether reducing ambiguity has the effects that regulators desire.

(vi) The analysis in Section 2.6 reveals that when liquidity providers are suf-

ficiently ambiguity averse the presence of ambiguity leads the separating

equilibrium to become more prevalent in financial markets, increasing the

possibility of informed traders submitting only large orders. This is also con-

sistent with the recent empirical research by Gradojevic et al. (2017) who

provide evidence that large currency orders are likely to be placed by in-

formed traders during more volatile episodes, which in our model are loosely

associated with high ambiguity. A direct test of this prediction is to inves-

tigate the explicit relationship between order size and ambiguity proxied for

example by the degree of disagreement among professional forecasters.

To sum up, our theory of ambiguous price formation can generate empirical reg-

ularities associated with prices, liquidity and their dynamics during uncertain

market events such as market crashes and trading reforms, and provides a set of

new testable predictions. Pushing the boundaries of the market microstructure

theory beyond the Bayesian paradigm clearly has a potential.
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Appendix 2.1. Proofs

Proof of Lemma 2.2 The proof follows from applying GBU rule in Eq. (2.1) to

the market maker’s beliefs in Eq. (2.3).

v(V̂ = Vl|b) =
v(Vl ∩ b)

v(Vl ∩ b) + 1− v(Vl ∪ s)

=

(
1− δ

)
· π
(
Vl ∩ b

)
+ δ · α(

(1− δ) · π(Vl ∩ b) + δ · α
)

+ 1−
(
(1− δ) · π(Vl ∪ s) + δ · α

)
=

(
1− δ

)
· π
(
Vl ∩ b

)
+ δ · α

(1− δ) · π(Vl ∩ b) + 1− (1− δ) ·
(
πl + πs − π(Vl ∩ s)

)
=

(1− δ) · π(Vl ∩ b) + δ · α
1− (1− δ) · πs

=
(1− δ) · π(Vl ∩ b) + δ · α

(1− δ) · πb + δ

=
(1− δ) · πb

(1− δ) · πb + δ︸ ︷︷ ︸
1−δb

· π(Vl ∩ b)
πb︸ ︷︷ ︸
πbl

+
δ

(1− δ) · πb + δ︸ ︷︷ ︸
δb

·α

= (1− δb) · πbl + δb · α.

(A2.1.1)

The conditional probability πbl = (1−µ)·πl
(1−µ)·πl+(1+µ)·πh

follows from Bayes’ rule. The

notation and proof of vsl , v
b
h and vsh follow similarly.

�

Proof of Proposition 2.4. The proof follows from the definition of the Choquet

expectation and zero-expected-profit condition.

Bα,δ = Ev[V |s] =
(
vsl + δs · (1− 2 · α)

)
· Vl + vsh · Vh = Vl + vsh · (Vh − Vl)

= Vl +
(
(1− δs) · πsh + δs · α

)
· (Vh − Vl)

= (1− δs) · (πsl · Vl + πsh · Vh) + δs ·
(
α · Vh + (1− α) · Vl

)
= (1− δs) ·B + δs ·

(
α · Vh + (1− α) · Vl

)
,

(A2.1.2)

whereB is the bid quote in the absence of ambiguity and δs is the revised ambiguity

conditional on a sell order. The only difference in the calculation of the Choquet

expectation for the ask price is to recognize the relevant minimizing probability

when evaluating expectation as the probability in the core of (v) that puts the

most possible weight on Vh as oppose to Vl.

Aα,δ = Ev[V |b] = vbl · Vl +
(
vbh + δb · (1− 2 · α)

)
· Vh = Vh − vbl · (Vh − Vl)

= Vh −
(
(1− δb) · πbl + δb · α

)
· (Vh − Vl)

= (1− δb) · (πbh · Vh + πbl · Vl) + δb ·
(
(1− α) · Vh + α · Vl

)
= (1− δb) ·A+ δb ·

(
(1− α) · Vh + α · Vl

)
,

(A2.1.3)
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Finally, the bid-ask spread follows from the difference of Eqs. (A2.1.3) and (A2.1.2)

as,

Sα,δ = Aα,δ −Bα,δ = S +
(
δb · (πbl − α)− δs · (α− πsh)

)
·
(
Vh − Vl

)
. (A2.1.4)

�

Proof of Corollary 2.5. For Sα,δ = S to hold, it follows from Eq. (A2.1.4) that

δb · (πbl − α)− δs · (α− πsh) = 0, (A2.1.5)

must hold. Substituting the values of

δb =
δ(

(1− δ) · πb + δ
) , and δs =

δ(
(1− δ) · πs + δ

) , (A2.1.6)

from Lemma 2 and rearranging yields

α = w · πbl + (1− w) · πsh, (A2.1.7)

where we have denoted

w =
δb

δb + δs
=
πs + δ · πb

1 + δ
. (A2.1.8)

�

Proof of Corollary 2.6. We only prove when the market maker is sufficiently

ambiguity averse. (i) For α ≤ min{πsh, πbl }, Sα,δ − S > 0 trivially follows from

Eq. (A2.1.4). (ii) For α ≤ min{πsh, πbl }, it follows from the direct differentiation

of Sα,δ − S with respect to (w.r.t.) δ as

∂(Sα,δ − S)

∂δ
=
∂

∂δ

(( δ

(1− δ) · πb + δ
· (πbl − α)− δ

(1− δ) · πs + δ
· (α− πsh)

)
· (Vh − Vl)

)
=

(
(πbl − α) ·

( 1

(1− δ) · πb + δ
· (1− δ · πs

πb + δ · πs
)
)

+ (πsh − α) ·
( 1

(1− δ) · πs + δ
· (1− δ · πb

πs + δ · πb
)
))
· (Vh − Vl) > 0,

(A2.1.9)
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leading the ambiguity premium to increase with ambiguity. (iii) For α ≤ min{πsh, πbl },
it follows from Eq. (A2.1.9) that

∂2(Sα,δ − S)

∂δ2
=

2 · πs · (πbl − α)(
(1− δ) · πb + δ

)2 · ( δ · πs
πb + δ · πs

− 1
)

+
2 · πb · (πsh − α)(
(1− δ) · πs + δ

)2 · ( δ · πb
πs + δ · πb

− 1
)

< 0,

(A2.1.10)

leading to the concavity of ambiguity premium.

�

Proof of Corollary 2.7. The proof is immediate from the direct differentiation

of Eq. (A2.1.4) w.r.t. α as

∂Sα,δ
∂α

= −(δb + δs) · (Vh − Vl) < 0, (A2.1.11)

for δ > 0.

�

Proof of Proposition 2.8. The proof follows from inserting Eqs. (9) and (10)

into Eq. (25), and decomposing the standard value of information K = πl ·B+(1−
πl)·(1−A) and the ambiguous componentKα,δ = δs·πl·(α−πsh)+δb·(1−πl)·(α−πbl ).

�

Proof of Corollary 2.9. We only show the first part of the corollary when the

market maker is sufficiently ambiguity averse (i.e., α ≤ min{πsh, πbl }). (i) trivially

follows from Eq. (2.28). (ii) follows from
∂Kα,δ
∂δ

< 0 for α ≤ min{πsh, πbl }. We first

substitute

δb =
δ

(1− δ) · πb + δ
, and δs =

δ

(1− δ) · πs + δ
, (A2.1.12)

into Eq. (2.28) and then differentiate Kα,δ w.r.t δ as

∂Kα,δ

∂δ
=

∂

∂δ

(
δ

(1− δ) · πs + δ
· πl · (α− πsh) +

δ

(1− δ) · πb + δ
· (1− πl) · (α− πbl )

)
=

πs · πl · (α− πsh)(
(1− δ) · πs + δ

)2 +
πb · (1− πl) · (α− πbl )(

(1− δ) · πb + δ
)2 < 0,

(A2.1.13)
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for α ≤ min{πsh, πbl }. (iii) follows from
∂2Kα,δ
∂δ2

> 0 for α ≤ min{πsh, πbl }). Differen-

tiating Eq. (A2.1.13) w.r.t δ again

∂2Kα,δ

∂δ2
=

2 · πb · πs · πl · (πsh − α)(
(1− δ) · πs + δ

)3 +
2 · πb · πs · πh · (πbl − α)(

(1− δ) · πb + δ
)3 > 0, (A2.1.14)

for α ≤ min{πsh, πbl }. The second part of the corollary is analogous.

�

Proof of Corollary 2.10. The proof is immediate from
∂Kα,δ
∂α

= πl · δs + (1−πl) ·
δb > 0.

�

Proof of Proposition 2.11. Given the trading decisions of the traders, the

following expressions are immediate.

Pr{buy|V̂ = 1} = µ+ (1− µ) · (1− Aα,δ), (A2.1.15)

Pr{sell|V̂ = 1} = (1− µ) ·Bα,δ, (A2.1.16)

Pr{buy} =
µ

2
+ (1− µ) · (1− Aα,δ), (A2.1.17)

Pr{sell} =
µ

2
+ (1− µ) ·Bα,δ, (A2.1.18)

leading to

Pr{V̂ = 1|buy} = πbh =
Pr{buy|V̂ = 1}

Pr{buy}
· Pr{V̂ = 1} =

µ+ (1− µ) · (1−Aα,δ)
µ+ 2 · (1− µ) · (1−Aα,δ)

,

(A2.1.19)

Pr{V̂ = 1|sell} = πsh =
Pr{sell|V̂ = 1}

Pr{sell}
· Pr{V̂ = 1} =

(1− µ) ·Bα,δ
µ+ 2 · (1− µ) ·Bα,δ

. (A2.1.20)

In the absence of ambiguity, it follows from the market maker’s zero expected

profit condition (i.e., A = πbh and B = πsh) that

A =
1

2 · (1− µ)
B =

1− 2 · µ
2 · (1− µ)

, and S =
µ

1− µ
, (A2.1.21)

making the market open for µ < 1
2
. In the presence of ambiguity, however, the ask

is a solution to
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Aα,δ =

(
1− δ

(1− δ) · πb + δ

)
· A+

(
δ

(1− δ) · πb + δ

)
· (1− α)

=

(1− δ) ·
(
µ
2

+ (1− µ) · (1− Aα,δ)
)
· 1

2·(1−µ)
+ δ · (1− α)

(1− δ) ·
(
µ
2

+ (1− µ) · (1− Aα,δ)
)

+ δ

(A2.1.22)

and the bid is a solution to

Bα,δ =

(
1− δ

(1− δ) · πs + δ

)
·B +

(
δ

(1− δ) · πs + δ

)
· α

=

(1− δ) ·
(
µ
2

+ (1− µ) ·Bα,δ

)
· 1−2·µ

2·(1−µ)
+ δ · α

(1− δ) ·
(
µ
2

+ (1− µ) ·Bα,δ

)
+ δ

.

(A2.1.23)

Solving Eqs. (A2.1.22) and (A2.1.23) for Aα,δ and Bα,δ respectively and rearrang-

ing obtains

Aα,δ =
δ · (µ− 1)2 − µ · (µ− 4)− 3 +

√
γ

4 · (δ − 1) · (µ− 1)2
, (A2.1.24)

Bα,δ =
3δ · (µ− 1)2 + µ · (4− 3µ)− 1−√γ

4 · (δ − 1) · (µ− 1)2
, (A2.1.25)

Sα,δ =
1

2
·
(

2 · (1− µ)−√γ
(1− δ) · (1− µ)2

− 1

)
, (A2.1.26)

where

γ = (1−µ)2·
(
δ2·
(
1+8φ−µ·(6+8φ−µ)

)
+δ·

(
2·(1−µ2)+8µ(1+φ)−8φ

)
+(1−µ)2

)
(A2.1.27)

and φ = 1−2α. Lastly, the market is open as long as Bα,δ ≥ 0 and Aα,δ ≤ 1 which

is guaranteed when

µ ≤ µ∗ =
1

4

3− 2φ+

√
1 + δ ·

(
10− 12φ+ δ · (4φ · (1 + φ)− 7)

)
− 2 · (1− φ)

1− δ

 .

(A2.1.28)

�
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Proof of Corollary 2.12. (i) Inserting Eq. (A2.1.27) into Eq. (A2.1.26) and

taking a partial derivative w.r.t. δ obtains

∂Sα,δ
∂δ

=

√
γ + µ ·

(
µ− 2 · (2− µ) · φ

)
− δ · (1− µ)2 · (2φ+ 1) + 2φ− 1

(1− δ)2 · (1− µ) · √γ
,

(A2.1.29)

which is positive when φ > µ
1−µ and negative when φ < µ

1−µ . (ii) Differentiating γ

w.r.t. φ obtains

∂γ

∂φ
= −8δ · (1− µ)2 · (1− µ) · (1− δ) < 0, (A2.1.30)

which leads to
∂Sα,δ
∂φ

> 0.

�

Proof of Proposition 2.13. The difference between Eqs. (2.39) and (2.40)

obtains

∆W = Wα,δ−W = 1u[(ω−0.5) ·1{A>ω>Aα,δ}+ (0.5−ω) ·1{B<ω<Bα,δ}], (A2.1.31)

The expectation of ∆W can be computed using the integral

E[∆W ] = (1−µ)·
(∫ A

Aα,δ

(w−0.5)·f(w)·dw+

∫ Bα,δ

B

(0.5−w)·f(w)·dw
)
, (A2.1.32)

where f(w) = 1 is the probability density function of the uniformly distributued

private valuation between 0 and 1. Evaluating Eq. (A2.1.32) obtains

E[∆W ] =

(
√
γ − (1− µ) ·

(
1 + δ − (1− δ) · µ

))
·
(

(1− µ) ·
(
1 + δ + 3(1− δ) · µ

)
−√γ

)
16 ·

(
1− δ

)2(
1− µ

)3 (A2.1.33)

�

Proof of Corollary 2.14. (i) Inserting Eq. (A2.1.27) into Eq. (A2.1.33) and

solving for φ that satisfies E[∆W ] = 0 obtains φ = µ
1−µ . Since E[∆W ] mono-

tonically decreases in φ (we show this next), E[∆W ] > 0 when φ < µ
1−µ and

E[∆W ] < 0 when φ > µ
1−µ . (ii) Differentiating Eq. (A2.1.33) w.r.t. φ obtains

∂E[∆W ]

φ
=
δ ·
(√

γ + µ2 − δ · (1− µ)2 − 1
)

2 · (1− δ) · √γ
< 0 for µ < 1. (A2.1.34)

�
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Proof of Proposition 2.15. The proof of the existence of the separating equi-

librium on the ask side follows from substituting the quotes of the market maker

given in Eq. (47) into Eq. (48) and rearranging obtains

b2

b1

≥
Vh − A1

α,δ

Vh − A2
α,δ

=
Vh − A1 − δb1 · (πb1l − α) · (Vh − Vl)
Vh − A2 − δb2 · (πb2l − α) · (Vh − Vl)

=
πb1l · (Vh − Vl)− δb1 · (π

b1
l − α) · (Vh − Vl)

πb2l · (Vh − Vl)− δb2 · (π
b2
l − α) · (Vh − Vl)

=
πl − δb1 · (πl − α)

πb2l − δb2 · (π
b2
l − α)

=
vb1l
vb2l

,

(A2.1.35)

where we have used A1 = Vh − πb1l · (Vh − Vl) and A2 = Vh − πb2l · (Vh − Vl). The

condition of the existence of the separating equilibrium on the bid side follows

similarly.

�

Proof of Corollary 2.16. For the separating equilibrium on the ask side to exist

in the presence and absence of ambiguity,

b2

b1

≥ πl − δb1 · (πl − α)

πb2l − δb2 · (π
b2
l − α)

, and
b2

b1

≥ πl

πb2l
, (A2.1.36)

must be satisfied respectively. For,

α <
δb1 · πb2l

δb1 · πb2l − δb2 · πl
· πl + (1− δb1 · πb2l

δb1 · πb2l − δb2 · πl
) · πb2l , (A2.1.37)

πl − δb1 · (πl − α)

πb2l − δb2 · (π
b2
l − α)

<
πl

πb2l
(A2.1.38)

is always satisfied. In addition, in the presence of full ambiguity, δ = 1 leads to

δb1 = δb2 = 1 and
b2

b1

≥ 1, (A2.1.39)

which is always satisfied. Similar results hold for the bid side.

�

Proof of Proposition 2.17. Suppose the necessary and sufficient condition for

the existence of the separating equilibrium is violated on the ask side of the market

(i.e., b2
b1
<

v
b1
l

v
b2
l

). Since the informed traders are indifferent between submitting a

small buy or a large buy order, we can choose γ that satisfies both the profit
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maximization of the informed traders and zero expected profit condition of the

market maker. This leads to the pooling equilibrium on the ask side with the

necessary and sufficient condition of

b2

b1

<
vb1l
vb2l

. (A2.1.40)

A similar argument applies for the existence of the pooling equilibrium on the bid

side.

�
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Appendix 2.2. Extension to three payoff states

In this Appendix, we extend the two-point Bernoulli distribution of the final se-

curity payoff to the trinomial distribution to show that the results of ambiguous

price formation model in Section 3 is robust to the distributional assumption. We

represent the final security payoff by a random variable V̂ , which can take low

value Vl with a probability of πl, medium value Vm with a probability of πm and

high value Vh with a probability of πh = 1− πl − πm. The market maker’s beliefs

about the low, medium and high outcomes of the payoff, respectively, are

vl = (1−δ)·πl+δ·α, vm = (1−δ)·πm+δ·α, and vh = (1−δ)·πh+δ·α, (A2.2.1)

where δ is the amount of ambiguity and α is the market maker’s attitude toward

the ambiguity. The probability gap due to the presence of ambiguity is

1− vl − vm − vh = δ · (1− 3 · α). (A2.2.2)

Similar to the baseline model, at each trading round, a trader arrives at the market

to buy one unit of the security at the ask Aα,δ or sell one unit at the bid Bα,δ.

With a probability of µ the trader arriving at the market is informed and with

a probability of 1 − µ is uninformed. The risk-neutral informed traders receive a

signal Θ = {H,M,L} about the final security payoff. We assume that they have

a strictly increasing signal distribution, i.e.,

Pr{Θ = H|V̂ = Vl}︸ ︷︷ ︸
q1

< Pr{Θ = H|V̂ = Vm}︸ ︷︷ ︸
q2

< Pr{Θ = H|V̂ = Vh}︸ ︷︷ ︸
q3

. (A2.2.3)

To simplify the computations, we choose q1 = 0, q3 = 1 meaning that they always

sell when V̂ = Vl and buy when V̂ = Vh, and q2 = q < 1 meaning that they buy

(resp. sell) with a probability of q < 1 (resp. 1− q) when V̂ = Vm.10

10Park and Sabourian (2011) argue that the assumption of two payoff-states and two signals
prevent herding and contrarian behavior to occur in a sequential trading model. In a similar
model with 3 payoff states, they show that herding (trading against information) occurs when
the information is sufficiently dispersed so that the traders consider the high and low outcomes
more likely than the medium outcome (i.e., U-shaped signal). That is, a U-shaped signal is
necessary for herding. They show that herding occurs with positive probability if there exists
at least one U-shaped signal and a sufficient amount of noise trading. In our model, we stick to
monotonically increasing signal distribution as in Eq. (A2.2.3) that rule out herding.
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The uninformed traders trade with equal probabilities as in the baseline model

(endogenous uninformed trading is not necessary for the analysis in this appendix).

The definition of equilibrium is analogous to Definition 2.3. Hence, the bid and

ask quotes follow from the zero (Choquet) expected profit condition of the market

maker. The next proposition presents the equilibrium quotes and spread of the

market maker with the new distributional assumption.

Proposition A2.2.1. In the presence of ambiguity, the equilibrium bid and ask

are, respectively, given by

Bα,δ = (1− δs) ·B + δs ·
[
α · (Vh − Vl) + α · Vm + (1− α) · Vl)

]
, (A2.2.4)

Aα,δ = (1− δb) · A+ δb ·
[
(1− α) · Vh + α · Vm − α · (Vh − Vl)

]
, (A2.2.5)

and the bid-ask spread takes the form of

Sα,δ = S +

(
δb ·
[
(α− πbl ) · Vl + (α− πbm) · Vm + (1− 2α− πbh) · Vh

]
− δs ·

[
(1− 2α− πsl ) · Vl + (α− πsm) · Vm + (α− πsh) · Vh

])
,

(A2.2.6)

where Sα,δ and S denote the bid-ask spread in the presence and absence of ambi-

guity respectively.

Proof. The proof follows from the definition of the Choquet expectation (assign

the most possible weight on Vl) and zero-expected-profit condition, i.e.,

Bα,δ =Ev[V |s] =
[
vsl + δs · (1− 3 · α)

]
· Vl + vsm · Vm + vsh · Vh

=(1− δs) ·
[
Vl + πsm · (Vm − Vl) + πsh · (Vh − Vl)

]︸ ︷︷ ︸
B

+ δs ·
[
α · (Vh − Vl) + α · Vm + (1− α) · Vl)

]
=(1− δs) ·B + δs ·

[
α · (Vh − Vl) + α · Vm + (1− α) · Vl)

]
,

(A2.2.7)

where we have used that

vsl + δs · (1− 3 · α) = 1− vsm − vsh, (A2.2.8)

vsm = (1− δs) · πsm + δs · α, (A2.2.9)

vsh = (1− δs) · πsh + δs · α. (A2.2.10)
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Similarly, the ask follows as from the definition of the Choquet expectation (assign

the most possible weight on Vh as oppose to Vl) and zero-expected-profit condition,

i.e.,

Aα,δ =Ev[V |b] = vbl · Vl + vbm · Vm +
[
vbh + δb · (1− 3 · α)

]
· Vh

=(1− δb) ·
[
Vh − πbl · (Vh − Vl)− πbm · (Vh − Vm)

]︸ ︷︷ ︸
A

+ δb ·
[
(1− α) · Vh + α · Vm − α · (Vh − Vl)

]
=(1− δb) ·A+ δb ·

[
(1− α) · Vh + α · Vm − α · (Vh − Vl)

]
,

(A2.2.11)

where we have used that

vbh + δb · (1− 3 · α) = 1− vbm − vbl , (A2.2.12)

vbm = (1− δb) · πbm + δb · α, (A2.2.13)

vbl = (1− δb) · πbl + δb · α. (A2.2.14)

The spread Sα,δ follows from the difference of Aα,δ in Eq. (A2.2.11) and Bα,δ in Eq.

(A2.2.7), where we use B = πsl ·Vl+πsm ·Vm+πsh ·Vh and A = πbl ·Vl+πbm ·Vm+πbh ·Vh.

�

An illustrative example

With 3 payoff states, the following expressions follow from Bayes’ and generalized

Bayes’ theorems.

πsl =

(
1+µ

2

)
· πl(

1+µ
2

)
· πl +

(
1+µ

2
− µ · q

)
· πm +

(
1−µ

2

)
· πh

, (A2.2.15)

πsm =

(
1+µ

2
− µ · q

)
· πm(

1+µ
2

)
· πl +

(
1+µ

2
− µ · q

)
· πm +

(
1−µ

2

)
· πh

, (A2.2.16)

πsh =

(
1−µ

2

)
· πh(

1+µ
2

)
· πl +

(
1+µ

2
− µ · q

)
· πm +

(
1−µ

2

)
· πh

, (A2.2.17)

πbl =

(
1−µ

2

)
· πl(

1−µ
2

)
· πl +

(
1−µ

2
+ µ · q

)
· πm +

(
1+µ

2

)
· πh

, (A2.2.18)
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πbm =

(
1−µ

2
+ µ · q

)
· πm(

1−µ
2

)
· πl +

(
1−µ

2
+ µ · q

)
· πm +

(
1+µ

2

)
· πh

, (A2.2.19)

πbh =

(
1+µ

2

)
· πh(

1−µ
2

)
· πl +

(
1−µ

2
+ µ · q

)
· πm +

(
1+µ

2

)
· πh

, (A2.2.20)

δs =
δ

(1− δ) · πs + δ
, (A2.2.21)

δb =
δ

(1− δ) · πb + δ
, (A2.2.22)

where

πs =
(1 + µ

2

)
· πl +

(1 + µ

2
− µ · q

)
· πm +

(1− µ
2

)
· πh, (A2.2.23)

and

πb =
(1− µ

2

)
· πl +

(1− µ
2

+ µ · q
)
· πm +

(1 + µ

2

)
· πh. (A2.2.24)

To illustrate the effects of the market maker’s ambiguity and ambiguity aversion

we again choose equal naive priors πl = πm = πh = 1/3, and q = 0.5, leading

to πs = πb = 0.5 and δs = δb = 2·δ
1+δ

. To simplify the computations, we set

{Vl, Vm, Vh} = {0, 1, 2}, leading Eqs. (A2.2.7) and (A2.2.11) to reduce to

Bα,δ = (1− δs) ·B + δs · (1− φ), (A2.2.25)

Aα,δ = (1− δb) · A+ δb · (1 + φ), (A2.2.26)

and consequently,

Sα,δ = S + δb · (2 · φ− S) (A2.2.27)

where φ = 1− 3 · α is a normalized ambiguity aversion of the market maker (i.e.,

φ ∈ [0, 1]). When φ = 0, the market maker is ambiguity neutral and when φ = 1,

she is fully ambiguity averse. The standard probabilistic bid-ask spread follows

from the conditional probabilities as S = 4·µ
3

. Then, the following corollary is

immediate.

Corollary A2.2.2. If the market maker is sufficiently ambiguity averse (i.e., φ >
2·µ
3

);

(i) there is an ambiguity premium on the bid-ask spread,

(ii) incremental ambiguity increases the ambiguity premium,
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(iii) the magnitude of increase in the ambiguity premium is decreasing with am-

biguity.

If the market maker is not sufficiently ambiguity averse φ < 2·µ
3

;

(i) there is an ambiguity discount on the bid-ask spread,

(ii) incremental ambiguity increases the ambiguity discount,

(iii) the magnitude of increase in the ambiguity discount is decreasing with am-

biguity.

Proof. (i) follows from Eq. (A2.2.27) that when the market maker is sufficiently

ambiguity averse (i.e., φ > 2·µ
3

) the bid-ask spread with ambiguity is wider, i.e.,

Sα,δ − S =
4δ

1 + δ
· (φ− 2µ

3
) > 0, (A2.2.28)

and when she is not sufficiently ambiguity averse (i.e., φ < 2·µ
3

) the spread is

narrower

S − Sα,δ =
4δ

1 + δ
· (2µ

3
− φ) > 0. (A2.2.29)

(ii) follows from the fact that when φ > 2µ
3

,

∂(Sα,δ − S)

∂δ
=

4

(1 + δ)2
· (φ− 2µ

3
) > 0, (A2.2.30)

and when φ < 2µ
3

,

∂(S − Sα,δ)
∂δ

=
4

(1 + δ)2
· (2µ

3
− φ) > 0. (A2.2.31)

(iii) follows from the fact that
∂(Sα,δ−S)2

∂2δ
< 0 when φ > 2·µ

3
and

∂(S−Sα,δ)2
∂2δ

< 0 when

φ < 2·µ
3

.

�

Corollary A2.2.2 is analogous to Corollary 2.6 in the baseline model with two

payoff states. In addition, the following corollary shows that, as in Corollary 2.7

of the baseline model, a higher ambiguity aversion always leads to a higher spread.

Corollary A2.2.3. For any non-zero level of ambiguity, δ > 0, a higher ambiguity-

aversion leads to a higher bid-ask spread. That is,
∂Sα,δ
∂φ

> 0.
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Figure 2.7 illustrates the spread in the presence Sα,δ and absence S of ambiguity

against ambiguity δ and ambiguity aversion φ of the market maker when there are

3 payoff states. All the intuitions carry from the baseline model ensuring that our

results are robust to the distributional assumption.

Figure 2.7: The relation between the bid-ask spread in the presence of am-
biguity (curved layer), Sα,δ, in the absence of ambiguity (fixed black layer), S,
with respect to ambiguity, δ, and ambiguity aversion, φ, of the market maker.
The parameter values are Vl = 0, Vm = 1, Vh = 2, πl = πm = πh = 1/3, q = 0.5,
and µ = 0.5.
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Appendix 2.3. Extension to imperfect informa-

tion signals

In this Appendix, we extend our model to allow the information signals of informed

traders to be imperfectly informative about the final security payoff. We keep all

the features of the baseline model as described in Section 3. Without loss of

generality, we set the final security payoff V̂ to zero and one (i.e., Vl = 0 and

Vh = 1) and assume naive priors (i.e., πl = πh = 0.5) for ease of exposition. The

quality of information signals of informed traders, Θ ∈ {H,L}, is measured by

q = Pr{Θ = H|V̂ = 1} = Pr{Θ = L|V̂ = 0}. (A2.3.1)

Unlike the baseline model (informed always buy when Θ = H and sell when

Θ = L), the informed traders with imperfect quality of signals buy (resp. sell)

with a probability q < 1 when Θ = H (resp. Θ = L). By Bayes’ rule, an informed

trader who receives Θ = H revises his private value to

Pr{V̂ = 1|Θ = H} =
πh · q

πh · q + πl · (1− q)
, (A2.3.2)

and who receives Θ = L revises his private value to

Pr{V̂ = 1|Θ = L} =
πh · (1− q)

πh · (1− q) + πl · q
. (A2.3.3)

When q = 1, Pr{V̂ = 1|Θ = H} = 1 and Pr{V̂ = 0|Θ = H} = 0, leading the

informed traders to always buy when Θ = H and Pr{V̂ = 1|Θ = L} = 0 and

Pr{V̂ = 0|Θ = L} = 1, leading the informed traders to always sell when Θ = L

as in the baseline model in Section 3.

In the presence of ambiguity, inserting Vl = 0 and Vh = 1 to the zero (Choquet)

expected bid and ask quotes of the market maker in Proposition 4 obtains

Bα,δ = (1− δs) ·B + δs · α = (1− δs) · πsh + δs · α, (A2.3.4)

Aα,δ = (1− δb) · A+ δb · (1− α) = (1− δb) · πbh + δb · (1− α). (A2.3.5)

In this setting, an informed trader who arrives at the market with Θ = H (resp.

Θ = L) will buy (resp. sell) if his private valuation is higher (resp. lower) than

the ask (resp. bid) quote. That is, the informed traders will always trade in the
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direction of their information when

Pr{V̂ = 1|Θ = H} > Aα,δ, (A2.3.6)

Pr{V̂ = 1|Θ = L} < Bα,δ, (A2.3.7)

are satisfied.

The following proposition shows that when the quality of information signals of in-

formed traders are sufficiently high, conditions (A2.3.6) and (A2.3.7) are satisfied,

and thus the informed traders trade in the direction of their signal.

Proposition A2.3.1. In equilibrium, the informed traders always trade in the

direction of their signal (i.e, buy when Θ = H and sell when Θ = L) when the

quality of information is sufficiently high,

q > q∗ = 0.5 +
δ · (1− 2 · α)(

1 + δ
)
− µ ·

(
1− δ

) . (A2.3.8)

Proof. The following expressions follow from Bayes’ and generalized Bayes’ theo-

rems.

πsh =

(
µ · (1− q) + 1−µ

2

)
· πh(

µ · q + 1−µ
2

)
· πl +

(
µ · (1− q) + 1−µ

2

)
· πh

=
1− µ · (2 · q − 1)

2
, (A2.3.9)

πbh =

(
µ · q + 1−µ

2

)
· πh(

µ · (1− q) + 1−µ
2

)
· πl +

(
µ · q + 1−µ

2

)
· πh

=
1 + µ · (2 · q − 1)

2
, (A2.3.10)

δs =
δ

(1− δ) · πs + δ
=

2 · δ
1 + δ

, (A2.3.11)

δb =
δ

(1− δ) · πb + δ
=

2 · δ
1 + δ

, (A2.3.12)

since πl = πh = 0.5, and thus , πs = πb = 0.5.

Inserting Eqs. (A2.3.9), (A2.3.10), (A2.3.11), and (A2.3.12) into the bid and ask

quotes in Eqs. (A2.3.4) and (A2.3.5) obtains

Bα,δ =

(
1− δ
1 + δ

)
·
(

1− µ · (2 · q − 1)

2

)
+

(
2 · δ · α
1 + δ

)
, (A2.3.13)

Aα,δ =

(
1− δ
1 + δ

)
·
(

1 + µ · (2 · q − 1)

2

)
+

(
2 · δ · (1− α)

1 + δ

)
. (A2.3.14)
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Inserting Eqs. (A2.3.2), (A2.3.3), (A2.3.13), and (A2.3.14) into conditions (A2.3.6)

and (A2.3.7) obtains

πh · q
πh · q + πl · (1− q)

>

(
1− δ
1 + δ

)
·
(

1 + µ · (2 · q − 1)

2

)
+

(
2 · δ · (1− α)

1 + δ

)
, (A2.3.15)

πh · (1− q)
πh · (1− q) + πl · q

<

(
1− δ
1 + δ

)
·
(

1− µ · (2 · q − 1)

2

)
+

(
2 · δ · α
1 + δ

)
. (A2.3.16)

Solving inequalities (A2.3.15) and (A2.3.16) obtains

q > 0.5 +
δ · (1− 2 · α)(

1 + δ
)
− µ ·

(
1− δ

) . (A2.3.17)

�

Proposition A2.3.1 shows that when the informed traders receive sufficiently in-

formative signals they trade in the direction of their signals and thus herding and

information cascade never occur. In the absence of ambiguity (δ = 0), the signal

is sufficiently informative when q > 0.5, the result which follows from Avery and

Zemsky (1998). In the terminology of Avery and Zemsky (1998), the signal is

called monotonic when q > 0.5 since it always moves the informed trader’s ex-

pected value from the public information expected value in the direction of the

signal (i.e., Pr{V̂ = 1|Θ = H} > πh and Pr{V̂ = 1|Θ = L} < πh when q > 0.5).

In the presence of the market maker’s ambiguity (δ > 0), however, the sufficient

quality of signals q∗ changes depending on the market maker’s ambiguity and ambi-

guity aversion. This occurs because the market maker’s ambiguity and ambiguity

aversion impact the bid-ask spread, and consequently, the value of information (or

the expected profits of informed traders). More precisely, as the market maker

becomes more ambiguity averse, she widens the spread leading the lower bound

of the sufficiency condition q∗ for the informed traders to trade in the direction

of their signals to increase. Similar intuition applies when the ambiguity averse

market maker widens the bid-ask spread as the ambiguity increases. Figure 2.8

shows that both of these intuitions are correct. As the market maker’s ambiguity

δ and ambiguity aversion φ = 1 − 2 · α increase, the minimum quality of signal

q∗ for the informed traders to trade in the direction of the signal also increases.

In the extreme, when δ = 1 and φ = 1, this occurs when the signal is perfectly

informative, q = 1, since the spread is maximum in this scenario. Formally we

have the following corollary.
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Figure 2.8: The relation between the minimum quality of signal q∗ for the
informed traders to trade in the direction of the signal with respect to ambiguity,
δ, and ambiguity aversion, φ, of the market maker. The parameter values are
Vl = 0, Vh = 1, πl = 0.5 and µ = 0.5.

Corollary A2.3.2. The minimum quality of signal q∗ for the informed traders to

trade in the direction of their signal increases with the market maker’s ambiguity

and ambiguity aversion; that is ∂q∗

∂δ
> 0 and ∂q∗

∂α
< 0.

Proof. The proof immediately follows from the partial derivatives of q∗ in Eq.

(A2.3.8) with respect to δ and α;

∂q∗

∂δ
=

(1− 2 · α) · (1− µ)(
(1 + δ)− µ · (1− δ)

)2 > 0, (A2.3.18)

∂q∗

∂α
=

−2 · δ(
1 + δ

)
− µ ·

(
1− δ

) < 0, (A2.3.19)

ensuring that the results of the baseline model hold as long as the information

signals of the informed traders are sufficiently informative.

�
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Appendix 2.4. Other Ways to Update Choquet

Beliefs

Similar to the application of Bayesian updating in the standard probabilistic mod-

els, the results and predictions of our model are dependent on the application of

the generalized Bayesian updating. In this Appendix, we contrast the results of

the baseline model with the results obtained by two other extreme optimistic and

pessimistic rules for updating Choquet beliefs. This allows us to see the liquidity

deteriorations and improvements due to ambiguity from different angles.

First, the optimistic updating rule of Gilboa and Schmeidler (1993) is defined as

vO(V̂ = Vl|b) =
v(Vl ∩ b)
v(b)

, (A2.4.1)

which reduces to Bayesian updating when v is additive. When the “optimistic”

market maker that revises with Gilboa and Schmeidler (1993) rule receives a buy

order, she revises her belief about the low fundamental value as

vO(V̂ = Vl|b) =
v(Vl ∩ b)
v(b)

=
(1− δ) · π(Vl ∩ b) + δ · α

(1− δ) · πb + δ · α

=
(1− δ) · πb

(1− δ) · πb + δ · α
· πbl +

δ · α
(1− δ) · πb + δ · α

> πbl ,

(A2.4.2)

and when she receives a sell order, she revises her belief about the high fundamental

value as

vO(V̂ = Vh|s) =
(1− δ) · πs

(1− δ) · πs + δ · α
· πsh +

δ · α
(1− δ) · πs + δ · α

> πsh. (A2.4.3)

Second, the pessimistic updating rule of Dempster (1968) and Shafer (1976) is

defined as

vP (V̂ = Vl|b) =
v(Vl ∪ s)− v(s)

1− v(s)
, (A2.4.4)

which similarly reduces to Bayesian updating when v is additive. Additivity im-

plies v(Vl∪s)−v(s) = v(Vl∩b) and 1−v(s) = v(b), leading to a Bayes’ rule. When

the “pessimistic” market maker that revises with Dempster-Shafer rule receives a

buy order, she revises her belief about the low fundamental value as
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vP (V̂ = Vl|b) =
v(Vl ∪ s)− v(s)

1− v(s)
=

(1− δ) · π(Vl ∪ s)− (1− δ) · πs
1−

(
(1− δ) · πs + δ · α

)
=

(1− δ) · πb
(1− δ) · πb + δ · (1− α)

· πbl < πbl ,

(A2.4.5)

and when she receives a sell order, she revises her belief about the high fundamental

value as

vP (V̂ = Vh|s) =
(1− δ) · πs

(1− δ) · πs + δ · (1− α)
· πsh < πsh. (A2.4.6)

Eqs (A2.4.2)-(A2.4.6) show that the “optimistic” market maker always has a re-

vised belief higher than the conditional probability (i.e., vO(V̂ = Vl|b) > πbl ,

vO(V̂ = Vh|s) > πsh), whereas the “pessimistic” market maker always has a

revised belief lower than the conditional probability (i.e., vP (V̂ = Vl|b) < πbl ,

vP (V̂ = Vh|s) < πsh). Set the final security payoff to zero and one, V̂ ∈ {0, 1}. The

“optimistic” and “pessimistic” market makers’ bid-ask spreads are respectively

given by

SOα,δ = 1− vO(V̂ = Vl|b)− vO(V̂ = Vh|s), (A2.4.7)

SPα,δ = 1− vP (V̂ = Vl|b)− vP (V̂ = Vh|s), (A2.4.8)

whereas the spread of the market maker with probabilistic beliefs is given by

S = 1− πbl − πsh. (A2.4.9)

The following proposition is immediate.

Proposition A.2.3.1. For non-zero level of ambiguity, δ > 0;

(i) the “optimistic” market maker always has an ambiguity discount on the

spread (i.e., SOα,δ < S) and the ambiguity discount increases with ambiguity

(i.e.,
∂SOα,δ
∂δ

< 0),

(ii) the “pessimistic” market maker always has an ambiguity premium on the

spread (i.e., SPα,δ > S) and the ambiguity premium increases with ambiguity

(i.e.,
∂SPα,δ
∂δ

> 0),

(iii) a higher ambiguity aversion of both the “pessimistic” and “optimistic” mar-

ket makers leads to a higher bid-ask spread (i.e.
∂SOα,δ
∂α

< 0 and
∂SPα,δ
∂α

< 0).
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Proof. The first part of the proof follows from vO(V̂ = Vl|b) > πbl , v
O(V̂ = Vh|s) >

πsh,
∂vO(V̂=Vl|b)

∂δ
> 0, and ∂vO(V̂=Vh|s)

∂δ
> 0. The second part of the proof follows

from vP (V̂ = Vl|b) < πbl , v
P (V̂ = Vh|s) < πsh,

∂vP (V̂=Vl|b)
∂δ

< 0, and ∂vP (V̂=Vh|s)
∂δ

< 0.

The last part follows from ∂vO(V̂=Vl|b)
∂α

> 0, ∂vO(V̂=Vh|s)
∂α

> 0, ∂vP (V̂=Vl|b)
∂α

> 0, and
∂vP (V̂=Vh|s)

∂α
> 0.

�

Proposition A.2.3.1 is analogous to Corollaries 2.6 and 2.7 in the baseline model.

Unlike the baseline model, however, Proposition A.2.3.1 separately shows the am-

biguity premium of the sufficiently ambiguity-averse and ambiguity discount of

the insufficiently ambiguity-averse market maker due to the extreme nature of

the pessimistic and optimistic updating. The effects of ambiguity and ambigu-

ity aversion of the market maker on the ambiguity premium and discount are

the same as the baseline model, ensuring that our results are robust. Unlike the

extreme pessimistic and optimistic updating, what’s interesting about the gener-

alized Bayesian updating is that it provides a unified approach for the liquidity

deteriorations and improvements in financial markets and allows us to explore the

conditions under which they prevail.
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Appendix 2.5. Market dynamics during various

order flows

In the paper, we have provided the dynamics of the quotes and spreads as well as

the ambiguity and ambiguity aversion of the market maker that receives continuous

sell (i.e., D1 = −1, D2 = −1, D3 = −1, ...) and balanced orders (i.e., D1 = −1,

D2 = +1, D3 = −1, ...). In this Appendix, we provide a spreadsheet (click here

and define the parameters in the green cells and order flow in the yellow cells) to

evaluate the same dynamics when the market maker receives various order flow

patterns.

https://www.dropbox.com/s/kuxn99reqrsc6wj/Internet%20Appendix%20E.xlsx?dl=0
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The Pricing of Composition

Uncertainty

There will always be a lot of ambiguity about who is an information trader and

who is a noise trader.

Black (1986) “Noise” [p. 532].

3.1 Introduction

Financial markets have the role of aggregating the available information of individ-

ual market participants. Very often, however, the information available to the ma-

jority of market participants is uncertain (i.e., ambiguous). When investors trade

with each other, it is often the case that they do not know whether or not they trade

against better-informed counterparties (e.g., Banerjee and Green (2015), Aliyev

et al. (2018)). The “quant meltdown” of August 2007 and subsequent unfolding

of the global financial crisis highlighted the importance of this problem. In his

presidential address, Stein (2009) emphasizes this as a “crowded-trade” problem

— “for a broad class of quantitative trading strategies, an important consideration

for each individual arbitrageur is that he cannot know in real time exactly how

many others are using the same model and taking the same position as him.”11

The fundamental of the crowded-trade problem is that the actual composition

11Recognizing the importance of the crowded-trade problem, some firms started to provide
tools for measuring crowdedness of strategies (e.g., the “crowding scorecard” offered by the
MSCI).

77
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of informed and uninformed traders is hard to observe. As Black (1986) points

out “there will always be a lot of ambiguity about who is an information trader

and who is a noise trader”. This chapter examines the effects of ambiguity about

the composition of traders on asset prices, information transmission of prices, and

consequently the value of information.12

The crowded-trade problem or uncertainty about the composition of traders (com-

position uncertainty) is an important constituent of modern markets for various

reasons. First, markets often witness unfamiliar shocks causing a sudden dis-

ruption of the composition of traders that ultimately triggers ‘flash crashes’ —

episodes of extreme price movements accompanied by evaporation of liquidity.

The recent extreme examples of these shocks include the quant meltdown of Au-

gust 2007, 2007-2009 global financial crisis, and the Flash Crash of May 2010,

all of which are associated with extreme price movements and liquidity evapora-

tion. With the rise of algorithmic trading and data revolution, a financial market

ecosystem has now dramatically changed. The composition of market participants

has never been more complex and uncertain.13

Second, uncertainty about the composition of traders provides additional insights

into the linkage between liquidity and asset prices in financial markets, which is

often omitted in the standard asset pricing literature (e.g., CAPM). Finally, this

problem — whether an uncertain composition of traders poses a threat to market

participants — is of crucial interest to policymakers. Past congressional testi-

monies show that regulators understand the potential threat of crowded trades,

but they also recognize the difficulty of tracking them.14

Motivated by the crowded-trade problem, we construct a rational expectations

equilibrium (REE) model in the presence of composition uncertainty. This un-

certainty naturally generates deviations from the “fair” price (i.e., informational

12We use ambiguity and uncertainty interchangeably. The idea of ambiguity dates back to
Knight (1921) and Keynes (1921) where they distinguish between risk (when relative odds of
the events are known) and uncertainty (when the degree of knowledge only allows the decision
maker to work with estimates). Ellsberg (1961) provides experimental evidence to the tentative
ideas of Knight and Keynes. The behavior of ambiguity aversion documented by Ellsberg (1961)
has been resurrected in the decision making context by Choquet expected utility of Schmeidler
(1989) and Maxmin expected utility of Gilboa and Schmeidler (1989). Since then, different
approaches have been taken to model ambiguity. We refer to Machina and Siniscalchi (2014)
and Gilboa and Marinacci (2013) for extensive surveys of this literature.

13See, for instance, “When Silicon Valley came to Wall Street” (Financial Times, October 28,
2017) and “The big changes in US markets since Black Monday” (Financial Times, October 19,
2017).

14See, for example, “A Risky ’Systemic’ Watchdog”, (Washington Post, March 2, 2009).
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inefficiency). The informational inefficiency of asset prices stemming from com-

position uncertainty leads to several interesting phenomena. In an REE with an

uncertain composition of informed and uninformed traders, the uncertainty-averse

uninformed traders with maxmin preferences of Gilboa and Schmeidler (1989) re-

duce their risky stockholdings relative to the informationally efficient benchmark

with no such uncertainty and demand a composition uncertainty premium to be

compensated for this uncertainty. We show that the composition uncertainty pre-

mium of the uncertainty-averse uninformed traders is increasing and concave with

respect to this uncertainty. Intuitively, uncertainty about the number of informed

traders affects the uninformed more than the informed, leading the uninformed

traders to be disadvantaged in the face of this uncertainty. In the presence of

composition uncertainty, the uninformed (resp. informed) demand is lower (resp.

higher) than the benchmark reflecting the fact that they are susceptible (resp.

immune) to such uncertainty when trading. Consequently, the perceived equity

premium is higher and the stock price is lower (i.e., undervalued) than that in the

benchmark.

We also characterize the cost range in which the unique information market equi-

librium exists and investigate the effects of composition uncertainty on the benefit

of informed trading (i.e., value of information). The benefit of informed trading

in our model can be decomposed into a standard and an uncertain, which we

term “Knightian”, component due to composition uncertainty. As in the stan-

dard REE models (e.g., Grossman (1976), Grossman and Stiglitz (1980)), the

standard component decreases in the number of informed traders and increases in

the idiosyncratic noise in fundamental value. For uncertainty-averse traders, the

“Knightian” component reduces the value of information as opposed to what naive

intuition — that more uncertainty always increases the value of information —

would suggest. The Knightian component decreases in idiosyncratic and compo-

sition uncertainty, implying that the amount of uncertainty determines how much

the Knightian component reduces the value of information. Overall, the benefit of

informed trading increases in idiosyncratic uncertainty in fundamental value but

decreases in uncertainty about the composition of traders. While this result might

seem surprising at first, the intuition is that high idiosyncratic uncertainty hinders

uninformed traders to learn from prices, whereas high uncertainty about the level

of informed trading leads traders to refrain from becoming informed due to the

potential competition.
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To establish these results, we extend the standard CARA-normal REE model

where market prices perfectly aggregate and communicate information (e.g., Gross-

man (1976), Radner (1979)) along two dimensions. First, we introduce private

investment opportunities with a return correlated to idiosyncratic noise which is

only available to informed traders to provide motivation for informed trading, as

in Easley et al. (2014) and Wang (1994). Second, we introduce uncertainty about

the composition of traders so that traders do not precisely know the number of

informed and uninformed traders in the market, reflecting the practical challenges

of the crowded-trade problem. The traders, however, believe the actual number

of informed traders λ belongs to some interval λ̂ ∈ [λ−∆λ, λ+ ∆λ], where ∆λ is

the amount of uncertainty about the proportion of informed traders λ. To show

the above results, in the baseline model, we model traders’ preferences with the

maxmin model of Gilboa and Schmeidler (1989). We then extend the analysis to

the α−maxmin model of Marinacci (2002) to investigate the effects of uncertainty

aversion of traders on the market.

In the extended α−maxmin model, we show that the demand of uninformed (resp.

informed) traders decreases (resp. increases), the perceived equity premium in-

creases, and the stock price decreases as traders become more uncertainty averse.

This implies that in the baseline maxmin model, the uninformed (resp. informed)

demand takes its lowest (resp. highest), the composition uncertainty premium its

highest, and the stock price its lowest value. We characterize the sufficient uncer-

tainty aversion condition for the results of the baseline model to hold and show

that the opposite results can be obtained when traders are not sufficiently uncer-

tainty averse. That is, when traders are not sufficiently uncertainty averse the

perceived equity premium can be lower due to composition uncertainty discount,

the price can be higher (i.e., overvalued), and consequently the value of becoming

informed can be higher than that in the benchmark.

The sufficient uncertainty aversion condition for the composition uncertainty pre-

mium to prevail decreases in the proportion of informed traders. That means

traders with a given uncertainty aversion can be sufficiently uncertainty averse

when the proportion of informed traders is high but not as sufficient when it is

low. Consequently, the value of becoming informed can be decreasing (resp. in-

creasing) in the number of informed traders when traders are sufficiently (resp.

insufficiently) uncertainty averse during the high (resp. low) informed market,

leading to complementarity in information acquisition and multiple information
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market equilibria. This complementarity is very different from the well-known

negative relation between the value of informed trading and the number of in-

formed traders, what is known as the “Grossman-Stiglitz free-riding effect” (i.e.,

as more agents acquire costly information, it becomes easier to free-ride by ob-

serving the asset price). Thus this chapter delivers predictions under both unique

and multiple equilibria.

A majority of the asset pricing models focus on only uncertainty about the fun-

damental values of assets and fail to notice uncertainty about the market char-

acteristics, resulting in a proliferation of anomalies. The finding that uncertainty

about the composition of traders impacts the uninformed demand and hence their

liquidity provision links liquidity in markets to asset prices, providing a theoretical

explanation for the empirical findings of the impacts of liquidity on prices (e.g.,

Amihud (2002), Brennan and Subrahmanyam (1996)). The model also proposes

a unified explanation for the stock undervaluation and overvaluation, which are

often explained by unobservable biases in investors’ beliefs (e.g., Barberis, Shleifer

and Vishny (1998), Hong and Stein (1999)). In our model, when traders are suffi-

ciently (resp. insufficiently) uncertainty averse, composition uncertainty increases

(resp. decreases) the perceived equity premium, leading to a stock undervaluation

(resp. overvaluation) relative to the informationally efficient benchmark with no

composition uncertainty.

The model proposes two plausible explanations for the occurrences of extreme

price movements in financial markets, known as mini or micro flash crashes.15

First, a sudden increase in uncertainty about the composition of traders can cause

the sufficiently (resp. insufficiently) uncertainty averse traders to significantly in-

crease (resp. decrease) their perceived equity premium, leading the stock price to

spike down (resp. up) significantly. Second, the complementarity in information

acquisition and equilibrium multiplicity can also explain extreme price movements.

Due to the complementarity in information acquisition, for the given cost of infor-

mation, the economy can be populated by a high or low proportion of informed

traders which respectively are associated with high (resp. low) and low (resp.

high) price when the fundamental value is high (resp. low). When the fundamen-

tal value is high, jumping from the high (resp. low) informed trading equilibrium

to the low (resp. high) informed trading equilibrium can cause the price to spike

15Micro flash crashes occur when a stock price spikes up or down in a small time frame. See,
for example, http://www.nanex.net/NxResearch/ResearchPage/3/ for an exhaustive documen-
tation of flash crashes.

http://www.nanex.net/NxResearch/ResearchPage/3/


Chapter 3 82

down (resp. up) in financial markets. Similarly, when the fundamental value is

low, jumping from the low (resp. high) informed trading equilibrium to the high

(resp. low) informed trading equilibrium can cause the price to spike down (resp.

up), explaining the extreme price jumps in financial markets.

The general policy message that follows from our analysis is that regulators must

pay attention to uncertainty about the composition of traders and other financial

market characteristics. This is of particular interest because this uncertainty im-

pacts the traders unevenly (more precisely, uninformed more than informed) and

capital market regulation is mainly concerned with maintaining a level playing

field for market participants, which is important to ensure price efficiency. The

complementarity of information acquisition and multiplicity of information market

equilibrium stemming from the composition uncertainty suggest that reducing the

cost of information decreases (resp. increases) the number of informed traders,

leading the prices to be less (resp. more) informative about the fundamentals

when the information market is at low (resp. high) informed trading equilibrium.

Thus, a palliative approach of increasing or decreasing the cost of information to

enhance market efficiency such as a mark-to-market accounting (i.e., fair value

accounting) legislation implemented in 2007 may not work without creating an

equal trading environment for market participants.16

The rest of the chapter is organized as follows. We discuss the related literature

in the next section. In Section 3.3, we present a baseline model with an uncertain

composition of traders to examine the effects of such uncertainty on the equilib-

rium demands of traders, equity premium, stock price, and the value of informed

trading. In Section 3.4, we extend the baseline model to allow for the separation

of uncertainty about the composition of traders and traders’ uncertainty attitude.

In Section 3.5, we discuss empirical implications of our model. In Section 3.6, we

discuss other possible extensions and generalizations of our model. Section 3.7

concludes.

16Such disclosure requirements have also been credited with aggravating the consequences of
the global financial crisis because it forced banks to disclose large losses of mortgage-based secu-
rities on their portfolios. See, for example, the testimony of former FDIC chairman W. Isaac on
March 12, 2009, http://www.williamisaac.com/wp-content/uploads/2010/05/Testimony-MTM-
House-Financial-Services-3-12-09-WIsaac-Final.pdf, U.S. House of Representatives Committee
on Financial Services .

http://www.williamisaac.com/wp-content/uploads/2010/05/Testimony-MTM-House-Financial-Services-3-12-09-WIsaac-Final.pdf
http://www.williamisaac.com/wp-content/uploads/2010/05/Testimony-MTM-House-Financial-Services-3-12-09-WIsaac-Final.pdf
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3.2 Related Literature

The research is related to a small number of asset-pricing and market microstruc-

ture models that study uncertainties (either in the composition of traders or the

quality of informed traders’ information) other than the fundamental values of

assets (e.g., Romer (1993), Avery and Zemsky (1998), Banerjee and Green (2015),

and Aliyev et al. (2018)). Unlike these models where uncertainty is quantified

probabilistically, we model the Knightian uncertainty about the composition of

traders by employing the maxmin and α−maxmin preferences.

We contribute to the recent literature studying the implications of ambiguous

information for financial markets (e.g., Easley et al. (2014), Mele and Sangiorgi

(2015)). By using recursive multiple prior utility model of Epstein and Schneider

(2003) and learning under ambiguity rule of Epstein and Schneider (2007), Epstein

and Schneider (2008) focus on the impacts of processing the news of uncertain

quality on asset prices. Similarly, by using Choquet expected utility model of

Schmeidler (1989) and generalized Bayesian learning rule of Walley (1991), Aliyev

and He (2018a) study the impacts of market makers’ ambiguous beliefs about the

fundamental values on the liquidity in financial markets and the traders’ trading

behavior. Learning under ambiguity is outside the scope of this chapter.

Caskey (2009), Ozsoylev and Werner (2011), and Mele and Sangiorgi (2015) con-

struct a noisy REE with ambiguity about the fundamental values. Caskey (2009)

uses “smooth” ambiguity model of Klibanoff et al. (2005) to show that persistent

mispricing is consistent with ambiguity-averse investors who may choose less pre-

cise but more ambiguity-reducing information. Ozsoylev and Werner (2011) show

that ambiguity of the monopolist arbitrageur can lead to decreased liquidity and

market depth, and increased volatility of prices. Mele and Sangiorgi (2015) show

that ambiguity about the cash flows may lead to multiple equilibria and strategic

complementarities in information acquisition. We do not rely on the noisy supply

to generate the mispricing in financial markets since it is less flexible to inves-

tigate our particular focus of interest. The mispricing due to uncertainty about

the composition of traders provides complementary means to the noisy supply

approach.

To make the mechanism clear, we follow Easley, O’Hara and Yang (2014) and

Condie and Ganguli (2017), who do not consider noise traders in their model.

Easley, O’Hara and Yang (2014) study an economy in which ambiguity-averse
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mutual funds face ambiguity about the trading strategies (effective risk tolerance)

of hedge funds. Similar to composition uncertainty, ambiguity about the trading

strategies of hedge funds limits the ability of mutual funds to infer information

from prices. Condie and Ganguli (2017) focus on the ambiguity-averse informed

traders observing ambiguous information to generate empirically relevant return

moments (ambiguity premium, negative skewness, and excess kurtosis).

This chapter contributes to this literature in various ways. First, the representa-

tion of uncertainty about the composition of traders is novel. Uncertainty (quan-

tified by probability distributions) about the composition of traders has been

studied, whereas the Knightian uncertainty about the composition of traders is

new to the literature. Different representations of uncertainty about the traders’

composition are important to demonstrate how uncertainty about the market or

trader characteristics can affect market outcomes. Second, we investigate the asset

pricing implications of this market microstructure effect when the informed and

uninformed traders are both exposed to this uncertainty, but the intrinsic nature of

trading disadvantages one party. This is particularly important because the cap-

ital market regulation is mainly concerned with maintaining a level playing field

for the market participants. Third, our particular focus of interest is the effects of

composition uncertainty on the value of informed trading and complementarities

in information acquisition, and its implications for extreme price swings in finan-

cial markets. Our contribution here is to show that the presence of composition

uncertainty can lead to complementarities in information acquisition and multi-

ple information market equilibria. Finally, on a broader level, our analysis shows

the effects of liquidity on asset prices, providing a theoretical explanation for the

effects of liquidity on asset prices, and consequently a unified explanation for the

stock market undervaluation and overvaluation.

Lastly, we model uncertainty about the composition of traders with “non-smooth”

or “kinked” models rather than the “smooth” (differentiable) representations (e.g.,

Klibanoff et al. (2005), Hansen and Sargent (2008)) for two main reasons. First, the

experimental evidence provides convincing support for the “non-smooth” models

in financial markets. For instance, Bossaerts et al. (2010) find that traders who

are sufficiently ambiguity averse refuse to hold securities with ambiguous payoffs,

a property established in the literature as portfolio inertia in prices identified by

Dow and Werlang (1992) based on the non-smoothness of the representation (see

also Ahn et al. (2014) and Asparouhova et al. (2015) for similar results). Second,



Chapter 3 85

the α−maxmin model is a natural and parsimonious generalization of the maxmin

model with little loss in tractability, enabling us to contrast the baseline and

extended models.

3.3 Uncertain Composition of Traders: Maxmin

model

This section presents an REE model that captures the impacts of composition

uncertainty on the asset prices, equity premium, and consequently the value of

becoming informed. We are parsimonious in the description of the model and

address different modeling approaches in the footnotes.

3.3.1 Setup

The market is populated by two types of traders: informed and uninformed traders.

All traders live for 3 periods and time is indexed by t = 0, 1, 2. There are two

decision stages, information acquisition and trading decision stages. Initially iden-

tical [0,1] continuum of traders decide their types at t = 0 and trades take place

at t = 1. All uncertainty is resolved and consumption occurs at t = 2.

There are two assets traded in the market: a risk-free bond with a constant net

return normalized to zero and a risky stock with a price of p̃.17 The net supply of

the risky stock is exogenous and fixed at 1 for convenience. We assume that the

risky stock pays off

f̃ = f̄ + θ̃ + ε̃, (3.1)

where f̄ > 0 is a constant, θ̃ ∼ N(0, σ2
θ) and ε̃ ∼ N(0, σ2

ε) are mutually indepen-

dent with σθ > 0 and σε > 0, θ̃ is observable at a cost c, whereas ε̃ is unobservable.

Moreover, there are additional investment opportunities, only available to the in-

formed traders with a gross return of 1 + η̃, where η̃ ∼ N(0, σ2
η). We let ε̃ and

η̃ be correlated with a coefficient of ρ∗ ∈ (0, 1) so that the additional investment

17As argued by Condie and Ganguli (2017), it would be more precise to use the term
“uncertainty-free bond” and “uncertain stock”, but we choose to stay with the usual termi-
nology.
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opportunities can be used for hedging purposes (e.g., Easley et al. (2014)).18 Addi-

tional investment opportunities can be interpreted as, for example, venture capital

or exotic products (e.g., compound options), in which the majority of the asset

holders are institutions.

We first assume that the actual proportions of informed and uninformed traders in

the market are given by λ and 1−λ respectively. The uninformed traders observe

the stock price p̃ and the informed traders additionally observe θ̃ at a cost c.19 We

depart from the standard REE framework by introducing uncertainty about the

proportion of informed traders in the market. Although the traders are unable to

assess the true proportion of informed traders λ, they believe that it belongs to

some interval, λ̂ ∈ [λ1, λ2]. We choose ∆λ such that

λ1 = λ−∆λ > 0 and λ2 = λ+ ∆λ < 1, (3.2)

for ∆λ > 0 measuring the amount of uncertainty about the proportion of informed

traders.20 To separate the effects of composition uncertainty, throughout the anal-

ysis, we provide comparisons with a fully revealing benchmark model, in which

there is no composition uncertainty (i.e., ∆λ = 0).

All traders have a constant absolute risk aversion (CARA) utility u with a common

risk aversion coefficient 1 defined over their final portfolio wealth W̃ , i.e.,

u(W̃ ) = − exp(−W̃ ), (3.3)

18This assumption is crucial for our analysis. Without a noisy supply of the risky stock
the market becomes fully revealing and the value of becoming informed is zero. There are
two alternative approaches to investigate the impact of composition uncertainty on the value
of information. First, one can adopt a noisy REE framework as in Grossman and Stiglitz
(1980), where the market is not fully revealing and information has a positive value (e.g., Mele
and Sangiorgi (2015)). However, due to the unmodeled noise component in this framework,
implementing the comparative statics of the value of information with respect to ambiguity and
ambiguity attitude becomes difficult. Second, one can adopt the standard REE framework, where
the market becomes fully revealing but enforce a positive value for the superior information by the
construction of the model as in Easley et al. (2014) and then implement the comparative statics
of ambiguity and ambiguity attitude. We follow the second approach. The assumption that
the informed traders have additional investment opportunities correlated with the idiosyncratic
noise in payoff introduces an advantage to the informed traders.

19The analysis would not change much as long as the informed traders know more than the
uninformed traders. For example, f̃ = f̄ + θ̃1 + θ̃2 + ε̃ with θ̃1 ∼ N(0, σ2

θ1
), θ̃2 ∼ N(0, σ2

θ2
)

and ε̃ ∼ N(0, σ2
ε) would yield similar results, if the uninformed traders know p̃ and θ̃2, and the

informed traders additionallly learn θ̃1 at a cost c > 0.
20We use uncertainty about the proportion of informed traders and uncertainty about the com-

position of traders (i.e., composition uncertainty) interchangeably since uncertainty about the
proportion of informed traders naturally leads to uncertainty about the proportion of uninformed
traders.
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and uncertainty-averse preferences in the sense of Gilboa and Schmeidler (1989).

However, the informed traders face composition uncertainty only at the informa-

tion acquisition decision stage when they choose to be informed (by acquiring the

information at a cost c) and the uninformed traders face composition uncertainty

both at the information acquisition and trading decision stages. This means the

uninformed, not the informed, traders use the uncertain price signal to extract in-

formation about the stock payoff during the trading stage. All traders have initial

wealth W0 which is normalized to zero for convenience.21

3.3.2 Financial market equilibrium

We first analyze the trading decision stage at t = 1 and establish the financial

market equilibrium given the proportion of informed traders λ and uncertainty

∆λ. Our main focus is on the interior fraction of informed traders (i.e., λ̂ ∈ (0, 1)),

where traders think that both types of traders exist in the market. Traders trade

based on their information and the market clears. An REE is a price function and

demand correspondences that satisfy the optimality (i.e., utility maximization)

and the actual market clearing conditions.

Definition 3.1. For given proportion λ of informed traders and ∆λ level of un-

certainty, an REE is a set of functions
(
p̃, XI , XU

)
such that:

(i) the informed demand XI and the uninformed demand XU maximize the min-

imum expected utility of the informed and uninformed traders respectively

in the market;

(ii) the price of the risky stock p̃ equates the supply and demand,

λ ·XI + (1− λ) ·XU = 1. (3.4)

3.3.3 Informed traders’ demand

For the informed traders, the demand in the risky stock XI and additional invest-

ment opportunities ZI maximize the expected utility of their final wealth,

W̃I = (f̃ − p̃) ·XI + ZI · η̃ − c, (3.5)

21Similar results follow when the traders are initially endowed with one share of stock.
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where c is the cost incurred by the informed traders to know θ̃. The CARA-normal

structure of the model leads to

E
[
− exp(−W̃I)|p̃, θ̃

]
= − exp

[
−
(
E[W̃I |p̃, θ̃]−

1

2
V ar[W̃I |p̃, θ̃]

)]
, (3.6)

where

E[W̃I |p̃, θ̃] = (f̄ + θ̃ − p̃) ·XI − c, (3.7)

and

V ar[W̃I |p̃, θ̃] = σ2
ε ·X2

I + σ2
η · Z2

I + 2ρ∗ · σε · ση ·XI · ZI , (3.8)

are the mean and variance of informed traders’ final wealth conditional on their

information set. For calculating the moments, we use the fact that the price does

not contain more information than the information of informed traders. Standard

utility maximization arguments for the informed traders yield the optimal demand

in the risky stock as

XI(θ̃, p̃) =
(f̄ + θ̃ − p̃)

(1− ρ∗2) · σ2
ε

, (3.9)

and the optimal demand in the additional investment opportunities as

ZI(θ̃, p̃) = − ρ∗ · (f̄ + θ̃ − p̃)
(1− ρ∗2) · σε · ση

. (3.10)

Eqs. (3.9) and (3.10) show that the presence of additional investment opportunities

for hedging purposes causes the informed traders to trade more aggressively in the

stock by taking an opposite position in the additional investment opportunities.

In what follows, we denote ρ = (1− ρ∗2) for convenience. The demand function of

informed traders given in Eq. (3.9) is equivalent to the CARA investor with a risk

aversion coefficient of 0 < ρ < 1. This means additional investment opportunities

correlated with the noise ε̃ cause the informed traders to trade as if they are more

risk tolerant, which further increases with the correlation ρ∗.22

22To model uncertainty about the equilibrium trading strategies of hedge funds and its impli-
cations for the aggregate welfare, Easley et al. (2014) introduce uncertainty about the “effective”
risk tolerance of hedge funds which corresponds to 1/ρ in our notation. Instead, our focus of
interest is uncertainty about the composition of traders and its implications for the stock price,
equity premium, and value of information.
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3.3.4 Uninformed traders’ demand

To find the optimal demand of uninformed traders given their belief λ̂ ∈ [λ1, λ2], we

first assume that the uninformed traders rationally conjecture the price function

as

p̃ = f̄ + θ̃ − g(λ,∆λ), (3.11)

where g(λ,∆λ) represents the perceived equity premium since g(λ,∆λ) = Eλ̂[f̃ −
p̃] and Eλ̂ denotes an expectation over the belief λ̂ ∈ [λ1, λ2]. The perceived

equity premium is determined in equilibrium. Due to the uncertainty about the

proportion of informed traders at the trading stage, the uninformed demand XU

maximizes the minimum expected utility of their final wealth, W̃U = (f̃ − p̃) ·
XU (i.e., maxXU minλ̂∈[λ1,λ2] Eλ̂[− exp(−W̃U)|p̃]). Given our normal distribution

structure, the optimal demand of uninformed traders is determined by

max
XU

min
λ̂∈[λ1,λ2]

((
Eλ̂[f̃ |p̃]− p̃

)
·XU −

1

2
V arλ̂[f̃ |p̃] ·X

2
U

)
. (3.12)

The criterion in Eq. (3.12) follows from the multiple prior model axiomatized by

Gilboa and Schmeidler (1989). It characterizes the ambiguity-averse uninformed

traders’ trading decision problem when they try to learn about the payoff of the

risky stock from the price. However, they are unable to perfectly extract the

information from the price because the price itself is an uncertain signal of the

payoff due to uncertainty about the proportion of informed traders. By the con-

jectured price function in Eq. (3.11), the uninformed traders’ conditional mean

and variance of the asset payoff over the particular belief λ̂ ∈ [λ1, λ2] are given by

Eλ̂[f̃ |p̃] = p̃+ g(λ,∆λ) and V arλ̂[f̃ |p̃] = σ2
ε . (3.13)

Substituting the conditional mean and variance of the stock payoff in Eq. (3.13)

into Eq. (3.12), we obtain that the optimal demand of uninformed traders is

determined by

max
XU

min
λ∈[λ1,λ2]

(
g(λ,∆λ) ·XU−

1

2
·σ2
ε ·X2

U

)
= max

XU

 gmin ·XU − 1
2 · σ

2
ε ·X2

U , ifXU ≥ 0,

gmax ·XU − 1
2 · σ

2
ε ·X2

U , ifXU < 0,

(3.14)

where gmin and gmax denote the minimum and maximum value of the perceived

equity premium g(λ,∆λ) due to the composition uncertainty. In Appendix 3.1,
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we show that the only feasible optimal demand of uninformed traders that follows

from Eq. (3.14) is

XU =
gmin

σ2
ε

, (3.15)

where gmin = g(λ2,∆λ) > 0 is the minimum of g(λ,∆λ). Intuitively, when the

uncertainty-averse uninformed traders are uncertain about the proportion of in-

formed traders, they should restrict their demand and require a positive minimum

equity premium for holding the risky stock. Based on the above analysis, we can

characterize the financial market equilibrium.

Proposition 3.2. Suppose λ1 = λ−∆λ > 0 and λ2 = λ+∆λ < 1 for ∆λ > 0. In

the presence of composition uncertainty, there exists an REE with the equilibrium

price given by

p̃ = f̄ + θ̃ − g(λ,∆λ), (3.16)

and the informed and uninformed demands are given by, respectively

XI(θ̃, p̃) =
g(λ,∆λ)

ρ · σ2
ε

, and XU(p̃) =
gmin

σ2
ε

, (3.17)

where

g(λ,∆λ) =
ρ · σ2

ε

λ
·
(

λ+ ∆λ · (1− ρ)

ρ+ (λ+ ∆λ) · (1− ρ)

)
, (3.18)

and

gmin =
ρ · σ2

ε

ρ+ (λ+ ∆λ) · (1− ρ)
. (3.19)

Proposition 3.2 shows that when the extra investment opportunities of informed

traders is not correlated with the idiosyncratic noise (i.e., ρ∗ = 0 or ρ = 1), the

equilibrium with composition uncertainty reduces to the standard fully revealing

REE with the equity premium g(λ) = σ2
ε and the demands XI = XU = 1 due

to the disappearing advantage of informed traders. In contrast, when the extra

investment opportunities and the idiosyncratic noise are perfectly correlated (i.e.,

ρ∗ = 1 or ρ = 0), the uninformed demand and perceived equity premium reduce to

zero since they rationally choose not to trade with the fully advantaged informed

traders, leading the demand of informed traders to be XI = 1/λ.

In general, the effective risk aversion of informed traders ρ plays an interesting

role. As ρ decreases the informed traders trade more aggressively by demanding

more, and consequently the uninformed traders reduce their demand for the risky

stock, that is, ∂XI(θ̃,p̃)
∂ρ

< 0 and ∂XU (p̃)
∂ρ

> 0. Intuitively, decreasing ρ (or increasing
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ρ∗) gives more advantage (i.e., hedging benefit) to the informed traders, resulting

in a lower minimum perceived equity premium gmin for the uninformed traders.

Therefore, when the advantage of informed traders is low (high), the informed

demand is low (high) while the uninformed demand is high (low). The effect of

ρ on the perceived equity premium g(λ,∆λ), however, is not monotonic because

decreasing ρ means more hedging opportunities for the informed traders, but at

the same time less uninformed trading in the market.23 More precisely, g(λ,∆λ)

increases in ρ if and only if ρ < ρ̄ = λ2
1−λ2 · (

√
1−λ
∆λ
− 1). Accordingly, the stock

price decreases in ρ if and only if ρ < ρ̄ following the equilibrium price function in

Eq. (3.16).

Proposition 3.2 also shows that unlike the standard fully revealing REE, the un-

informed demand decreases with the proportion of informed traders λ since the

informed traders have hedging advantage. The increasing proportion of informed

traders also decreases the perceived equity premium, and therefore the informed

demand due to enhanced competition. That is, ∂XU (θ̃,p̃)
∂λ

< 0, ∂g(λ,∆λ)
∂λ

< 0, and
∂XI(θ̃,p̃)

∂λ
< 0. In addition, the informed demand increases and the uninformed de-

mand decreases in the amount of composition uncertainty ∆λ due to the increasing

perceived equity premium. That is, ∂XI(p̃)
∂∆λ

> 0, ∂XU (p̃)
∂∆λ

< 0, and ∂g(λ,∆λ)
∂∆λ

> 0. In-

tuitively, in equilibrium, the uninformed traders must have a positive demand for

the risky stock due to a positive minimum perceived equity premium. However,

they do this by only restricting their risky stock holdings and requiring an addi-

tional premium to be compensated for uncertainty about the informed trading.

Consequently, the equilibrium stock price decreases in the amount of uncertainty

about the informed trading.

Lastly, as in the standard fully revealing REE, the idiosyncratic noise σ2
ε does

not affect the demands of traders but increases their perceived equity premium.

Intuitively, the idiosyncratic noise should not affect the demands of traders since

the equilibrium price reveals all the information of informed traders, but should

increase the perceived equity premium due to increased idiosyncratic uncertainty

about the fundamental value. We summarize these results in the following corol-

lary.

Corollary 3.3. In the presence of composition uncertainty;

23Figure 3.5 in Appendix 3.2 illustrates the perceived equity premium g(λ,∆λ) against the
effective risk aversion ρ and correlation ρ∗.
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(i) the informed traders increase while the uninformed traders decrease their

demands for the risky stock with the amount of composition uncertainty

∆λ;

(ii) both the informed and uninformed traders decrease their demands for the

risky stock with the level of informed trading λ;

(iii) the informed traders decrease (increase) while the uninformed traders in-

crease (decrease) their demands for the risky stock with the effective risk

aversion coefficient ρ (the correlation ρ∗);

(iv) the perceived equity premium increases with the amount of composition ∆λ

and idiosyncratic σ2
ε uncertainty, decreases with the level of informed trading

λ, and increases with the effective risk aversion coefficient ρ if and only if

ρ < ρ̄ = λ2
1−λ2 · (

√
1−λ
∆λ
− 1);

(v) the stock price decreases with the amount of composition and idiosyncratic

uncertainty, increases with the level of informed trading, and decreases with

the effective risk aversion coefficient ρ if and only if ρ < ρ̄.

These results are consistent with the presidential address of O’Hara (2003) about

the implications of liquidity and price discovery for the asset prices. By comparing

two risky assets, one with only public information and the other with private and

public information, O’Hara (2003) shows that traders demand extra returns to

hold assets in which information risk is greater (see also Easley, Hvidkjaer and

O’Hara (2002), Easley and O’Hara (2004)). In our model, the uncertainty-averse

uninformed traders perceive the increase in uncertainty about the informed trading

similar to the increase in information risk, leading to similar results.24

To facilitate the interpretation, we compare the equilibrium with composition

uncertainty with the benchmark without composition uncertainty (i.e., ∆λ = 0).

When ∆λ = 0, it follows from Eq. (3.18) that the perceived equity premium

g(λ,∆λ) reduces to

g(λ) =
ρ · σ2

ε

ρ+ λ · (1− ρ)
, (3.20)

which is always less than the perceived equity premium with composition uncer-

tainty (i.e., g(λ,∆λ) > g(λ) for ∆λ > 0). Formally, combining Eqs. (3.18) and

24The analysis of information risk in Easley et al. (2002) is limited to the exogenous population
of informed traders. In our setting, it is straightforward to extend the analysis to endogenous
information acquisition and investigate the effects of cost of information in equilibrium.
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(3.20) yields

g(λ,∆λ) = g(λ) + gu(λ,∆λ), (3.21)

where gu(λ,∆λ) shows the composition uncertainty premium and is given by

gu(λ,∆λ) =
ρ2 · (1− ρ) · (1− λ) ·∆λ · σ2

ε

λ ·
(
ρ+ (λ+ ∆λ) · (1− ρ)

)
·
(
ρ+ λ · (1− ρ)

) . (3.22)

Eq. (3.22) shows that the uncertainty premium is always positive (i.e., gu(λ,∆λ) >

0), increasing (i.e., ∂gu(λ,∆λ)
∂∆λ

> 0), and concave (i.e., ∂2gu(λ,∆λ)
∂∆λ2

< 0) with respect

to ∆λ. Therefore, the perceived equity premium g(λ,∆λ) with composition un-

certainty is always higher than the benchmark equity premium g(λ). Accordingly,

the stock in the presence of composition uncertainty is undervalued compared to

the benchmark without composition uncertainty.

Numerous authors have shown that ambiguity about the asset fundamentals mod-

eled with the maxmin model of Gilboa and Schmeidler (1989) can induce non-

participation in financial markets during the extreme market events such as mar-

ket crashes (e.g., Easley and O’Hara (2009)). Additionally, ambiguity modeled

by the incomplete preferences of Bewley (2002) can generate a lack of trading in

financial markets (e.g., Easley and O’Hara (2010a)). These results are consistent,

but not necessarily the same as the decreasing demand of uninformed traders due

to composition uncertainty. Composition uncertainty is neither about the fun-

damental values of assets nor confined to the aggregate market events; rather it

is more about the effects of exchange-specific (financial market microstructure)

uncertainty on the asset prices. The following corollary contrasts the optimal de-

mand of traders, perceived equity premium, and stock price in the presence and

absence of composition uncertainty.

Corollary 3.4. In the presence of composition uncertainty;

(i) the informed traders’ demand for the risky stock is higher while the unin-

formed traders’ demand is lower than that of the benchmark;

(ii) the perceived equity premium is higher than the benchmark equity premium;

(iii) the price of the risky stock is lower than the benchmark price.

Next we characterize the information market equilibrium by endogenizing the ac-

tual proportion λ of informed traders to investigate the impacts of composition
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uncertainty on the benefit of informed trading (i.e., value of information). The

information market equilibrium guarantees that the results of financial market

equilibrium given the proportion of informed traders hold for the given cost of

information. In addition, it allows us to obtain the relevant comparative statics

about the effects of the cost of information c on the perceived equity premium and

stock price.

3.3.5 Information market equilibrium

During the information acquisition stage, whether an uninformed trader would

like to pay the cost of information c and switch to an informed trader depends on

the comparison between the ex ante expected utility of becoming informed and

that of staying uninformed. An information market equilibrium follows from first,

finding the utilities of informed and uninformed traders in the trading stage, sec-

ond, finding the minimum ex ante expected utilities recursively in the information

acquisition stage, and third, equalizing the minimum ex ante expected utilities

of informed and uninformed traders. Formally, we define the information market

equilibrium as follows.

Definition 3.5. For a given cost of information c and ∆λ > 0 an information

market equilibrium is λ such that: 0 < λ − ∆λ < λ + ∆λ < 1 and the ex ante

minimum expected utilities of informed and uninformed traders are equal,

min
λ̂∈[λ1,λ2]

Eλ̂
(
u(W̃ λ

I )
)

= min
λ̂∈[λ1,λ2]

Eλ̂
(
u(W̃ λ

U)
)
. (3.23)

For the informed traders, inserting the optimal demands in Eqs. (3.9) and (3.10)

into the moments of their final wealth in Eqs. (3.7) and (3.8) and calculating their

expected utility net of cost c during the trading stage leads to

E
(
u(W̃ λ

I )
)

= − exp
(
− (

g(λ,∆λ)2

2 · ρ · σ2
ε

− c)
)
. (3.24)

During the trading stage, the informed traders only use the information θ̃ since it

is a sufficient statistic for (θ̃, p̃). That is, at t = 1 they are immune to composition

uncertainty. However, when they make the decision to be informed at t = 0, they

face composition uncertainty since the benefit of becoming informed is affected by

the proportion of informed traders λ and uncertainty about this proportion ∆λ.
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The ex ante minimum expected utility of informed traders, therefore, follows from

Eq. (3.24) as

min
λ̂∈[λ1,λ2]

Eλ̂
(
u(W̃ λ

I )
)

= − exp
(
− (

g2
min

2 · ρ · σ2
ε

− c)
)
. (3.25)

For the uninformed traders, however, inserting the optimal demand in Eq. (3.15)

into the expected utility of their final wealth leads to

E
(
u(W̃ λ

U)
)

= − exp
(
− g2

min

2 · σ2
ε

)
. (3.26)

Unlike the informed traders, the minimum value of perceived equity premium ap-

pears in the expected utility of uninformed traders in the trading stage because

they use the uncertain price signal to extract information about the stock pay-

off. The ex ante minimum expected utility of staying as an uninformed trader is

therefore given by

min
λ̂∈[λ1,λ2]

Eλ̂[u(W̃ λ
U)] = − exp

(
− g2

min

2 · σ2
ε

)
. (3.27)

Lastly, combining Eqs. (3.25) and (3.27) obtains the benefit of becoming an in-

formed trader (or the ex ante expected wealth differences between the informed

and uninformed traders) as

V (λ,∆λ) =
g2

min

2 · σ2
ε

·
(

1− ρ
ρ

)
=

ρ · (1− ρ)(
ρ+ λ2 · (1− ρ)

)2 ·
σ2
ε

2
, (3.28)

which in equilibrium equals the cost of information c.

The benefit of informed trading in Eq. (3.28) is solely due to the benefit of

hedging through additional investment opportunities. Similar to the noisy REE

setting of Grossman and Stiglitz (1980), the benefit of informed trading increases

in the idiosyncratic noise and decreases in the proportion of informed traders (i.e.,
∂V (λ,∆λ)

∂σε
> 0 and ∂V (λ,∆λ)

∂λ
< 0 ).25 Interestingly, Eq. (3.28) also shows that the

benefit of informed trading decreases in the amount of composition uncertainty

25The decreasing benefit function with the proportion of informed traders shows that the
strategic substitutability result of Grossman and Stiglitz (1980) in costly information acquisi-
tion is robust to composition uncertainty with maxmin preferences. The robustness of strategic
substitutability in costly information acquisition with maxmin preferences is consistent with the
findings of Easley et al. (2014). The finding is in contrast to Mele and Sangiorgi (2015), who
show that introducing ambiguity about the cash flow of the risky asset in the noisy REE setting
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(i.e, ∂V (λ,∆λ)
∂∆λ

< 0). Composition uncertainty is different from fundamental value

uncertainty (or idiosyncratic uncertainty) and in fact it has an opposite implication

for the benefit of informed trading. While it may seem straightforward to argue

that more uncertainty always leads to more benefit to the informed traders as in the

case of fundamental value uncertainty, this is not true for composition uncertainty.

This is because when an uncertainty-averse potential informed trader evaluates to

become informed he decides based on the worst case value of becoming informed.

In addition, the benefit of informed trading is hump-shaped with respect to the

effective risk aversion ρ. More precisely, V (λ,∆λ) increases in ρ if and only if

ρ < λ2
1+λ2

. The intuition of this result is similar to that of the perceived equity

premium. On the one hand, the increase in ρ increases the benefit of informed

trading from trading with more uninformed trading. On the other hand, the

increase in ρ is associated with low ρ∗ meaning less hedging opportunities for

the informed traders. Ultimately, whether V (λ,∆λ) increases or decreases in ρ

depends on the level of λ2. For smaller λ2, the benefit function V (λ,∆λ) is mostly

decreasing in ρ since the decrease in hedging benefit dominates the increase in

uninformed demand.

To provide more intuition about the benefit of informed trading, we decompose

the benefit function in Eq. (3.28) into the standard and uncertain components. It

is straightforward to decompose the benefit function V (λ,∆λ) as

V (λ,∆λ) = V (λ) +K(λ,∆λ), (3.29)

where

V (λ) =
ρ · (1− ρ)(

ρ+ λ · (1− ρ)
)2 ·

σ2
ε

2
, (3.30)

and

K(λ,∆λ) = ρ ·(1−ρ) ·
(

1(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 − 1(
ρ+ λ · (1− ρ)

)2) · σ2
ε

2
< 0, (3.31)

are the standard benefit of informed trading without composition uncertainty and

uncertain, which we term Knightian, component stemming from composition un-

certainty, respectively. Eq. (3.30) verifies the standard results that the value of

of Grossman and Stiglitz (1980) may lead to multiple equilibria and strategic complementarity in
information acquisition. Uncertainty about the composition of traders is absent in these papers.
Moreover, by separating composition uncertainty and uncertainty attitude with α−maxmin pref-
erences in Section 3.4, we show that indeed composition uncertainty with different uncertainty
attitudes can lead to multiple equilibria and information complementarity.
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becoming informed V (λ) increases with the idiosyncratic noise (i.e., ∂V (λ)
∂σε

> 0)

and decreases with the proportion of informed traders λ (i.e., ∂V (λ)
∂λ

< 0) (e.g.,

Grossman and Stiglitz (1980)). Unlike the value of knowing θ̃ in the noisy REE

setting, however, the value of becoming informed in this setting is due to the value

of access to additional investment opportunities.

The Knightian component K(λ,∆λ) introduces a variety of complications not cap-

tured by the standard fully revealing or the noisy partially revealing REE models.

First, it takes a negative value and leads to a lower value of information com-

pared to the fully revealing benchmark V (λ).26 Intuitively, although at different

times, the uncertainty-averse informed and uninformed traders are both affected

by the composition uncertainty, leading to a value reducing Knightian component.

At t = 0, the potential informed traders assume that the proportion of informed

traders in the market is its upper bound (λ2) since it corresponds to the lower

benefit of informed trading. At t = 1, the uninformed traders also assume that

the level of informed trading in the market is its upper bound since it corresponds

to the minimum value of perceived equity premium. Consequently, composition

uncertainty reduces the benefit of informed trading. Second, the Knightian compo-

nent decreases with composition and idiosyncratic uncertainty (i.e., ∂K(λ,∆λ)
∂∆λ

< 0

and ∂K(λ,∆λ)
∂σε

< 0). This is also intuitive since the amount of uncertainty (either

in the composition of traders or the fundamental value) determines how much the

Knightian component reduces the value of information. Lastly, the Knightian com-

ponent increases with the proportion of informed traders (i.e., ∂K(λ,∆λ)
∂λ

> 0). This

means the same amount of composition uncertainty leads to more value reducing

Knightian component for smaller proportion of informed traders. Put differently,

composition uncertainty has more impact on the value of information when the

proportion of informed traders is low. Formally, we have the following corollary.

Corollary 3.6. In the presence of composition uncertainty;

(i) the benefit of informed trading V (λ,∆λ) decreases with the proportion of

informed traders λ and the amount of uncertainty about the proportion of

informed traders ∆λ, and increases with the idiosyncratic noise σε;

(ii) the Knightian component K(λ,∆λ) is value reducing (i.e., K(λ,∆λ) < 0),

decreases with the amount of uncertainty about the proportion of informed

26In Section 3.4, we show that this result is robust up to a certain degree of uncertainty
aversion by employing a generalization of the maxmin, α−maxmin model (e.g., Marinacci (2002),
Ghirardato et al. (2004)).
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traders ∆λ and the idiosyncratic noise σε, and increases with the proportion

of informed traders λ.

Figure 3.1 illustrates these results. The figure shows that the benefit of informed

trading is hump-shaped and the Knightian component is U-shaped with respect

to the effective risk aversion of informed traders ρ (therefore, the correlation ρ∗

illustrated in Figure 3.6 in Appendix 3.2). Panels (A)-(B) of the figure illus-

trate that the benefit of informed trading increases and the Knightian component

decreases with the idiosyncratic noise σ2
ε . Panels (C)-(D) illustrate that the ben-

efit of informed trading decreases and the Knightian component increases with

the proportion of informed traders λ. Lastly, Panels (E)-(F) illustrate that the

benefit of informed trading and the Knightian component both decrease with

uncertainty about the proportion of informed traders ∆λ. These results extend

the standard fully revealing REE results along two dimensions. First, the addi-

tional investment opportunities introduce information advantages to the informed

traders (recall that in the standard REE, there is no benefit to become informed,

leading to Grossman-Stiglitz paradox). Second, uncertainty about the proportion

of informed traders introduces an additional market friction, reflecting a practical

challenge faced by real-world market participants.

As in the standard REE, for the information market equilibrium to exist, it must

be the case that the uninformed traders are indifferent between paying the cost

c and obtaining an additional benefit V (λ,∆λ) of becoming an informed trader.

The following proposition ensures that there exists a unique information market

equilibrium for the given cost range.

Proposition 3.7. There exists a unique information market equilibrium when

c ∈ [c, c̄],

c = ρ · (1− ρ) · σ
2
ε

2
and c̄ =

ρ · (1− ρ)(
ρ+ 2 · (1− ρ) ·∆λ

)2 · σ2
ε

2
. (3.32)

Moreover, the cost range (c̄− c) decreases with uncertainty about the proportion

of informed traders ∆λ.

The existence and uniqueness of the information market equilibrium guarantee an

overall equilibrium for each triple (λ,∆λ, p̃) for a fixed cost c in the cost range c ∈
[c, c̄]. The characterization of the overall equilibrium in Proposition 3.7 guarantees

that the results of REE given the proportion of informed traders hold in the
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Figure 3.1: The benefit of informed trading V (λ,∆λ) and the Knigh-
tian component K(λ,∆λ) against the effective risk aversion ρ.
Panels (A)-(B) plot the benefit of informed trading and the Knightian com-
ponent against the effective risk aversion (ρ) on the horizontal axis, for three
different values of the idiosyncratic noise (σ2

ε) when λ = 0.5 and ∆λ = 0.3.
Panels (C)-(D) plot the benefit of informed trading and the Knightian compo-
nent against the effective risk aversion (ρ), for three different values of informed
trading (λ) when ∆λ = 0.2 and σ2

ε = 1. Panels (E)-(F) plot the benefit of in-
formed trading against the effective risk aversion (ρ), for three different values
of uncertainty about the proportion of informed traders (∆λ) when λ = 0.5 and
σ2
ε = 1.
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given cost range.27 In addition, we can now investigate the effects of different

levels of cost of information on the perceived equity premium and the stock price.

Intuitively, a higher cost of information is associated with a lower proportion

of informed traders (therefore, less aggressive trading since they are more risk

tolerant). Moreover, a lower proportion of informed traders is associated with a

higher perceived equity premium due to a reduced competition. The next corollary

shows that this intuition is also correct in the presence of composition uncertainty.

Corollary 3.8. In the presence of composition uncertainty, increasing the cost of

information c increases the perceived equity premium g(λ,∆λ) and decreases the

stock price p̃.

Overall, the findings thus far ensure that when the traders are uncertainty averse

represented by maxmin preferences, an REE with uncertain composition of traders

satisfies most of the standard results and additionally allows us to investigate the

effects of composition uncertainty on the trading decisions, and consequently the

equilibrium outcomes. The predictions of our model follow from explicitly incor-

porating the transaction cost of liquidity in the form of composition uncertainty

in an otherwise standard fully revealing REE model. In our model, the market

microstructure cost of not knowing the composition of traders is priced in equi-

librium. This occurs because by bearing composition uncertainty at both decision

stages the uncertainty averse uninformed traders are disadvantaged and thus re-

quire a compensation in equilibrium, leading to an undervaluation of the risky

stock.

3.4 The Role of Uncertainty Aversion: α-maxmin

Model

The baseline model assumes that the traders are fully uncertainty averse. In

this section, we extend our analysis to account for different levels of the traders’

uncertainty aversion. The main motivation of this extension is to separate the

27The cost range is the maximum in the benchmark model with a value of c̄−c =
(1−ρ)2·(1+ρ)·σ2

ε

2ρ
and decreases with the amount of composition uncertainty since the lower bound c of the cost
range is fixed, whereas the upper bound c̄ decreases with uncertainty. When ∆λ = 0.5 (so that

λ1 = 0 and λ2 = 1), c = c̄ = ρ · (1− ρ) · σ
2
ε

2 . Figure 3.7 in Appendix 3.2 illustrates how the cost
range changes with respect to ρ, ∆λ, and σ2

ε .
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effects of composition uncertainty and uncertainty attitude of traders on the stock

prices, perceived equity premium, and benefit of informed trading.

We keep all the features of the baseline model intact and only add a differen-

tial characterization of traders’ uncertainty aversion. To disentangle composition

uncertainty and traders’ uncertainty aversion, we employ a generalization of the

maxmin model, α−maxmin model, which represents uncertainty by a set of prob-

ability distributions and uncertainty attitude by the parameter α determining the

weights given to the worst and best possible expected utilities (e.g., Marinacci

(2002), Ghirardato et al. (2004)). This formulation causes little loss in tractability

and stays in the class of non-smooth representation of traders’ preferences.

3.4.1 Traders’ demands

The demands of informed traders with α−maxmin preferences in the stock and

additional investment opportunities are the same as the baseline model since they

are immune to composition uncertainty during the trading stage (see Eqs. (3.9)

and (3.10)).

The uninformed traders analogously conjecture the price function as in Eq. (3.11)

(we denote the perceived equity premium by gα(λ,∆λ) ). However, they maximize

the convex combination of the minimum and maximum expected utilities over the

belief λ ∈ [λ1, λ2] as

α · min
λ̂∈[λ1,λ2]

Eλ̂(−e
−W̃U |p̃) + (1− α) · max

λ̂∈[λ1,λ2]
Eλ̂(−e

−W̃U |p̃). (3.33)

Eq. (3.33) nests the baseline model with full uncertainty aversion when α = 1

and represents uncertainty neutrality when α = 0.5. To capture the uncertainty

aversion of traders, we assume 0.5 ≤ α ≤ 1. Given the normal distribution

structure, the optimal demand of uninformed traders is determined by

max
XU

 α ·minλ̂∈[λ1,λ2]

((
Eλ̂[f̃ |p̃]− p̃

)
·XU − 1

2
· V arλ̂[f̃ |p̃] ·X2

U

)
+(1− α) ·maxλ̂∈[λ1,λ2]

((
Eλ̂[f̃ |p̃]− p̃

)
·XU − 1

2
· V arλ̂[f̃ |p̃] ·X2

U

)
 .

(3.34)
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Substituting the conditional mean and variance of the stock payoff in Eq. (3.13)

into Eq. (3.34) obtains

max
XU

 α ·minλ̂∈[λ1,λ2]

(
gα(λ,∆λ) ·XU − 1

2
· σ2

ε ·X2
U

)
+(1− α) ·maxλ̂∈[λ1,λ2]

(
gα(λ,∆λ) ·XU − 1

2
· σ2

ε ·X2
U

)
 , (3.35)

which is equivalent to

max
XU


(
α · gmin + (1− α) · gmax

)
·XU − 1

2
· σ2

ε ·X2
U , if XU ≥ 0,(

α · gmax + (1− α) · gmin

)
·XU − 1

2
· σ2

ε ·X2
U , if XU < 0.

(3.36)

In Eq. (3.36) gmin and gmax denote the minimum and maximum of the perceived eq-

uity premium gα(λ,∆λ). The only feasible optimal demand of uninformed traders

that follows from Eq. (3.36) is

XU =
α · gmin + (1− α) · gmax

σ2
ε

, (3.37)

where gα(λ2,∆λ) = gmin, gα(λ1,∆λ) = gmax, and α · gmin + (1−α) · gmax > 0. The

next proposition formally states the REE.

Proposition 3.9. Suppose λ1 = λ−∆λ > 0 and λ2 = λ+∆λ < 1 for ∆λ > 0. In

the presence of composition uncertainty, there exists an REE with the equilibrium

price given by

p̃ = f̄ + θ̃ − gα(λ,∆λ), (3.38)

and the informed and uninformed demands are given by, respectively

XI(θ̃, p̃) =
gα(λ,∆λ)

ρ · σ2
ε

, and XU(p̃) =
α · gmin + (1− α) · gmax

σ2
ε

, (3.39)

where

gα(λ,∆λ) =
ρ · σ2

ε

λ
·
(

λ+ ∆λ · (1− ρ) + 2·ρ·λ·∆λ
λ−∆λ

· (1− α)

ρ+ (λ+ ∆λ) · (1− ρ) + 2·ρ·∆λ
λ−∆λ

· (1− α)

)
, (3.40)

and gmin = gα(λ2,∆λ) and gmax = gα(λ1,∆λ) represent the minimum and maxi-

mum perceived equity premium gα(λ,∆λ), respectively.



Chapter 3 103

Proposition 3.9 suggests that most of the intuitions of the baseline maxmin model

carry forward. For example, when ρ = 1, gα(λ,∆λ) = σ2
ε and XI = XU = 1,

and when ρ = 0, gα(λ,∆λ) = 0, XI = 1/λ and XU = 0 irrespective of the un-

certainty attitude of traders. Proposition 3.9 characterizes the optimal demands,

perceived equity premium, and stock price as the traders become comparatively

more (α→ 1) or less (α→ 0.5) uncertainty averse. Naturally, Proposition 3.9 re-

duces to Proposition 3.2 with full uncertainty aversion when α = 1. It follows from

Proposition 3.9 that the informed traders increase while the uninformed traders

decrease their demand for the risky stock as they become more uncertainty averse.

That is, ∂XI
∂α

> 0 and ∂XU
∂α

< 0. The increasing (resp. decreasing) demand of

informed (resp. uninformed) traders with uncertainty aversion captures the fact

that they are immune (resp. susceptible) to composition uncertainty during the

trading stage. In addition, the perceived equity premium increases with the uncer-

tainty aversion (i.e., ∂gα(λ,∆λ)
∂α

> 0). Therefore, the stock price decreases with the

uncertainty aversion following the REE price function in Eq. (3.38). These results

suggest that in the baseline model, the demand of informed (resp. uninformed)

traders takes its maximum (resp. minimum), the perceived equity premium takes

its maximum, and the stock price takes its minimum value. Lastly, the results also

suggest that there is a threshold uncertainty aversion below which the uncertainty

premium component takes a negative value, leading to an uncertainty discount.

We report the threshold uncertainty aversion and the comparative statics with

respect to composition uncertainty ∆λ and uncertainty aversion α in the next

corollary.

Corollary 3.10. In the presence of composition uncertainty;

(i) the informed traders increase while the uninformed traders decrease their

demands for the risky stock with the uncertainty aversion α;

(ii) the perceived equity premium increases with the uncertainty aversion α;

(iii) there is an uncertainty aversion α∗ = 1
2

+ ∆λ
2λ

which equalizes the perceived

equity premium in the presence and absence of composition uncertainty (i.e.,

gα(λ,∆λ) = g(λ)) and divides the perceived equity premium with composi-

tion uncertainty into uncertainty premium, α > α∗ and uncertainty discount,

α < α∗, areas;
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(iv) the uncertainty premium increases with composition uncertainty ∆λ if and

only if

α >
1

2
+

λ ·∆λ
λ2 + (∆λ)2

= α∗∗. (3.41)

These results ensure that in the presence of composition uncertainty, there ex-

ists an REE for the given proportion λ of informed traders. In this REE, the

uncertainty premium prevails and increases with composition uncertainty when

the traders are sufficiently uncertainty averse (i.e., α > max(α∗, α∗∗) = α∗∗).

On the contrary, the uncertainty discount prevails and increases with compo-

sition uncertainty when the traders are not sufficiently uncertainty averse (i.e.,

α < min(α∗, α∗∗) = α∗)). While it is intuitive that more uncertainty reduces de-

mand for the uncertain asset and increases the uncertainty premium (as shown in

the baseline model), and consequently leads to an undervaluation of the stock, this

is not always the case. These intuitive results only obtain when the uninformed

traders are sufficiently uncertainty averse. When the traders are not sufficiently

uncertainty averse, more uncertainty can increase demand for the uncertain asset,

resulting in the uncertainty discount and stock overvaluation. The conditions for

sufficient uncertainty aversion (i.e., α∗ and α∗∗) decreases with the number of in-

formed traders λ and increases with the uncertainty ∆λ. This means a trader with

a given uncertainty aversion can be sufficiently (resp. insufficiently) uncertainty

averse for a high (resp. low) informed market and a low (resp. high) uncertainty.

The intuition of our results is analogous to Chapter 2 based on Aliyev and He

(2018a) who show that the sufficiently pessimistic (resp. optimistic) liquidity

provider or market maker facing uncertainty—quantified by non-additive proba-

bilities with Choquet expected utility preference—about the stock payoff provides

less (resp. more) liquidity by widening (resp. narrowing) the bid-ask spread. In

a sequential trading model, Aliyev and He (2018a) show that this occurs because

uncertainty about the payoff impacts the market maker’s perceived proportion of

informed traders (adverse selection risk). Unlike Aliyev and He (2018a), we model

uncertainty about the proportion of informed traders explicitly in an otherwise

fully revealing REE setting. In this setting, more uncertainty aversion always re-

duces the uninformed demand and increases the equity premium, but the same is

not true for more uncertainty, leading to the undervaluation and overvaluation of

the risky stock. In Figure 3.2, we contrast the benchmark (i.e., ∆λ = 0), baseline

maxmin (i.e., ∆λ > 0, α = 1), and extended α−maxmin (i.e., ∆λ > 0, α ∈ [0.5, 1])

models.
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Figure 3.2: The uninformed demand XU and the equity premium (g(λ), g(λ,∆λ), gα(λ,∆λ)) of uninformed traders
against composition uncertainty ∆λ and uncertainty attitude α.
Panels (A) and (C) plot the demand XU and the perceived equity premium of uninformed traders against uncertainty attitude α when
uncertainty ∆λ = 0.3. Panels (B) and (D) plot the demand XU and the perceived equity premium of uninformed traders against
composition uncertainty ∆λ when uncertainty attitude α = 0.75. Other parameter values are λ = 0.5 (i.e., equally populated market),
ρ = 0.5 (i.e., high correlation between η̃ and ε̃) and σ2

ε = 1 (i.e., standard normally distributed noise).
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Panel (A) shows that in the baseline model, the uninformed traders always re-

strict their risky stockholdings relative to the benchmark. However, their de-

mand increases as they become less uncertainty averse and becomes more than

the benchmark when they are not sufficiently uncertainty averse. Panel (B) shows

that the uninformed demand monotonically decreases with uncertainty about the

proportion of informed traders in the baseline model, but it is non-monotonic in

the extended model. Indeed, when the uninformed traders are not sufficiently

uncertainty averse, their demand can increase with uncertainty ∆λ. Panel (C)

illustrates that there is always an uncertainty premium in the baseline model (i.e.,

gα(λ,∆λ) > g(λ)) and there is an uncertainty aversion α∗ (given in Corollary

3.10) below which an uncertainty discount effect prevails (i.e., gα(λ,∆λ) < g(λ)).

Similarly, Panel (D) illustrates that the perceived equity premium monotonically

increases with uncertainty ∆λ about the proportion of informed traders when the

traders are fully uncertainty averse, but this is not the case when α < α∗∗.

3.4.2 Information market equilibrium

In this subsection, we characterize the information market equilibrium to inves-

tigate the impacts of different uncertainty attitudes of traders on the benefit of

informed trading. We first adapt Definition 3.5 of the information market equilib-

rium to the extended α−maxmin model.

Definition 3.11. For a given cost of information c and ∆λ > 0 an information

market equilibrium is λ such that: 0 < λ − ∆λ < λ + ∆λ < 1 and the ex ante

expected utilities (in the sense of α−maxmin) of informed and uninformed traders

are equal,

α ·minE[u(W̃ λ
I )] + (1−α) ·maxE[u(W̃ λ

I )] = α ·minE[u(W̃ λ
U )] + (1−α) ·maxE[u(W̃ λ

U )],

(3.42)

where the min and max operators are taken with respect to λ̂ ∈ [λ1, λ2].

The equilibrium follows from the same order of computing as the baseline model.

For the informed traders, substituting their optimal demands into their expected

utility, using the normality condition and final wealth obtain

E[u(W̃ λ
I )] = − exp

[
− (

g(λ,∆λ)2

2 · ρ · σ2
ε

− c)
]
. (3.43)
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The ex ante expected utility of informed traders in the extended α−maxmin model

follows from Eqs. (3.42) and (3.43) as

− α · exp
[
− (

g2
min

2 · ρ · σ2
ε

− c)
]
− (1− α) · exp

[
− (

g2
max

2 · ρ · σ2
ε

− c)
]
. (3.44)

For the uninformed traders, the same order of calculations obtains

E[u(W̃ λ
U)] = − exp

[
−
(
α · gmin + (1− α) · gmax

)2

2 · σ2
ε

]
. (3.45)

The recursive utility representation of the ex ante expected utility of staying an

uninformed is the same as Eq. (3.45).

Combining Eqs. (3.44) and (3.45) and solving for the cost or benefit of informed

trading obtains

Vα(λ,∆λ) =− ln

[
α · exp(

−g2
min

2 · ρ · σ2
ε

) + (1− α) · exp(
−g2

max

2 · ρ · σ2
ε

)

]
−
(
α · gmin + (1− α) · gmax

)2

2 · σ2
ε

,

(3.46)

where the first and second terms show the ex ante expected wealth of informed

and uninformed traders, respectively. The equilibrium proportion of informed

traders similarly follows from Vα(λ,∆λ) = c. When α = 1, the benefit of informed

trading Vα(λ,∆λ) reduces to that of the baseline model in Eq. (3.28) (recall

that in the benchmark and baseline models V (λ,∆λ) monotonically decreases in

λ). Interestingly, Eq. (3.46) also shows that the benefit of informed trading in

the extended α−maxmin model is non-monotonic in the proportion of informed

traders. Unlike the benchmark and baseline models, when the traders are not

fully uncertainty averse an information purchase by one trader can increase other

trader’s information demand.

When the traders are sufficiently uncertainty averse (i.e., α > α∗∗), the increase

in the proportion of informed traders λ decreases the equity premium and de-

mands of both types of traders due to enhanced competition (see Corollary 3.3

(ii) and (iv)), leading to a lower benefit of informed trading Vα(λ,∆λ). When

the traders are not sufficiently uncertainty averse α < α∗, however, the increase

in λ can increase the perceived equity premium, and consequently the benefit of

informed trading Vα(λ,∆λ). Moreover, it follows from Corollary 3.10 (iii) and
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(iv) that the sufficient level of uncertainty aversion (i.e., α∗ and α∗∗) for the un-

certainty premium to prevail and increase with composition uncertainty decreases

in the proportion of informed traders (i.e., ∂α∗

∂λ
< 0 and ∂α∗∗

∂λ
< 0). That means

the traders with the same uncertainty aversion α can be sufficiently uncertainty

averse for the high proportion of informed traders λ, but not as sufficient for the

low λ. These intuitive results lead to what may seem counter-intuitive (the ben-

efit of informed trading is non-monotonic in the proportion of informed traders).

Switching between insufficiently uncertainty averse (i.e., α < α∗) to sufficiently

uncertainty averse (i.e., α > α∗∗) due to an increase in the number of informed

traders causes the benefit of informed trading to be non-monotonic in the number

of informed traders.

Figure 3.3 illustrates the sufficient level of uncertainty aversion, perceived equity

premium, and benefit of informed trading when the uncertainty aversion α = 0.75

and uncertainty ∆λ = 0.1 (the horizontal axis λ ∈ (0.1, 0.9) so that λ1 > 0 and

λ2 < 1). Panel (A) illustrates that traders with the given uncertainty aversion

α = 0.75 can be sufficiently uncertainty averse (i.e., α > α∗∗) for high, but not as

sufficient (i.e., α < α∗) for low informed trading. By contrasting the perceived eq-

uity premium in the benchmark, baseline, and extended models, Panel (B) shows

that the perceived equity premium in the benchmark and baseline models mono-

tonically decreases in the amount of informed trading λ, whereas it can increase

in the extended model when the informed trading is low. Consequently, Panel (C)

shows the well-known negative relation between the benefit of informed trading

and the number of informed traders in the benchmark and baseline models. In

the extended α-maxmin model, however, the benefit of informed trading is no

longer monotonic in the number of informed traders, leading to the information

complementarity and multiple information market equilibria.

The literature has shown different mechanisms that lead to information comple-

mentarities (i.e., more agents acquire information and makes it more valuable for

the uninformed agents to acquire private information) and multiple information

market equilibria. These mechanisms include, for instance, a correlation between

fundamentals and noisy supply (e.g., Barlevy and Veronesi (2000, 2008), a com-

petitive information market (e.g., Veldkamp (2006)), large shocks independently

affecting the fundamental value and the exogenous trading (e.g., Chamley (2010)),

private information about both dividends and supply (e.g., Ganguli and Yang

(2009)), relative wealth concerns of the agents (e.g., Garcia and Strobl (2011)), a

departure from the normality assumption (e.g., Breon-Drish (2012)), a trade-off
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Figure 3.3: The uncertainty aversion (α, α∗, and α∗∗), perceived
equity premium (g(λ), g(λ,∆λ), and gα(λ,∆λ)), and benefit of in-
formed trading (V (λ), V (λ,∆λ), and Vα(λ,∆λ)) against the propor-
tion of informed traders λ.
Panel (A) plots the sufficient uncertainty aversion conditions α∗ and α∗∗, and
the traders’ uncertainty aversion α = 0.75, Panel (B) plots the perceived equity
premium in the benchmark g(λ), baseline g(λ,∆λ), and extended gα(λ,∆λ)
models, and Panel (C) plots the benefit of informed trading in the benchmark
V (λ), baseline V (λ,∆λ), and extended Vα(λ,∆λ) models against the proportion
of informed traders λ. A fixed cost of information c = 0.25. Other parameter
values are ρ = 0.5, ∆λ = 0.1, and σ2

ε = 1.

between dividend information and supply information (e.g., Avdis (2016)), and

ambiguity about cash flows (e.g., Mele and Sangiorgi (2015)). This chapter adds

Knightian uncertainty or ambiguity about the composition of traders to this list.
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What’s interesting about the information complementarities stemming from com-

position uncertainty is that it has an ability to conceal itself in different charac-

terizations of the traders’ preferences. The composition uncertainty and uncer-

tainty aversion as in the baseline maxmin model are not enough to reveal the

non-monotonic relation between the benefit and level of informed trading. The

sufficient uncertainty aversion condition inversely related to the proportion of in-

formed traders is crucial to generate this non-monotonicity.

We conclude this section by illustrating the benefit of informed trading in the ex-

tended α-Maxmin and benchmark models. In Figure 3.4, V (λ) (black fixed layer)

and Vα(λ,∆λ) (white curved layer) plot the benefit of informed trading in the

absence and presence of composition uncertainty in Eqs. (3.30) and (3.46), re-

spectively. Similar to the baseline model, the Knightian component is determined

by the difference between the two (i.e., Vα(λ,∆λ) = V (λ)+Kα(λ,∆λ)). The figure

shows that unlike the baseline model, the Knightian component is value enhanc-

ing (i.e., Kα(λ,∆λ) > 0) when the traders are sufficiently uncertainty averse and

reducing (i.e., Kα(λ,∆λ) < 0) when they are not. This is intuitive because when

the uninformed traders are sufficiently uncertainty averse, their demand decreases

with the amount of uncertainty ∆λ, leading to a lower benefit to the informed

traders and vice versa. Figure 3.4 also shows that similar to the equity premium,

there is an uncertainty aversion α∗∗∗ which equalizes the value of information in

the presence and absence of composition uncertainty (i.e., Vα(λ,∆λ) = V (λ)),

leading the Knightian component to be zero. When α < α∗∗∗ (resp. α > α∗∗∗),

the Knightian component is value enhancing (resp. value reducing).

Figure 3.4: The benefit of informed trading (V (λ), Vα(λ,∆λ)) against
composition uncertainty ∆λ and uncertainty aversion α.
The figure plots the benefit of informed trading in the presence (white curved
layer) and in the absence (black fixed layer) of composition uncertainty against
the amount of composition uncertainty ∆λ and uncertainty attitude α of the
traders. The parameter values are ρ = 0.25, λ = 0.5 and σ2

ε = 1.
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3.5 Empirical Implications

In this section, we discuss the empirical implications of our model.

3.5.1 Liquidity and asset prices

A large number of empirical market microstructure studies link the asset prices

to a variety of liquidity measures such as bid-ask spreads, market depths and vol-

umes (e.g., Amihud (2002), Brennan and Subrahmanyam (1996)). For example,

Amihud and Mendelson (1986) find that market-observed expected return is in-

creasing in the spread and Amihud (2002) finds that unanticipated increases in

market illiquidity reduce the level of stock prices. Our model provides a theoretical

explanation for the empirical findings about the impacts of liquidity on prices. In

our model, when composition uncertainty increases, the sufficiently uncertainty-

averse uninformed traders reduce their demand (liquidity provision) and require

an extra premium as a compensation, leading to a reduction in the stock price,

explaining the pricing implications of liquidity.

A large volume of work has also documented a stock market overvaluation (e.g.,

dot-com bubble) and undervaluation (e.g., global financial crisis), that are hard to

explain with the standard asset pricing models. These results are often explained

by behavioral theories in which the degree of mispricing depends on unobservable

biases in investors’ beliefs (e.g., Barberis et al. (1998), and Hong and Stein (1999)).

Our model with composition uncertainty offers an alternative unified explanation

for the stock undervaluation and overvaluation since the liquidity in our model has

a first order effect on the level of asset prices. Our results build upon a rational

response by investors in the presence of trading friction, reverberating practical

challenges faced by the real world market participants.

3.5.2 Extreme price movements

In modern financial markets, instantaneous and extreme price movements (i.e.,

micro flash crashes) occur nearly every day.28 Our model proposes two plausible

28See, for example, “Flash crashes more common than thought in world’s biggest market”
(Bloomberg, December 7, 2017), “The stock market has about 12 mini flash crashes a day —
and we can’t prevent them” (MarketWatch, July 31, 2017).
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explanations for this phenomena, even without substantial news about the funda-

mentals. First, a sudden increase in the uncertainty about the informed trading

∆λ can cause the sufficiently uncertainty averse traders to significantly increase

their perceived equity premium, leading to a significant price drop. Similarly,

when the traders are not sufficiently uncertainty averse, a sudden increase in the

uncertainty about the informed trading can cause a significant reduction in the

traders’ perceived equity premium and result in a large price surge.

Second, the complementarity in information acquisition and equilibrium multiplic-

ity in our model can also help to explain the price jumps. When the risky stock

has a high fundamental value, given the cost of information, in equilibrium the

economy can be populated by a high or low number of informed traders. While

a high fundamental value with a high informed trading is associated with a high

price, a high fundamental value with a low informed trading is associated with a

low price. Jumping from the high (resp. low) informed trading equilibrium to the

low (resp. high) informed trading equilibrium can cause a large price drop (resp.

surge) in financial markets. A similar argument holds when the stock has a low

fundamental value.

3.5.3 Policy implications

One general but important policy message that follows from our analysis is that

a regulator must pay attention to uncertainty about the financial market mi-

crostructure. In our model, the uninformed traders draw correct but incomplete

inferences from the price due to uncertainty about the composition of traders.

Although the informed and uninformed traders are both subject to composition

uncertainty, the nature of trading disadvantages the uninformed compared to the

informed traders, even in the absence of noisy supply (e.g., Grossman and Stiglitz

(1980), Hellwig (1980)). This is of particular interest because the capital market

regulation is mainly concerned with maintaining a level playing field for the mar-

ket participants. Thus the regulator must monitor uncertainty about the market

characteristics and maintain an equal environment for everyone to ensure price

efficiency.

Our analysis also suggests that reducing the cost of information or greater disclo-

sure rules such as the FAS rule 157 and a mark-to-market accounting legislation

implemented in 2007, may aggravate market efficiency. The complementarity of
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information acquisition decisions of traders suggests that merely reducing the cost

of information can reduce the number of informed traders, leading the prices to be

less informative about the fundamentals. On the other hand, due to the multiplic-

ity of equilibrium for the given cost of information, increasing this cost may also

decrease the number of informed traders, leading to the same outcome of less infor-

mative prices. Thus our analysis suggests that a palliative approach of increasing

or decreasing the cost of information to enhance market efficiency may not work

without maintaining a fair trading environment that treats traders equally.

3.6 Model Discussion and Extensions

In this chapter, we develop an REE model to investigate the pricing implications

of uncertainty about the composition of traders. A natural concern in our analysis

is the simplicity of our model. In this section, we discuss some other natural

extensions of our baseline model.

3.6.1 Dynamic analysis

Our model incorporates information acquisition stage and the trading stage after

which all uncertainty is resolved. Allowing for multiple periods complicates the

analysis but for some reasonable specifications does not change our results. As

in the standard REE framework, it is straightforward to demonstrate that if new

information arrives every period and information is independent across periods,

then the resulting equilibrium remains the same. In addition, it seems to us

that the strategic trader models (e.g., Kyle (1985)) and sequential trading models

(e.g., Glosten and Milgrom (1985)) are more suitable for the dynamic analysis of

composition uncertainty. Aliyev et al. (2018) focus on the dynamic analysis of

composition uncertainty in a sequential trading model to show that composition

uncertainty can lead to market instability and sharp price movements in financial

markets in the face of order imbalance, explaining the prevalence of flash crashes

in the algorithmic era.
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3.6.2 Other sources of uncertainty

The other natural extension of the model is to allow the market participants to

have uncertainty not only about the proportion of informed traders but also other

dimensions of informed trading such as the quality of their information. In our

model, the quality of informed traders’ information is determined by the residual

randomness σ2
ε in the payoff. Thus, this extension is equivalent to σ2

ε to be uncer-

tain (i.e., σ2
ε ∈ [σ2

ε, σ̄
2
ε ]) (see Epstein and Schneider (2008) and Illeditsch (2011) for

models characterizing uncertainty through an interval of signal variances). In the

presence of uncertainty about the proportion and quality of informed traders’ infor-

mation, the optimal demands of informed and uninformed traders are unchanged

with the same equilibrium price function given Eq. (3.16), and the perceived

equity premium is given by

g(λ,∆λ) =
ρ · σ̄2

ε

λ
·
(

λ+ ∆λ · (1− ρ)

ρ+ (λ+ ∆λ) · (1− ρ)

)
. (3.47)

Eq. (3.47) shows that the perceived equity premium with other source of uncer-

tainty is higher, and consequently the stock price is lower than that of the baseline

model with only uncertainty about the proportion of informed traders.

3.6.3 Multiple assets

Our model features a small economy with one risk-free bond, one risky asset

available to everyone and additional investment opportunities available to only

informed traders. It is also interesting to see how uncertainty about the composi-

tion of market participants would play out in a large economy with multiple risky

assets. In fact, in a noisy REE with multiple assets, Admati (1985) shows that

uncertainty about other assets’ supplies may prevent the prices of assets in fixed

supply from being fully revealing, leading to a positive value of private informa-

tion. This is in line with our analysis of the risky asset in a fixed supply having a

positive value of information due to a correlation ρ∗ between additional investment

opportunities and idiosyncratic noise. Admati (1985) also shows that the market

participants have different risk-return tradeoff because of the diverse information

they hold. This is also consistent with our finding that uninformed traders require

an uncertainty premium as a compensation for uncertainty about the proportion of
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informed traders. Further studies are needed in multi-uncertainty and multi-asset

setting.

3.7 Conclusion

We construct an REE to demonstrate the effects of uncertainty about the compo-

sition of traders on the equilibrium demands of traders, perceived equity premium,

stock prices, and benefit of informed trading. To capture uncertainty about the

composition of traders, we employ the maxmin expected utility preference in our

baseline model and extend the analysis with the α−maxmin preference to explic-

itly separate uncertainty and uncertainty attitude of traders. The generalization

of the standard REE to capture composition uncertainty helps to understand the

crowded-trade problem and can explain empirical regularities which are difficult

to explain with the standard REE.

Uncertainty about the composition of traders introduces a variety of complications

faced by the real world market participants not captured by the standard models.

During the trading stage, although exposed, the informed traders are immune to

composition uncertainty since they don’t use the uncertain price function, lead-

ing the uncertainty-averse uninformed traders to be disadvantaged in the face of

composition uncertainty. Our baseline model shows that composition uncertainty

induces an uncertainty premium which increases in the amount of composition

uncertainty and leads to a stock undervaluation relative to the informationally ef-

ficient benchmark with no such uncertainty. The benefit of informed trading in this

setting naturally incorporates the standard and uncertain Knightian components.

Since the traders are fully uncertainty averse in the baseline model, the Knightian

component is always value reducing and further decreases in the amount of uncer-

tainty. As in the standard REE, the benefit of informed trading in the baseline

model monotonically decreases in the number of informed traders. In the extended

model, we show that the perceived equity premium increases and the stock price

decreases in traders’ uncertainty aversion. We characterize the sufficient level of

uncertainty aversion for our results in the baseline model to hold and show that the

opposite scenario (i.e., uncertainty discount and stock overvaluation) can obtain

when traders are not sufficiently uncertainty averse. The condition for the suffi-

cient level of uncertainty aversion is inversely related to the number of informed

traders. Consequently, the benefit of informed trading becomes non-monotonic
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in the number of informed traders, leading to complementarities in information

acquisition and multiple information market equilibria.

In general, asset pricing models focus on uncertainty about the fundamental val-

ues of assets and assume that the market microstructure costs are not priced in

equilibrium due to the symmetric information structure. The analysis in this

chapter emphasizes the importance of uncertainty about the market characteris-

tics in determining asset prices, and consequently shows that the liquidity and

stock prices are intertwined, and suggests a unified explanation for the stock mar-

ket over/undervaluation, a channel for extreme price movements, and important

policy implications.
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Appendix 3.1. Proofs

Proof of Proposition 3.2. We start the proof by the possible optimal demand

functions of the uninformed traders which follow from the first order conditions

(F.O.C.) of Eq. (3.14) as

XU =


gmin

σ2
ε
, if gmin > 0,

0, if gmin < 0 < gmax,

gmax

σ2
ε
, if gmax < 0.

(A3.1.1)

We then assess the feasibility of the possible optimal demand functions of the

uninformed traders given in Eq. (A3.1.1) case by case. First, substituting

XI =
(f̄ + θ̃ − p̃)
ρ · σ2

ε

and XU =
gmin

σ2
ε

for gmin > 0, (A3.1.2)

into the market clearing condition and solving for the equilibrium price yields

p̃ = f̄ + θ̃ −
ρ ·
(
σ2
ε − (1− λ) · gmin

)
λ

. (A3.1.3)

Comparing the equilibrium price in Eq. (A3.1.3) with the conjectured price func-

tion of the uninformed traders in Eq. (3.11), we obtain the perceived equity

premium as

g(λ,∆λ) =
ρ ·
(
σ2
ε − (1− λ) · gmin

)
λ

. (A3.1.4)

The perceived equity premium g(λ,∆λ) in Eq. (A3.1.4) takes its minimum at λ1

if gmin > σ2
ε and at λ2 if gmin < σ2

ε . Assuming g(λ,∆λ) takes its minimum at λ2,

we obtain

gmin =
ρ · σ2

ε

ρ+ λ2 · (1− ρ)
> 0, (A3.1.5)

which is consistent with gmin < σ2
ε since 0 < ρ < 1 and 0 < λ2 < 1. Assuming

g(λ,∆λ) takes its minimum at λ1 leads to gmin < σ2
ε which contradicts that Eq.

(A3.1.4) takes its minimum at λ1 when gmin > σ2
ε . Second, substituting

XI =
(f̄ + θ̃ − p̃)
ρ · σ2

ε

and XU = 0 for gmin < 0 < gmax, (A3.1.6)

into the market clearing condition and rearranging for the equilibrium price func-

tion obtains the perceived equity premium g(λ,∆λ) = ρ·σ2
ε

λ
, which is minimum at



Chapter 3 118

λ2. However, gmin = ρ·σ2
ε

λ2
is inconsistent with gmin < 0 < gmax. Lastly, substituting

XI =
(f̄ + θ̃ − p̃)
ρ · σ2

ε

and XU =
gmax

σ2
ε

for gmax < 0 (A3.1.7)

into the market clearing condition obtains

g(λ,∆λ) =
ρ ·
(
σ2
ε − (1− λ) · gmax

)
λ

, (A3.1.8)

which is maximum at λ2 if gmax > σ2
ε and at λ1 if gmax < σ2

ε . The former case is

inconsistent with gmax > σ2
ε and the latter is inconsistent with gmax < 0. Hence,

the optimal demand of uninformed traders is given by

XU =
gmin

σ2
ε

=
ρ

ρ+ λ2 · (1− ρ)
, (A3.1.9)

where gmin > 0 is given by Eq. (A3.1.5) and the equilibrium price function is given

by

p̃ = f̄ + θ̃ − g(λ,∆λ), (A3.1.10)

where the last term is the perceived equity premium and is given by

g(λ,∆λ) =
ρ · σ2

ε

λ
·
(

λ+ ∆λ · (1− ρ)

ρ+ (λ+ ∆λ) · (1− ρ)

)
, (A3.1.11)

leading to

XI =
(f̄ + θ̃ − p̃)
ρ · σ2

ε

=
g(λ,∆λ)

ρ · σ2
ε

=
λ+ ∆λ · (1− ρ)

λ ·
(
ρ+ (λ+ ∆λ) · (1− ρ)

) . (A3.1.12)

�

Proof of Corollary 3.3. (i) follows from the partial derivatives of informed and

uninformed demands in Eqs. (A3.1.9) and (A3.1.12) w.r.t. ∆λ,

∂XI

∂∆λ
=

ρ · (1− ρ) · (1− λ)

λ ·
(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 > 0, (A3.1.13)

∂XU

∂∆λ
= − ρ · (1− ρ)(

ρ+ (λ+ ∆λ) · (1− ρ)
)2 < 0. (A3.1.14)
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(ii) follows from the partial derivatives of informed and uninformed demands w.r.t.

λ,

∂XI

∂λ
= −

(1− ρ) ·
(
λ2 + ∆λ2 · (1− ρ) + ∆λ ·

(
ρ+ 2 · λ · (1− ρ)

))
λ2 ·

(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 < 0,

(A3.1.15)
∂XU

∂λ
= − λ+ ∆λ(

ρ+ (λ+ ∆λ) · (1− ρ)
)2 > 0. (A3.1.16)

(iii) follows from the partial derivatives of informed and uninformed demands w.r.t.

ρ,
∂XI

∂ρ
= − (1− λ) · (λ+ ∆λ)

λ ·
(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 < 0, (A3.1.17)

∂XU

∂ρ
=

λ+ ∆λ(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 > 0. (A3.1.18)

The opposite obtains for the correlation ρ∗ since ρ = 1− ρ∗2

(iv) follows from the partial derivatives of perceived equity premium g(λ,∆λ) in

Eq. (A3.1.11) w.r.t. ∆λ, σ2
ε , λ, and ρ,

∂g(λ,∆λ)

∂∆λ
=
ρ · σ2

ε

λ
· ρ · (1− ρ) · (1− λ)(

ρ+ (λ+ ∆λ) · (1− ρ)

)2 > 0, (A3.1.19)

∂g(λ,∆λ)

∂σε
=

2ρ · σε
λ
·
(

λ+ ∆λ · (1− ρ)

ρ+ (λ+ ∆λ) · (1− ρ)

)
> 0, (A3.1.20)

∂g(λ,∆λ)

∂λ
= −

ρ · (1− ρ) ·
(
λ2 + ∆λ2 · (1− ρ) + ∆λ ·

(
ρ+ 2 · λ · (1− ρ)

))
· σ2

ε

λ2 ·
(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 < 0,

(A3.1.21)

∂g(λ,∆λ)

∂ρ
=

(
λ2 + ∆λ2 · (1− ρ)2 + ∆λ ·

(
λ · (2− 2ρ+ ρ2)− ρ2

))
σ2
ε

λ ·
(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 > 0,

(A3.1.22)

if and only if

ρ <
λ2

1− λ2

·
(√(1− λ)

∆λ
− 1
)
. (A3.1.23)
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(v) follows from (iv) and the equilibrium price function in Eq. (A3.1.10).

�

Proof of Corollary 3.4. The proofs of (i), (ii), and (iii) are immediate from

the proofs of Corollary 3.3 (i), (iv), (v) respectively (or one can write explicitly

the demands, perceived equity premium, and the stock price with no composition

uncertainty by taking ∆λ = 0 in Eqs. (A3.1.9), (A3.1.10), (A3.1.11), and (A3.1.12)

and compare them directly to Eqs. (A3.1.9), (A3.1.10), (A3.1.11), and (A3.1.12)

for ∆λ > 0).

�

Proof of Corollary 3.6. (i) follows from the partial derivatives Eq. (3.28) w.r.t

λ, ∆λ, and σ2
ε , respectively

∂V (λ,∆λ)

∂λ
= − ρ · (1− ρ)2 · σ2

ε(
ρ+ (λ+ ∆λ) · (1− ρ)

)3 < 0, (A3.1.24)

∂V (λ,∆λ)

∂∆λ
= − ρ · (1− ρ)2 · σ2

ε(
ρ+ (λ+ ∆λ) · (1− ρ)

)3 < 0. (A3.1.25)

∂V (λ,∆λ)

∂σε
=

ρ · (1− ρ) · σε(
ρ+ (λ+ ∆λ) · (1− ρ)

)2 > 0. (A3.1.26)

(ii) K(λ, λ,∆λ) < 0 follows from Eq. (3.31) proving that the Knightian component

is value reducing. Partial derivatives of K(λ,∆λ) w.r.t. λ, ∆λ, and σε obtain

∂K(λ,∆λ)

∂λ
= ρ·(1−ρ)2 ·

(
1(

ρ+ λ · (1− ρ)
)3−

1(
ρ+ (λ+ ∆λ) · (1− ρ)

)3

)
·σ2
ε > 0,

(A3.1.27)
∂K(λ,∆λ)

∂∆λ
= − ρ · (1− ρ)2 · σ2

ε(
ρ+ (λ+ ∆λ) · (1− ρ)

)3 < 0, (A3.1.28)

∂K(λ,∆λ)

∂σε
= ρ · (1−ρ) ·

(
1(

ρ+ (λ+ ∆λ) · (1− ρ)
)2 −

1(
ρ+ λ · (1− ρ)

)s) ·σε < 0.

(A3.1.29)

�

Proof of Proposition 3.7. For the information market equilibrium to exist it

must be the case that V (λ,∆λ) in Eq. (3.28) equals to the cost of information c,
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i.e.,
ρ · (1− ρ)(

ρ+ (λ+ ∆λ) · (1− ρ)
)2 ·

σ2
ε

2
= c. (A3.1.30)

Since Eq. (A3.1.30) decreases with the level of informed trading λ and the com-

position uncertainty ∆λ, c takes its lower bound when λ+ ∆λ = 1 and the upper

bound when λ−∆λ = 0. Solving λ from Eq. (A3.1.30) obtains

λ =

√
ρ·(1−ρ)·σ2

ε

2·c − ρ(
1− ρ

) −∆λ. (A3.1.31)

It follows from Eq. (A3.1.31) that the lower and the upper bounds of the cost

range for the unique λ to exist such that λ2 < 1 and λ1 > 0 are, respectively,

given by

c = ρ · (1− ρ) · σ
2
ε

2
, (A3.1.32)

c̄ =
ρ · (1− ρ)(

ρ+ 2 · (1− ρ) ·∆λ
)2 ·

σ2
ε

2
. (A3.1.33)

Finally, we show that the size of the cost range (c̄− c) decreases in ∆λ. Following

Eqs. (A3.1.32) and (A3.1.33)

c̄− c = ρ · (1− ρ) ·
(

1(
ρ+ 2 · (1− ρ) ·∆λ

)2 − 1

)
· σ

2
ε

2
, (A3.1.34)

and the partial derivative of (c̄− c) w.r.t. ∆λ yields

∂(c̄− c)
∂∆λ

= − 2 · ρ · (1− ρ)2 · σ2
ε(

ρ+ 2 · (1− ρ) ·∆λ
)3 < 0. (A3.1.35)

�

Proof of Corollary 3.8. (i) follows from

∂g(λ,∆λ)

∂λ︸ ︷︷ ︸
−

=
∂g(λ,∆λ)

∂c︸ ︷︷ ︸
+

· ∂c
∂λ︸︷︷︸
−

, (A3.1.36)

where ∂g(λ,∆λ)
∂λ

and ∂c
∂λ

are given in Eqs. (A3.1.21) and (A3.1.24) respectively. (ii)

follows from (i) and the equilibrium price function in Eq. (A3.1.10).

�
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Proof of Proposition 3.9. The proof follows similar to the proof of Proposition

3.2. The possible optimal demand functions of uninformed traders follow from the

F.O.C. of Eq. (3.36) as

XU =



α · gmin + (1− α) · gmax

σ2
ε

, if α · gmin + (1− α) · gmax > 0,

0, if α · gmin + (1− α) · gmax < 0 < α · gmax + (1− α) · gmin,

α · gmax + (1− α) · gmin

σ2
ε

, if α · gmax + (1− α) · gmin < 0.

(A3.1.37)

We evaluate the feasibility of the possible demand functions given in Eq. (A3.1.37)

case by case. First, substituting

XI =
(f̄ + θ̃ − p̃)
ρ · σ2

ε

and XU =
α · gmin + (1− α) · gmax

σ2
ε

(A3.1.38)

into the market clearing condition, we obtain the stock price as

p̃ = f̄ + θ̃ −
ρ ·
(
σ2
ε − (1− λ) ·

(
α · gmin + (1− α) · gmax

))
λ

. (A3.1.39)

From the conjectured price function in Eq. (3.11) the perceived equity premium

gα(λ,∆λ) follows as

gα(λ,∆λ) =

ρ ·
(
σ2
ε − (1− λ) ·

(
α · gmin + (1− α) · gmax

))
λ

. (A3.1.40)

Following Eq. (A3.1.40) gα(λ2,∆λ) = gmin and gα(λ1,∆λ) = gmax if α · gmin + (1−
α) · gmax < σ2

ε and gα(λ1,∆λ) = gmin and gα(λ2,∆λ) = gmax if α · gmin + (1− α) ·
gmax > σ2

ε . Suppose gmin = gα(λ2,∆λ) and gmax = gα(λ1,∆λ). Then,

gmin =

ρ ·
(
σ2
ε − (1− λ2) ·

(
α · gmin + (1− α) · gmax

))
λ2

, (A3.1.41)

gmax =

ρ ·
(
σ2
ε − (1− λ1) ·

(
α · gmin + (1− α) · gmax

))
λ1

. (A3.1.42)

Solving Eqs. (A3.1.41) and (A3.1.42) for gmin and gmax obtains
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gmin =

ρ · σ2
ε ·
(
λ1 + ρ · (λ2 − λ1) · (1− α)

)
ρ · λ1 · (1− λ2) · α + λ2 ·

(
λ1 + ρ · (1− λ1) · (1− α)

) , (A3.1.43)

gmax =

ρ · σ2
ε ·
(
λ2 − ρ · (λ2 − λ1) · α

)
ρ · λ1 · (1− λ2) · α + λ2 ·

(
λ1 + ρ · (1− λ1) · (1− α)

) . (A3.1.44)

Substituting Eqs. (A3.1.43) and (A3.1.44) into α · gmin + (1− α) · gmax yields

α·gmin+(1−α)·gmax =
ρ ·
(
λ1 · α + λ2 · (1− α)

)
· σ2

ε

λ1 · λ2 + ρ · λ1 · (1− λ2) · α + ρ · λ2 · (1− λ1) · (1− α)
< σ2

ε ,

(A3.1.45)

for 0 < λ1 < λ < λ2 < 1 and 0 < ρ < 1. Inserting Eq. (A3.1.45) into Eq.

(A3.1.40) and rearranging obtain

gα(λ,∆λ) =
ρ · σ2

ε

λ
·
(

λ+ ∆λ · (1− ρ) + 2·ρ·λ·∆λ
λ−∆λ · (1− α)

ρ+ (λ+ ∆λ) · (1− ρ) + 2·ρ·∆λ
λ−∆λ · (1− α)

)
. (A3.1.46)

Calculations parallel to (A3.1.41)-(A3.1.45) result in contradiction when gmin =

gα(λ1,∆λ) and gmax = gα(λ2,∆λ).

Second, substituting

XI =
(f̄ + θ̃ − p̃)
ρ · σ2

ε

and XU = 0, (A3.1.47)

into the market clearing condition yields gα(λ,∆λ) = ρ·σ2
ε

λ
, which leads to gmin =

gα(λ2,∆λ) > 0 and gmax = gα(λ1,∆λ) > 0, and therefore α·gmin+(1−α)·gmax > 0,

contradicting the condition α · gmin + (1− α) · gmax < 0. Lastly, substituting

XI =
(f̄ + θ̃ − p̃)
ρ · σ2

ε

and XU =
α · gmax + (1− α) · gmin

σ2
ε

(A3.1.48)

into the market clearing condition yields

gα(λ,∆λ) =

ρ ·
(
σ2
ε − (1− λ) ·

(
α · gmax + (1− α) · gmin

))
λ

(A3.1.49)

which leads to gmin = gα(λ2,∆λ) and gmax = gα(λ1,∆λ) if α·gmax+(1−α)·gmin < σ2
ε

and gmin = gα(λ1,∆λ) and gmax = gα(λ2,∆λ) if α · gmax + (1 − α) · gmin > σ2
ε ,

contradicting the condition α · gmax + (1− α) · gmin < 0 in Eq. (A3.1.37),

�
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Proof of Corollary 3.10. (i) and (ii) follow from the partial derivatives of XI ,

XU and g(λ,∆λ) w.r.t. α. For the uninformed traders

∂XU

∂α
=

1

σ2
ε

·
(
gmin + α · ∂gmin

∂α
− gmax + (1− α) · ∂gmax

∂α

)
. (A3.1.50)

Inserting gmin, gmax in Eqs. (A3.1.43) and (A3.1.44) and

∂gmin

∂α
=

ρ2 · (1− ρ) · λ1 · (1− λ2) · (λ2 − λ1) · σ2
ε(

ρ · λ1 · (1− λ2) · α + λ2 ·
(
λ1 + ρ · (1− λ1) · (1− α)

))2 > 0

(A3.1.51)
∂gmax

∂α
=

ρ2 · (1− ρ) · λ1 · (1− λ2) · (λ2 − λ1) · σ2
ε(

ρ · λ1 · (1− λ2) · α + λ2 ·
(
λ1 + ρ · (1− λ1) · (1− α)

))2 > 0

(A3.1.52)

into Eq. (A3.1.50) obtains

∂XU

∂α
= − ρ · (1− ρ) · (λ2 − λ1) · λ1 · λ2(

ρ · λ1 · (1− λ2) · α + λ2 ·
(
λ1 + ρ · (1− λ1) · (1− α)

))2 < 0.

(A3.1.53)

The partial derivative of gα(λ,∆λ) w.r.t. α is given by

∂gα(λ,∆λ)

∂α
=

2 · ρ2 · (1− ρ) · λ2 · (1− λ) ·∆λ · σ2
ε

λ · λ1 ·
(
ρ+ (λ+ ∆λ) · (1− ρ) + 2·ρ·∆λ

λ−∆λ
· (1− α)

)2 > 0,

(A3.1.54)

and therefore,

∂XI

∂α
=

2 · ρ · (1− ρ) · λ2 · (1− λ) ·∆λ

λ · λ1 ·
(
ρ+ (λ+ ∆λ) · (1− ρ) + 2·ρ·∆λ

λ−∆λ
· (1− α)

)2 > 0. (A3.1.55)

(iii) follows from solving the uncertainty aversion α∗ satisfying gα(λ,∆λ) = g(λ).

Combining Eq. (3.20) and Eq. (3.40) obtains

α∗ =
λ2

2 · λ
=

1

2
+

∆λ

2λ
. (A3.1.56)
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(iv) follows from the partial derivative of Eq. (3.40) w.r.t. ∆λ

∂gα(λ,∆λ)

∂∆λ
=

(1− λ) ·
(

(λ+ ∆λ)2 − 2 · (λ2 + ∆λ2) · α
)
· (ρ− 1) · ρ2 · σ2

ε

λ ·
(

∆λ2 · (ρ− 1) + ρ ·∆λ · (1− 2 · α) + λ ·
(
ρ+ λ · (1− ρ)

))2 > 0,

(A3.1.57)

if and only if

α >
1

2
+

λ ·∆λ
λ2 + ∆λ2

= α∗∗. (A3.1.58)

�
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Appendix 3.2. Additional Figures
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Figure 3.5: The equity premium g(λ,∆λ) against the effective risk
aversion ρ and correlation ρ∗.
Panel A plots the perceived equity premium g(λ,∆λ) against the effective risk
aversion ρ for three different values of the proportion of informed traders λ.
Panel B plots the perceived equity premium g(λ,∆λ) against the correlation ρ∗

for three different values of the proportion of informed traders λ = 0.11, 0.3, 0.7.
Other parameter values are ∆λ = 0.1 and σ2

ε = 1 .
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Figure 3.6: The benefit of informed trading V (λ,∆λ) and the Knigh-
tian component K(λ,∆λ) against the correlation ρ∗.
Panels (A)-(B) plot the benefit of informed trading and the Knightian compo-
nent against the correlation (ρ∗) on the horizontal axis, for three different values
of the idiosyncratic noise (σ2

ε) when λ = 0.5 and ∆λ = 0.3. Panels (C)-(D) plot
the benefit of informed trading and the Knightian component against the corre-
lation (ρ∗), for three different values of informed trading (λ) when ∆λ = 0.2 and
σ2
ε = 1. Panel (E)-(F) plot the benefit of informed trading and the Knightian

component against the correlation (ρ∗), for three different values of uncertainty
about the proportion of informed traders (∆λ) when λ = 0.5 and σ2

ε = 1.
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Figure 3.7: The cost range in which a unique information market
equilibrium exists against the effective risk aversion ρ, composition
uncertainty ∆λ, and idiosyncratic noise σ2

ε .
Panel (A) plots the upper c̄ and lower c bounds of the cost range against the
effective risk aversion (ρ) on the horizontal axis when ∆λ = 0.2 and σ2

ε =
1. Panel (B) plots c̄ and c against the composition uncertainty (∆λ) on the
horizontal axis when ρ = 0.5 and σ2

ε = 1. Panel (C) plots c̄ and c against the
idiosyncratic noise (σ2

ε) on the horizontal axis when ρ = 0.5 and ∆λ = 0.2.
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Learning About Toxicity: Why

Order Imbalance Can Destabilize

Markets?

Liquidity provision is now a complex process, and levels of toxicity affect both the

scale and scope of market makers’ activities.

Easley, López de Prado, and O’Hara (2012) “Flow Toxicity and Liquidity in a

High-frequency World” [p. 1490].

Toxic order flow is a source of financial market instability meaning it can cause

evaporation of liquidity, elevated volatility, and sharp price movements. Order

flow is regarded as toxic when it originates from a better-informed counterparty,

causing adverse selection of market participants’ orders and losses for liquidity

providers. Market practitioners, in particular market makers, have long used

order imbalance as an indication of order flow toxicity, adjusting their trading

strategies accordingly. Liquidity providers (e.g., algorithmic market makers) often

withdraw their quotes in the face of large order imbalances, making markets less

liquid during and following large order imbalances (e.g., Chordia et al. (2002),

Anand and Venkataraman (2016)). In the extreme, order imbalances can trigger

‘flash crashes’— episodes of extreme price movements accompanied by evapora-

tion of liquidity and elevated volatility (e.g., Easley et al. (2012), Kirilenko et al.

(2017)). Given the fundamental importance of market stability in promoting eco-

nomic growth, it is surprising that we know little about why order imbalance can

destabilize markets and when markets are most vulnerable to destabilizing order

imbalance. This chapter addresses both of these questions.

129
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Paradoxically, standard market microstructure models with asymmetric informa-

tion predict that order imbalances stabilize markets ex post, increasing liquidity

and reducing volatility (e.g., Kyle (1985), Glosten and Milgrom (1985)). This pre-

diction follows from the standard assumption that market participants are fully

aware of the level of adverse selection (the probability of informed trading and/or

the quality of informed traders’ information). Under such an assumption, the effect

of order imbalance is trivial—it reveals private information about the fundamental

value, reducing uncertainty, and thereby increasing liquidity (lower price impacts

in the Kyle framework and narrower bid-ask spreads in the Glosten-Milgrom frame-

work). This prediction of standard microstructure models—that we should expect

calmer and more liquid markets following periods of large order imbalances—is at

odds with practice. What is missing from the standard models, we propose, is

learning about adverse selection.

Our contribution to the literature is to model the process by which market partic-

ipants learn about adverse selection risk (‘toxicity’) from order flow, in particular

order imbalance, and study the implications of this learning process. To an oth-

erwise standard sequential trade model, we add uncertainty about the proportion

of informed traders (composition uncertainty) and/or the quality of their signals

(signal quality uncertainty), resulting in uncertainty about the level of adverse

selection. Reflecting a practical challenge faced by real-world liquidity providers,

market participants in our model must learn about toxicity, rather than knowing

the probability of informed trading and the quality of informed traders’ informa-

tion. This learning occurs from order flow. Intuitively, because informed trading

tends to result in order imbalance (informed traders all tend to buy when prices

are too low and sell when prices are too high), observing an episode of highly

unbalanced order flow acts as a signal that there is likely to be a high proportion

of informed traders or that informed traders have very precise information. This

upward revision in perceived adverse selection risk can cause liquidity providers

to set wider spreads to protect themselves from higher toxicity, as well as sharp

price adjustments as the information contained in past order flow is reassessed.

Such effects, which all follow from learning about adverse selection, oppose the

standard stabilizing effect of order imbalance (learning about fundamental value).

The tension between these stabilizing and destabilizing effects is what allows our

model to illustrate why order imbalance can sometimes be destabilizing and offer

insights about when the destabilizing effects are likely to dominate the stabilizing

effects.
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We use our model to explore how markets respond to three general order flow

patterns — balanced orders, sequences, and reversals. Balanced orders occur when

the market maker receives an equal number of buy and sell orders. Sequences are

consecutive buy or sell orders. Reversals occur when a sell order follows consecutive

buy orders or vice versa. Our analysis delivers four important implications for the

dynamics of security prices.

First, balanced orders always stabilize the market. By receiving balanced orders,

the market maker maintains her initial beliefs about the security value and revises

her belief about adverse selection risk downward. This leads the information

content of buy and sell orders to be time-varying and symmetric—informativeness

of orders and bid-ask spreads decrease after a period of balanced orders due to

lower perceived adverse selection risk. Even this basic effect is in contrast to

standard microstructure models with only fundamental value uncertainty because

in such models balanced order flow reveals no new information and thus has no

effect on prices or liquidity.

Second, a sequence of unbalanced order flow (a series of buys or a series of sells)

has two effects, with opposing impacts on liquidity. Unbalanced order flow allows

the market maker to learn about the fundamental value (revising beliefs upward in

response to buys and downward in response to sells), similar to standard models.

This effect tends to make the market more liquid due to reduced uncertainty

about the security value. Yet it also leads the market maker to revise upward her

belief about the level of adverse selection risk, which tends to make the market

less liquid. This means that, unlike in the standard models, order imbalances

can be destabilizing. We characterize the necessary and sufficient conditions for

order imbalance to be destabilizing. We show that order imbalance destabilizes

the market when the initial belief about the adverse selection risk is sufficiently

low. This means that financial markets are more vulnerable to order imbalances

in times of low perceived toxicity, but can digest more imbalance when toxicity is

believed to be high. While this result might seem surprising at first, the intuition

is that a large order imbalance when it is not expected presents a larger shock

than when the market expects unbalanced order flow.

Third, reversals in order flow (e.g., a sell following a string of buys) can restore

liquidity. While this result is intuitive because reversals alleviate the imbalance in

order flow received by liquidity providers, it in fact contrasts with standard models

and highlights the important role played by learning about adverse selection. In a
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standard model without learning about adverse selection, a reversal in order flow

makes the market less liquid, as it increases uncertainty about the fundamental

value. While this effect is also present in our model, an additional effect emerges

from learning about adverse selection—a reversal leads the market maker to re-

vise downward her belief about the level of adverse selection risk, which tends to

improve liquidity.

A fourth interesting effect of learning about adverse selection, which we term

“repricing history”, explains accelerating price impacts, asymmetry in the infor-

mation content of orders, and sharp price movements. When the market maker is

uncertain about the proportion of informed traders or the quality of their informa-

tion, an order has two components to how it impacts the market maker’s beliefs

about the fundamental value. The first is simply that buys increase the likelihood

that the fundamental value is high and vice versa because informed traders tend

to buy when the price is below the fundamental value—an effect that drives price

discovery in standard models. But a second effect is that the market maker also

updates her beliefs about the level of adverse selection or informativeness of order

flow and then uses this new belief to reassess what she had learned from past

order flow (“repricing history”). If an order increases the market maker’s beliefs

about the informativeness of order flow, she gives more credit to past orders and

prices are adjusted accordingly (they move in the direction of the imbalance). For

example, a market maker that receives a buy after a series of buys will revise

upward her beliefs about the informativeness of order flow (due to a larger imbal-

ance), leading her to reassess the past buy imbalance as more informed. Viewing

the past buy imbalance as more informed leads to an additional upward revision

in the expected fundamental value and thus a larger price increase than in the

absence of learning about adverse selection. In fact, this mechanism can lead to

accelerating price impacts in trade sequences, similar to those observed empiri-

cally during flash crashes. For instance, in a sequence of sells, each subsequent

sell not only signals the fundamental value is likely to be low but also signals that

the previous sells were more informed than initially believed, compounding the

downward revision in beliefs about fundamental values.

In addition to accelerating price impacts with continuations in order flow, repricing

history also implies the information content of buys and sells will be asymmetric

and time-varying, depending on the past order flow. More precisely, reversals

in the flow (e.g., a buy after a series of sells, or a sell after a series of buys)
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decrease the market maker’s beliefs about the informativeness of order flow and

are more informative than continuations in the flow (buys following buys, or sells

following sells). Intuitively, if an order decreases the market maker’s beliefs about

the informativeness of order flow, she gives less credit to past orders and adjusts

prices accordingly (they move opposite to the direction of the imbalance). Rather

than accelerating price impacts, this scenario can result in sharp price reversals.

For example, a market maker that receives a sell after a series of buys revises

downward her beliefs about the informativeness of order flow (due to a smaller

imbalance), leading her to reassess the past buy imbalance as being less informative

than previously believed. This leads to an additional downward revision in the

likelihood of a high fundamental value and a larger price decrease than in the

absence of repricing history.

The repricing history effect predicts that the price adjustments to order flow can

be particularly sharp due to accelerating price impacts and more informative re-

versals in order flow. For example, a long string of sell orders similar to flash

crashes will lead to accelerating price impact on the way down (high probability

of informed trading due to the strong order imbalance), leading to sharp decline

in the price. A few buy orders at such time will recover the price quickly due to

the repricing history effect. The result is a sharp downward price movement and

a quick recovery, amplified by learning about adverse selection.

By accounting for learning about adverse selection, our model provides a rich

characterization of the dynamics of security prices in response to order flow and

provides intuition about the prevalence of flash crashes with the rise of algorithmic

trading. The model explains why price impacts can be asymmetric and time-

varying (as has been empirically documented), without turning to frictions such

as short selling constraints.29 The results are also consistent with the empirical

research by Hasbrouck (1991) that the trades that arrive when the spread is wide

have a greater price impact. The analysis points out that the prevalence of the

flash crashes in the algorithmic era may be related to the increased composition

and signal quality uncertainty due to the increased complexity of financial markets

and their participants.

29Empirical research in market microstructure finds that markets react to buy and sell orders
asymmetrically (e.g., Kraus and Stoll (1972), Keim and Madhavan (1996), Chiyachantana et
al. (2017)). Saar (2001) characterizes the conditions for the positive and negative price im-
pact asymmetry between buy and sell orders by focusing on short-selling and diversification
constraints of the institutional traders.
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One way to view the relation between our model and early market microstructure

models (e.g., Glosten and Milgrom (1985), Kyle (1985)) is that by adding learning

about adverse selection, we allow the model to better reflect the current market

structure. At the time of the original models, designated market makers (DMMs)

with affirmative obligations to provide two-sided quotes and maintain orderly mar-

kets were integral to the functioning of US equity markets. The relative lack of

competition faced by DMMs at the time meant they could cross-subsidise liquid-

ity through time, which helped maintain orderly markets and reduce fluctuations

in liquidity. They could keep the spread relatively stable, making excess profits

in good times (when adverse selection is low) and using those excess profits to

subsidise liquidity provision in bad times (when adverse selection is high). Thus,

there was less incentive to learn about time-varying adverse selection risk and

ensure spreads always reflected the level of toxicity. The abolishment of DMM

monopolies and resulting competition in liquidity provision eliminated the abil-

ity to cross-subsidise liquidity through time. This is because a liquidity provider

without affirmative obligations could undercut the DMM’s quotes during good

times when adverse selection is low to capture some of the excess profit and step

away when adverse selection becomes high. Importantly, efficient learning about

the time-varying level of adverse selection, or the ‘toxicity’ of order flow, allowing

liquidity to be priced accurately at every point in time is crucial for a liquidity

provider to remain competitive in today’s major equity markets. Thus, we ar-

gue that our model better reflects the behavior of today’s liquidity providers and

therefore provides a better description of the dynamics of order flow, liquidity, and

prices.

The next section relates this chapter to the literature. In Section 4.2, we introduce

a benchmark model that does not require learning about adverse selection to il-

lustrate how order imbalance stabilizes the market by reducing uncertainty about

the fundamental value. In Section 4.3, we extend the model to include uncertainty

about adverse selection (proportion of informed traders). In Section 4.4, we inves-

tigate the liquidity and price dynamics in the extended model, and characterize

the conditions for liquidity deteriorations and sharp price movements. Section 4.5

examines the implications of our results for empirical research. Section 4.6 dis-

cusses some extensions and generalizations of our model. Section 4.7 concludes.

The details of extensions and proofs are collected in the appendices.
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4.1 Related Literature

Order imbalance can be caused by many factors (e.g., informed trade, macroeco-

nomic variables, “fat-finger” trades). By focusing on traders’ demand functions,

much of the market crashes literature focuses on the causes of order imbalance

(e.g., Gennotte and Leland (1990), Barlevy and Veronesi (2003), Hong and Stein

(2003)). In this chapter, instead of the causes of order imbalance, we focus on its

effects. Our model builds on Glosten and Milgrom (1985), which models financial

markets as a sequential trading process with one source of uncertainty—the secu-

rity payoff. This chapter is related to a subset of market microstructure literature

that studies environments where market participants face multiple dimensions of

uncertainty.

In environments with uncertain information quality, Romer (1993) suggests a pos-

sible rational explanation for the October 1987 crash and Blume, Easley and

O’Hara (1994) investigate the informational role of volume for technical analy-

sis in a rational expectations framework. In recent studies, Gao et al. (2013)

generate multiple non-linear equilibria with strategic information complementar-

ity and Banerjee and Green (2015) establish empirically relevant return dynamics

such as asymmetric reaction to news, volatility clustering, and leverage effects in a

rational expectations framework with an uncertain proportion of informed traders.

The trading process in a rational expectations framework is not flexible enough to

investigate our effects of interest. One reason is that the aggregation of orders in

a batch-clearing system prevents them from taking different levels of informative-

ness at different times. The second and related reason is that in a batch-clearing

system trades clear at a single price. Our focus is on how the market maker learns

from order flow and when this learning stabilizes and destabilizes financial mar-

kets. Therefore, in our model, the dynamics of the quotes and the bid-ask spread

play important roles in evaluating the evolution of liquidity.

In a sequential trade model, Easley and O’Hara (1992) introduce “event uncer-

tainty” (uncertainty about whether an event that gives rise to private information

about the security value has occurred) to show the relevance of time and volume in

the market maker’s learning process. Without an information event, the market is

only populated by uninformed traders, who (unlike informed traders) sometimes

choose not to trade. In this setting, the rate of trade arrivals (trades per unit

time) is higher following an information event and therefore the market maker
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learns from the time between trades. In our model, the market maker always faces

an adverse selection problem but to an uncertain degree. Our focus is learning

from the order imbalance rather than volume or the pace of trading. Order imbal-

ance is important in how participants would learn about the presence of informed

traders and the quality of their information. For example, consider an increase

in the arrival intensity of uninformed traders that will increase volume per unit

time but not adverse selection. In contrast, an increase in the imbalance between

buyers and sellers signals high adverse selection risk and toxicity in the order flow.

Our focus on learning from order imbalance rather than the time between trades

produces a vastly different set of insights and empirical implications about the

dynamics of prices and liquidity. Learning about adverse selection from order

imbalance as in our model rather than from the clock time between trades as in

Easley and O’Hara (1992) is consistent with recent empirical measures of toxicity,

such as VPIN (e.g., Easley, López de Prado and O’Hara (2011)). VPIN seeks to

measure toxicity (adverse selection risk) using a volume clock (thereby explicitly

disregarding the clock time between trades) based on order imbalances much like

how liquidity providers in our model infer the level of adverse selection.30 Thus,

a further contribution of this chapter is in providing a theoretical justification for

recent empirical toxicity measures such as VPIN.

Avery and Zemsky (1998) propose multiple dimensions of uncertainty with non-

monotone signals as a possible explanation for the herd behavior and market mis-

pricing. In our model, we stick to more common monotone information structures

that rule out herding and show that order imbalance can destabilize markets when

there is an additional source of uncertainty.31 The destabilizing effects of order

imbalance that we analyze are quite different from those in Avery and Zemsky

(1998). First, the mechanism is different. In our model, order imbalance reveals

information about adverse selection, whereas in Avery and Zemsky order imbal-

ance can be destabilizing because herding can occur and the market maker cannot

distinguish between herding and trading on private signals. Second, the nature of

30Our model (unlike Easley and O’Hara (1992)) is in “event time” or uses a “volume clock”
(trade arrivals index time).

31The non-monotone signals in Avery and Zemsky (1998) exploit a second source of uncertainty
(about whether an information event has occurred or about the precision of informed traders’
signals). They assume that if an information event has not occurred, the informed traders know
with certainty. However, if an information event has occurred, the informed traders know that
an information event has occurred, but they only have a noisy signal about whether it was good
or bad news. For this reason, when an informed trader arrives and an information event has
occurred, if there has been a significant price run-up, the informed might infer that it is more
likely that there has been good news, not bad news even if he receives the noisy bad news signal,
and thus he throws away his information and herds.



Chapter 4 137

the instability is different. In our model, the second source of uncertainty causes

order imbalance to move prices sharply, widen spreads, and increase volatility.

Gervais (1997) also studies a sequential trade model in which the market maker is

uncertain about the quality of informed traders’ signal to argue that financial mar-

kets do not necessarily evolve in the direction of efficient markets. In his setting,

the evolution of beliefs are path-dependent due to the independence of uncertain-

ties and the bid-ask spread can stuck forever at a certain level in which the same

equilibrium is repeated in every subsequent period leading to information cascade.

This is the first research, to our knowledge, to show how learning about the level

of adverse selection from the order flow can lead to sudden liquidity dry-ups and

sharp price movements in the face of large order imbalances.

4.2 The Benchmark Model

This section presents a benchmark model that mirrors the classic market mi-

crostructure models with uncertainty only about the fundamental value. In this

setting, we illustrate the stabilizing effect of order imbalance. The benchmark

model allows us to provide a contrast to the subsequent models with composi-

tion uncertainty in Section 4.3 and other sources of uncertainty (i.e., fundamental

value, composition, and signal quality uncertainty) in Appendix 4.1.

4.2.1 Setup

We adopt a Glosten-Milgrom framework of one risky security and three types of

traders; informed traders, uninformed traders, and a competitive market maker.

Trade takes place in t = 1, ..., T periods and the risky security pays off in period

T +1. The payoff V̂ takes one of two values from the set V̂ ∈ {0, 1} with an initial

prior probability Pr(V̂ = 1) = p1, where 0 < p1 < 1. For ease of exposition we

assume p1 = 0.5 in our analysis and address p1 6= 0.5 if relevant. Let Dt denote

the trade direction, Dt = −1 for a sell, Dt = +1 for a buy, and Pt denote the

transaction price at time t. Public information at time t consists of the sequence

of past buys and sells and their transaction prices, denote by ht = {Dτ , Pτ}t−1
τ=1.32

32For convenience, unions {·, ·}0τ=1 are taken to equal ∅, and both sums
∑0
τ=1 and products∏0

τ=1 are taken zero.
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As in Glosten-Milgrom type models, the risk-neutral, competitive market maker

posts bid and ask quotes, for a fixed volume (normalized to one unit), to earn zero

expected profit. At each time t, a trader arrives at the market and can buy at the

ask or sell at the bid. With a probability of α the trader arriving at the market is

informed and with a probability of 1 − α he is uninformed. We focus on interior

probability or intensity of informed trading, α ∈ (0, 1), as this is the empirically

relevant case. After each trade, the competitive market maker updates her beliefs

about the security payoff and posts new quotes before the next trader arrives.

The informed traders are risk neutral and maximize their expected profits by

trading on a serially received signal {θt} about the risky security payoff. The

signal takes either H (high) or L (low), θt ∈ {H,L}, and the quality of the signal

is measured by

q = Pr{θt = H|V̂ = 1} = Pr{θt = L|V̂ = 0}, (4.1)

with q ∈ (1/2, 1]. When q = 1, the informed traders’ information is perfect. When

q = 1/2, the signal is completely uninformative. By Bayes’ theorem, an informed

trader who receives θt = H will revise his private value to

vHt =
pt · q

[pt · q + (1− pt) · (1− q)]
> pt, (4.2)

and who receives θt = L will revise his private value to

vLt =
pt · (1− q)

[pt · (1− q) + (1− pt) · q]
< pt, (4.3)

where pt = Pr(V̂ = 1|ht) = Et[V̂ |ht] is the current expected value of V̂ conditional

on the public information history ht.

The uninformed traders trade according to their liquidity needs or hedging pur-

poses, which are exogenous to the model. For convenience, we assume that they

buy and sell with equal probabilities with perfectly inelastic demand.33 The struc-

ture of the economy described so far is common knowledge among all participants.

33In Section 4.6, we discuss the impacts of allowing discretionary uninformed trading on our
results.
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4.2.2 Equilibrium

The standard Bertrand competition argument that the competitive market maker

expects a zero profit implies that the market maker’s bid (ask) quote is the ex-

pected future payoff of the risky security conditional on receiving a sell (buy)

order. That is, the bid price Bt = Et[V̂ |ht, Dt = −1] and the ask price At =

Et[V̂ |ht, Dt = +1]. Now we formally define the equilibrium for the benchmark

economy.

Definition 4.1. An equilibrium consists of the market maker’s prices, informed

traders’ trading strategies, and posterior beliefs such that:

(i) the bid and ask prices satisfy the zero-expected-profit condition, given the

market maker’s posterior beliefs;

(ii) the informed traders at time t maximize their expected profits given the

signal θt and the public information history ht;

(iii) the market maker’s beliefs satisfy Bayesian updating.

In the benchmark equilibrium with only fundamental value uncertainty, an in-

formed trader who arrives at the market with θt = H (θt = L) will buy (sell) if

his private valuation is higher (lower) than the ask (bid) price at time t, vHt > At

(vLt < Bt). In equilibrium, vHt > At and vLt < Bt, and therefore the informed

traders always trade in the direction of their information.34 This characterizes the

equilibrium At and Bt in the following proposition.

Proposition 4.2. The equilibrium bid and ask prices are respectively given by:

Bt =
pt

pt + δ · (1− pt)
, (4.4)

At =
pt

pt + δ−1 · (1− pt)
, (4.5)

and the bid-ask spread is given by

St =
pt · (1− pt) · (δ − δ−1)[

pt + δ · (1− pt)
]
·
[
pt + δ−1 · (1− pt)

] , (4.6)

34The reason is that if Bt and At are set less than vLt and higher than vHt (i.e., Bt < vLt and
At > vHt ), then no informed traders would trade and all trades would arise from the uninformed
traders. The competitive, zero expected profit Bt and At without any informed trading are equal
to the current expected security value, Bt = At = pt, with zero spread. Because the signals are
always informative (q > 1/2), vHt > pt and vLt < pt and therefore in a competitive equilibrium,
Bt and At cannot be less than vLt and higher than vHt respectively.
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where pt = Et[V̂ |ht] and δ = 1+α·(2·q−1)
1−α·(2·q−1)

. In addition, δ is always greater than

unity and increases with the intensity of informed trading α and the quality of the

informed traders’ private information q.

In this equilibrium, the market is always open. This is because the market maker

can always set a spread wide enough to recoup from the uninformed traders the

losses she expects to incur from the informed traders. In addition, the market

maker sets a wider spread with the intensity of informed trading and the quality

of their signals. It follows from Eqs. (4.4) and (4.5) that the bid price decreases

and the ask price increases with the informativeness of orders δ, leading to a wider

bid-ask spread. Since δ increases with the intensity of informed trading and the

quality of their signals it measures the informativeness of orders and therefore the

adverse selection risk.

4.2.3 The dynamics of the quotes and the bid-ask spread

In this chapter, we are particularly interested in the dynamics of the quotes and

the bid-ask spread. For this purpose, we characterize the dynamics of the risky

payoff as

pt+1 = Et+1[V̂ |ht, Dt, Pt] = Et+1[V̂ |ht+1] =

 Bt, if Dt = −1,

At, if Dt = +1,
(4.7)

and re-express in a particularly convenient form in the following lemma. Eq. (4.7)

follows from the fact that, in this setting, the current expected security value is

the last realized transaction price.

Lemma 4.3. Let Nt =
∑τ=t−1

τ=1 Dτ be the order imbalance up to (but not in-

cluding) the trade at time t (number of buys minus number of sells). Then the

dynamic expectations of the market maker about the risky security payoff satisfy

pt+1

1− pt+1

=
pt

1− pt
· δDt , (4.8)

and hence

pt =
δNt

1 + δNt
. (4.9)
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Eq. (4.8) shows that the odds of a high future value are revised upward following

a buy and downward following a sell. The amount by which the expectations are

revised is determined by the informativeness of trades. More precisely, the revision

in the expectation about the payoff is stronger with more informative trades (or

more informative trades have higher price impacts). Eq. (4.9) shows that all of

the information contained in the past trades and prices can be represented by

the order imbalance, Nt, a sufficient statistic for the history of the order flows.

This means that the trade sequences that do not change the order imbalance (i.e.,

balanced order flows) do not change the market maker’s beliefs about the security

payoff. Thus, the expected payoff of V̂ and the bid-ask spread at any point in

time can be expressed succinctly as a function of the order imbalance up to that

point in time and the informativeness of trades.

To further facilitate interpretation, we insert Eq. (4.9) into Eq. (4.6) and re-

express the bid-ask spread as a function of the informativeness of orders and order

imbalance as

St =
δNt · (δ − δ−1)

(δNt + δ) · (δNt + δ−1)
. (4.10)

Interestingly, Eq. (4.10) also shows that the bid-ask spread decreases with order

imbalances in either direction, excess buy or sell orders, and takes its maximum

value of

S̄ =
δ − 1

δ + 1
, (4.11)

with balanced order flow (i.e., Nt = 0).35

In Figure 4.1, we illustrate the uncertainty about the payoff, pt, and the bid-

ask spread in the face of large order imbalances for three possible values of the

informativeness of orders. Panel (A) illustrates that the market maker revises

the expected value of the security payoff upward when she has a positive order

imbalance and downward when she has a negative order imbalance. Moreover, the

upward and downward revisions are larger with more informative trades. However,

irrespective of the informativeness of orders, uncertainty about the payoff is highest

when the market maker has balanced orders. Panel (B) shows that the spread is

maximum when the market maker has balanced orders and declines in response

35In general, the maximum spread occurs when the market maker has maximum uncertainty
(i.e. pt = 0.5) about the payoff. With a balanced order flow the market maker learns nothing
and sustains her initial maximum uncertainty (i.e., p1 = 0.5). In fact, when p1 > 0.5 (resp.
p1 < 0.5), the same maximum spread corresponds to a negative (resp. positive) order imbalance.
The reason for this is that the maximum uncertainty, pt = 0.5, occurs with a negative (resp.
positive) order imbalance when p1 > 0.5 (resp. p1 < 0.5).
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Figure 4.1: The dynamics of the belief pt and the spread St with
respect to order imbalance Nt.
Panel (A) plots the conditional expected value of the payoff pt and (B) plots
the spread St against the order imbalance for three different values of informa-
tiveness of trades, δ = 1.5, 2, and 3 when p1 = 0.5.

to order imbalances in either direction. This illustrates the stabilizing role of

order imbalance in the benchmark model with only fundamental value uncertainty.

Intuitively, order imbalance is informative about the risky payoff and therefore

resolves uncertainty (either pt → 0 or pt → 1). Moreover, the bid-ask spread

declines faster with more informative trades because uncertainty is resolved faster.

Formally, we have the following corollary.

Corollary 4.4. In the presence of uncertainty only about the security payoff;

(i) the market maker observing balanced order flows (i.e., Nt = 0) learns nothing

and therefore does not update her beliefs about the payoff;

(ii) the market maker with a positive (negative) order imbalance increases (de-

creases) the conditional expected value of the payoff and the magnitude of

the increase (decrease) is larger with more informative trades;

(iii) with balanced order flows (i.e., Nt = 0), the bid-ask spread St at time t

equals the initial bid-ask spread S1;

(iv) the bid-ask spread narrows with order imbalances in either direction and

converges to zero as the order imbalance goes to infinity (i.e., order imbalance

stabilizes the market).

The stabilizing role of order imbalances in the benchmark model hinges upon hav-

ing only uncertainty about the fundamental value of the security. These results
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are at odds with what we observe in financial markets during and following large

order imbalances. The experience of the U.S. financial markets on May 6, 2010,

(“Flash Crash”) and treasury markets on October 15, 2014, (“Flash Rally”) are

recent extreme examples of the destabilizing role of negative and positive order

imbalances, respectively. Similar results are also observed during the global finan-

cial crisis in 2007-2009, Asian financial crisis in 1997-1998, October 1987 crash,

and many other extreme events (e.g., Easley and O’Hara (2010b), Scholes (2000)).

The destabilizing role of order imbalance is not confined to the aggregate mar-

ket level extreme events. On a smaller scale, instantaneous price moves due to

the destabilizing role of order imbalance are more common with the rise of algo-

rithmic trading. In practice, order imbalance is an indication of the toxicity in

order flow. Unlike in practice, however, in the benchmark model, order imbalance

merely serves to convey information about the fundamental value of the security.

The bid-ask spread arises entirely due to the known adverse selection risk of the

competitive market maker and approaches to zero in the face of large order im-

balances — order imbalance stabilizes the market when the market maker knows

the true information structure of the market.

4.3 Learning about Adverse Selection

In this section, we introduce an additional source of uncertainty about the adverse

selection of the market maker to explore a destabilizing role of order imbalance.

Adverse selection risk is a function of the number of informed traders and the

quality of their information. Adding uncertainty and learning about either of these

parameters produces qualitatively similar results and therefore in the interests of

simplicity, we focus on uncertainty about the number of informed traders.

Two key differences distinguish this model from the benchmark model. First, the

market maker’s quotes are affected not only by beliefs about the security payoff,

parameters affecting the adverse selection risk (i.e., the probability of informed

trading and the quality of informed traders’ information), but also uncertainty

about the adverse selection risk. Second, the market maker’s beliefs about adverse

selection risk change over time as the trading process evolves.
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4.3.1 Uncertainty about the proportion of informed traders

We keep all the features of the benchmark model as described in Section 4.2

(we set q = 1 for notational simplicity) and incorporate uncertainty about the

composition of market participants. We assume that the probability of informed

trading takes either low or high values from the set α̂ ∈ {αL, αH} with an initial

prior probability of Pr(α̂ = αH) = π1, where 0 < αL < αH < 1 and 0 < π1 < 1.

Without perfect knowledge about the fractions of the informed and uninformed

traders in the market, the market maker’s beliefs about the composition of traders

change depending on the evolution of the trading process.36 In what follows, we

denote the market maker’s belief about the high proportion of informed traders in

the market conditional on the trading history as πt = Pr{α̂ = αH |ht}. With two

possible values for the probability of informed trading and the risky payoff (i.e.,

α̂ ∈ {αL, αH} and V̂ ∈ {0, 1} ), there are four different combinations of the level

informed trading and the payoff realization. Denote the states S ∈ {s1, s2, s3, s4},
where

s1 = {α̂ = αH , V̂ = 1}, s2 = {α̂ = αH , V̂ = 0},

s3 = {α̂ = αL, V̂ = 1}, s4 = {α̂ = αL, V̂ = 0}.
(4.12)

Since these states are disjoint the market maker’s beliefs about the payoff and the

composition of traders at time t are, respectively, given by

pt = Pr(V̂ = 1|ht) = Pr(s1|ht) + Pr(s3|ht), (4.13)

πt = Pr(α̂ = αH |ht) = Pr(s1|ht) + Pr(s2|ht). (4.14)

It is very intuitive to expect different order flows with different compositions of

market participants. Intuitively, a higher proportion of informed traders is more

likely to result in larger positive (negative) order imbalances when V̂ = 1 (V̂ = 0).

The market maker observing more unbalanced orders than expected therefore will

increase her belief about the high proportion of informed traders in the market

and vice versa. Before considering the market maker’s learning problem in detail,

we characterize the equilibrium quotes and bid-ask spread in the trading period t,

36Making other market participants (in addition to the market maker) uncertain about the
composition of market participants does not affect the model since the informed traders do not use
the price function to extract information about the eventual security payoff and the uninformed
traders are assumed to trade exogenously. We discuss a generalization of this assumption in
Section 4.6.
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extending the results from the benchmark model. The concept of the equilibrium

follows the same structure outlined in Definition 4.1.

Proposition 4.5. The equilibrium bid and ask prices in the presence of compo-

sition uncertainty are respectively given by

Bα,t =
pt

pt + δst · (1− pt)
, (4.15)

Aα,t =
pt

pt + (δbt )
−1 · (1− pt)

, (4.16)

and the bid-ask spread is given by

Sα,t =
pt · (1− pt) · (δst − (δbt )

−1)[
pt + δst · (1− pt)

]
·
[
pt + (δbt )

−1 · (1− pt)
] , (4.17)

where

δbt =
(1 + αH) · Pr(s1|ht) + (1 + αL) · Pr(s3|ht)
(1− αH) · Pr(s2|ht) + (1− αL) · Pr(s4|ht)

·
(

1− pt
pt

)
(4.18)

and

δst =
(1 + αH) · Pr(s2|ht) + (1 + αL) · Pr(s4|ht)
(1− αH) · Pr(s1|ht) + (1− αL) · Pr(s3|ht)

·
(

pt
1− pt

)
(4.19)

show the informativeness of buy and sell orders respectively. In addition, δbt and δst

are always greater than unity and increase with the intensities of informed trading

αL and αH .

The forms of the bid, ask prices and the spread are familiar from the benchmark

model (see Eqs. (4.4), (4.5), and (4.6)) and most of the intuitions carry forward.

There are three main differences from the benchmark model (see Proposition 4.2).

First, the market maker’s belief about the high informed trading πt in Eq. (4.14) is

time-varying. Second, unlike the benchmark model with constant informativeness

of orders for buy and sell orders, the information content of buy and sell orders

in Eqs. (4.18) and (4.19) are different and vary through time due to the time-

varying beliefs about the composition of traders and the security payoff.37 This

leads to asymmetric reactions of the bid and ask quotes in response to buy and sell

37Unlike the benchmark model, the informativeness of buy and sell orders, δbt and δst , also
involve the market maker’s belief about the risky payoff along with the parameters of the adverse
selection risk. This occurs because over time the market maker’s belief about the risky payoff and
the composition of traders are dependent. The best way to see that δbt and δst are indeed analogous
to the informativeness of orders δ in the benchmark model is to assume independence between
α̂ and V̂ . Then, substituting independence conditions (i.e., Pr(s1|ht) = πt · pt, Pr(s2|ht) =
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orders. Third, the dynamics of the expectations about the payoff pt are not only

affected by the order imbalance and the (constant) informativeness of orders as in

the benchmark model, but also by the changing beliefs about the composition of

market participants and the time-varying informativeness of orders. For example,

as the orders become more informative the market maker learns the fundamental

value faster. We formalize this intuition in the following lemma by characterizing

the dynamics of the beliefs about the risky payoff.

Lemma 4.6. The dynamic expectations of the market maker about the risky

security payoff satisfy

pt+1

1− pt+1
=

pt
1− pt

· δbt if Dt = +1, (4.21)

and
pt+1

1− pt+1
=

pt
1− pt

· (δst )−1 if Dt = −1. (4.22)

Lemma 4.6 shows how pt+1 is obtained from pt when the market maker observes

a buy or a sell order. It is straightforward to check that Lemma 4.6 reduces to

Lemma 4.3 in the benchmark model when the market maker knows the compo-

sition of traders. In fact, when α = αL = αH , it follows from Eqs. (4.18) and

(4.19) that δbt = δst = δ =
(

1+α
1−α

)
leading to Eq. (4.8). Similar to Eq. (4.8) in

the benchmark model, Eqs. (4.21) and (4.22) show that the odds of a high future

value are revised upward following a buy and downward following a sell. Unlike

the benchmark model, however, the upward (resp. downward) revisions in δbt and

δst lead to stronger (resp. weaker) revisions in pt.

πt · (1 − pt), Pr(s3|ht) = (1 − πt) · pt and Pr(s4|ht) = (1 − πt) · (1 − pt)) into Eqs. (4.18) and
(4.19) leads to symmetric informativeness for buys and sells

δbt = δst =
1 + (πt · αH + (1− πt) · αL)

1− (πt · αH + (1− πt) · αL)
, (4.20)

which is only dependent on the parameters of adverse selection as in the benchmark model.
Additionally, assuming independence about the composition of traders and the fundamental
value leads the sequence of orders to matter (path-dependence) in the model, consistent with
the empirical findings in Hausman, Lo and MacKinlay (1992). The path-dependence is not
integral for our analysis and the sufficient statistic in our setting is order imbalance and time
(Nt, t), yet the destabilizing role of order imbalance with a different magnitude is also present
with path-dependence. In Appendix 4.3, we illustrate the destabilizing role of order imbalance
when the market maker learns about α̂ and V̂ independently.
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4.3.2 Learning about the payoff and proportion of informed

traders

In this subsection, we study how the market maker learns about the proportion

of informed traders. The task is to determine how πt is updated when the market

maker observes order flow up to time t. One way to understand the learning

process of the market maker is to consider the probability of buy and sell orders

in different states. A buy order is most likely to occur in a market with a high

proportion of informed traders and high security payoff (i.e., S = s1). Similarly, a

sell order is most likely to occur in a market with a high proportion of informed

traders and low security payoff (i.e., S = s2). More precisely, it follows from the

definitions of the states that the probability of an order Dt ∈ {−1, 1} in each state

is given by

Pr(Dt|s1) =
1 + αH ·Dt

2
, Pr(Dt|s2) =

1− αH ·Dt

2
,

Pr(Dt|s3) =
1 + αL ·Dt

2
, Pr(Dt|s4) =

1− αL ·Dt

2
.

(4.23)

The probabilities in different states imply that in the presence of uncertainty about

the proportion of informed traders, the direction and amount of order imbalance

are informative about the payoff and only the amount of order imbalance is in-

formative about the proportion of informed traders. The direction is informative

about the payoff because high fundamental value states (i.e. s1 and s3) have

higher buy and lower sell probabilities than the corresponding low fundamental

value states (i.e., s2 and s4), leading the positive (resp. negative) imbalance to

increase the probabilities of s1 and s3 (resp. s2 and s4). The amount of imbal-

ance is informative about the payoff since more unbalanced buy (resp. sell) orders

increase s1 more than s3 (resp. s2 more than s4). The amount of imbalance is

also informative about the proportion of informed traders because buy and sell

probabilities in low informed states (i.e. s3 and s4) are closer to 0.5, implying that

balanced orders will increase low informed states and unbalanced orders will in-

crease high informed states (i.e., s1 and s2). However, the direction of imbalance is

uninformative about the proportion of informed traders because excess buy orders

increase s1 in the same way as excess sell orders increase s2, leading to the same

belief about the proportion of informed traders.
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As the market maker is Bayesian, her belief about the particular state given the

trading history ht with bt buy and st sell orders follows from Bayes rule as

Pr(s1|ht) =
p1 · π1 ·

(
1 + αH

)bt(
1− αH

)st
f(ht)

, (4.24)

where

f(ht) = p1 · π1 · (1 + αH)bt(1− αH)st + (1− p1) · π1 · (1− αH)bt(1 + αH)st

+ p1 · (1− π1)(1 + αL)bt(1− αL)st + (1− p1)(1− π1)(1− αL)bt(1 + αL)st .

(4.25)

The probabilities of the other states are calculated similarly. By Eqs. (4.13)

and (4.14), the revision in each state’s probability after the trading history ht is

reflected in the market maker’s beliefs about the security payoff and the proportion

of informed traders as

pt =
p1 · π1 ·

(
1 + αH

)bt(1− αH)st + p1 · (1− π1) ·
(
1 + αL

)bt(1− αL)st
f(ht)

, (4.26)

πt =
p1 · π1 ·

(
1 + αH

)bt(1− αH)st + (1− p1) · π1 ·
(
1− αH

)bt(1 + αH
)st

f(ht)
. (4.27)

Eqs. (4.26) and (4.27) show that the order imbalance for the given number of

trades (event time) determines the market maker’s beliefs about the payoff and

proportion of informed traders since bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

. It follows

from Eq. (4.26) that the market maker that receives balanced order flow learns

nothing about the fundamental value as in the benchmark model (i.e., pt = p1).

Eq. (4.26) also show that, all else equal, the greater the positive (resp. negative)

imbalance the more likely it is that the market maker believes the fundamental

value of the security is high (resp. low). Additionally, it follows from Eq. (4.27)

that, all else equal, the greater the imbalance the more likely it is that the market

maker believes the market is highly populated by informed traders. We summarize

the effects of order imbalance for the given number of trades on the market maker’s

beliefs in the following proposition.

Proposition 4.7. (i) The market maker’s expected value of the security payoff is

unchanged with zero order imbalance and increases (resp. decreases) with positive

(resp. negative) order imbalance; that is pt = p1 when Nt = 0 and ∂pt
∂Nt

> 0. (ii)

the market maker’s belief about the high informed trading increases with order

imbalance in either direction; that is ∂πt
∂|Nt| > 0.
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To facilitate interpretation, in Figure 4.2, we contrast the market maker’s expected

value of the security payoff pt and belief about the high proportion of informed

traders πt in the benchmark and extended models. Panel (A) illustrates that, in

both models, the market maker revises the expected value of the security payoff

upward (resp. downward) when she has a positive (resp. negative) order imbal-

ance. What is different in the presence of uncertainty about the adverse selection

is that the upward and downward revisions are larger with more order imbalance.

The reason for this effect is illustrated in Panel (B), which shows that the market

maker’s belief about the high proportion of informed traders πt increases with

order imbalance. The market maker learns about the fundamental value faster

with more order imbalance since more order imbalance signals the presence of

more informative orders. Additionally, Panel (B) shows that the market maker’s

beliefs about the high proportion of informed traders πt is higher (resp. lower)

than her initial belief π1 when the order imbalance for the given time is sufficiently

high (resp. low). Focusing on two extreme cases (zero order imbalance and maxi-

mum order imbalance for the given time), the following corollary formalizes these

observations.

Corollary 4.8. (i) The market maker observing balanced order flows (i.e., Nt =

0 at time t) revises her belief about the high informed trading downward (i.e.,

πt < π1). (ii) The market maker observing sequences of buy or sell orders (i.e.,

Nt = t− 1 or Nt = −(t− 1) at time t) revises her belief about the high informed

trading upward (i.e., πt > π1).

There are two reasons why these results are of interest. First, in the presence of

uncertainty about the proportion of informed traders, balanced orders will sta-

bilize the market by reducing the bid-ask spread since the market maker retains

her initial belief about the payoff but revises her belief about the high informed

trading downward. This is in contrast to the benchmark model, where the market

maker observing balanced orders learns nothing and maintains her initial bid-ask

spread (see Corollary 4.4). Second, consecutive buy or sell orders can destabilize

financial markets by widening the bid-ask spread since they signal the presence of

high informed trading. This is also in contrast to the benchmark model, where

the market maker that receives sequences of buy or sell orders only learns about

the payoff and narrows the spread due to the resolution of uncertainty about the

fundamental value. In the presence of uncertainty about the proportion of in-

formed traders, the market maker during a period of large and temporary selling
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αL=0.2, αH=0.5αL=0.2, αH=0.2
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Figure 4.2: The dynamics of the beliefs pt and πt with respect to order
imbalance Nt.
Panel (A) plots the conditional expected value of the payoff pt and (B) plots the
belief about the high proportion informed trading πt against the order imbalance
for the given time t = 10 for two different values of low and high informed trading
αL = αH = 0.2 (benchmark), and αL = 0.2 and αH = 0.5 (uncertain proportion
of informed traders). The initial beliefs are p1 = 0.5 and π1 = 0.5.

(resp. buying) pressure such as the Flash Crash (resp. Flash Rally) updates the

expected value of security payoff downward (resp. upward). While this resolu-

tion of uncertainty about the fundamental value puts downward pressure on the

bid-ask spread, there is an opposing effect on the spread from learning about the

adverse selection. The market maker also updates her belief about the high in-

formed trading in the market and widens the bid-ask spread due to the increase in

the likelihood of high adverse selection risk (high informed trading). Ultimately,

whether the spread widens or narrows following periods of large order imbalance

depends on which effect dominates.

4.4 Liquidity and Price Dynamics

Since we are interested in the role of learning about toxicity in stabilizing and

destabilizing financial markets in the face of different order flow patterns, in this

section, we investigate the liquidity and price dynamics in our model.
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4.4.1 Liquidity distortions

We first examine the effects of different order flows on the evolution of bid-ask

spread to evaluate liquidity in the presence of uncertainty about adverse selection.

For this purpose, we consider the amount of deviation of the bid-ask spread at

time t from the initial spread.38 It follows from Proposition 4.5 that the initial

spread is given by

S1 =
δ1 − 1

δ1 + 1
= π1 · αH + (1− π1) · αL, (4.28)

with equal informativeness of buy and sell orders,

δb1 = δs1 = δ1 =
1 + (π1 · αH + (1− π1) · αL)

1− (π1 · αH + (1− π1) · αL)
. (4.29)

Combining the bid-ask spread in the presence of uncertainty about adverse selec-

tion at time t in Eq. (4.17) and the initial spread in Eq. (4.28) yields

∆St = Sα,t − S1, (4.30)

where ∆St given by Eq. (A4.2.50) in Appendix 4.2 is the net liquidity distortion

at time t relative to the initial spread. The net liquidity distortion ∆St implies

stabilizing (resp. destabilizing) order flow when ∆St < 0 (resp. ∆St > 0). In

addition, ∆St includes both the effects of learning about the fundamental value

and proportion of informed traders on the spread. To examine the contributions of

each learning component on the net liquidity distortion, we decompose ∆St into

two components — the distortion due to learning only about the fundamental

value and the distortion due to learning about the adverse selection. Formally, the

38We choose the amount of deviation of the bid-ask spread at time t from the initial spread
rather than the deviation from the benchmark spread for two reasons. First, the deviation
from the initial spread shows the net liquidity distortion due to learning about the fundamental
value and adverse selection, which can further be decomposed into the liquidity distortion due
to each learning component, whereas the deviation from the benchmark spread measures the
liquidity distortion due to learning only about adverse selection. Second, we are interested
in a stricter condition to analyze whether order imbalance is destabilizing. The most strict
condition to examine destabilizing order imbalance is to show that the spread is increasing in
the order imbalance until a certain threshold order imbalance. The complexity of Eq. (4.17)
after inserting state probabilities makes a full analytical characterization of the partial derivative
∂Sα,t
∂Nt

impractical. The second most strict condition is the deviation from the initial spread since
the initial spread is higher than the benchmark spread in the face of large order imbalance.
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net liquidity distortion is given by

∆St = ∆SVt + ∆SAt , (4.31)

where ∆SVt = St − S1 is the liquidity distortion due to learning about the fun-

damental value and ∆SAt = Sα,t − St is the liquidity distortion due to learning

about the adverse selection. We investigate the net liquidity distortion ∆St and

its contributors ∆SVt and ∆SAt during three general order flow patterns: balanced

orders, consecutive buy or sell orders, and reversals. As we investigate each order

flow pattern we refer to Figure 4.3, where we contrast the dynamics of belief about

the proportion of informed traders, quotes, and spreads of the market makers that

face this order flow in the benchmark and extended models.

For balanced order flows (i.e., Nt = 0 or bt = st), the informativeness of buy and

sell orders at time t are given by

δbt = δst =
π1 · (1 + αH)st+1 · (1− αH)st + (1− π1) · (1 + αL)st+1 · (1− αL)st

π1 · (1 + αH)st · (1− αH)st+1 + (1− π1) · (1 + αL)st · (1− αL)st+1
< δ1,

(4.32)

leading to

∆St = ∆SAt =
2 · (δst − δ1)(

1 + δst
)
·
(
1 + δ1

) < 0, (4.33)

since the market maker in the benchmark model learns nothing and retains her

initial spread (i.e., St = S1 or ∆SVt = 0). Eq. (4.33) always takes a negative

value (i.e., ∆St < 0 for δst < δ1), meaning that in the presence of uncertainty

about adverse selection, balanced order flow is always stabilizing since it results

in the narrower spread relative to the initial (also the benchmark) spread. This

is because the market maker that observes balanced order flow retains her initial

belief about the security payoff (see Proposition 4.7), but revises down her belief

about the high informed trading (see Corollary 4.8) as illustrated in Panel (a1) of

Figure 4.3. Panels (a2)-a(3) of Figure 4.3 illustrate that a balanced order flow is

stabilizing in the extended model, whereas it has no effect on prices or liquidity in

the benchmark model.

For consecutive sell orders (i.e., Nt = −(t − 1)), the informativeness of buy and

sell orders at time t are respectively given by

δbt =

[
π1 · (1 + αH) · (1− αH)t−1 + (1− π1) · (1 + αL) · (1− αL)t−1

π1 · (1− αH) · (1 + αH)t−1 + (1− π1) · (1− αL) · (1 + αL)t−1

]
·
[

pt
1− pt

]−1

,

(4.34)

δst =

[
π1 · (1 + αH)t + (1− π1) · (1 + αL)t

π1 · (1− αH)t + (1− π1) · (1− αL)t

]
·
[

pt
1− pt

]
, (4.35)
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where
pt

1− pt
=
π1 · (1− αH)t−1 + (1− π1) · (1− αL)t−1

π1 · (1 + αH)t−1 + (1− π1) · (1 + αL)t−1
. (4.36)

Unlike balanced order flow, Eqs. (4.34) and (4.35) show that during unbalanced

orders the informativeness of buy and sell orders are asymmetric, impacting the

beliefs about the fundamental value asymmetrically. The following corollary char-

acterizes the association between the beliefs about the fundamental value and the

informativeness of orders during unbalanced order flow.

Corollary 4.9. (i) With a sequence of buy orders (i.e., Nt = t− 1),

pt =

∏t−1
i=1 δ

b
i

1 +
∏t−1

i=1 δ
b
i

, (4.37)

(ii) With a sequence of sell orders (i.e., Nt = −(t− 1)),

pt =

∏t−1
i=1(δsi )

−1

1 +
∏t−1

i=1(δsi )
−1
. (4.38)

Corollary 4.9 implies that when there is a consecutive buying or selling pressure

in the market, the geometric mean of the informativeness of buy or sell orders up

to time t (i.e., (
∏t−1

i=1 δ
b
i )

1
t−1 or (

∏t−1
i=1 δ

s
i )

1
t−1 ) play the same role as the constant

informativeness orders in the benchmark model in determining pt. Inserting the

belief dynamics during sell sequences in Eq. (4.38) into the characterization of the

spread in Eq. (4.17) obtains the spread as

Sα,t =

∏t−1
i=1(δsi )

−1 ·
(
δst − (δbt )

−1
)(∏t−1

i=1(δsi )
−1 + δst

)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1
) . (4.39)

A similar condition holds for buy sequences, only replacing
∏t−1

i=1(δsi )
−1 with

∏t−1
i=1 δ

b
i .

Combining the initial spread and the spreads after consecutive sell orders in

the benchmark and extended models (Eqs. (4.10), (4.28), and (4.39)) obtains

∆St = ∆SAt + ∆SVt , where

∆SVt =
−(δ1 − 1) ·

(
δ
−(t−1)
1 − 1

)2(
δ
−(t−1)
1 + δ1

)
·
(
δ
−(t−1)
1 + (δ1)−1

)
·
(
δ1 + 1

) < 0, (4.40)

and

∆SAt =

∏t−1
i=1(δsi )

−1 ·
(
δst − (δbt )

−1
)(∏t−1

i=1(δsi )
−1 + δst

)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1
)− δ

−(t−1)
1 · (δ1 − δ−1

1 )

(δ
−(t−1)
1 + δ1) · (δ−(t−1) + δ−1

1 )
> 0.

(4.41)
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Eq. (4.40) shows the downward pressure on the bid-ask spread due to resolution

of uncertainty about the fundamental value, whereas Eq. (4.41) shows the upward

pressure due to learning about the adverse selection. Panel (b1) of Figure (4.3)

illustrates that the upward pressure is due to the increase in the belief about the

high proportion of informed trading πt during consecutive sell orders. It follows

from Eqs. (4.40) and (4.41) that the upward pressure due to learning about the

adverse selection ∆SAt dominates the downward pressure due to learning about

the fundamental value ∆SVt (i.e., ∆SAt + ∆SVt > 0 ) if and only if

δ1 < 1 +
2 ·
(
δst − (δbt )

−1
)[

2 · (δbt )−1 +
∏t−1

i=1(δsi )
−1 +

∏t−1
i=1(δsi ) · δst · (δbt )−1

] . (4.42)

A similar condition holds for buy sequences. Eq. (4.42) shows that when the

initial belief about the proportion of informed traders or the informativeness of

orders δ1 is sufficiently low, a continuous selling pressure leads to a wider spread

(i.e., liquidity deterioration) relative to the initial spread. This is intuitive because

order imbalance is not expected when the initial belief about the adverse selection

(π1 or δ1) is sufficiently low. Thus, it presents larger shock to a market maker,

leading ∆SAt to dominate ∆SVt . Panel (b2) of Figure 4.3 illustrates the effects

of multidimensional learning on the quotes of a market maker and contrasts it

with the quotes of a market maker learning only about the fundamental value.

The quotes are consistent with the empirical observations that the bid moves

downward faster than the ask during the periods of large selling pressure (e.g.,

CFTC-SEC (2010a, 2010b)). Consequently, the faster reaction of the bid and the

delayed reaction of the ask compared to that of the benchmark model lead the

spread to widen in response to order imbalance as illustrated in Panel (b3).39 The

next proposition summarizes the role of learning about toxicity in stabilizing the

market during balanced and destabilizing during unbalanced order flow.

Proposition 4.10. In the presence of composition uncertainty;

39In fact, flash crashes do not only occur on the way down. The sharp price rise in the price of
a 10-year US Treasury security (37 bps. trading range) on 15 Oct. 2014, also known as a “Flash
Rally”, is a recent example of this in which the market functioned with a strained liquidity, a
high volatility, and a high trading volume in the presence of excessive buy orders (e.g., U.S.
Dept. of the Treasury et al. (2014)). Consecutive buy orders obtain symmetric results. In the
case of 20 consecutive buys with the same parameter values, πt increases in the same way it does
in 20 consecutive sells since only the amount, not the direction, of order imbalance is informative
about πt. As the bid and ask prices increase with each buy order, the ask price moves upward
faster compared to the delayed reaction of the bid price, leading to a wider bid-ask spread.
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(i) the bid-ask spread is given by

Sα,t = S1 + ∆St, (4.43)

where S1 is the initial bid-ask spread and ∆St is the (stabilizing for ∆St < 0

and destabilizing for ∆St > 0) liquidity distortion relative to the initial

spread;

(ii) balanced order flows always stabilize the market;

(iii) sequences of sell orders destabilize the market if and only if

δ1 < 1 +
2 ·
(
δst − (δbt )

−1
)[

2 · (δbt )−1 +
∏t−1
i=1(δsi )

−1 +
∏t−1
i=1(δsi ) · δst · (δbt )−1

] ; (4.44)

(iv) sequences of buy orders destabilize the market if and only if

δ1 < 1 +
2 ·
(
δst − (δbt )

−1
)[

2 · (δbt )−1 +
∏t−1
i=1 δ

b
i +

∏t−1
i=1(δbi )

−1 · δst · (δbt )−1

] . (4.45)

Lastly, Panels (c1)-(c3) of Figure 4.3 illustrate the market maker’s belief about

the high proportion of informed traders, quotes, and spread during consecutive sell

orders with a temporary buy reversal. In the benchmark model without learning

about the adverse selection, a reversal in order flow makes the market less liquid

as it increases uncertainty about the fundamental value (i.e., ∆SVt > 0). In the

presence of learning about the adverse selection, however, the standard prediction

is also not necessarily true since a temporary reversal can substantially decrease

the market maker’s belief about the adverse selection, leading to a downward

pressure on the bid-ask spread (i.e., ∆SAt < 0). When the gap between the low

αL and high αH proportion of informed traders is sufficiently high, the downward

pressure due to learning about the adverse selection ∆SAt dominates the upward

pressure due to learning about the fundamental value ∆SVt , leading to a liquidity

improvement. The dominating downward revision about the adverse selection (i.e.,

∆SAt + ∆SVt < 0) and the resulting liquidity improvement is opposite to what is

predicted by the standard models. Panel (c1) of Figure 4.3 illustrates the reduction

in the market maker’s belief about the high proportion of informed traders during

a reversal and Panels (c2)-(c3) highlight a subsequent liquidity improvement.



alpha H alpha L pi 1 p 1
0.8 0.2 0.7 0.5

States Pr(buy |state) Pr(sell |state)
s_1 0.900 0.100
s_2 0.100 0.900
s_3 0.600 0.400
s 4 0.400 0.600

t D t b t t-b t N t pi t p t s 1 s 2 s 3 s 4 Pr(h t) s 1 s 2 s 3 s 4 pi t p t
1 -1 0 1 0 0.70 4.26 0.50 0.19 0.81 0.62 - - - - - 0.35 0.35 0.15 0.15 0.70 4.26 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.00
2 1 1 1 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.10 0.90 0.40 0.60 0.50 0.07 0.63 0.12 0.18 0.70 4.26 2.88 0.19 0.08 0.50 0.42 -0.20 -0.17 -0.02
3 -1 1 2 0 0.70 4.26 0.50 0.19 0.81 0.62 0.18 0.18 0.48 0.48 0.27 0.23 0.23 0.27 0.27 0.47 2.85 2.85 0.50 0.26 0.74 0.48 -0.14 0.00 -0.14
4 1 2 2 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.03 0.24 0.29 0.43 0.20 0.05 0.42 0.21 0.32 0.47 2.85 2.23 0.26 0.14 0.50 0.36 -0.26 -0.17 -0.08
5 -1 2 3 0 0.70 4.26 0.50 0.19 0.81 0.62 0.05 0.05 0.35 0.35 0.14 0.12 0.12 0.38 0.38 0.25 2.07 2.07 0.50 0.33 0.67 0.35 -0.27 0.00 -0.27
6 1 3 3 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.01 0.07 0.23 0.35 0.11 0.02 0.22 0.30 0.45 0.25 2.07 1.85 0.33 0.21 0.50 0.29 -0.33 -0.17 -0.15
7 -1 3 4 0 0.70 4.26 0.50 0.19 0.81 0.62 0.01 0.01 0.28 0.28 0.09 0.05 0.05 0.45 0.45 0.11 1.72 1.72 0.50 0.37 0.63 0.27 -0.35 0.00 -0.35
8 1 4 4 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.02 0.19 0.29 0.08 0.01 0.10 0.36 0.53 0.11 1.72 1.65 0.37 0.26 0.50 0.24 -0.38 -0.17 -0.21
9 -1 4 5 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.23 0.23 0.07 0.02 0.02 0.48 0.48 0.04 1.59 1.59 0.50 0.39 0.61 0.23 -0.39 0.00 -0.39
10 1 5 5 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.01 0.17 0.25 0.07 0.00 0.04 0.38 0.57 0.04 1.59 1.56 0.39 0.29 0.50 0.21 -0.41 -0.17 -0.24
11 -1 5 6 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.20 0.20 0.06 0.01 0.01 0.49 0.49 0.02 1.53 1.53 0.50 0.39 0.61 0.21 -0.41 0.00 -0.41
12 1 6 6 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.15 0.22 0.06 0.00 0.02 0.39 0.59 0.02 1.53 1.52 0.39 0.30 0.50 0.20 -0.42 -0.17 -0.25
13 -1 6 7 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.18 0.18 0.05 0.00 0.00 0.50 0.50 0.01 1.51 1.51 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
14 1 7 7 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.13 0.20 0.05 0.00 0.01 0.40 0.60 0.01 1.51 1.51 0.40 0.30 0.50 0.20 -0.42 -0.17 -0.25
15 -1 7 8 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.16 0.16 0.05 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
16 1 8 8 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.12 0.18 0.04 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.25
17 -1 8 9 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.14 0.14 0.04 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
18 1 9 9 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.11 0.16 0.04 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.26
19 -1 9 10 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.13 0.13 0.04 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
20 1 10 10 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.10 0.15 0.04 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.26
21 -1 10 11 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.12 0.12 0.04 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42
22 1 11 11 -1 0.70 4.26 0.19 0.05 0.50 0.45 0.00 0.00 0.09 0.13 0.03 0.00 0.00 0.40 0.60 0.00 1.50 1.50 0.40 0.31 0.50 0.19 -0.43 -0.17 -0.26
23 -1 - - 0 0.70 4.26 0.50 0.19 0.81 0.62 0.00 0.00 0.11 0.11 0.03 0.00 0.00 0.50 0.50 0.00 1.50 1.50 0.50 0.40 0.60 0.20 -0.42 0.00 -0.42

pi_t B A S pi_t B A S
0.05 0.4705 0.5295 0.059 0.05 0.4705 0.5295 0.059
0.05 0.441205 0.5 0.058795 0.05 0.443761 0.5 0.056239
0.05 0.412313 0.4705 0.058187 0.094371 0.401719 0.494487275 0.092768
0.05 0.384013 0.441205 0.057192 0.171721 0.339843 0.488986945 0.149144
0.05 0.356477 0.412313 0.055836 0.292009 0.260937 0.483011037 0.222074
0.05 0.329859 0.384013 0.054154 0.450683 0.178594 0.476101904 0.297508
0.05 0.304288 0.356477 0.052189 0.620041 0.109542 0.467388269 0.357846
0.05 0.279872 0.329859 0.049987 0.764454 0.061723 0.455249657 0.393526
0.05 0.256692 0.304288 0.047596 0.865843 0.032901 0.436839889 0.403939
0.05 0.234806 0.279872 0.045066 0.92771 0.016978 0.407714248 0.390737
0.05 0.256692 0.304288 0.047596 0.113826 0.362528 0.464458835 0.101931
0.05 0.234806 0.279872 0.045066 0.203444 0.298557 0.458910657 0.160354
0.05 0.214248 0.256692 0.042444 0.336782 0.221555 0.452817915 0.231263
0.05 0.195031 0.234806 0.039775 0.502368 0.146433 0.445660404 0.299228
0.05 0.177149 0.214248 0.037099 0.667414 0.08727 0.436450069 0.34918
0.05 0.16058 0.195031 0.034451 0.799545 0.048218 0.423375568 0.375157
0.05 0.145287 0.177149 0.031862 0.887982 0.025402 0.403343378 0.377942
0.05 0.131222 0.16058 0.029358 0.94031 0.013023 0.371794829 0.358772
0.05 0.118331 0.145287 0.026956 0.969042 0.00658 0.323980964 0.317401
0.05 0.106551 0.131222 0.024672 0.984175 0.003299 0.259198854 0.255899
0.05 0.095816 0.118331 0.022515 0.991971 0.001648 0.185814178 0.184166
0.05 0.086058 0.106551 0.020492 0.995942 0.000822 0.118808176 0.117987
0.05 0.077209 0.095816 0.018606 0.997953 0.000409 0.069013548 0.068604

pi_t B A S pi_t B A S
0.05 0.4705 0.5295 0.059 0.05 0.4705 0.5295 0.059
0.05 0.441205 0.5 0.058795 0.05 0.443761319 0.5 0.056239
0.05 0.412313 0.4705 0.058187 0.094371 0.401718862 0.494487 0.092768

0.05 0.384013 0.441205 0.057192 0.171721 0.339842823 0.488987 0.149144
0.05 0.356477 0.412313 0.055836 0.292009 0.260936673 0.483011 0.222074
0.05 0.329859 0.384013 0.054154 0.450683 0.178593967 0.476102 0.297508
0.05 0.304288 0.356477 0.052189 0.620041 0.109541843 0.467388 0.357846
0.05 0.279872 0.329859 0.049987 0.764454 0.06172339 0.45525 0.393526
0.05 0.256692 0.304288 0.047596 0.865843 0.032900676 0.43684 0.403939
0.05 0.234806 0.279872 0.045066 0.92771 0.016977696 0.407714 0.390737
0.05 0.214248 0.256692 0.042444 0.962286 0.008607526 0.362528 0.353921
0.05 0.195031 0.234806 0.039775 0.980667 0.004323675 0.298557 0.294233
0.05 0.177149 0.214248 0.037099 0.99018 0.002161521 0.221555 0.219394
0.05 0.16058 0.195031 0.034451 0.995035 0.001077989 0.146433 0.145355
0.05 0.145287 0.177149 0.031862 0.997496 0.000536954 0.08727 0.086734
0.05 0.131222 0.16058 0.029358 0.998738 0.000267295 0.048218 0.047951
0.05 0.118331 0.145287 0.026956 0.999365 0.000133018 0.025402 0.025269
0.05 0.106551 0.131222 0.024672 0.99968 6.61853E-05 0.013023 0.012957
0.05 0.095816 0.118331 0.022515 0.999839 3.2929E-05 0.00658 0.006547
0.05 0.086058 0.106551 0.020492 0.999919 1.63824E-05 0.003299 0.003283
0.05 0.077209 0.095816 0.018606 0.999959 8.15022E-06 0.001648 0.00164
0.05 0.069202 0.086058 0.016857 0.999979 4.05467E-06 0.000822 0.000817
0.05 0.061969 0.077209 0.015241 0.99999 2.01716E-06 0.000409 0.000407

Scenario 1: Balanced order flow Scenario 2: Continuation of sell orders Scenario 3: Selling with a temporary reversal

Beliefs Quotes

Perfectly balanced Consecutive sells A reversal to restore liquidity
For these two plots alpha_H=0.99, alpha_l=0.01, p1=0.5, pi_1=0.05

BENCHMARK
BeliefsPr(h_t | state) Pr(state | h_t )

Liquidity Distortions
 Quotes 

COMPOSITION UNCERTAINTY

All sell one buy at t=10 to illustrate reversal restore liq. (extreme parameters)
Benchmark Extended

All sell to show destabilizing order imbalance (extreme parameters)
Benchmark Extended
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Figure 4.3: The dynamics of the market maker’s belief about the adverse selection, quotes and bid-ask spreads.
Panels (a1)-(a3) plot the market maker’s belief about the high informed trading, πt, quotes, and bid-ask spread in the benchmark and
extended models in the face of 20 perfectly balanced orders (i.e., a buy following a sell order). The parameter values for Panels (a1)-(a3)
are αL = 0.2, αH = 0.8, and π1 = 0.7. Panels (b1)-(b3) plot the same variables in the face of 20 consecutive sell orders (i.e., Nt = −20
at t = 21). Panels (c1)-(c3) plot the same variables in the face of 20 consecutive sell orders up to t = 21 with one reversal (buy) at
t=10. The parameter values for Panels (b1)-(b3) and (c1)-c(3) are αL = 0.01, αH = 0.99, and π1 = 0.05. Other parameter values are
p1 = 0.5 and q = 1.
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4.4.2 Sharp price movements

In this subsection, we analyze the information content of trades in the presence

of learning about adverse selection and its role in contributing to sharp price

movements as another form of market instability. The main intuition that we

want to rigorously characterize is that when the market maker revises her perceived

informativeness of order flow, she gives more (resp. less) credit to past orders and

prices are adjusted accordingly. This means when the market maker is uncertain

about the proportion of informed traders, an order impacts the market maker’s

beliefs about the future value of the security in two ways. The first is simply that

buys (resp. sells) increase (resp. decrease) the likelihood that the fundamental

value is high (resp. low) (i.e., the standard price discovery effect). A second effect

is that the market maker also updates her belief about the informativeness of order

flow and then uses this new belief to reassess what she had learned from past order

flow. We term the second effect “repricing history”.40

To disentangle the standard price discovery and repricing history effects, we con-

trast the rational market maker’s learning about the payoff with the learning of

the myopic market maker that learns from order flow as if it is always the first

order (myopically). We interpret the difference in the learning of the rational and

myopic market makers about the fundamental value of the security as repricing

history effect. In essence, our task is to determine the components of revision in

belief about the security payoff (i.e., ∆pt = pt+1 − pt) when the rational market

maker learns about the payoff from pt to pt+1 with an order Dt. We are interested

in the contributions of the two components (standard price discovery and repricing

history) of the rational market maker’s learning about the payoff in the face of

different order flow patterns. Various contributors to the market maker’s learning

about the payoff are useful in understanding large and sharp price movements in

financial markets.

40The term repricing history shouldn’t be confused by the fact that our notion of equilibrium
requires that the market maker does not regret ex post for the trades that she is obliged to make
as in the Glosten-Milgrom type models. Moreover, the stochastic process (Nt, t) is Markov,
meaning that the distribution of (Nt+1, t + 1) depends on only (Nt, t) and is independent of
the history in our setting. This follows because the trades are independently and identically
distributed and (Nt, t) are counting processes for trades and time.
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Formally, the rational market maker’s total revision in belief about the security

payoff at time t follows from Eqs. (4.21) and (4.22) as

∆pt = pt+1 − pt =


pt · (1− pt) ·

(
δbt − 1

)
1 + pt ·

(
δbt − 1

) , if Dt = +1,

pt · (1− pt) ·
(
(δst )

−1 − 1
)

1 + pt ·
(
(δst )

−1 − 1
) , if Dt = −1.

(4.46)

To characterize the standard price discovery component, consider a myopic market

maker who learns from each order as if it is always the first order (recall that

initially nature independently chooses α̂ and V̂ ). This means that she does not

observe the history and only has posterior beliefs about the payoff V̂ ∈ {0, 1} and

the proportion of informed traders α̂ ∈ {αL, αH}. Such a market maker learns from

each order myopically (i.e., one step ahead) as if the nature has just independently

chosen V̂ and α̂. By one step learning about the payoff as if it is the first order, the

myopic market maker does not reassess her prior learning about the payoff (i.e.,

the information in past order flow). The next lemma characterizes the learning of

the myopic market maker without repricing history, where we carry the original

notation with a superscript m describing the myopic market maker.

Lemma 4.11. Let the informativeness of orders be δmt =
1+(πmt ·αH+(1−πmt )·αL)

1−(πmt ·αH+(1−πmt )·αL)
,

where πmt is given by

πmt+1 =

(
1 + αH · (2 · pmt − 1) ·Dt

)
· πmt(

1 +
(
πmt · αH + (1− πmt ) · αL

)
· (2 · pmt − 1) ·Dt

) . (4.47)

Let the geometric mean of informativeness of orders be δ̄mt =

(∏t−1
i=1 δ

m
i

) 1
t−1

and

weighted order imbalance N̄t =
∑t−1

τ=1Dτ · wτ , where wτ = (t−1)·ln δmτ∑t−1
i=1 ln δmi

. Then the

dynamics of the expectations about the payoff satisfy

pmt+1

1− pmt+1

=
pmt

1− pmt
· (δmt )Dt , (4.48)

and hence

pmt =
(δ̄mt )N̄t

1 + (δ̄mt )N̄t
. (4.49)

Lemma 4.11 shows that the myopic market maker (as in the benchmark and ex-

tended models) revises her belief upward (resp. downward) with a buy (resp. sell)

order and the revision is higher with high informativeness of orders δmt . Assuming
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independence between V̂ and α̂ reduces the learning of the rational market maker

to that of the myopic market maker and further assuming αL = αH reduces the

myopic market maker’s learning to the learning in the benchmark model. An inter-

esting difference of the rational and the myopic market maker is that the myopic

market maker evaluates the information content of buy and sell orders at a given

point in time equally (footnote 43 shows how δbt and δst reduce to symmetric δmt ),

implying that the repricing history effect causes asymmetric informativeness of

orders (δbt and δst ) characterized in Proposition 4.5.41 The myopic market maker’s

revision in belief about the payoff, ∆pmt = pmt+1 − pmt , at time t follows from Eq.

(4.48) as

∆pmt =
pmt · (1− pmt ) ·

(
(δmt )Dt − 1

)
1 + pmt ·

(
(δmt )Dt − 1

) , (4.50)

where δmt is determined by πmt . The repricing history effect emerges from the

difference between rational belief revision about the fundamental value by consid-

ering the whole order flow history ∆pt and myopic learning with only the standard

price discovery component ∆pmt , i.e.,

∆prt = ∆pt −∆pmt , (4.51)

where ∆prt denotes the repricing history. The repricing history effect has important

implications for the dynamics of informativeness and price impacts of orders, and

therefore for beliefs about the fundamental value and prices, especially during

highly unbalanced order flow.

First, it leads to asymmetric price reactions due to differential information content

of orders (i.e., δbt 6= δst ). The asymmetry (δbt − δst ) is more pronounced during

highly unbalanced order flow. More precisely, as the amount of order imbalance

increases the difference between informativeness of buy and sell orders increases

following Eqs. (4.18) and (4.19) (δbt > δst for negative and δst > δbt for positive

imbalance).42 This is intuitive because a buy (resp. sell) order during high sell

(resp. buy) imbalance leads the market maker to learn that the past order flow may

not have been as informed, resulting in a quick reassessment of the prior learning

about the payoff. This means the reversal in order flow is more informative than

41Appendix 4.3 shows the details of the myopic market maker.
42In fact, it is straightforward to show that limt→∞ δbt = 1+αL

1−αH and limt→∞ δst = 1+αH
1−αL , leading

to the maximum asymmetry δbt − δst =
α2
H−α

2
L

(1−αH)·(1−αL) when the market maker observes infinite

sequences of sell orders. The results are symmetric when the market maker observes an infinite
sequence of buy orders.
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the continuation in order flow.43 These results are absent in the myopic market

maker since she treats each order as the first order (i.e., δbt = δst = δmt ) and the

benchmark market maker with time-independent and symmetric informativeness

of orders (i.e., δbt = δst = δ).

Second, the repricing history effect causes accelerating price impacts when the mar-

ket maker receives continuation in order flow. Accelerating price impacts means

the security price increases or decreases at an increasing rate. Intuitively, in the

presence of uncertainty about the proportion of informed traders, a buy (resp.

sell) after consecutive buys (resp. sells) not only signals that the asset value is

high (resp. low), but also signals that the previous buys (sells) are more informed,

leading to additional upward (resp. downward) revision in the market maker’s

belief about the fundamental value. The empirical literature mainly focuses on

It = |∆pt|
pt

as a proxy for the price impact. The price impact It of a sell order at

time t follows from Eq. (4.46) as

It =
|∆pt|
pt

=
(1− pt) ·

(
1− (δst )

−1
)

1 + pt ·
(
(δst )

−1 − 1
) , (4.52)

which reduces to

It =
1− (δst )

−1

1 +
∏t

i=1(δsi )
−1
, (4.53)

during consecutive sell orders. In the benchmark model, the price impact of an

order Dt at time t is given by It = |δDt−1|
δNt+1+1

, which always attenuates with order

imbalance (i.e., It < It−1). Unlike the benchmark model, Eq. (4.53) shows that the

price impact can accelerate in our model with the continuation in order flow. More

precisely, the price impact accelerates It > It−1 if and only if the informativeness

of order is sufficiently large, i.e.,

δst > 1 +

(
δst−1 − 1

)
·
(∏t−1

i=1 δ
s
i + 1

)
δst−1 +

∏t−1
i=1 δ

s
i

. (4.54)

This occurs because in the presence of uncertainty about the adverse selection,

the price impact decreases with the belief about the payoff pt as in the benchmark

43Of course, there might be other explanations for why continuations and reversals in order flow
have different information content. For example, one obvious explanation might be the presence
of history-dependent (e.g., positively correlated with the last trade) uninformed traders in the
market so that the reversal is more likely associated with informed trading (e.g., Easley, Kiefer
and O’Hara (1997)). While history-dependent uninformed trading can lead to the differential
information content of continuations and reversals, it does not necessarily lead to the large price
swings that we explain with our model.
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model (i.e., ∂It
∂pt

< 0), but also increases with the informativeness of buy and sell

orders (i.e., ∂It
∂δst

> 0 and ∂It
∂δbt

> 0). Therefore, our model can explain accelerating

price impacts similar to those observed during flash crashes (e.g., CFTC-SEC

(2010a)), whereas the benchmark model is always associated with attenuating

price impacts in response to order imbalance.

Sharp price movements in financial markets can arise as a consequence of these

two effects (accelerating price impacts during continuations and more informative

reversals) stemming from the repricing history effect. Compared to the myopic

and benchmark market makers, the rational market maker in the presence of

uncertainty about adverse selection learns faster in response to continuation in

order flow (order imbalance) due to accelerating price impacts (It > It−1) and

re-learns even faster in response to reversal in order flow due to more informative

reversals (δbt > δst during sell and δst > δbt during buy sequences). This generates a

sharp decline or rise followed by a quick reversal in price, such as the typical price

path during a flash crash or rally (e.g., CFTC (2010a, 2010b) and U.S. Dept. of

the Treasury et al. (2014)).

We illustrate the implications of repricing history in Figure 4.4 by considering

three order flow patterns: consecutive buys in Panels (a1)-(a3), temporary sells

with a subsequent reversal in Panels (b1)-(b3), and consecutive buys with a tem-

porary reversal in Panels (c1)-(c3). Panels (a1) and (a2) of Figure 4.4 show that

during the buying pressure, the rational market maker in the presence of uncer-

tainty about the adverse selection learns faster about the payoff and the repricing

history effect contributes to faster learning compared to the myopic and bench-

mark market makers. Panel (a3) complements these findings by showing that the

informativeness of a buy order at time t, δbt , slightly increases compared to the

initial informativeness δ1, which stays at its initial level in the benchmark model.

Intuitively, this is because with consecutive buy orders the repricing history ef-

fect causes accelerating price impacts as the market maker reassesses what can be

learned from past buy orders, leading to a faster learning. Panel (a3) additionally

shows that the asymmetry between the information content of buy and sell orders

increases with order imbalance. More precisely, it shows that the reversals (sells)

become more informative as the market maker receives continuation in order flow

(buys).



Independent
t D (Orders) b_t t-b_t N (Imbalance) Pr(h_t) s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 Pr(h_t) s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8 Pr(h_t) s_1 s_2 s_3 s_4 s_5 s_6 s_7 s_8
0 1 1 0 1 0.05 1.00 1.13 0.50 0.47 0.53 0.06 - 0.03 0.00 0.48 0.00 0.03 0.00 0.48 0.00 1.13 0.05 1.00 1.13 1.13 0.50 0.47 0.53 0.06 - 0.03 0.00 0.48 0.00 0.03 0.00 0.48 0.00 0.05 1.00 1.13 1.13 0.50 0.47 0.53 0.06 - 0.03 0.00 0.48 0.00 0.03 0.00 0.48 0.00 0.05 1.00 1.13 1.13 0.50 0.47 0.53 0.06
1 1 2 0 2 0.05 1.00 1.13 0.53 0.50 0.56 0.06 0.50 0.05 0.00 0.48 0.00 0.00 0.00 0.47 0.00 1.13 0.05 1.00 1.11 1.13 0.53 0.50 0.56 0.06 0.50 0.03 0.00 0.50 0.00 0.02 0.00 0.45 0.00 0.05 1.00 1.13 1.13 0.53 0.50 0.56 0.06 0.50 0.05 0.00 0.48 0.00 0.00 0.00 0.47 0.00 0.05 1.00 1.11 1.13 0.53 0.50 0.56 0.06
2 1 3 0 3 0.05 1.00 1.13 0.56 0.53 0.59 0.06 0.26 0.09 0.00 0.46 0.00 0.00 0.00 0.44 0.00 1.23 0.09 1.00 1.19 1.23 0.56 0.51 0.60 0.09 0.25 0.03 0.00 0.53 0.00 0.02 0.00 0.42 0.00 0.05 1.00 1.13 1.13 0.56 0.53 0.59 0.06 0.26 0.09 0.00 0.46 0.00 0.00 0.00 0.44 0.00 0.09 1.00 1.19 1.23 0.56 0.51 0.60 0.09
3 1 4 0 4 0.05 1.00 1.13 0.59 0.56 0.62 0.06 0.14 0.17 0.00 0.43 0.00 0.00 0.00 0.40 0.00 1.43 0.17 1.00 1.30 1.43 0.60 0.51 0.66 0.15 0.13 0.03 0.00 0.56 0.00 0.02 0.00 0.39 0.00 0.05 1.00 1.13 1.13 0.59 0.56 0.62 0.06 0.14 0.17 0.00 0.43 0.00 0.00 0.00 0.40 0.00 0.17 1.00 1.30 1.43 0.60 0.51 0.66 0.15
4 1 5 0 5 0.05 1.00 1.13 0.62 0.59 0.64 0.06 0.08 0.29 0.00 0.37 0.00 0.00 0.00 0.34 0.00 1.84 0.29 1.00 1.46 1.81 0.66 0.52 0.74 0.22 0.06 0.03 0.00 0.59 0.00 0.02 0.00 0.36 0.00 0.05 1.00 1.13 1.13 0.62 0.59 0.64 0.06 0.08 0.29 0.00 0.37 0.00 0.00 0.00 0.34 0.00 0.29 1.00 1.46 1.81 0.66 0.52 0.74 0.22
5 1 6 0 6 0.05 1.00 1.13 0.64 0.62 0.67 0.05 0.05 0.45 0.00 0.29 0.00 0.00 0.00 0.26 0.00 2.65 0.45 1.00 1.62 2.57 0.74 0.52 0.82 0.30 0.03 0.03 0.00 0.61 0.00 0.02 0.00 0.34 0.00 0.05 1.00 1.13 1.13 0.64 0.62 0.67 0.05 0.05 0.45 0.00 0.29 0.00 0.00 0.00 0.26 0.00 0.45 1.00 1.62 2.57 0.74 0.52 0.82 0.30
6 1 7 0 7 0.05 1.00 1.13 0.67 0.64 0.70 0.05 0.04 0.62 0.00 0.20 0.00 0.00 0.00 0.18 0.00 4.23 0.62 1.00 1.77 4.04 0.82 0.53 0.89 0.36 0.02 0.03 0.00 0.64 0.00 0.02 0.00 0.31 0.00 0.05 1.00 1.13 1.13 0.67 0.64 0.70 0.05 0.04 0.62 0.00 0.20 0.00 0.00 0.00 0.18 0.00 0.62 1.00 1.77 4.04 0.82 0.53 0.89 0.36
7 1 8 0 8 0.05 1.00 1.13 0.70 0.67 0.72 0.05 0.03 0.76 0.00 0.13 0.00 0.00 0.00 0.11 0.00 7.30 0.76 1.00 1.87 6.79 0.89 0.54 0.94 0.39 0.01 0.03 0.00 0.66 0.00 0.02 0.00 0.29 0.00 0.05 1.00 1.13 1.13 0.70 0.67 0.72 0.05 0.03 0.76 0.00 0.13 0.00 0.00 0.00 0.11 0.00 0.76 1.00 1.87 6.79 0.89 0.54 0.94 0.39
8 1 9 0 9 0.05 1.00 1.13 0.72 0.70 0.74 0.05 0.03 0.87 0.00 0.07 0.00 0.00 0.00 0.06 0.00 13.14 0.87 1.00 1.93 11.79 0.94 0.56 0.97 0.40 0.00 0.04 0.00 0.68 0.00 0.01 0.00 0.27 0.00 0.05 1.00 1.13 1.13 0.72 0.70 0.74 0.05 0.03 0.87 0.00 0.07 0.00 0.00 0.00 0.06 0.00 0.87 1.00 1.93 11.79 0.94 0.56 0.97 0.40
9 -1 9 1 8 0.05 1.00 1.13 0.74 0.72 0.77 0.05 0.03 0.93 0.00 0.04 0.00 0.00 0.00 0.03 0.00 23.74 0.93 1.00 1.97 20.23 0.97 0.59 0.98 0.39 0.00 0.04 0.00 0.71 0.00 0.01 0.00 0.24 0.00 0.05 1.00 1.13 1.13 0.74 0.72 0.77 0.05 0.03 0.93 0.00 0.04 0.00 0.00 0.00 0.03 0.00 0.93 1.00 1.97 20.23 0.97 0.59 0.98 0.39

10 1 10 1 9 0.05 1.00 1.13 0.72 0.70 0.74 0.05 0.00 0.11 0.00 0.48 0.00 0.00 0.00 0.41 0.00 1.28 0.11 1.00 1.21 1.26 0.59 0.54 0.64 0.10 0.00 0.04 0.00 0.68 0.00 0.01 0.00 0.27 0.00 0.05 1.00 1.13 1.13 0.72 0.70 0.74 0.05 0.00 0.11 0.00 0.48 0.00 0.00 0.00 0.41 0.00 0.11 1.00 1.21 1.26 0.59 0.54 0.64 0.10
11 1 11 1 10 0.05 1.00 1.13 0.74 0.72 0.77 0.05 0.00 0.20 0.00 0.43 0.00 0.00 0.00 0.36 0.00 1.53 0.20 1.00 1.34 1.49 0.64 0.54 0.70 0.16 0.00 0.04 0.00 0.71 0.00 0.01 0.00 0.24 0.00 0.05 1.00 1.13 1.13 0.74 0.72 0.77 0.05 0.00 0.20 0.00 0.43 0.00 0.00 0.00 0.36 0.00 0.20 1.00 1.34 1.49 0.64 0.54 0.70 0.16
12 1 12 1 11 0.05 1.00 1.13 0.77 0.74 0.79 0.04 0.00 0.34 0.00 0.36 0.00 0.00 0.00 0.30 0.00 2.03 0.34 1.00 1.50 1.94 0.70 0.55 0.78 0.23 0.00 0.04 0.00 0.73 0.00 0.01 0.00 0.22 0.00 0.05 1.00 1.13 1.13 0.77 0.74 0.79 0.04 0.00 0.34 0.00 0.36 0.00 0.00 0.00 0.30 0.00 0.34 1.00 1.50 1.94 0.70 0.55 0.78 0.23
13 1 13 1 12 0.05 1.00 1.13 0.79 0.77 0.80 0.04 0.00 0.50 0.00 0.28 0.00 0.00 0.00 0.22 0.00 3.02 0.50 1.00 1.66 2.82 0.78 0.55 0.85 0.30 0.00 0.04 0.00 0.75 0.00 0.01 0.00 0.20 0.00 0.05 1.00 1.13 1.13 0.79 0.77 0.80 0.04 0.00 0.50 0.00 0.28 0.00 0.00 0.00 0.22 0.00 0.50 1.00 1.66 2.82 0.78 0.55 0.85 0.30
14 1 14 1 13 0.05 1.00 1.13 0.80 0.79 0.82 0.04 0.00 0.67 0.00 0.19 0.00 0.00 0.00 0.15 0.00 4.95 0.67 1.00 1.79 4.51 0.85 0.56 0.91 0.35 0.00 0.04 0.00 0.76 0.00 0.01 0.00 0.19 0.00 0.05 1.00 1.13 1.13 0.80 0.79 0.82 0.04 0.00 0.67 0.00 0.19 0.00 0.00 0.00 0.15 0.00 0.67 1.00 1.79 4.51 0.85 0.56 0.91 0.35
15 1 15 1 14 0.05 1.00 1.13 0.82 0.80 0.84 0.03 0.00 0.80 0.00 0.11 0.00 0.00 0.00 0.09 0.00 8.69 0.80 1.00 1.89 7.68 0.91 0.58 0.95 0.38 0.00 0.04 0.00 0.78 0.00 0.01 0.00 0.17 0.00 0.05 1.00 1.13 1.13 0.82 0.80 0.84 0.03 0.00 0.80 0.00 0.11 0.00 0.00 0.00 0.09 0.00 0.80 1.00 1.89 7.68 0.91 0.58 0.95 0.38
16 1 16 1 15 0.05 1.00 1.13 0.84 0.82 0.85 0.03 0.00 0.89 0.00 0.06 0.00 0.00 0.00 0.05 0.00 15.70 0.89 1.00 1.94 13.34 0.95 0.60 0.97 0.38 0.00 0.04 0.00 0.80 0.00 0.01 0.00 0.15 0.00 0.05 1.00 1.13 1.13 0.84 0.82 0.85 0.03 0.00 0.89 0.00 0.06 0.00 0.00 0.00 0.05 0.00 0.89 1.00 1.94 13.34 0.95 0.60 0.97 0.38
17 1 17 1 16 0.05 1.00 1.13 0.85 0.84 0.87 0.03 0.00 0.94 0.00 0.03 0.00 0.00 0.00 0.03 0.00 28.20 0.94 1.00 1.98 22.71 0.97 0.63 0.99 0.36 0.00 0.04 0.00 0.81 0.00 0.01 0.00 0.14 0.00 0.05 1.00 1.13 1.13 0.85 0.84 0.87 0.03 0.00 0.94 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.94 1.00 1.98 22.71 0.97 0.63 0.99 0.36
18 1 18 1 17 0.05 1.00 1.13 0.87 0.85 0.88 0.03 0.00 0.97 0.00 0.02 0.00 0.00 0.00 0.01 0.00 48.58 0.97 1.00 1.99 36.32 0.99 0.68 0.99 0.32 0.00 0.04 0.00 0.83 0.00 0.01 0.00 0.12 0.00 0.05 1.00 1.13 1.13 0.87 0.85 0.88 0.03 0.00 0.97 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.97 1.00 1.99 36.32 0.99 0.68 0.99 0.32
19 1 19 1 18 0.05 1.00 1.13 0.88 0.87 0.89 0.02 0.00 0.98 0.00 0.01 0.00 0.00 0.00 0.01 0.00 77.41 0.98 1.00 2.00 52.82 0.99 0.74 1.00 0.26 0.00 0.04 0.00 0.84 0.00 0.01 0.00 0.11 0.00 0.05 1.00 1.13 1.13 0.88 0.87 0.89 0.02 0.00 0.98 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.98 1.00 2.00 52.82 0.99 0.74 1.00 0.26
20 1 20 1 19 0.05 1.00 1.13 0.89 0.88 0.90 0.02 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 110.93 0.99 1.00 2.01 68.94 1.00 0.81 1.00 0.18 0.00 0.04 0.00 0.85 0.00 0.01 0.00 0.10 0.00 0.05 1.00 1.13 1.13 0.89 0.88 0.90 0.02 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.99 1.00 2.01 68.94 1.00 0.81 1.00 0.18
21 1 21 1 20 0.05 1.00 1.13 0.90 0.89 0.91 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 142.10 1.00 1.00 2.01 81.68 1.00 0.88 1.00 0.12 0.00 0.05 0.00 0.86 0.00 0.00 0.00 0.09 0.00 0.05 1.00 1.13 1.13 0.90 0.89 0.91 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.01 81.68 1.00 0.88 1.00 0.12
22 - - - - 0.05 1.00 1.13 0.91 0.90 0.92 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 165.58 1.00 1.00 2.01 90.16 1.00 0.93 1.00 0.07 0.00 0.05 0.00 0.87 0.00 0.00 0.00 0.08 0.00 0.05 1.00 1.13 1.13 0.91 0.90 0.92 0.02 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 2.01 90.16 1.00 0.93 1.00 0.07

0.99
0.01

1
0.6
1

0.059

1 deltap_t myopic rational RH delta p t benchmark -1 1 -1 1) Delta delta 2) delta 3) delta
2 0.03 0.03 0.00 0.03 1 0.0590 0.0590 0.0590 0.0590 p_t p_t m p_t b p_t p_t m RH bench d lt t^ d lt t^b delta_t^s p_t p_t m p_t b p_t p_t m RH p_t p_t m p_t b p_t p_t m p_t b
3 0.03 0.03 0.00 0.03 2 0.0553 0.0557 0.0505 0.0557 0.50 0.50 0.50 0.03 0.03 0.00 1.13 1.13 1.13 1.13 0.5 0.5 0.5 -0.03 -0.03 0.00 1.1254 1.1254
4 0.03 0.04 0.01 0.03 3 0.0517 0.0524 0.0756 0.0912 0.53 0.53 0.53 0.03 0.03 0.00 1.13 1.13 1.11 1.13 0.4705 0.4705 0.4705 -0.03 -0.03 0.00 1.1254 1.1138
5 0.03 0.06 0.03 0.03 4 0.0482 0.0492 0.1034 0.1459 0.56 0.56 0.56 0.04 0.03 0.01 1.13 1.13 1.19 1.23 0.4438 0.4412 0.4412 -0.04 -0.03 -0.01 1.2261 1.1882
6 0.04 0.08 0.04 0.03 5 0.0447 0.0459 0.1195 0.2169 0.60 0.59 0.59 0.06 0.03 0.03 1.13 1.14 1.30 1.43 0.4017 0.411 0.4123 -0.06 -0.03 -0.03 1.4251 1.3043
7 0.04 0.08 0.04 0.03 6 0.0414 0.0428 0.1114 0.2911 0.66 0.62 0.62 0.08 0.04 0.04 1.13 1.17 1.46 1.81 0.3398 0.3788 0.384 -0.08 -0.04 -0.04 1.8149 1.4581
8 0.05 0.07 0.02 0.03 7 0.0382 0.0397 0.0841 0.3516 0.74 0.66 0.64 0.08 0.04 0.04 1.13 1.20 1.62 2.57 0.2609 0.3434 0.3565 -0.08 -0.04 -0.04 2.5739 1.6238
9 0.05 0.05 0.00 0.02 8 0.0351 0.0368 0.0537 0.3882 0.82 0.70 0.67 0.07 0.05 0.02 1.13 1.26 1.77 4.04 0.1786 0.3035 0.3299 -0.07 -0.05 -0.02 4.0361 1.7674

10 0.06 0.03 -0.03 0.02 9 0.0322 0.0339 0.0307 0.3998 0.89 0.74 0.70 0.05 0.05 0.00 1.13 1.35 1.87 6.79 0.1095 0.2577 0.3043 -0.05 -0.05 0.00 6.7934 1.87
11 -0.09 -0.37 -0.29 -0.02 10 0.0294 0.0312 0.0165 0.3876 0.94 0.79 0.72 0.03 0.06 -0.03 1.13 1.50 1.93 11.79 0.0617 0.2051 0.2799 -0.03 -0.06 0.03 11.792 1.9337
12 0.04 0.05 0.01 0.02 11 0.0322 0.0339 0.0763 0.0958 0.97 0.85 0.74 0.02 0.06 -0.04 1.13 1.77 1.97 20.23 0.0329 0.1469 0.2567 -0.02 -0.06 0.04 20.234 1.9698
13 0.04 0.06 0.02 0.02 12 0.0294 0.0312 0.1004 0.1512 0.98 0.91 0.77 0.01 0.05 -0.04 1.13 2.29 1.99 32.93 0.017 0.0885 0.2348 0.35 0.09 0.25 32.928 1.9892
14 0.05 0.08 0.03 0.02 13 0.0269 0.0286 0.1098 0.2199 0.99 0.96 0.79 0.00 0.03 -0.02 1.13 3.29 2.00 49.02 0.3625 0.1817 0.2567 0.10 0.04 0.06 1.4913 1.3361
15 0.05 0.08 0.03 0.02 14 0.0245 0.0262 0.0965 0.2879 1.00 0.99 0.80 0.00 0.01 -0.01 1.13 5.27 2.00 65.54 0.4589 0.2183 0.2799 0.01 0.02 -0.01 1.025 1.0249
16 0.03 0.06 0.03 0.02 15 0.0222 0.0239 0.0693 0.3398 1.00 1.00 0.82 0.00 0.00 0.00 1.13 9.12 2.01 79.20 0.465 0.2365 0.3043 0.00 0.01 -0.01 1.0203 1.0202
17 0.02 0.04 0.02 0.02 16 0.0201 0.0217 0.0428 0.3682 1.00 1.00 0.84 0.00 0.00 0.00 1.13 16.34 2.01 88.60 0.47 0.2471 0.3299 0.00 0.01 0.00 1.0202 1.0202
18 0.00 0.02 0.02 0.02 17 0.0182 0.0197 0.0240 0.3731 1.00 1.00 0.85 0.00 0.00 0.00 1.13 29.09 2.01 94.30 0.475 0.2543 0.3565 0.00 0.01 0.00 1.0202 1.0202
19 0.00 0.01 0.01 0.01 18 0.0165 0.0179 0.0127 0.3554 1.00 1.00 0.87 0.00 0.00 0.00 1.13 49.63 2.01 97.48 0.48 0.2599 0.384 0.00 0.00 0.00 1.0202 1.0202
20 0.00 0.01 0.01 0.01 19 0.0148 0.0162 0.0065 0.3151 1.00 1.00 0.88 0.00 0.00 0.00 1.13 78.37 2.01 99.18 0.485 0.2647 0.4123 0.00 0.00 0.00 1.0202 1.0202
21 0.00 0.00 0.00 0.01 20 0.0134 0.0146 0.0033 0.2543 1.00 1.00 0.89 0.00 0.00 0.00 1.13 111.53 2.01 100.07 0.49 0.2691 0.4412 0.00 0.00 0.00 1.0202 1.0202
22 0.00 0.00 0.00 0.01 21 0.0120 0.0132 0.0017 0.1831 1.00 1.00 0.90 0.00 0.00 0.00 1.13 142.26 2.01 100.53 0.495 0.2733 0.4705 0.01 0.00 0.00 1.0202 1.0202
23 0.00 0.00 0.00 0.01 22 0.0108 0.0119 0.0008 0.1174 1.00 1.00 0.91 0.00 0.00 0.00 1.13 165.47 2.01 100.76 0.5 0.2775 0.5 0.01 0.00 0.00 1.0202 1.0202

23 0.0097 0.0107 0.0004 0.0682 1.00 1.00 0.92 0.00 0.00 0.00 1.13 180.43 2.01 100.88 0.505 0.2816 0.5295 0.00 0.00 0.00 1.0202 1.0202
1.00 1.00 0.93 1.13 189.12 2.01 100.94 0.51 0.2857 0.5588 1.0202 1.0202

myopic
1 -1

0.059 0.059
0.05533 0.0557
0.05404 0.0548
0.05465 0.056
0.05696 0.0591
0.06081 0.0644
0.06581 0.0719
0.07085 0.0817
0.07325 0.0928

0.0684 0.1019
0.04886 0.055
0.05568 0.0673

0.05839 0.0798
0.05217 0.0879
0.03566 0.0837

0.0165 0.0616
0.00464 0.0303
0.00074 0.0088
6.4E-05 0.0014

3E-06 0.0001
8.2E-08 5E-06
1.3E-09 1E-07

Scenario 1: Continuation of buy orders

Parameter Values

Scenario 2: Temporary selling and a subsequent 
rev ersal Scenario 3: Buying with a temporary rev ersal  

BENCHMARK
Beliefs (Benchmark) Quotes (Benchmark)
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rev ersal Scenario 3: Buying with a temporary rev ersal  

COMPOSITION + SIGNAL QUALITY UNCERTAINTYCOMPOSITION UNCERTAINTY ONLY
Pr(state | h t) Beliefs (Extension) Quotes (Extension)

SIGNAL QUALITY UNCERTAINTY ONLY
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Scenario 2: Temporary selling and a subsequent Scenario 3: Buying with a temporary rev ersal  

0.0

0.2

0.4

0.6

0.8

1.0

1 6 11 16 21

Rational

Myopic

Benchmark

𝜋𝜋𝑡𝑡 𝛿𝛿𝑡𝑡 𝑝𝑝𝑡𝑡 𝐵𝐵𝑡𝑡 𝐴𝐴𝑡𝑡 𝑆𝑆𝑡𝑡𝜌𝜌𝑡𝑡

𝛼𝛼𝐻𝐻
𝛼𝛼𝐿𝐿
𝑞𝑞𝐻𝐻
𝑞𝑞𝐿𝐿
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Figure 4.4: The implications of repricing history effect.
Panels (a1)-(a3) plot the three market makers’ (rational, myopic and benchmark) beliefs about the payoff, pt, the repricing history
effect, ∆prt , and informativeness of buy and sell orders, δbt and δst , in the face of consecutive buy orders up to t = 21. Panels (b1)-(b3)
plot the same variables in the face of consecutive sells up to t = 11 followed by consecutive buys up to t = 21. Panels (c1)-(c3) plot
the same variables in the face of consecutive buys up to t = 21 with one reversal (sell) at t = 10. The parameter values are αH = 0.99,
αL = 0.01, q = 1, p1 = 0.5, and π1 = 0.05.
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Panel (b1) shows that during consecutive sells followed by consecutive buys, the

conditional expected payoff pt declines faster for the same reason it occurs during

consecutive buys and reverses quickly due to more informative reversals (buys)

illustrated in Panel (b3). Panel (b2) highlights that the magnitude of repricing

history effect in contributing the reassessment of the market maker’s beliefs about

the fundamental value can be substantial during the reversal in order flow. The

repricing history effect leads the informativeness of buy orders δbt to be greater than

informativeness of sell orders δst during the sell sequence. Thus, similar to flash

crashes, the repricing history effect can generate sharp crashes due to accelerating

price impacts and quick recoveries due to more informative reversals.

Finally, Panels (c1) and (c2) highlight the information content of one reversal (sell)

during a buy sequence. With one sell order at t = 10, the market maker reassesses

what she had learnt up to t = 10 by treating the previous buy orders as less

informed than previously believed, because the sell causes a downward revision

in belief about the high proportion of informed traders, whereas the benchmark

market maker fails to take this into account and the myopic market maker only

does so without reassessment of the full order flow history. Additionally, Panel (c3)

illustrates that the informativeness of sell orders increases as the market maker

faces continuation in buy orders, which is symmetric to continuation in sell orders.

4.5 Empirical Implications

In this section, we discuss empirical implications of our model.

4.5.1 Prevalence of flash crashes

Anecdotal evidence suggests that “mini flash crashes” driven by large aggressive

orders, e.g., intermarket sweep orders, occur nearly every day.44 Our model offers

two explanations for why this is the case. First, with the rise of algorithmic

trading and availability of market data, the financial market ecosystem has now

dramatically changed.45 The composition of market participants has never been

44Mini or micro flash crashes occur when a stock price spikes up or down in a small
time frame. Nanex Research offers an exhaustive documentation of “mini flash crashes”:
http://www.nanex.net/NxResearch/ResearchPage/3/.

45See, for instance, “The big changes in US markets since Black Monday” (Financial Times,
October 19, 2017), “3 ways big data is changing financial trading” (Bloomberg, July 4, 2017).

http://www.nanex.net/NxResearch/ResearchPage/3/
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more complex and uncertain.46 The technological developments have amplified the

uncertainty in asymmetric information problem of the modern liquidity providers.

In our model, this corresponds to the gap between the low αL and the high αH

probability of informed trading. Indeed, as the gap between αL and αH increases

our model shows that the market becomes more vulnerable to order imbalance

and the magnitude of the instability caused by order imbalance increases. Small

order imbalances with high composition uncertainty can lead to liquidity black

holes, large price swings, elevated volatility, and consequently, the prevalence of

flash crashes.

A second reason is associated with the increased competition among liquidity

providers as a result of the proliferation of HFT and demise of the traditional des-

ignated market makers. The current market structure incentivizes learning about

the time-varying adverse selection risk to ensure spreads always reflect the level

of toxicity. Therefore, efficient learning about the time-varying level of adverse

selection is crucial for a liquidity provider to remain competitive in today’s major

equity markets. These effects can also contribute to the increased prevalence of

flash crashes.

4.5.2 Model predictions

Our model makes a number of empirical predictions about the dynamics of prices,

liquidity, and order flow. Some of these predictions provide a theoretical expla-

nation for results that have been reported in the empirical market microstructure

literature. Yet others are more nuanced empirical predictions that are yet to be

tested, forming a foundation for future empirical analysis. The most straightfor-

ward prediction of our model is that during the selling (resp. buying) pressure

the bid (resp. ask) moves faster than the ask (resp. bid), and therefore, liquidity

evaporates (this effect is not possible in the benchmark model because sells during

sell imbalance always impact the ask more than the bid and vice versa). This

finding is consistent with the empirical results of Engle and Patton (2004), who

find that sells impact the bid more than the ask, which stands in contrast to the

theoretical results of Glosten and Milgrom (1985). Our model shows that this

46The new era of data revolution stimulated some of the data analytics firms to enter into a
hedge fund business (e.g., Cargometrics). See, for instance, “When Silicon Valley came to Wall
Street” (Financial Times, October 28, 2017), “Rise of quant: New hedge funds next year to
embrace high tech” (Bloomberg, December 21, 2017).
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occurs because of the market maker’s learning about toxicity (adverse selection)

from order flow. A cursory examination of the transactions data series of E-mini

and SPY (S&P 500 ETF) confirms that the same phenomenon was present dur-

ing the Flash Crash. Second, the increasing informativeness of orders and wider

spreads in response to order imbalances imply that the trades that arrive when

the spread is wide have a greater price impact. This is consistent with Hasbrouck

(1991), who finds that trades that occur in the face of wider spreads have a larger

price impact than those that occur when the spreads are narrow.

Our model also develops several other empirical implications about the dynamics

of spreads, informativeness, and price impacts of trades during various order flow

patterns. The model predicts that liquidity can improve during balanced orders

and reversals in order flow due to learning about the adverse selection. While

these results are intuitive in the presence of learning about the adverse selection,

both are opposite to what is predicted by standard market microstructure models.

In addition, the informativeness and price impacts of trades are time-varying and

asymmetric due to learning about the adverse selection. The model predicts that

the asymmetry in price impacts of buy and sell orders increases (resp. decreases)

as order imbalance increases (resp. decreases).

In our model, accelerating price impacts and more informative reversals during

unbalanced order flow naturally arise due to the repricing history effect. Engle

and Patton (2004) find strong evidence on differential impacts of buy and sell or-

ders on the bid and ask prices. They interpret the result with potentially multiple

information events per day. Our model shows that uncertainty about the propor-

tion of informed traders, the quality of their signals, multidimensional learning,

and consequently, the repricing history effect are what drive this asymmetry. The

accelerating price impact and more informative reversals due to the repricing his-

tory effect can generate a security price dynamics similar to flash crashes. Overall,

our results suggest that financial markets are more susceptible to instability in re-

sponse to order imbalance in times when adverse selection is believed to be low

and can digest more imbalance in times when adverse selection is high. This fol-

lows because order imbalance destabilizes the market when the initial belief about

the adverse selection is sufficiently low, which we also show occurs after balanced

order flow.
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4.6 Model Discussion and Extensions

In this chapter, we use a simple sequential trading model in the sense of Glosten

and Milgrom (1985) to provide intuition about the destabilizing role of order imbal-

ances in financial markets and the occurrences of financial crashes in the absence

of the fundamental news about the security value. An interesting question is how

sensitive our results are to our modeling approach. In this section, we address this

by considering how some extensions and generalizations of our model affect the

results.

4.6.1 Other sources of uncertainty about adverse selection

The model presented thus far incorporates uncertainty about the proportion of

informed traders and the security payoff. Allowing uncertainty in the other di-

mensions of adverse selection problem complicates the notation, but does not

affect our results. For example, in Appendix 4.1, we allow the market maker to be

uncertain about the different combinations of uncertainties in the proportion of

informed traders, the quality of their private information, and the security payoff.

We show that while the magnitude of market instability may change, the main

qualitative results of our model are robust.

4.6.2 Endogenous uninformed trading

For convenience, we assumed that the motivation for uninformed trading is ex-

ogenous. There may be other uninformed traders whose demands reflect more

complex motivations resulting in distributions of private valuations that drive

their trading decisions (e.g., Easley et al. (1997), Glosten and Putnins (2016)).

In fact, if uninformed traders have elastic demands sensitive to trading costs, the

destabilizing effects of order imbalances are also amplified. To see this, suppose

there are uninformed traders who have a distribution of private values and there

is occasionally a highly impatient trader that is either an informed trader or a

distressed uninformed trader (one that has a private valuation very far from the

current price). In normal conditions, when the spread is tight, the market maker

receives some order flow from the uninformed traders (balanced) and some of the

imbalance from the informed or distressed uninformed traders. If the imbalance is
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sufficiently strong (that is, the desperate or highly informed trader hits the market

too aggressively), the change in quotes is sufficiently large (due to updating beliefs

about the probability of informed trading). This scares off most of the uninformed

traders and makes the order flow even more unbalanced, causing a feedback loop

that can amplify the destabilizing effects of order imbalance. Thus our model-

ing of uninformed traders as exogenous and insensitive to the cost of trading is

conservative in that it understates the severity of the impact of order imbalance.

4.7 Conclusion

With increasing competition between liquidity providers (e.g., due to endogenous

liquidity providers) and the use of algorithms in trading, market participants learn

not only about the fundamental values of assets, but also other characteristics of

markets that are important for extracting information from order flow, such as the

degree of adverse selection. Such multidimensional learning can have very differ-

ent implications for trading behavior, market liquidity, and stability compared to

learning only about the fundamental values of assets. In this chapter, we explore

the effects of order imbalance when liquidity providers learn not only about the

fundamental value of the asset, as in the standard market microstructure mod-

els, but also about the proportion of informed traders and the quality of their

information. The multidimensional learning explains a variety of empirical regu-

larities not captured by the standard asymmetric information models of market

microstructure theory.

Our theoretical model with additional learning about the toxicity of order flow

shows the potentially destabilizing effects of order imbalance. We show that order

imbalance can have a stabilizing effect on the market by narrowing the spread

because it reduces uncertainty about the fundamental value and destabilizes the

market by widening the spread because it increases belief about the high adverse

selection risk. The destabilizing effect of order imbalance dominates its stabilizing

effect when the initial belief about the adverse selection is sufficiently low. This

means financial markets become more susceptible to imbalance-induced instability

when the past order flow is more balanced. Put differently, in our setting, it is the

order imbalance during stability that leads to instability.
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In addition to the sudden liquidity dry-ups, order imbalance can also naturally

lead to a sharp price decline and a quick recovery similar to flash crashes due to

the “repricing history” effect. We show that a sharp price decline occurs due to

accelerating price impacts with continuations in order flow and a quick recovery

occurs due to more informative reversals in order flow, both stemming from the

“repricing history” effect. Overall, our model provides a theoretical framework for

further empirical work characterizing the dynamics of order flow, liquidity, and

prices.
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Appendix 4.1. Multidimensional Uncertainty

In this Appendix, we extend our model to allow the market maker to be uncertain

about the security payoff, proportion of informed traders, and quality of informed

traders’ information.

Uncertainty about the proportion of informed traders and

quality of their signals

Similar to Section 4.3, we assume that the probability of informed trading takes

either low or high values from the set α̂ ∈ {αL, αH} with an initial prior probability

of Pr(α̂ = αH) = π1, where 0 < αL < αH < 1 and 0 < π1 < 1. In addition, to

extend our results to additional uncertainty about the quality of informed traders’

information, we assume that the quality of their signals takes either low or high

values from the set q̂ ∈ {qL, qH} with an initial probability of Pr(q̂ = qH) = ρ1,

where 0.5 < qL < qH ≤ 1 and 0 < ρ1 < 1. We denote the market maker’s

belief about the high probability of informed trading conditional on the trading

history as πt = Pr{α̂ = αH |ht} and the informed traders having high quality

private information conditional on the trading history as ρt = Pr{q̂ = qH |ht}.
With two possible values for the future security payoff, probability of informed

trading, and quality of their private information (i.e., α̂ ∈ {αL, αH}, q̂ ∈ {qL, qH},
V̂ ∈ {0, 1}), there are 8 possible disjoint states in this model. Denote the states

S ∈ {s1, s2, s3, s4, s5, s6, s7, s8}, where

s1 = {α̂ = αH , q̂ = qH , V̂ = 1}, s2 = {α̂ = αH , q̂ = qL, V̂ = 1},

s3 = {α̂ = αL, q̂ = qH , V̂ = 1}, s4 = {α̂ = αL, q̂ = qL, V̂ = 1},

s5 = {α̂ = αH , q̂ = qH , V̂ = 0}, s6 = {α̂ = αH , q̂ = qL, V̂ = 0},

s7 = {α̂ = αL, q̂ = qH , V̂ = 0}, s8 = {α̂ = αL, q̂ = qL, V̂ = 0}.

(A4.1.1)

The market maker’s beliefs about the future security payoff, proportion of informed

traders, and quality of their signals follow from Eq. (A4.1.1), respectively, as

pt = Pr(V̂ = 1|ht) = Pr(s1|ht) + Pr(s2|ht) + Pr(s3|ht) + Pr(s4|ht), (A4.1.2)

πt = Pr(α̂ = αH |ht) = Pr(s1|ht) + Pr(s2|ht) + Pr(s5|ht) + Pr(s6|ht), (A4.1.3)

ρt = Pr(q̂ = qH |ht) = Pr(s1|ht) + Pr(s3|ht) + Pr(s5|ht) + Pr(s7|ht). (A4.1.4)

The concept of equilibrium is the same as Definition 4.1. The next proposition

characterizes the equilibrium quotes and bid-ask spread in the presence of multiple

dimensions of uncertainty.



Proposition A4.1.1. The equilibrium bid and ask prices in the presence of multidimensional uncertainty (i.e., future security payoff,

proportion of informed traders, and quality of their signals) are respectively given by

Bα,t =
pt

pt + δst · (1− pt)
, and Aα,t =

pt

pt + (δbt )
−1 · (1− pt)

, (A4.1.5)

and the bid-ask spread is given by

Sα,t =
pt · (1− pt) · (δst − (δbt )

−1)[
pt + δst · (1− pt)

]
·
[
pt + (δbt )

−1 · (1− pt)
] , (A4.1.6)

where

δbt =
(1 + αH(2qH − 1)) · Pr(s1|ht) + (1 + αH(2qL − 1)) · Pr(s2|ht) + (1 + αL(2qH − 1)) · Pr(s3|ht) + (1 + αL(2qL − 1)) · Pr(s4|ht)
(1− αH(2qH − 1)) · Pr(s5|ht) + (1− αH(2qL − 1)) · Pr(s6|ht) + (1− αL(2qH − 1)) · Pr(s7|ht) + (1− αL(2qL − 1)) · Pr(s8|ht)

·
(

1− pt
pt

)
,

(A4.1.7)

and

δst =
(1 + αH(2qH − 1)) · Pr(s5|ht) + (1 + αH(2qL − 1)) · Pr(s6|ht) + (1 + αL(2qH − 1)) · Pr(s7|ht) + (1 + αL(2qL − 1)) · Pr(s8|ht)
(1− αH(2qH − 1)) · Pr(s1|ht) + (1− αH(2qL − 1)) · Pr(s2|ht) + (1− αL(2qH − 1)) · Pr(s3|ht) + (1− αL(2qL − 1)) · Pr(s4|ht)

·
(

pt
1− pt

)
,

(A4.1.8)

show the informativeness of buy and sell orders respectively. In addition, δbt and δst are always greater than unity and increase with

the proportions of informed trading αL and αH , and the qualities of the informed traders’ signals qL and qH .

Proof. The proof follows similar to the proof of Proposition 4.5 (see Appendix 4.2). The difference is to recognize that

Bα,t = Pr(V̂ = 1|ht, Dt = −1) = Pr(s1|ht, Dt = −1) + Pr(s2|ht, Dt = −1) + Pr(s3|ht, Dt = −1) + Pr(s4|ht, Dt = −1), (A4.1.9)

Aα,t = Pr(V̂ = 1|ht, Dt = −1) = Pr(s1|ht, Dt = +1) + Pr(s2|ht, Dt = +1) + Pr(s3|ht, Dt = +1) + Pr(s4|ht, Dt = +1), (A4.1.10)
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which follow from the straightforward application of Bayes’ rule, i.e., Pr(s1|ht, Dt = −1) = Pr(Dt=−1|s1)∑
si∈S

Pr(Dt=−1|si)·Pr(si|ht) ·Pr(s1|ht), with the

similar rules for the other states. The results follow once the probabilities of buy (Dt = +1) and sell (Dt = −1) orders in each state

are calculated as

Pr(Dt|s1) =
1 + αH(2qH − 1) ·Dt

2
, Pr(Dt|s2) =

1 + αH(2qL − 1) ·Dt

2
, Pr(Dt|s3) =

1 + αL(2qH − 1) ·Dt

2
, Pr(Dt|s4) =

1 + αL(2qL − 1) ·Dt

2
,

Pr(Dt|s5) =
1− αH(2qH − 1) ·Dt

2
, Pr(Dt|s6) =

1− αH(2qL − 1) ·Dt

2
, Pr(Dt|s7) =

1− αL(2qH − 1) ·Dt

2
, Pr(Dt|s8) =

1− αL(2qL − 1) ·Dt

2
.

(A4.1.11)

�

Proposition A4.1.1 maintains the forms of bid and ask in the benchmark and extended models with composition uncertainty (see

Propositions 4.2 and 4.5). The only difference in this Appendix is that uncertainty about the quality of informed traders’ information

and the market maker’s learning about it also affect the informativeness of orders, δbt and δst , and consequently, the quotes and spread.

One way to see the direct impact of uncertainty about the quality of traders’ signals is to consider a myopic market maker, which

leads to symmetric information content of a buy and a sell

δbt = δst =

1 +

(
πt · αH + (1− πt) · αL

)
·
(

2 ·
(
ρt · qH + (1− ρt) · qL

)
− 1

)
1−

(
πt · αH + (1− πt) · αL

)
·
(

2 ·
(
ρt · qH + (1− ρt) · qL

)
− 1

) . (A4.1.12)

Eq. (A4.1.12) shows that the increase in ρt implies a higher adverse selection risk for the market maker, leading to a wider bid-ask

spread. As Proposition A4.1.1 maintains the forms of bid and ask quotes, by the similar arguments, the dynamics of belief about the

payoff, pt, after each order Dt and for the sequences of buy or sell orders follow the same way outlined in Lemma 4.6 and Corollary

4.9, respectively. In addition, the market maker’s learning about uncertainties follow analogous to Corollary 4.8.
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Proposition A4.1.2. In the presence of multidimensional uncertainty (i.e., future security payoff, proportion of informed traders,

and quality of their signals);

(i) the market maker observing balanced order flows (i.e., Nt = 0 at time t) learns nothing about the security payoff (i.e., pt = p1),

but revises her beliefs about the high informed trading and the informed traders having high-quality information downward (i.e.,

πt < π1, ρt < ρ1).

(ii) the market maker observing sequences of buy or sell orders (i.e., Nt = t− 1 or Nt = −(t− 1) at time t ) revises her beliefs about

the high informed trading and the informed traders having high-quality information upward (i.e., πt > π1, ρt > ρ1).

We now turn our attention to how beliefs about the future security payoff, proportion of informed traders, and quality of their signals

evolve when there are sequences of buy and sell orders and their effects on the quotes and spread. Figures 4.5 and 4.6 illustrate the

results in the presence of consecutive sell and buy orders, respectively. Panels (a)-(c) of the figures show that beliefs about the high

informed trading and high-quality signals are revised upward stronger in the presence of multiple sources of uncertainty. The stronger

upward revisions of beliefs about the high informed trading and high-quality signals result in high informativeness of orders, leading

to a wider bid-ask spread first, but at the same time faster convergence due to a faster learning about the payoff. Panels (d)-(f)

are consistent with the practice that the destabilizing role of order imbalances is stronger in the presence of multiple dimensions of

uncertainty about the adverse selection.
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(d) 

Figure 4.5: The dynamics of beliefs, quotes and bid-ask spread during the sequences of sell orders.
Panel (a) plots the market maker’s belief about the payoff, pt, (b) plots belief about the high informed trading, πt, (c) plots belief about
the informed traders having high quality information, ρt, (d) plots bid, Bt, (e) plots ask, At, and (f) plots bid-ask spread St in the face
of 20 consecutive sell orders (i.e., Nt = −20 at t = 21). The parameter values are αH = 0.99, αL = 0.01, qH = 1, qL = 0.6, p1 = 0.5,
π1 = 0.1, and ρ1 = 0.3.
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Figure 4.6: The dynamics of beliefs, quotes and bid-ask spread during the sequences of buy orders.
Panel (a) plots the market maker’s belief about the payoff, pt, (b) plots belief about the high informed trading, πt, (c) plots belief about
the informed traders having high quality information, ρt, (d) plots bid, Bt, (e) plots ask, At, and (f) plots bid-ask spread St in the face
of 20 consecutive buy orders (i.e., Nt = 20 at t = 21). The parameter values are αH = 0.99, αL = 0.01, qH = 1, qL = 0.6, p1 = 0.5,
π1 = 0.1, and ρ1 = 0.3.
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Appendix 4.2. Proofs

Proof of Proposition 4.2. The following expressions follow from Bayes’ theo-

rem.

Pr{Dt = +1|V̂ = 1, ht} =
1 + α · (2 · q − 1)

2
; (A4.2.1)

Pr{Dt = −1|V̂ = 1, ht} =
1− α · (2 · q − 1)

2
; (A4.2.2)

Pr{Dt = +1|ht} =
1 + α · (2 · pt − 1) · (2 · q − 1)

2
; (A4.2.3)

Pr{Dt = −1|ht} =
1 + α · (1− 2 · pt) · (2 · q − 1)

2
. (A4.2.4)

From conditions (1) and (3) of Definition 4.1 (i.e., the zero-expected-profit and

Bayesian conditions) the bid and ask prices follow, respectively, as

Bt = E[V̂ = 1|ht, Dt = −1] = Pr{V = 1|ht}︸ ︷︷ ︸
pt

·Pr{Dt = −1|V̂ = 1, ht}
Pr{Dt = −1|ht}

, (A4.2.5)

At = E[V̂ = 1|ht, Dt = +1] = Pr{V = 1|ht} ·
Pr{Dt = +1|V̂ = 1, ht}

Pr{Dt = +1|ht}
. (A4.2.6)

Substituting Eqs. (A4.2.2) and (A4.2.4) into Eq. (A4.2.5) and Eqs. (A4.2.1) and

(A4.2.3) into Eq. (A4.2.6), defining

δ =
1 + α · (2 · q − 1)

1− α · (2 · q − 1)
> 1, (A4.2.7)

for q ∈ (1/2, 1] and α ∈ (0, 1) and rearranging yields

Bt =
pt

pt + δ · (1− pt)
, (A4.2.8)

At =
pt

pt + δ−1 · (1− pt)
. (A4.2.9)

The bid-ask spread St follows from the difference of the ask in Eq. (A4.2.9) and

the bid in Eq. (A4.2.8) as

St =
pt · (1− pt) · (δ − δ−1)(

pt + δ · (1− pt)
)
·
(
pt + δ−1 · (1− pt)

) . (A4.2.10)

Finally, differentiating Eq. (A4.2.7) with respect to (w.r.t.) α and q obtains
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∂δ

∂α
=

2 · (2 · q − 1)(
1− α · (2 · q − 1)

)2 > 0 and
∂δ

∂q
=

4 · α(
1− α · (2 · q − 1)

)2 > 0

(A4.2.11)

for q ∈ (1/2, 1] and α ∈ (0, 1).

�

Proof of Lemma 4.3. Rearranging Eqs. (A4.2.8) and (A4.2.9) obtains

Bt

1−Bt

= δ−1 · pt
1− pt

, (A4.2.12)

At
1− At

= δ · pt
1− pt

. (A4.2.13)

Since pt+1 = Et+1[V̂ |ht, Dt] is Bt if Dt = −1 and At if Dt = 1, it follows that

pt+1

1− pt+1

=


Bt

1−Bt

, if Dt = −1,

At
1− At

, if Dt = +1.

(A4.2.14)

Therefore,
pt+1

1− pt+1

= δDt · pt
1− pt

. (A4.2.15)

Iterating from the first trade at t = 1 yields

pt
1− pt

=

(
p1

1− p1

)
· δ(D1+...+Dt−1) =

(
p1

1− p1

)
· δNt , (A4.2.16)

where p1 is the initial prior probability and Nt is the order imbalance up to (but

not including) the trade at time t. Solving Eq. (A4.2.16) for pt obtains

pt =
p1 · δNt

1 + p1 · (δNt − 1)
, (A4.2.17)

and inserting the initial prior probability p1 = 0.5 into Eq. (A4.2.17) obtains

pt =
δNt

1 + δNt
. (A4.2.18)

�



Chapter 4 177

Proof of Corollary 4.4. (i) pt = p1 follows immediately from substitutingNt = 0

into Eq. (A4.2.17). (ii) follows from the partial derivative of Eq. (A4.2.17) w.r.t.

Nt,
∂pt
∂Nt

=
δNt · (ln δ) · p1 · (1− p1)(

1 + p1 · (δNt − 1)
)2 > 0, (A4.2.19)

which shows that pt increases with positive order imbalance and decreases with

negative order imbalance. In addition, the magnitude of increase or decrease is

higher with more informative trades following

∂pt
∂δ

=
Nt · δNt−1 · p1 · (1− p1)(

1 + p1 · (δNt − 1)
)2 , (A4.2.20)

which is greater than 0 for Nt > 0 and less than 0 for Nt < 0.

(iii) Substituting Eq. (A4.2.17) into Eq. (A4.2.10), we obtain

St =
δNt · (δ − δ−1) · p1 · (1− p1)(

p1 · δNt + δ · (1− p1)
)
·
(
p1 · δNt + δ−1 · (1− p1)

) . (A4.2.21)

It follows from Eq. (A4.2.21) that at t = 1, the spread is given by

S1 =
(δ − δ−1) · p1 · (1− p1)(

p1 + δ · (1− p1)
)
·
(
p1 + δ−1 · (1− p1)

) . (A4.2.22)

Multiplying and dividing the right-hand side of Eq. (A4.2.21) with Eq. (A4.2.22)

yields

St = S1 ·
(
p1 + δ · (1− p1)

)
·
(
p1 + δ−1 · (1− p1)

)
· δNt(

p1 · δNt + δ · (1− p1)
)
·
(
p1 · δNt + δ−1 · (1− p1)

) . (A4.2.23)

St = S1 then follows from Eq. (A4.2.23) when Nt = 0. When p1 = 0.5, S1 = δ−1
δ+1

,

which turns out to be the maximum spread since

∂St
∂Nt

=
(δ − δ−1) · δNt · (ln δ) · (1− δ2·Nt)(

(δNt + δ) · (δNt + δ−1)

)2 = 0, (A4.2.24)

and ∂2St
∂N2

t
< 0 when Nt = 0.

(iv) follows from Eq. (A4.2.24) that ∂St
∂Nt

< 0 if Nt > 0 and ∂St
∂Nt

> 0 if Nt < 0,

which shows that the spread narrows with order imbalance. Finally, the spread
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converges to zero as order imbalance goes to infinity following

lim
Nt→+∞

δNt · (δ − δ−1)

(δNt + δ) · (δNt + δ−1)
= lim

Nt→+∞

(δ − δ−1)(
δNt + δ−Nt + δ + δ−1

) = 0, (A4.2.25)

and

lim
Nt→−∞

δNt · (δ − δ−1)

(δNt + δ) · (δNt + δ−1)
= lim

Nt→−∞

δNt · (δ − δ−1)(
δ2·Nt + δNt−1 + δNt+1 + 1

) = 0,

(A4.2.26)

since δ > 1

�

Proof of Proposition 4.5. In the presence of composition uncertainty, the

probability of an order Dt in each state is given by

Pr(Dt|s1) =
1 + αH ·Dt

2
, Pr(Dt|s2) =

1− αH ·Dt

2
,

Pr(Dt|s3) =
1 + αL ·Dt

2
, Pr(Dt|s4) =

1− αL ·Dt

2
,

(A4.2.27)

and the probability of an order Dt conditional on the trading history ht is given

by

Pr(Dt|ht) =
∑
si∈S

Pr(Dt|si) · Pr(si|ht), i = 1, 2, 3, 4. (A4.2.28)

The bid and ask quotes respectively follow as

Bα,t = E[V̂ = 1|ht, Dt = −1] = Pr(V̂ = 1|ht, Dt = −1)

= Pr{s1|ht, Dt = −1}+ Pr{s3|ht, Dt = −1}

=
Pr(Dt = −1|s1, ht)

Pr(Dt = −1|ht)
· Pr(s1|ht) +

Pr(Dt = −1|s3, ht)

Pr(Dt = −1|ht)
· Pr(s3|ht),

(A4.2.29)

Aα,t = E[V̂ = 1|ht, Dt = 1] = Pr(V̂ = 1|ht, Dt = 1)

= Pr{s1|ht, Dt = 1}+ Pr{s3|ht, Dt = 1}

=
Pr(Dt = 1|s1, ht)

Pr(Dt = 1|ht)
· Pr(s1|ht) +

Pr(Dt = 1|s3, ht)

Pr(Dt = 1|ht)
· Pr(s3|ht).

(A4.2.30)
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Substituting Eqs. (A4.2.27) and (A4.2.28) into Eqs. (A4.2.29) and (A4.2.30),

defining

δbt =

(
(1 + αH) · Pr(s1|ht) + (1 + αL) · Pr(s3|ht)
(1− αH) · Pr(s2|ht) + (1− αl) · Pr(s4|ht)

)
·
(

1− pt
pt

)
> 1, (A4.2.31)

δst =

(
(1 + αH) · Pr(s2|ht) + (1 + αL) · Pr(s4|ht)
(1− αH) · Pr(s1|ht) + (1− αl) · Pr(s3|ht)

)
·
(

pt
1− pt

)
> 1, (A4.2.32)

for 0 < αL < αH < 1 and rearranging yields

Bα,t =
pt

pt + δst · (1− pt)
, (A4.2.33)

Aα,t =
pt

pt + (δbt )
−1 · (1− pt)

, (A4.2.34)

Sα,t =
pt · (1− pt) · (δst − (δbt )

−1)(
pt + δst · (1− pt)

)
·
(
pt + (δbt )

−1 · (1− pt)
) . (A4.2.35)

Finally, partial derivatives of δbt and δst w.r.t. αL and αH (i.e.,
∂δbt
∂αL

> 0,
∂δbt
∂αH

> 0,
∂δst
∂αL

> 0 and
∂δst
∂αL

> 0 ) complete the proof.

�

Proof of Lemma 4.6. Rearranging Eqs. (A4.2.33) and (A4.2.34) obtains

Bα,t

1−Bα,t

= (δst )
−1 · pt

1− pt
, (A4.2.36)

Aα,t
1− Aα,t

= δbt ·
pt

1− pt
. (A4.2.37)

Analogous to the benchmark model, in the presence of composition uncertainty,

the current belief about the payoff is the last transaction price leading to

pt+1

1− pt+1
=

pt
1− pt

· (δbt ), if Dt = +1, (A4.2.38)

pt+1

1− pt+1
=

pt
1− pt

· (δst )−1, if Dt = −1. (A4.2.39)

�

Proof of Proposition 4.7. Given the trading history ht with bt buy and st

number of sell orders at time t, the market maker’s belief about the payoff pt and

the proportion of high informed trading πt respectively follow from Bayes theorem

as
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pt = Pr(s1|ht) + Pr(s3|ht)

=

(
p1 · π1 ·

(
1 + αH

)bt · (1− αH)st + p1 · (1− π1) ·
(
1 + αL

)bt · (1− αL)st)·(
p1 · π1 · (1 + αH)bt · (1− αH)st + (1− p1) · π1 · (1− αH)bt · (1 + αH)st

+ p1 · (1− π1) · (1 + αL)bt · (1− αL)st + (1− p1) · (1− π1) · (1− αL)bt · (1 + αL)st
)−1

,

(A4.2.40)

πt = Pr(s1|ht) + Pr(s2|ht)

=

(
p1 · π1 ·

(
1 + αH

)bt · (1− αH)st + (1− p1) · π1 ·
(
1− αH

)bt · (1 + αH
)st)·(

p1 · π1 · (1 + αH)bt · (1− αH)st + (1− p1) · π1 · (1− αH)bt · (1 + αH)st

+ p1 · (1− π1) · (1 + αL)bt · (1− αL)st + (1− p1) · (1− π1) · (1− αL)bt · (1 + αL)st
)−1

,

(A4.2.41)

where bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

.

(i) Substituting bt = st into Eq. (A4.2.40) obtains pt = p1 and taking partial

derivative of Eq. (A4.2.40) w.r.t. Nt after inserting bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

obtains ∂pt
Nt

> 0.

(ii) Similarly, inserting bt = (t−1)+Nt
2

and st = (t−1)−Nt
2

into Eq. (A4.2.41) and

taking partial derivative w.r.t. Nt obtains ∂πt
Nt

> 0 when Nt > 0 and ∂πt
Nt

< 0 when

Nt < 0, leading to ∂πt
|Nt| > 0.

�

Proof of Corollary 4.8. (i) Substituting bt = st into Eq. (A4.2.41) obtains

πt =

(
π1 · (1− αH)bt · (1 + αH)bt

π1 · (1− αH)bt · (1 + αH)bt + (1− π1) · (1− αL)bt · (1 + αL)bt

)
· π1.

(A4.2.42)

It follows from (1− αH)bt · (1 + αH)bt < (1− αL)bt · (1 + αL)bt that the first term

in Eq. (A4.2.42) is less than 1, leading to πt < π1.
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(ii) Substituting bt = t− 1 and st = 0 into Eq. (A4.2.41) obtains

πt = π1 ·
(
p1 · (1 + αH)t−1 + (1− p1) · (1− αH)t−1

)
·(

π1 ·
(
p1 · (1 + αH)t−1 + (1− p1) · (1− αH)t−1

)
+ (1− π1) ·

(
p1 · (1 + αL)t−1 + (1− p1) · (1− αL)t−1

))−1

.

(A4.2.43)

Then πt > π1 follows from the fact that p1 · (1 + α)t−1 + (1 − p1) · (1 − α)t−1

is increasing in α if p1 ≥ 0.5. The proof of the sequence of sell orders follows

similarly.

�

Proof of Corollary 4.9. (i) For the sequence of buy orders, iterating from the

first buy order at t = 1, Eq. (A4.2.38) leads to

pt
1− pt

=

(
p1

1− p1

)
· (δb1)D1 · ... · (δbt−1)Dt−1 =

(
p1

1− p1

)
·
τ=t−1∏
τ=1

δbτ (A4.2.44)

Substituting p1 = 0.5 into Eq. (A4.2.44) and solving for pt obtains

pt =

∏t−1
i=1 δ

b
i

1 +
∏t−1

i=1 δ
b
i

. (A4.2.45)

Let δ̄bt denote the geometric mean of the informativeness of the buy sequence up

to time t. It follows from Nt = t− 1 that for the sequence of buy orders,

τ=t−1∏
τ=1

δbτ =

(( τ=t−1∏
τ=1

δbτ
) 1
t−1

)Nt
= (δ̄bt )

Nt , (A4.2.46)

leading to

pt =
(δ̄bt )

Nt

1 + (δ̄bt )
Nt
, (A4.2.47)

similar to the benchmark model. (ii) The proof of the sell sequence follows simi-

larly.

�
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Proof of Proposition 4.10. (i) Given that initially it is equally likely that V̂ is

high or low (i.e., p1 = 0.5), S1 is given by

S1 =
δ1 − 1

δ1 + 1
, (A4.2.48)

where

δ1 = δs1 = δb1 =
1 + (π1 · αH + (1− π1) · αL)

1− (π1 · αH + (1− π1) · αL)
(A4.2.49)

is the initial informativeness of orders. Combining the spread in the presence of

composition uncertainty at time t in Eq. (A4.2.35) and the initial spread in Eq.

(A4.2.48) obtains

Sα,t = S1+

pt · (1− pt) · (δst − (δbt )
−1) · (δ1 + 1)−

(
pt + δst · (1− pt)

)
·
(
pt + (δbt )

−1 · (1− pt)
)
· (δ1 − 1)(

pt + δst · (1− pt)
)
·
(
pt + (δbt )

−1 · (1− pt)
)
· (δ1 + 1)

,

(A4.2.50)

where the second term in Eq. (A4.2.50) shows the net liquidity distortion ∆St

relative to the initial spread and is stabilizing when ∆St < 0 and destabilizing

when ∆St > 0.

(ii) The market maker’s perceived informativeness of orders following balanced

order flow (i.e., bt = st) follows from inserting the conditional probabilities of

states into Eqs. (A4.2.31) and (A4.2.32) as

δst = δbt =
π1 · (1 + αH)st+1 · (1− αH)st + (1− πt) · (1 + αL)st+1 · (1− αL)st

π1 · (1 + αH)st · (1− αH)st+1 + (1− π1) · (1 + αL)st · (1− αL)st+1
.

(A4.2.51)

Since pt = p1 for balanced order flow, ∆St in Eq. (A4.2.50) reduces to

∆St =
(δst − (δst )

−1) · (δ1 + 1)− (1 + δst ) · (1 + (δst )
−1) · (δ1 − 1)

(1 + δst ) · (1 + (δst )
−1) · (δ1 + 1)

, (A4.2.52)

which takes a negative value if and only if δst < δ1. Since δst given in Eq. (A4.2.51)

is decreasing in st,
∂δst
∂st

< 0, it follows that δst < δ1 is always satisfied, meaning that

balanced order flows always stabilize the market.

(iii) For the sequence of sell orders, substituting

pt =

∏t−1
i=1(δsi )

−1

1 +
∏t−1

i=1(δsi )
−1
. (A4.2.53)
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into the net liquidity distortion ∆St in Eq. (A4.2.50) obtains

∆St =∏t−1
i=1(δsi )

−1 ·
(
δst − (δbt )

−1) · (δ1 + 1)−
(∏t−1

i=1(δsi )
−1 + δst

)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1) · (δ1 − 1)(∏t−1
i=1(δsi )

−1 + δst
)
·
(∏t−1

i=1(δsi )
−1 + (δbt )

−1
)
· (δ1 + 1)

,

(A4.2.54)

which takes a positive value if and only if

δ1 <
2 · δst +

∏t−1
i=1(δsi )

−1 +
∏t−1

i=1 δ
s
i · δst · (δbt )−1

2 · (δbt )−1 +
∏t−1

i=1(δsi )
−1 +

∏t−1
i=1 δ

s
i · δst · (δbt )−1

. (A4.2.55)

(iv) The proof for the sequence of buy orders follows similarly.

�

Proof of Lemma 4.11. Inserting the independence conditions of the myopic

market maker (i.e., Pr(s1|ht) = πmt · pmt , Pr(s2|ht) = πmt · (1 − pmt ), Pr(s3|ht) =

(1− πmt ) · pmt and Pr(s4|ht) = (1− πmt ) · (1− pmt )) into δbt and δst in Eqs. (A4.2.31)

and (A4.2.32) obtains

δmt =
1 + (πmt · αH + (1− πmt ) · αL)

1− (πmt · αH + (1− πmt ) · αL)
, (A4.2.56)

which yields

Bm
α,t =

pmt
pmt + δmt · (1− pmt )

, (A4.2.57)

and

Amα,t =
pmt

pmt + (δmt )−1 · (1− pmt )
. (A4.2.58)

Therefore, as in the benchmark model

pmt+1

1− pmt+1

=
pmt

1− pmt
· (δmt )Dt . (A4.2.59)

Iterating from the first trade t = 1 up to time t obtains

pmt
1− pmt

=

(
p1

1− p1

)
· (δm1 )D1 · ... · (δmt−1)Dt−1 =

(
p1

1− p1

)
·
t−1∏
τ=1

(δmτ )Dτ =
t−1∏
τ=1

(δmτ )Dτ ,

(A4.2.60)

leading to

pmt =

∏t−1
τ=1(δmτ )Dτ

1 +
∏t−1

τ=1(δmτ )Dτ
. (A4.2.61)
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We now show that
∏t−1

τ=1(δmτ )Dτ is given by δ̄N̄tt . Let

ln δ̄mt =
1

t− 1
·
t−1∑
i=1

ln δmi =
1

t− 1
· ln

t−1∏
i=1

δmi = ln

( t−1∏
i=1

δmi

) 1
t−1

, (A4.2.62)

leading to δ̄mt =

(∏t−1
i=1 δ

m
i

) 1
t−1

. Taking the log of
∏t−1

τ=1(δmτ )Dτ , and multiplying

and dividing with
∑t−1

i=1 ln δmi obtains

ln

( t−1∏
τ=1

(δmτ )Dτ
)

=
t−1∑
τ=1

Dτ · ln δmτ =
t−1∑
i=1

ln δmi ·
t−1∑
τ=1

Dτ ·
ln δmτ∑t−1
i=1 ln δmi

= ln δ̄mt ·
t−1∑
τ=1

Dτ ·
(t− 1) · ln δmτ∑t−1

i=1 ln δmi
= ln δ̄mt ·

t−1∑
τ=1

Dτ · wτ = ln δ̄mt · N̄t,

(A4.2.63)

where wτ = (t−1)·ln δmτ∑t−1
i=1 ln δmi

and N̄t =
∑t−1

τ=1Dτ · wτ . Hence,
∏τ=t−1

τ=1 (δmτ )Dτ = δ̄N̄tt .

Lastly, the myopic market maker’s learning about the proportion of informed

traders after a buy and a sell follows from Bayes’ theorem respectively as

πmt+1 = Pr{α̂ = αH |ht, Dt = +1} =
Pr{Dt = +1|ht, α̂ = αH} · Pr{α̂ = αH |ht}

Pr{Dt = +1|ht}

=
1 + αH · (2 · pmt − 1) · (2 · q − 1)

1 +
(
πmt · αH + (1− πmt ) · αL

)
· (2 · pmt − 1) · (2 · q − 1)

· πmt ,

(A4.2.64)

πmt+1 = Pr{α̂ = αH |ht, Dt = −1} =
Pr{Dt = −1|ht, α̂ = αH} · Pr{α̂ = αH |ht}

Pr{Dt = −1|ht}

=
1 + αH · (1− 2 · pmt ) · (2 · q − 1)

1 +
(
πmt · αH + (1− πmt ) · αL

)
· (1− 2 · pmt ) · (2 · q − 1)

· πmt ,

(A4.2.65)

which combined leads to Eq. (4.47).

�
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Appendix 4.3. Myopic Market Maker

In this Appendix, we show the quotes and learning of the myopic market maker

who learns about Ṽ and α̃ independently. Although the results of the baseline

model in Section 4.4 is more general, assuming independence allows us to illustrate

the learning of the market maker more clearly and provide economic intuition of

the toxicity in order flow. The next proposition characterizes the quotes and

spread of the myopic market maker (for brevity we drop the m superscript for the

myopic market maker in this Appendix).

Proposition A4.3.1. The equilibrium bid and ask prices in the presence of com-

position uncertainty are respectively given by

Bα,t =
pt

pt + δt · (1− pt)
, (A4.3.1)

Aα,t =
pt

pt + δ−1
t · (1− pt)

, (A4.3.2)

and the bid-ask spread takes the form of

Sα,t =
pt · (1− pt) · (δt − δ−1

t )(
pt + δt · (1− pt)

)
·
(
pt + δ−1

t · (1− pt)
) , (A4.3.3)

where

δt =
1 +

(
πt · αH + (1− πt) · αL

)
·
(
2 · q − 1

)
1−

(
πt · αH + (1− πt) · αL

)
·
(
2 · q − 1

) , (A4.3.4)

is always greater than unity and increases with the belief about the high proportion

of informed traders πt.

Proof. The proof is immediate after substituting the independence conditions, i.e.,

Pr(s1|ht) = πt · pt, Pr(s2|ht) = πt · (1− pt)

Pr(s3|ht) = (1− πt) · pt Pr(s4|ht) = (1− πt) · (1− pt)
(A4.3.5)

into Eqs. (4.18) and (4.19). Alternatively, the following expressions follow from

Bayes’ theorem:

Pr{Dt = −1|V̂ = 1, ht} = πt ·
1− αH · (2 · q − 1)

2
+ (1− πt) ·

1− αL · (2 · q − 1)

2
; (A4.3.6)

Pr{Dt = −1|ht} = πt ·
1 + αH · (1− 2 · pt) · (2 · q − 1)

2
+(1−πt) ·

1 + αL · (1− 2 · pt) · (2 · q − 1)

2
.

(A4.3.7)

From the zero-expected-profit and Bayesian conditions, the bid price (ask price

follows similarly) follows as



Chapter 4 186

Bt = E[V̂ = 1|ht, Dt = −1] = Pr{V̂ = 1|ht} ·
Pr{Dt = −1|V̂ = 1, ht}

Pr{Dt = −1|ht}

= pt ·

(
πt · 1−αH ·(2·q−1)

2
+ (1− πt) · 1−αL·(2·q−1)

2

)
(
πt · 1+αH ·(1−2·pt)·(2·q−1)

2
+ (1− πt) · 1+αL·(1−2·pt)·(2·q−1)

2

)

= pt ·

(
1−

(
πt · αH + (1− πt) · αL

)
· (2 · q − 1)

)
(

1 +
(
πt · αH + (1− πt) · αL

)
· (1− 2 · pt) · (2 · q − 1)

)
=

pt
pt + δt · (1− pt)

,

(A4.3.8)

where

δt =
1 +

(
πt · αH + (1− πt) · αL

)
· (2 · q − 1)

1−
(
πt · αH + (1− πt) · αL

)
· (2 · q − 1)

> 1 (A4.3.9)

for 0 < αl < αh < 1 and q ∈ (1
2
, 1], and increases with πt following,

∂δt
∂πt

=
2 · (αH − αL) · (2 · q − 1)(

1−
(
πt · αH + (1− πt) · αL

)
· (2 · q − 1)

)2 > 0. (A4.3.10)

�

The difference of Proposition A4.3.1 from Proposition 4.5 in the baseline model

is that the myopic market maker learns about pt and πt as if nature has inde-

pendently chosen α̂ and V̂ . However, Proposition A4.3.1 demonstrates that most

of the intuitions of the baseline model carry forward (except the repricing history

effect since the informativeness of buy and sell orders are symmetric, δbt = δst = δt).

Similarly, Lemma 4.11 in Section 4.4 shows that when the market maker learns

about the uncertainties about the composition of traders and fundamental value

independently, the geometric mean of the informativeness of trades up to time t,

δ̄t, and the weighted order imbalance, N̄t, have similar roles as the fixed infor-

mativeness of trades, δ, and the order imbalance, Nt, in the benchmark model in

determining the market maker’s belief about the fundamental value. The weighted

order imbalance, N̄t, is the sum of the weighted average of individual orders. The

weighting function of the individual orders, wτ , increases with the informativeness

of the trades. Therefore, a natural interpretation of the weighting function is the

market maker’s belief about the toxicity of the order. An order with less informa-

tiveness is weighted less, whereas an order with high informativeness is weighted
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more in counting the order imbalance N̄t of the market maker. Put differently,

the market maker treats a toxic unit order as more than a unit order and a non-

toxic unit order as less than a unit order, yet she only receives a unit order. The

following proposition follows from Lemma 4.11.

Proposition A4.3.2. In the presence of the composition uncertainty;

(i) If there is a sell order at time t, the probability of the high informed trading,

and therefore, the informativeness of orders rise when pt <
1
2

and fall when

pt >
1
2

(i.e., πt+1 > πt and δt+1 > δt if pt <
1
2

and πt+1 < πt and δt+1 < δt if

pt >
1
2
). Moreover, the risky security payoff is revised downward with a sell

order (i.e., pt+1 < pt).

(ii) If there is a buy order at time t, the probability of the high informed trading,

and therefore, the informativeness of orders rise when pt >
1
2

and fall when

pt <
1
2

(i.e., πt+1 > πt and δt+1 > δt if pt >
1
2
, and πt+1 < πt and δt+1 < δt

if pt <
1
2
). Moreover, the risky security payoff is revised upward with a buy

order (i.e., pt+1 > pt).

(iii) The probability of the high informed trading and the informativeness of

orders are unchanged when pt = 1
2

(i.e., πt+1 = πt and δt+1 = δt if pt = 1
2
).

Proof. We only prove after a sell order. By Bayes’ theorem, the market maker’s

belief about the high informed trading after a sell order is given by

πt+1 = Pr{α̂ = αh|ht, Dt = −1} =
Pr{Dt = −1|ht, α̂ = αh} · Pr{α̂ = αh|ht}

Pr{Dt = −1|ht}

=
1 + αh · (1− 2 · pt) · (2 · q − 1)

1 +
(
πt · αh + (1− πt) · αl

)
· (1− 2 · pt) · (2 · q − 1)

· πt,

(A4.3.11)

which is greater than πt when pt <
1
2

and less than πt when pt >
1
2
. πt+1 > πt

leads to δt+1 > δt and πt+1 < πt leads to δt+1 < δt since ∂δt
∂πt

> 0 following Eq.

(A4.3.10). Moreover, it follows from Eq. (4.48) that pt+1 < pt when Dt = −1.

The proof after a buy order follows similarly.

�

Proposition A4.3.2 demonstrates how the market maker revises her beliefs after

each trade and is consistent with the learning rule of the market maker presented

in Proposition 4.7 and Corollary 4.8. Now that we have characterized the quotes

and the independent learning rule of the market maker, we can illustrate the

destabilizing role of order imbalance by considering a scenario similar to flash

crashes with a sudden selling pressure. Figure 4.7 illustrates the results.
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Figure 4.7: The dynamics of beliefs, quotes and bid-ask spread of the myopic market maker during the sequences of
sell orders.
Panel (a) plots the belief about the payoff, pt, (b) plots the belief about the high informed trading, πt, (c) plots informativeness of
orders, δt, (d) plots bid, Bt, (e) plots ask, At, and (f) plots bid-ask spread St of the myopic and benchmark market makers in the face
of 20 consecutive sell orders (i.e., Nt = −20 at t = 21). The parameter values are αH = 0.99, αL = 0.01, q = 1, p1 = 0.5, and π1 = 0.05.
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Chapter 5

Toward A General Model of

Financial Markets

Is our expectation of rain, when we start out for a walk, always more likely than

not, or less likely than not, or as likely as not? I am prepared to argue that on

some occasions none of these alternatives hold, and that it will be an arbitrary

matter to decide for or against the umbrella. If the barometer is high, but the

clouds are black, it is not always rational that one should prevail over the other in

our minds, or even that we should balance them, though it will be rational to allow

caprice to determine us and to waste no time on the debate.

Keynes (1921) “A Treatise on Probability” [p. 31].

5.1 Introduction

Thus far we have modeled financial markets when market participants face un-

certainty other than the fundamental values of assets such as uncertainty in the

beliefs about the payoffs (Chapter 2), the composition of traders (Chapters 3 and

4), and the quality of informed traders’ information (Chapter 4). While these

models provide useful characterizations of different dimensions of uncertainty in

financial markets, they require some structure to obtain closed-form solutions.

In this chapter, by using the information science and decision theories literature,

we discuss “the complexity of the real-world information and the implications for

financial markets” and raise some interesting questions.

189
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The argument we put forth to carry the discussion takes its root from “fact” vs.

“opinion”. In an environment rife with heterogeneous opinions, behavioral biases

naturally arise when agents deal with imprecise and partially true information. We

argue that information becomes open to interpretation and leads to behavioral

biases when it is not a precise fact, but rather imprecise and partially reliable.

Most of the existing financial models become too simplistic to account for the

real world with partially reliable and imprecise information. As the information

becomes imprecise and unreliable the environment becomes too complex to be

explained by the standard techniques. This chapter illustrates “how complex the

financial decision making can get?”.

In this chapter, we discuss information in the broadest possible way that lends

itself to possible quantitative scrutiny. Specifically, we use Zadeh (2011) classifi-

cation of information - numerical, interval-valued, second-order uncertain, fuzzy

and Z information - based on its generality. We argue such that individuals are

subjectively rational if they apply “correct” decision technique to each class of

information separately rather than defining rationality based on only one deci-

sion technique such as the standard Savage’s axioms of subjective expected utility

for all classes of information. We present a general approximation for subjective

rationality in decision making and suggest a general framework. We argue that

efficient markets hypothesis (EMH) and behavioral finance (BF) become special

cases of this framework with the imprecision and reliability of information approx-

imately connecting them. That is, imprecise and partially reliable information

triggers interaction between psychological factors to play a primary role in the fi-

nancial decision-making process and in generating “anomalies”, while precise facts

approximately lead to efficient markets.47

We motivate the discussion by first discussing the history of EMH and BF, and

their main theses. In section 5.2, we present a general framework to define sub-

jective rationality as a broad concept. In section 5.3, consistent with the proposed

framework, we suggest candidate decision theories to account for the subjectively

rational behavior. In section 5.4, by using the proposed candidate theories we

discuss “insurance and gambling” and “equity premium” puzzles for illustrative

purposes. In section 5.5, we discuss a novel representation of market efficiency.

Section 5.6 concludes. Appendix 5 contains mathematical preliminaries.

47In order to forestall needless arguments, let us also mention that we do not claim that im-
precision and reliability are the only factors connecting these two seemingly opposite paradigms,
but the important factors.
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5.1.1 Efficient markets hypothesis

EMH argues that large price movements result from the arrival of new fundamental

information into the market, in which the information is probabilistic in nature.

This is first comprehensively formalized in Osborne (1959) by making a number of

assumptions. One of the underlying assumptions of Osborne’s world is the “logical

decision” which means investors are assumed to form expectations probabilistically

and choose the course of action with a higher expected value. That is to say,

investors form objective probabilities and make rational decisions as if they know

each individual outcome. Another crucial assumption made by Osborne (1959) is

an “independence of decisions” in the sequence of transactions of a single stock

which leads to independent, identically distributed successive price changes. This

implies that changes in prices can only come from unexpected new information.

In this setting, central limit theorem assures that daily, weekly and monthly price

changes converge to Gaussian distribution which is later generalized by Mandelbrot

(1963) to stable Paretian distribution to account for the empirical evidence of

leptokurtic distributions of price changes.

Stable Paretian distribution hypothesis is later supported by Fama (1965). Fama

also argues that an independence assumption may still hold due to the existence

of sophisticated traders (the so-called smart money), even though the processes

generating noise and new information are dependent. That is, an independence

assumption is consistent with efficient markets where prices at every point in time

represent the best estimates of intrinsic values. The combination of independence

and stable Paretian distribution allows Fama to argue that the actual prices adjust

instantaneously to the changes in intrinsic value due to the discontinuous nature

of the stable Paretian distribution. Therefore, this version of efficient market

hypothesis includes random walk theory as a special case. However, the first

formal general economic argument of ‘efficient markets’ is given by Samuelson

(1965) by focusing on the martingale property first established by Bachelier (1900).

Similar to the ‘logical decision’ assumption of Osborne (1959), Samuelson (1965)

also assumes that people in financial markets make full use of the past probability

distribution.

In summary, the proponents of this paradigm essentially argued the use of a prob-

ability calculus as a foundation of the economic analysis and made substantial

progress in our understanding of financial markets. This view also justified an ap-

plication of probability based decision techniques to financial markets and became

associated with the CAPM of Sharpe (1964), Lintner (1965) and Mossin (1966).
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5.1.2 Behavioral finance

The main arguments of BF stand in sharp contradiction to the logical decisions

assumption of efficient markets hypothesis in forming expectations. The early

works of Kahneman and Tversky is a foundational block of this area of finance.

In a series of experiments, they show that people use heuristic to decide under

uncertainty and conjecture that the same heuristic plays an important role in

the evaluation of uncertainty in real life. In their seminal paper, Kahneman and

Tversky (1979) present a critique of the expected utility theory and develop the

prospect theory as an alternative. At the same time, Shiller (1979) shows that

long-term interest rates are too volatile to be justified by rational models. Inspired

by Tversky and Kahneman’s works, Thaler (1980) argues that consumers do not

follow economic theory and proposes an alternative descriptive theory on the basis

of the prospect theory. Similarly, Shiller (1981) argues that stock prices fluctuate

too much to be justified by subsequent dividend changes.

All of these arguments and findings sharply contradicted the efficient markets hy-

pothesis and shaped the emergence of a new field. Finally, Bondt and Thaler

(1985) marked the birth of behavioral finance with empirical evidence of overreac-

tion hypothesis suggested by the experimental psychology. Since then, the number

and magnitude of anomalies noticed by researchers have increased (although some

are the mere results of data dredging) and the focus of finance academic discussion

has shifted.

In summary, the main arguments of BF is categorized by Shefrin (2000) as follows:

• Financial practitioners commit errors due to relying on rules of thumb.

• Frame of a decision problem influences financial practitioners’ decisions.

• Heuristic-driven biases and framing effects lead the prices in financial mar-

kets to deviate from fundamental values.

Overall, EMH supporters criticize BF for not having any unifying principles to

explain the origin of behavioral anomalies. At the same time, BF supporters crit-

icize EMH for making unrealistic assumptions and systematic errors in predicting

human behavior. We agree with both arguments. Therefore, in this chapter, we

examine the possibility of a general framework where both of the paradigms coex-

ist. An exposition of a more general view of financial markets is the main purpose

of this chapter.
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5.2 Broad Concept of Subjective Rationality

The main goal of this section is to attempt to answer a question of what is meant

by “rational” behavior when the decision maker (DM) is confronted with different

types of information. The proposed framework is based on the premise that the

“correct” decision method changes when the specificity and reliability of informa-

tion change. Also, the considered notion of rationality is subjective in the sense of

Gilboa et al. (2010). That is to say, the decision maker cannot be convinced that

he is wrong in his decision.48

The current interpretation of rationality in economics and finance relies heavily on

the subjective expected utility (SEU) axioms of Savage (1954). Simply, you are

rational if you follow axioms of SEU and irrational if you don’t. This definition

of rationality is too narrow to capture a real-life decision situation. Also, this

definition contradicts what has been tentatively argued by many economists such

as Keynes (1921), Knight (1921), Shackle (1949), Arrow (1951) to name a few.

Specifically, Knight (1921) makes a clear distinction between risk (when relative

odds of the events are known) and uncertainty (when the degree of knowledge only

allows us to work with estimates). Also, Arrow (1951) notes that descriptions of

uncertain consequences can be classified into two major categories, those which

use exclusively the language of probability distributions and those which call for

some other principle, either to replace or to supplement. We agree with the need

of another principle to be a supplement to a language of probability to better

approximate a real-life decision situation. This is due to the fact that information

that decisions are based on is not only uncertain in nature, but at the same time

imprecise and partially true. Using only a probabilistic approach is not sufficient

to treat uncertainty, imprecision and partial truthness of information adequately.

One of the main arguments advanced in information science literature is that im-

precision of the real-life information is possibilistic rather than probabilistic in

nature and a fuzzy set theory is a necessary mathematical tool to deal with the

possibilistic uncertainty (e.g., Zadeh (1978)). While there has been substantial

progress in modeling uncertainty probabilistically, economics as a discipline has

48Gilboa et al. (2010) specifically show how the Knightian decision theory of Bewley (2002)
and the maxmin expected utility (MEU) of Gilboa and Schmeidler (1989) are complementary to
each other in terms of defining objective and subjective rationality. They argue that a choice is
objectively rational if the DM can convince others that he is right in making it and subjectively
rational if others cannot convince the DM that he is wrong in making it.
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been somewhat reluctant to account for the latter over the years. For this rea-

son, we focus on how the subjectively rational behavior is likely to change as the

imprecision and reliability of information change.

One motivation of this research comes from Gilboa et al. (2010) who propose be-

havioral foundation of objective and subjective rationality. The other motivation

comes from Peters (2003) who defines rationality as an application of the right

method to the right problem or irrationality as a mismatch of the methodology

and problem. By adopting the concept of subjective rationality in Gilboa et al.

(2010), we consider a decision-theoretic approach to discuss right methods for de-

cision problems with different types of information. Finding the right decision

technique is the major issue in this context. One might reasonably ask “what is

the right decision technique?” and “what is the right problem?”. We can deal with

these questions appropriately in certain circumstances. By classifying the prob-

lems according to the information types of a DM one can find candidate decision

theories to account for the subjective rationality. For example, an application of

an objective probability-based decision technique to the problem with objective

probability distribution is a right decision technique, while the same technique is

not available in the situation in which a DM has imprecise information. So that,

the expected utility theory (EUT) of Von Neumann and Morgenstern (1944) can

be regarded as a right decision technique in probability theory applicable circum-

stances as it builds upon objective probabilities. If the asset returns follow the

random walk theory, then the application of EUT becomes acceptable.

By generous stretch of imagination, we can use a similar logic to determine the

right decision techniques for more general classes of information. The higher the

generality of information and corresponding decision theories, the more financial

observations we can solve that we otherwise label as paradoxes (anomalies). In

our framework we follow Zadeh (2011) who outlines the following classification of

information based on its generality.

Numerical Information (Ground Level – ‘G’) - This is single-valued infor-

mation with exact probability, e.g., there is 80% chance that there will be 3%

growth in Australian economy next year.

Interval-valued Information (First Level – ‘F’) - This is the first order

uncertainty in which probability and value take intervals, e.g., there is 75-85%

chance that there will be 2-3.5% growth in Australian economy next year.
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Information with second-order uncertainty (Second Level ‘S’) - This is

partially reliable information with sharp boundaries, e.g., there is 70-85% chance

that there will be 1.5-3.5% growth in Australian economy next year and the lower

probability of the given chances being reliable is 80%.

Fuzzy Information (Third Level – ‘T’) - This is the information with un-

sharp boundaries, e.g., there will be a moderate growth in Australian economy

next year.

Z-information and visual information (Z Level – ‘Z’) - This is partially

reliable information with un-sharp boundaries and often in natural language, e.g.,

it seems likely that there will be a moderate growth in Australian economy next

year.

The distinction between these levels can be difficult. Sometimes we can think

of one upper level as the same as one below. However, there is no doubt that

the degree of informativeness or specificity of information diminishes as we move

away from the ground level. The former implies the latter while it is not true

for the reverse.49 We do not wish to face here the question of whether or not

the information is sufficiently informative to serve a particular purpose. However,

using a logic similar to Peters (2003), though his representation is vague, we ap-

proximate the definition of rationality in Table 5.1. Individuals can be considered

subjectively rational along the diagonal in this framework. That is, for each level

of information class there should be a different decision theory (methodology) to

account for the subjectively rational behavior.

Following the argument and representation in Table 5.1, a broad definition of

rationality is given accordingly.

Definition 5.1. A subjectively rational decisions are consistent with different

decision theories for different classes of information.

The representation of subjectively rational behavior in Table 5.1 also hides a philo-

sophical subtlety in itself. Philosophically, rationality is not a 0/1 property. Then,

one can modify Table 5.1 to describe a degree of irrationality of the decision maker.

For example, an irrationality of applying decision theory 1 to interval-valued in-

formation and applying the same method to Z information should be different.

More precisely, the latter is more irrational than the former. One can consistently

49One can think of this generalization as a subsethood relation, G ⊆ F ⊆ S ⊆ T ⊆ Z, but
not in a strict mathematical sense of subsethood since, for example, it is not obvious to see the
relation between S and T.
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Table 5.1: Subjectively rational behavior

apply the same logic to the upper right triangle of Table 5.1. Note that, this is

different from maximally rational, rational and minimally rational classification

of Rubinstein (2001). What we have in mind is to set the maximum level as ra-

tional in the underlying information class and then reduce by one unit for each

level of deviation from the underlying information class to describe the degree of

irrationality. Also, we do not confine ourselves to only maxmin expected utility

model in defining subjective rationality as proposed by Gilboa et al. (2010). This

in turn, enables us to differentiate irrationality of the decision maker. A changing

degree of irrationality can provide a novel foundation on the theory of choice under

uncertainty. Of course, the argument does not go strictly. Nevertheless, this or

similar type of representations might be a good starting point.

Similarly, an application of the more general decision theory where the less general

is sufficient to capture the given decision situation is an inefficient use of resources.

One can consistently apply this logic to the lower left triangle of Table 5.1. In terms

of consistency of the framework, an application of the more general decision theory

should give the same result as the less general one in the corresponding information

class of the less general theory, nevertheless, the latter provides computational

ease. In line with consistency and computational ease, there are two fundamental

reasons to move from one decision theory to another. First, a more general decision

theory is needed if it solves, at least, one more paradox that the existing theory

cannot solve. Second, the existing decision theory becomes inconvenient (e.g.,

excessively complex) at some stage and it is desirable to move to a more convenient

theory. The principle of replacing the existing decision theory with a more general

decision theory is similar to the principle of requisite generalization in generalized

information theory (GIT) (e.g., Klir (2005)). Here, a generalization is also not

optional, but requisite, imposed by the nature of the decision situation.
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5.3 Subjectively Rational Decision Making

In this section, we discuss candidates for the right decision theories by considering

5 examples with different classes of information. For this purpose, we consider 5

financial practitioners who choose among three alternatives (bonds - f1, stocks -

f2 and term deposit - f3) for a short-term investment plan. To make the analysis

more clear we make rough approximations.50

5.3.1 Practitioner 1 - Expected utility theory

Suppose, Practitioner 1 evaluates each alternative under strong growth (s1), mod-

erate growth (s2), stable economy (s3) and recession (s4). He notes that the

following precise utilities will be achieved under each state of the economy for

different acts.

s1 s2 s3 s4

f1 15 9 8 4

f2 16 9 4 0

f3 10 10 10 10

Table 5.2: Utilities of each act under different states

He also has perfect information about the uncertainty of the states with the fol-

lowing (subjective) probabilities: P (s1) = 0.5, P (s2) = 0.3, P (s3) = 0.15, and

hence, P (s4) = 0.05. He faces the question of what option to choose.

Clearly, the information of Practitioner 1 is numerical information and he is in

the province of probability theory. For this type of simplistic information classical

measure and integral are adequate tools to calculate expected utilities of each

act. In this environment, Practitioner 1 can easily determine his preferences as

f1 � f2 � f3 by calculating expected utilities as

U(f1) = 11.6, U(f2) = 11.3 and U(f3) = 10. (5.1)

In (subjective) expected utility theory, choice under uncertainty is perceived as the

maximization of the mathematical expectation of individual utilities with respect

50This may be a right point to revise the mathematical preliminaries in Appendix 5.
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to (subjective) probabilities. If preferences of Practitioner 1 coincide with what

is suggested by (SEU) EUT, then his action is perfectly justifiable and can be

regarded as rational based on the proposed framework. So that, the optimal

solution for Practitioner 1 is the bonds. In what follows, we illustrate information

classes where the classical tools are not directly applicable.

5.3.2 Practitioner 2 - Choquet expected utility

Suppose, Practitioner 2 also evaluates each alternative under strong growth (s1),

moderate growth (s2), stable economy (s3) and recession (s4) and he also notes

the same precise utilities shown in Table 5.2. However, he assigns the following

subjective probability intervals: P (s1) = [0.4, 0.45], P (s2) = [0.3, 0.35], P (s3) =

[0.15, 0.20], and hence, P (s4) = [0, 0.15]. He faces the question of what option to

choose.

The information of Practitioner 2 corresponds to the interval-valued information

in Table 5.1. For simplicity we assumed that only his probability assessments take

interval values. This can be extended to interval-valued utilities in the sense of

Gul and Pesendorfer (2014).

Given a set S and its power set F(S), let I =< [l(si), u(si)] | i ∈ N4 > denote

4-tuples of probability intervals on si ∈ S, where l(si) and u(si) denote the lower

and upper probability bounds of state i. LetM denote a convex set of probability

distribution functions p on F(S) satisfying

M = {p | l(si) ≤ p(si) ≤ u(si), i ∈ N4,
∑
si∈S

p(si) = 1}. (5.2)

From the probability distributions in setM, the lower probability measure (lower

prevision) is defined for all A ∈ F(S) as η(A) = infp∈M
∑

xi∈A p(xi). It follows

from this definition that lower probabilities satisfy the conditions of capacities

(i.e., monotone measures). Then, the lower probability measure η is51

η(A) = max

∑
xi∈A

l(xi), 1−
∑
xi /∈A

u(xi)

 ,∀A ∈ F(S). (5.3)

51Note that, M is non-empty set if and only if,
∑4
i=1 l(si) ≤ 1 and

∑4
i=1 u(si) ≥ 1. Also,

equation (5.3) is only applicable when I satisfies
∑
j 6=i l(sj)+u(si) ≤ 1 and

∑
j 6=i u(sj)+l(si) ≥ 1.

These conditions are trivially satisfied when l(s4) = 1−
∑3
i=1 u(si) and u(s4) = 1−

∑3
i=1 l(si).
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For clarity, let us exemplify,

η
(
{s1, s4}

)
= max{l(s1) + l(s4), 1− u(s2)− u(s3)} = 0.45, (5.4)

η
(
{s1, s3, s4}

)
= max{l(s1) + l(s3) + l(s4), 1− u(s2)} = 0.65. (5.5)

Table 5.3 shows the values of lower probability measures that are computed simi-

larly.

States {s1} {s2} {s3} {s4} {s1, s2}
η(A) 0.4 0.3 0.15 0 0.7

States {s1, s3} {s1, s4} {s2, s3} {s2, s4} {s3, s4}
η(A) 0.55 0.45 0.45 0.35 0.20

States {s1, s2, s3} {s1, s2, s4} {s1, s3, s4} {s2, s3, s4} {S}
η(A) 0.85 0.80 0.65 0.55 1

Table 5.3: Lower probability measures

Based on his probability intervals, Practitioner 2 can determine his preferences

as f1 � f3 � f2 by first ordering utility values in a descending order and then

aggregating utilities with the Choquet integral with respect to the lower probability

measure η.52 Specifically, for a given alternative, the Choquet (expected) utility

is computed as

U(fi) =

(
u
(
(fi)(s1)

)
− u
(
(fi)(s2)

))
η({s1})

+

(
u
(
(fi)(s2)

)
− u
(
(fi)(s3)

))
η({s1, s2})

+

((
u(fi)(s3)

)
− u
(
(fi)(s4)

))
η({s1, s2, s3}) + u

(
(fi)(s4)

)
η(S),

(5.6)

given that u
(
(fi)(s1)

)
≥ u

(
(fi)(s2)

)
≥ u

(
(fi)(s3)

)
≥ u

(
(fi)(s4)

)
. Following the

same steps for f1, f2 and f3, we obtain the expected utilities of each alternative as

U(f1) = 10.5, U(f2) = 9.7 and U(f3) = 10, (5.7)

which leads to the preference order of f1 � f3 � f2.

52Recall from Chapter 2 that the Choquet expectation is equivalent to adding the probability
gap to the belief about the worst case scenario.



Chapter 5 200

For Practitioner 2, due to the imprecise nature of probability intervals, the classical

measure and integral become deficient to directly determine the optimal solution.

Therefore, we first determine convex set of probability distribution functions from

the given intervals and calculate the lower envelope of this closed convex set as a

lower probability measure. As this lower probability measure satisfies the condi-

tions of Choquet capacities (or non-additive probabilities), the Choquet integral

becomes the right tool to determine the expected utilities of each act. This is es-

sentially the Choquet expected utility (CEU) proposed by Schmeidler (1989) using

the notion of non-additive probabilities. With the convex capacities it is also well-

known that CEU coincides with MEU under the assumption of ambiguity aversion

(see Proposition 3 of Schmeidler (1986) for proof).53

One point worth to note here is that the use of lower probability measure is

justified with the implicit assumption of ambiguity aversion. If the degree of

ambiguity aversion, α ∈ [0, 1], in the sense of Ghirardato et al. (2004) is known,

Practitioner 2 can be subjectively rational if he applies α-MEU. This is because α-

MEU is a natural generalization of MEU (recall that we used α−MEU to separate

uncertainty and uncertainty attitude of traders in Chapter 3). Suppose, instead

of being fully ambiguity averse, Practitioner 2 is 70% ambiguity averse. Then,

following α-MEU, U(fi) is determined as

U(fi) = α min
P∈M

∫
S

u(fi(S))dP + (1− α) max
P∈M

∫
S

u(fi(S))dP, (5.8)

where α denotes the degree of ambiguity aversion. The term minP∈M
∫
S
u(fi(S))dP

is known from the previous calculation, as MEU coincides with CEU for convex ca-

pacities. We first determine maxP∈M
∫
S
u(fi(S))dP for i = 1, 2, 3 and then weight

minimum and maximum utilities with α and (1 − α) respectively to determine

overall utilities of Practitioner 2. The results are

U(f1) = 10.8, U(f2) = 10.14 and U(f3) = 10. (5.9)

Therefore, changing the degree of ambiguity aversion changes the preference order

of Practitioner 2 from f1 � f3 � f2 to f1 � f2 � f3. In both situation, Practitioner

2 can be regarded as subjectively rational (he can not be convinced that he is wrong

in his preference order).

53Capacity η is convex for all eventsA,B ∈ F(S) if it satisfies η(A∪B)+η(A∩B) ≥ η(A)+η(B).
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5.3.3 Practitioner 3 - α-maxmin expected utility

Suppose Practitioner 3 also evaluates each alternative under S = {s1, s2, s3, s4}
with the same precise utilities shown in Table 5.2. He also assigns the same interval

probabilities: P (s1) = [0.4, 0.45], P (s2) = [0.3, 0.35], P (s3) = [0.15, 0.20] and

P (s4) = [0, 0.15]. However, this time a probability interval of [0.7, 0.8] is assigned

to measure an imprecise degree of confidence of the assigned probabilities. This can

be considered as a reliability of the assigned probabilities. The question remains

the same. The traditional methods are also incapable of solving this problem

due to the probability intervals and the second-order uncertainty imposed by the

reliability of assigned probabilities. There are two approaches we can think of to

proceed with this problem.

Approach 1. A direct way to address the given problem is to use the methodology

of interval-valued information by overlooking the reliability of the assigned prob-

abilities. With this approach, the same preference order of Practitioner 2 applies

to Practitioner 3. That is, if Practitioner 3 is fully ambiguity averse f1 � f3 � f2

holds, but with the confidence interval of [0.7, 0.8]. The reason for leaving the

uncertainty imposed by the reliability intact can be understood by the following

illustration of Shafer (1987). Suppose, we have asked Fred if the streets outside are

slippery. He replies “Yes” and we know that 80% of the time he speaks truthfully

and 20% of the time he speaks carelessly, saying whatever comes into his mind.

With

p1 = “the streets are slippery”, (5.10)

p2 = ““the streets are not slippery” (5.11)

propositions, Shafer derives a belief of 0.8 in proposition {p1} and 0.2 in {p1, p2}.

If we don’t have additional information, we should not allocate the remaining 0.2

between p1 and p2. In our example, the Shafer’s illustration suggests that there is

[0.7, 0.8] units of evidence supporting

f1 � f3 � f2, (5.12)

and [0.2, 0.3] units of evidence supporting all other combinations of preference

order, {
{f1 � f2 � f3}, {f1 � f3 � f2}, {f2 � f1 � f3},
{f2 � f3 � f1}, {f3 � f1 � f2}, {f3 � f2 � f1}

}
. (5.13)
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In line with Shafer’s example, the first approach concludes that,

U(f1) = 10.5, U(f2) = 9.7 and U(f3) = 10 (5.14)

with the reliability (confidence, accuracy) of [0.7, 0.8] if the Practitioner 3 is fully

ambiguity averse.

Approach 2. It also seems to us that reliability and ambiguity attitude of a

DM are related to each other. More precisely, there is an inverse relationship

between reliability and ambiguity aversion. As the information gets more and more

unreliable a DM should become more ambiguity averse. In that sense, ambiguity-

aversion α is a function of the reliability of information α = ψ(r, r̄), where r and

r̄ denote lower and upper reliability of information. We have not been able to

determine what confidence functional (ψ) would account for rational behavior.

This problem is similar to the problem of which utility function makes sense and

leads to a better outcome. For this purpose, any utility function would suffice

for an agent to be rational. In that sense, any confidence functional leading to

ambiguity aversion would suffice for our purposes. Suppose,

ψ(r) =
1− (r + r̄)

2
. (5.15)

Then, ambiguity aversion, α, equals 0.25 and application of α-MEU results in

U(f1) = 11.25, U(f2) = 10.79 and U(f3) = 10, (5.16)

which leads to the preference order of f1 � f2 � f3.

Instead, one can also consider the smooth decision making model of Klibanoff

et al. (2005),

U(fi) = Eµ[φ
(
Eπ
(
u(·)

))
], (5.17)

when an objective probability measure π and its subjective relevance µ are precise.

However, if the uncertainties are imprecise in both, first and second order, one is

left to use some imagination to solve similar problems. So far, α-MEU is used

as the most general decision theory and it suffices to account for subjective ra-

tionality under the second-order imprecise probability. However, in the fuzzy and

Z-environment, α-MEU also falls short of taking the imprecision and reliability

attributes of the real-world information into account.
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5.3.4 Practitioner 4 - Behavioral decision making

Consider Practitioner 4 who notes the following trends under S = {s̃1, s̃2, s̃3, s̃4}.

(i) f̃1 will yield high income under s̃1, medium income under s̃2, less than

medium income under s̃3 and small income under s̃4;

(ii) f̃2 will yield very high income under s̃1, medium income under s̃2, small

income under s̃3 and a notable loss under s̃4;

(iii) f̃3 will yield approximately the same medium income in all 4 fuzzy states of

economy.

Moreover, her possible set of states is H = {h1, h2}, where h1 and h2 (non-fuzzy in

this example) stands for risk-aversion and risk-seeking, respectively.54 Practitioner

4 also has information that s̃1 will take place with a medium probability, s̃2 will

take place with a less than medium probability, s̃3 with a small probability and s̃4

with a very small probability. The probability of her risk-aversion is also known

to be about 70% and she is assumed to be risk-seeking when she is not risk-averse.

The question remains the same.

This problem is considered as the problem of decision making under possibilistic-

probabilistic information and linguistic preference. At this information level, there

are also two ways of dealing with the given problem.

Approach 1. The first approach is to compute a fuzzy-number-valued lower pre-

vision and use the Choquet integral with respect to the computed lower prevision

to calculate the total utility values of each act. This is essentially a generalized

version of Choquet expected utility (CEU) of Schmeidler (1989) and the argument

advanced by Aliev et al. (2012). This approach is also consistent with the previous

decision theories used for Practitioners 1, 2 and 3.

Approach 2. The second approach is more behavioral in nature. Because of cap-

turing interaction among behavioral determinants to account for the fundamental

level dependence of human behavior, behavioral decision making with combined

states under imperfect information (BDM) of Aliev, Pedrycz and Huseynov (2013)

is another candidate to determine the optimal action of Practitioner 4 in this in-

formation class. Although, the first approach is also consistent with the previous

decision theories, BDM captures an interaction among factors induced by the fuzzy

54Throughout the paper, we carry the notation of superimposed tilde for fuzzy values.
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environment. BDM combines fuzzy states of nature and fuzzy states of the de-

cision maker as Ω = S × H (cartesian product of S and H) with the elements

of ω̃ji = (s̃i, h̃j) to account for the fundamental level dependence of S and H as

shown by Kahneman and Tversky (1979). More precisely, Kahneman and Tver-

sky (1979) show that a DM is risk-averse in the positive domain and risk-seeking

in the negative domain. Neither classical measures nor capacities is adequate to

capture the given imprecision induced by the natural language and the depen-

dence of S and H. At this information class, among the fuzzy set of actions,

A = {f̃ ∈ A | f̃ : Ω → X} where X denotes a space of fuzzy outcomes, BDM de-

termines an optimal action f̃ ∗ ∈ A with Ũ(f̃ ∗) = maxf̃∈A
∫

Ω
Ũ(f̃(ω̃))dη̃(·, ·) which

implies that an overall utility of an action is determined by a fuzzy number valued

bi-capacity based aggregation over space Ω.

To solve the given problem with BDM, suppose the outcomes at each fuzzy states

of economy are represented by triangular fuzzy numbers given in Table 5.4. In

other words, the fuzzy numbers in Table 5.4 are precisiated forms of the given

linguistic outcomes.

s̃1 s̃2 s̃3 s̃4

f̃1 (8, 11, 14) (5, 8, 11) (3, 6, 9) (1, 3, 5)

f̃2 (11, 15, 19) (5,8,11) (1, 3, 5) (−3,−1.5, 0)

f̃3 (5, 8, 11) (5, 8, 11) (5, 8, 11) (5, 8, 11)

Table 5.4: Fuzzy outcomes of each act under different states

Then we assign fuzzy utilities ũ(f̃k(ω̃
j
i )) (utility of action f̃k under state of economy

s̃i when her own state is hj) by applying a technique of value function of Tversky

and Kahneman (1992) (for demonstration purpose) as

ũ(f̃k(ω̃
1
i )) =

(f̃k(s̃i))
α when f̃k(s̃i) ≥ 0,

−λ(−f̃k(s̃i))β when f̃k(s̃i) < 0;
(5.18)

ũ(f̃k(ω̃
2
i )) =

(f̃k(s̃i))
β when f̃k(s̃i) ≥ 0,

−λ(−f̃k(s̃i))α when f̃k(s̃i) < 0;
(5.19)

where α = 0.88, β = 1.25 and λ = 2.25. For instance,

ũ(f̃1(ω̃1
1)) = (f̃1(s̃1))α = (80.88, 110.88, 140.88) ≈ (6, 8, 10), (5.20)
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ũ(f̃1(ω̃2
1)) = (f̃1(s̃1))β = (81.25, 111.25, 141.25) ≈ (13, 20, 27). (5.21)

A similar calculation follows for other utilities. Table 5.5 shows the absolute values

of approximate results in a descending order.

ũ(f̃1(ω̃2
1)) ≈ (13, 20, 27) ũ(f̃1(ω̃2

2)) ≈ (7, 13, 20) ũ(f̃1(ω̃2
3)) ≈ (4, 9, 16)

ũ(f̃1(ω̃1
1)) ≈ (6, 8, 10) ũ(f̃1(ω̃1

2)) ≈ (4, 6, 8) ũ(f̃1(ω̃1
3)) ≈ (3, 5, 7)

ũ(f̃1(ω̃2
4)) ≈ (1, 4, 7) ũ(f̃1(ω̃1

4)) ≈ (1, 3, 4)

ũ(f̃2(ω̃2
1)) ≈ (20, 30, 40) ũ(f̃2(ω̃2

2)) ≈ (7, 13, 20) ũ(f̃2(ω̃1
1)) ≈ (8, 11, 13)

ũ(f̃2(ω̃1
2)) ≈ (4, 6, 8) |ũ(f̃2(ω̃1

4))| ≈ (0, 4, 9) ũ(f̃2(ω̃2
3)) ≈ (1, 4, 7)

|ũ(f̃2(ω̃2
4))| ≈ (0, 3, 6) ũ(f̃2(ω̃1

3)) ≈ (1, 3, 4)

ũ(f̃3(ω̃2
1)) ≈ (7, 13, 20) ũ(f̃3(ω̃2

2)) ≈ (7, 13, 20) ũ(f̃3(ω̃2
3)) ≈ (7, 13, 20)

ũ(f̃3(ω̃2
4)) ≈ (7, 13, 20) ũ(f̃3(ω̃1

1)) ≈ (4, 6, 8) ũ(f̃3(ω̃1
2)) ≈ (4, 6, 8)

ũ(f̃3(ω̃1
3)) ≈ (4, 6, 8) ũ(f̃3(ω̃1

4)) ≈ (4, 6, 8)

Table 5.5: Fuzzy utilities under different states of economy and decision maker

After assigning fuzzy utilities to each act, the next step is to construct a fuzzy

joint probability distribution (FJP) P̃ on Ω given the fuzzy marginal probabilities

of S = {s̃1, s̃2, s̃3, s̃4} and H = {h1, h2}. With the given probabilities in natural

language, we precisiate the fuzzy marginal probability distributions of S and H

by the following triangular fuzzy numbers.55

P̃ (s̃1) = (0.45, 0.50, 0.55), P̃ (s̃2) = (0.325, 0.35, 0.375),

P̃ (s̃3) = (0.1, 0.125, 0.15), P̃ (s̃4) = (0, 0.025, 0.125) (computed),

P̃ (h1) = (0.65, 0.70, 0.75), P̃ (h2) = (0.25, 0.30, 0.35) (computed).

(5.22)

Given the fuzzy marginal probability distributions of S and H, we obtain the FJP

distribution on the base of positive and negative dependence concept of Wise and

Henrion (1985).56 Formally, the FJP is obtained following

p̃(s̃i, hj) =
⋃

α∈[0,1]

α
[
αp1(si)

αp1(hj),min
(
αp2(si),

αp2(hj)
)]
, (5.23)

p̃(s̃i, hj) =
⋃

α∈[0,1]

α
[

max
(
αp1(si) + αp1(hj)− 1, 0

)
, αp2(si)

αp2(hj)
]

(5.24)

55By convention, we precisiate (n − 1) of the given linguistic probabilities and compute the
last one in order to add up total probabilities to 1.

56Given the numerical probabilities P (A) and P (B), the joint probability of A and B is
P (A,B) = P (A) · P (B) if A and B are independent, P (A,B) = min

(
P (A), P (B)

)
if A and B

are positively dependent, and P (A,B) = max
(
P (A) + P (B) − 1, 0

)
if A and B have negative

dependence. Eqs. (5.23) and (5.24) are the extensions of these formulations to fuzzy probabilities
via α-cuts.
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for positive and negative dependence, respectively. For f̃1 and f̃3, there are posi-

tive dependences between, (s̃1, h1), (s̃2, h1), (s̃3, h1), (s̃4, h1) and negative depen-

dences between (s̃1, h2), (s̃2, h2), (s̃3, h2), (s̃4, h2). For f̃2 there are positive de-

pendences between, (s̃1, h1), (s̃2, h1), (s̃3, h1), (s̃4, h2) and negative dependences

between (s̃1, h2), (s̃2, h2), (s̃3, h2), (s̃4, h1) due to Kahneman and Tversky (1979).

That is to say, people are risk-averse in the positive domain and risk-seeking in the

negative domain. Then, we compute p̃(s̃1, h1) for f̃1, f̃2 and f̃3 given α = 0, 0.5, 1

as [
0p1(s̃1)0p1(h1),min

(
0p2(s̃1)0p2(h1)

)]
= [0.45 · 0.65,min(0.55, 0.75)]

≈ [0.293, 0.55];
(5.25)

[
.5p1(s̃1).5p1(h1),min

(
.5p2(s̃1).5p2(h1)

)]
= [0.475 · 0.675,min(0.525, 0.725)]

= [0.32, 0.525];
(5.26)

[
1p1(s̃1)1p1(h1),min

(
1p2(s̃1)1p2(h1)

)]
= [0.5 · 0.7,min(0.5, 0.7)]

= [0.35, 0.5].
(5.27)

Hence, p̃(s̃1, h1) can be approximated by (0.293, 0.35, 0.5, 0.55) trapezoidal fuzzy

number. Following these steps, the FJPs of s̃i and hj for f̃1 and f̃3, respectively,

are

p̃(s̃1, h1) = (0.293, 0.35, 0.5, 0.55), p̃(s̃2, h1) = (0.211, 0.245, 0.350, 0.375),

p̃(s̃3, h1) = (0.065, 0.088, 0.125, 0.15), p̃(s̃4, h1) = (0, 0.018, 0.025, 0.125),
(5.28)

and

p̃(s̃1, h2) = (0, 0, 0.150, 0.193), p̃(s̃2, h2) = (0, 0, 0.105, 0.131),

p̃(s̃3, h2) = (0, 0, 0.038, 0.053), p̃(s̃4, h2) = (0, 0, 0.008, 0.044).
(5.29)

The FJPs for f̃2 are the same as f̃1 and f̃3 for all the combinations but two,

p̃(s̃4, h1) = (0, 0, 0.008, 0.044), p̃(s̃4, h2) = (0, 0.018, 0.025, 0.125), (5.30)

due to an inverse relationship in s̃4.

The next step is to construct a fuzzy valued bi-capacity η̃(·, ·) based on the ob-

tained FJPs. A fuzzy valued bi-capacity is defined, η̃(Ã, B̃) = η̃(Ã) − η̃(B̃),

as a difference of fuzzy-valued lower probabilities η̃(Ã) and η̃(B̃). Given a set

Ω = {ω1
1, ω

2
1, ω

1
2, ..., ω

1
4, ω

2
4} and its power set F(Ω), let αI =< [αli,

α ui] | i ∈ N8 >
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denote 8-tuples of probability intervals on ωji ∈ Ω where αli and αui denote corre-

sponding lower and upper bounds of α-cuts of the computed FJPs, respectively.

Consistent with Practitioners 2 and 3, let M̃ denote a set of fuzzy probabilities p̃

on F(Ω) satisfying

M̃ = {p̃ | αl(ωji ) ≤ αp(ωji ) ≤ αu(ωji ), i ∈ N4, j ∈ N2,
∑
ωji∈Ω

p̃(ωji ) = 1}. (5.31)

From the fuzzy probabilities in set M̃, the lower probability measure is defined for

all Ã ∈ F(Ω) as η̃(Ã) = infp̃∈M̃
∑

xi∈Ã p̃(xi). An α-cut of a fuzzy lower probability

measure, αη, are calculated same as Practitioner 2

αη(Ã) = max

∑
xi∈Ã

αl(xi), 1−
∑
xi /∈Ã

αu(xi)

 ,∀Ã ∈ F(Ω). (5.32)

For clarity, let us exemplify;

αη(ω̃2
1) = max{αl(ω̃2

1), 1−
∑

i6=1,j 6=2

αu(ω̃ji )} = αl(ω̃2
1) = 0. (5.33)

Hence, η(ω̃2
1) = (0, 0, 0).

αη(ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2) = max

{(
αl(ω̃2

1) + αl(ω̃2
2) + αl(ω̃1

1) + αl(ω̃1
2)
)
,

(
1− αu(ω̃1

3)− αu(ω̃2
3)− αu(ω̃1

4)− αu(ω̃2
4)
)}

=
(
1− αu(ω̃1

3)− αu(ω̃2
3)− αu(ω̃1

4)− αu(ω̃2
4)
)

= 0.629 + 0.176 · α.

(5.34)

Hence, η(ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2) ≈ (0.63, 0.8, 0.8). Based on this formulation, we obtain

Table 5.6 on the values of η̃ for f̃2. As there is no loss for f̃1 and f̃3, η̃(B) should

be directly set to 0.57

Finally, we calculate fuzzy overall utilities by a fuzzy-valued bi-capacity based

aggregation over space Ω using generalized version of Choquet-like aggregation

57Approaches 1 and 2 of Practitioner 4 coincide with each other when there is no loss. However,
approach 2 accounts for risk-seeking when there is loss as in f̃2(s̃4).
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A,B ⊂ Ω η̃(A) η̃(B) η̃(A,B)

{ω̃2
1}, {∅} (0,0,0) (0,0,0) (0,0,0)

{ω̃2
1, ω̃

2
2}, {∅} (0,0,0) (0,0,0) (0,0,0)

{ω̃2
1, ω̃

2
2, ω̃

1
1}, {∅} (0.29,0.45,0.45) (0,0,0) (0.29,0.45,0.45)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2}, {∅} (0.63,0.8,0.8) (0,0,0) (0.63,0.8,0.8)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2}, {ω̃1

4} (0.63,0.8,0.8) (0,0,0) (0.63,0.8,0.8)
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4} (0.68,0.84,0.84) (0,0,0) (0.68,0.84,0.84)
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4, ω̃
2
4} (0.68,0.84,0.84) (0,0.02,0.02) (0.68,0.82,0.82)

{ω̃2
1, ω̃

2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3, ω̃

1
3}, {ω̃1

4, ω̃
2
4} (0.83,0.97,0.97) (0,0.02,0.02) (0.83,0.95,0.95)

Table 5.6: Fuzzy-valued bi-capacities for f̃2

defined in Appendix 5. For f̃2 the overall utilities are given by

Ũ(f̃2) =
(
|ũ(f̃2(ω̃2

1))| −h |ũ(f̃2(ω̃2
2))|
)
η̃
(
{ω̃2

1}, {∅}
)

+
(
|ũ(f̃2(ω̃2

2))| −h |ũ(f̃2(ω̃1
1))|
)
η̃
(
{ω̃2

1, ω̃
2
2}, {∅}

)
+
(
|ũ(f̃2(ω̃1

1))| −h |ũ(f̃2(ω̃1
2))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1}, {∅}

)
+
(
|ũ(f̃2(ω̃1

2))| −h |ũ(f̃2(ω̃1
4))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2}, {∅}

)
+
(
|ũ(f̃2(ω̃1

4))| −h |ũ(f̃2(ω̃2
3))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2}, {ω̃1

4}
)

+
(
|ũ(f̃2(ω̃2

3))| −h |ũ(f̃2(ω̃2
4))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4}
)

+
(
|ũ(f̃2(ω̃2

4))| −h |ũ(f̃2(ω̃1
3))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3, }, {ω̃1

4, ω̃
2
4}
)

+
(
|ũ(f̃2(ω̃1

3))|
)
η̃
(
{ω̃2

1, ω̃
2
2, ω̃

1
1, ω̃

1
2, ω̃

2
3}, {ω̃1

4, ω̃
2
4}
)

= (3.99, 7.49, 9.61)

(5.35)

with f̃1 and f̃3 calculated similarly. The values of overall utilities follow as Ũ(f̃1) =

(4, 6.92, 8.91) and Ũ(f̃3) = (4.12, 6.23, 8.25). Finally, we rank these fuzzy numbers

as f̃2 � f̃1 � f̃3. After obtaining the fuzzy overall utilities of each act, BDM goes

further and formulates the degrees of preferences among alternatives, the concept

we will not discuss here in detail. The degrees of preferences among alternatives

essentially capture the vagueness of preferences of DM in the fuzzy environment.

One can refer to Aliev et al. (2013) for a detailed formulation of vague preferences.

5.3.5 Practitioner 5 - General theory of decisions

Now, suppose Practitioner 5 evaluates the same alternatives under the same eco-

nomic conditions S = {s̃1, s̃2, s̃3, s̃4} and has the same information as Practitioner

4. Unlike Practitioner 4, however, he has a degree of reliability (expressed in a nat-

ural language) of the given information. Specifically, he is very sure that each of

his three actions will yield the same results as Practitioner 4. He is also sure about

the probability assessment of Practitioner 4. The question remains the same.
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At this information class, Practitioner 5 has imprecise and at the same time par-

tially true information (Z-information). Following the arguments set forth for

Practitioner 3, there are also two approaches of solving the optimal solution for

Practitioner 5.

Approach 1. One way to proceed with the given problem is to use BDM and

overlook the reliability of the given information at the first stage. The argument

of Practitioner 3 with the illustration of Shafer (1987) applies here with the same

logic it applied for Practitioner 3. With this approach, the resulting preferences

are f̃2 � f̃1 � f̃3/sure.

Approach 2: The second approach uses the concept of Z-number suggested by

Zadeh (2011). Formally, a Z-number is defined as an ordered pair Ẑ = (Ã, B̃)

of fuzzy numbers to describe a value of a variable X. Here, Ã is an imprecise

constraint on values of a variable X and B̃ is an imprecise estimation of reliability

of Ã. One can refer to Aliev, Alizadeh and Huseynov (2015) for the arithmetic of

Z-numbers and to Aliev et al. (2016) for the general theory of decisions (GTD)

on the basis of a Z-number concept. The GTD uses the idea of combined states

argument of BDM and develops a unified decision model which subsumes most of

the well-known decision theories as its special cases including BDM. We refer to

the original paper of GTD for the details.

5.4 Paradoxes and Rationality

In modern economics literature, there is a lot of evidence contradicting the pref-

erence of Savage’s axioms as well as the theory itself as a valid representation of

rationality. The evidence ranges from Ellsberg (1961) to Kahneman and Tversky

(1979). However, over the years, the compiled evidence is regarded as an irra-

tionality of economic agents while Savage’s axioms retained its normative ground

in economics and finance. Hence, different paradigms such as efficient markets hy-

pothesis and behavioral finance are created. It is this dogmatic view that we aimed

to discuss in this chapter by using the imprecision and reliability of real-world in-

formation and existing decision theory literature. An approach on the basis of

imprecision and reliability of information enables us to judge when a subjectively

rational belief obeys the probability calculus and when it is less structured.
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This type of rationality is not the first time introduced to the economics and finance

literature. For example, the famous response of Thaler (1980) to Friedman and

Savage (1948) billiard player analogy essentially suggests that acting on the basis

of prospect theory may be judged as rational. The flopping of a fish analogy of

Lo (2004) suggests that the same motion (flopping) makes a fish rational in one

environment (underwater) and makes it irrational in another environment (dry

land). The analysis thus far essentially reveals the information-based picture of

these environments. We next revise two of the existing well-known paradoxes of

behavioral finance.

5.4.1 Insurance and gambling

Buying both insurance and lottery tickets is a norm rather than an exception and

it is hard to reconcile with classical rational decision making. Buying insurance

means a DM chooses a certainty in preference to uncertainty, whereas buying a

lottery ticket suggests choosing uncertainty in preference to certainty. To see how

both, insurance and gambling, can be rationalized by BDM, consider the following

example.

Alice considers to buy fire insurance for her house. She notes a small loss (in-

surance premium) under s̃1 (no fire) and a very large gain under s̃2 (fire) if she

buys the insurance (f̃1). She also notes a very large loss under s̃2, while nothing

happens under s̃1 if she does not buy the insurance (f̃2). Fire occurs with a very

small probability, P̃ (s̃2). Table 5.7 summarizes the gains and losses of Alice under

different circumstances.

s̃1 (no fire) s̃2 (fire)

f̃1 (buy) a small loss a very large gain

f̃2 (don’t buy) no loss/gain a very large loss

Table 5.7: Fire Insurance

Alice also considers to buy a lottery ticket in the hope of winning the mega jackpot.

She notes a very small loss (ticket price) under s̃′1 (not win) and a very large gain

under s̃′2 (win) if she buys a ticket (f̃ ′1). She feels nothing if she does not buy

a ticket (f̃ ′2). Probability of winning P̃ (s̃′2) is very small. The probability of her

risk-aversion P̃ (h1) is approximately 70 % and she is known to be risk-seeking (h2)

when she is not risk-averse. The bet is summarized in Table 5.8.
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s̃′1 (not win) s̃′2 (win)

f̃ ′1 (buy) a very small loss a very large gain

f̃ ′2 (don’t buy) no loss/gain no loss/gain

Table 5.8: Lottery ticket

Friedman and Savage (1948) suggest an S-shaped utility function to rationalize

this behavior and the approach is criticized by Markowitz (1952). Since the value

function in Eqs. (5.18) and (5.19) follow from the Prospect Theory, one can follow

the steps of BDM for each case (assign utilities, find FJPs, construct fuzzy-valued

bi-capacities, and aggregate with the generalized Choquet-like aggregation) and

verify that, Alice should not be ashamed of buying both a lottery ticket and fire

insurance at the same time.

5.4.2 Equity premium puzzle

The equity premium puzzle (first noted by Mehra and Prescott (1985)) refers to the

large difference between the average equity returns and average returns of a fixed

interest-bearing bonds. To see how equity premium puzzle can be rationalized

consider the following simple example.

Bob is an (only) investor with an initial wealth of W0 who can invest in two assets,

a risky stock with a price of p and an uncertain payoff Rs in state s ∈ S, and a bond

with a unit price and a certain payoff R. Suppose he invests a units of stock and b

units of bond. Further denote π(s) as an additive probability distribution over the

state s. The end-of-period wealth is Ws = Rs ·a+R ·b. Using a budget constraint,

W0 = p ·a+ b, we obtain the end-of-period wealth as Ws = R ·W0 + [Rs−R · p] ·a.

First consider Bob as EU maximizer as a benchmark case,

U(W1, ...,Ws) =
∑
s∈S

πs · u(Ws) =
∑
s∈S

πs · u(R ·W0 + [Rs −R · p] · a). (5.36)

Without loss of generality, for an equilibrium stock price of p0 with a total invest-

ment in stock, a > 0, and bonds, b = 0, Bob maximizes his total utility

U ′(a) =
∑
s∈S

πs · [Rs −R · p0] · u′(Rs · a) = 0. (5.37)
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The stock price p0 follows from the first order condition in Eq. (5.37) as

p0 =

∑
s∈S πs ·Rs · u′(Rs · a)

R ·
∑

s∈S πs · u′(Rs · a)
. (5.38)

The benchmark equity premium is given by

τ(p0) =

∑
s∈S π(s) ·Rs

p0 ·R
. (5.39)

Now suppose, the preferences of Bob are represented by α-MEU as

U(W1, ...,Ws) = α·min{u(W1), ..., u(Ws)}+(1−α)·max{u(W1, ..., u(Ws)}, (5.40)

where α denotes ambiguity aversion. Denote R̄ = max{R1, ..., Rs} and R =

min{R1, ..., Rs}. Then, for a > 0, the total utility of investing in a amount of

stock is

U(a) = α · u(R ·W0 + (R−R · p) · a) + (1−α) · u(R ·W0 + (R̄−R · p) · a). (5.41)

Similarly, without loss of generality, for an equilibrium stock price of p with a total

investment in stock, a > 0, and bonds, b = 0, Bob maximizes his total utility

U ′(a) = α · u′(R · a) · (R−R · p) + (1− α) · u′(R̄ · a) · (R̄−R · p) = 0. (5.42)

Again, the equilibrium stock price p follows from the first order condition in Eq.

(5.42) as

p =
α · u′(R · a)R + (1− α) · u′(R̄ · a)R̄

α ·R[u′(R · a)− u′(R̄ · a)] + u′(R̄ · a) ·R
. (5.43)

The equity premium when Bob has α−MEU preferences is given by

τ(p) =

∑
s∈S π(s) ·Rs

p ·R
. (5.44)

To compare the equity premium in the benchmark EU case in Eq. (5.39) and the

α−MEU case in Eq. (5.44), we first assume Bob is risk neutral (i.e., u′(·) = c).

Case 1 (a). The equity premium increases in the ambiguity aversion of the

investor.
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It follows from Eqs. (5.39) and (5.44) that it is sufficient to show that the equi-

librium stock price decreases with the ambiguity aversion α due to an inverse

relationship between the equity premium and the stock price. For u′(·) = c, the

equilibrium stock price in Eq. (5.43) reduces to

p =
α · (R− R̄) + R̄

R
. (5.45)

Since R < R̄, the equilibrium stock price will be the lower and the equity premium

will be the higher the more ambiguity averse the investor is.

Case 1 (b). For α > 1/2, the equity premium τ(p) exceeds the benchmark τ(p0)

when the expected return exceeds the average of the minimum and maximum

returns, i.e., (
R + R̄

)
2

< Eπ[Rs]. (5.46)

For u′(·) = c, the benchmark stock price in Eq. (5.39) reduces to

p0 =

∑
s∈S πs ·Rs

R
=
Eπ[Rs]

R
. (5.47)

Combining Eqs. (5.45) and (5.47) obtains

p = p0 +
1

R
·
[
α ·R + (1− α) · R̄− Eπ[Rs]

]
. (5.48)

The necessary and sufficient condition for p < p0 and τ(p) > τ(p0) follows from

Eq. (5.48) as

α ·R + (1− α) · R̄ < Eπ[Rs], (5.49)

which reduces to (
R + R̄

)
2

< Eπ[Rs] (5.50)

for α = 1/2. Since τ(p) increases in α (Case 1(a)), the condition must be true for

α > 1/2.

Case 1 (c). For α = 1 (full ambiguity aversion), the equity premium with

ambiguity τ(p) always exceeds the benchmark τ(p0).
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It follows from Eq. (5.45) that for α = 1,

p =
R

R
<
Eπ[Rs]

R
= p0, (5.51)

leading to τ(p) > τ(p0).

Now consider the second case in which Bob is a risk-averse investor with a strictly

decreasing marginal utility function. Then, the following result is immediate.

Case 2. The equity premium τ(p) of a risk-averse investor with full ambiguity-

aversion (i.e., α = 1) exceeds the benchmark equity premium τ(p0) of a risk-averse

investor without ambiguity aversion.

In this scenario, the benchmark stock price is given by Eq. (5.38). For the risk-

and ambiguity-averse investor with α = 1, however, the stock price is

p =
R

R
(5.52)

Comparing Eqs. (5.38) and (5.52) obtains p0 > p, and therefore, τ(p) > τ(p0)

following ∑
s∈S πs ·Rs · u′(Rs · a)∑
s∈S πs · u′(Rs · a)

> R. (5.53)

With the example of Bob, we have only added an ambiguity attitude of the DM

in the sense of Ghirardato et al. (2004) to his risk attitude and confirmed that

ambiguity aversion requires an incremental equity premium. In this context, any

pessimistic attitude adds an incremental requirement for the equity premium and

completes the pieces of the puzzle.58 So deeply rooted is our commitment to EUT

and SEU, that we regard such patterns as paradoxical, or irrational. As we move

away from the ground level of the information many of the paradoxes, it turns

out, can be rationalized by more general decision theories.

58The results of this simple example with a representative investor (Bob) carry over to more
general models of financial markets (e.g., Epstein and Schneider (2008), Ju and Miao (2012)).
These results are also consistent with liquidity dry-ups due to ambiguity premium on the bid-ask
spread in Chapter 2 and composition uncertainty premium in Chapter 3 when the traders are
sufficiently uncertainty averse.
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5.5 Fuzzy Representation of Market Efficiency

The key to understanding the main difference between EMH and BF comes down

to the probability (classical set theory) vs. possibility (fuzzy set theory). These

theories sit on the two extreme sides of the Table 5.1. Probability calculus lies in

the foundation of EMH, whereas fuzzy set theory lies in the foundation of BF.59

Since fuzzy sets are the generalized version of classical sets, the concept of market

efficiency itself can become a fuzzy concept. In this section, we represent market

efficiency as a fuzzy concept. In view of the presented arguments so far, we develop

the following conjectures. Critical reasoning and casual empiricism are the only

pillars of the proposed conjectures.

Conjecture 5.1. Imprecision and reliability of information lead to different opin-

ions.

Conjecture 5.2. Imprecision and reliability of information lead to “behavioral

biases” in financial decision making.

Conjecture 5.3. Imprecision and reliability of aggregate information in financial

markets lead to more “behavioral anomalies” observed in the market.

We consider Conjecture 5.1 as an economic primitive. Conjecture 5.2 is the nat-

ural extension of Conjecture 5.1. Finally, in aggregate, Conjecture 5.2 leads to

Conjecture 5.3. Note that the argument here is different from the argument of

Friedman (1953) that in aggregate noise traders cancel each other and De Long,

Shleifer, Summers and Waldmann (1990) response. Here we do not conjecture the

survival of noise traders in financial markets. The conjecture is rather focusing on

the imperfect information that is received by everyone and perceived differently.

The idea behind these conjectures is too simple to digest. Fact vs. opinion argu-

ment presented at the beginning helps to understand the intuition. If the market

participants receive fully-reliable simple numerical information (pure fact) then it

is no exaggeration to say there is a homogeneous belief in the market. However,

if the received information is fuzzy (e.g., medium growth) and partially true (e.g.,

sure), different perceptions of a natural language lead to different opinions, “be-

havioral biases”, and in aggregate, “behavioral anomalies”. Also , in the current

framework with a concept of subjective rationality, we are not in favor of calling

59Peters (1996) discusses how fuzzy membership functions can be used to understand some of
the prominent behavioral biases.
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them as “biases” or “anomalies” since we argue that when information becomes

imprecise and unreliable, behavioral factors become one’s only strength to play

with. They are called biases and anomalies because it is odd to explain them with

the probabilistic calculus.

In essence, our argument is as follows. The room for behavioral finance increases

as we move from the left to the right in Table 5.1. This in turn illuminates a

general view of market efficiency that is different from the presented arguments

of the two main paradigms of finance. The beliefs represented by conceptually

different theories at the two edges of the information classes separately support

EMH and BF. Therefore, it seems to us efficient and inefficient markets supported

by the fundamentally different beliefs have a certain truthness degree depending

on the dominance of different information classes in financial markets.

Graphically, it also seems natural to us that when asset prices oscillate, for exam-

ple, between P ′ and P illustrated in Figure 5.1 it leaves efficient and inefficient

markets as its special cases without sharp boundaries.

Figure 5.1: Fuzzy representation of market efficiency

Figure 5.1 subsumes 3 specific fuzzy sets, namely, “undervalued market”, “efficient

market” and “overvalued market” consistent with the model presented in chap-

ter 3. The abscissa axis shows the price level of the market and the ordinate axis

shows the degree of market efficiency represented by a fuzzy membership ranging

between 0 and 1. When the membership to the specific set is 0 it means certain

price level is not the member of the set, whereas when membership is 1 it shows

certain price level fully belong to that specific set. For example, at P ′ and P the

degree of efficiency of the market is 0 and the degree of undervaluation is 1 at P ′

and the degree of overvaluation is 1 at P . Moreover, at P ∗, the degree of efficiency
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is 0.7 and the degree of undervaluation is 0.3. It is still far from clear for us what

measures to be used as a proxy for imprecision and reliability of the aggregate

information in financial markets and approximate the degree of market efficiency

at a given point in time.

There are two subtle reasons that this direction to be distinguished from both

paradigms. Firstly, the existence of efficient markets is not entirely excluded in this

framework, nevertheless, it is different from the current weak-form, semi-strong

form and strong-form market efficiency concepts. Also, BF regards the probability

based decision-techniques as its superior, though the subjective rationality in our

argument can take behavioral factors into account when the information of a DM

becomes imprecise and partially reliable.

5.6 Conclusion

The exposition of a more general view of financial markets in this chapter shows

how the existing decision theory and information science literature can be used

to better understand financial markets. The points which we have attempted

to convey should now be clear: (i) Classical probability theory favors EMH and

rules out a possible room for BF. (ii) Individual behavioral “biases” and aggregate

market “anomalies” mainly originate from imprecision and reliability attributes

of information. (iii) Decision theories built on the foundations of capacities, bi-

capacities, set of probabilities, and in a more general setting, fuzzy set theory can

be used to complement the probability based decision theories to rationalize most,

if not all, of the existing behavioral “anomalies”.
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Appendix 5. Mathematical Preliminaries

In this Appendix, we provide mathematical preliminaries that are essential to

understand candidate decision theories.

Capacities and Choquet Integral. Capacities replace the additivity require-

ment of classical measures with a less restrictive requirement of monotonicity.

Let Ω be a universal set characterizing the states of nature and F(Ω) its non-

empty power set with appropriate algebraic structure characterizing the events.

A capacity is a real-valued set function, η(A), defined on the set A of events

F(Ω) that is normalized (η(∅) = 0, η(Ω) = 1) and monotonic (for all A, B in

F(Ω), A ⊆ B ⇒ η(A) ≤ η(B)). Additional continuity conditions (below and

above) are required when Ω is infinite. Suppose Ω = {ωi}n+1
i=1 is finite. Without

loss of generality we can rank a non-negative (utility) function f(ωk) on Ω as

f(ω1) ≥ f(ω2) ≥ ... ≥ f(ωn) and f(ωn+1) = 0. Then, the expected value (i.e.

Choquet integral) of f on Ω with respect to a capacity η is expressed as

Eη[f ] =
n∑
k=1

(f(ωk)− f(ωk+1))η({ω1, ω2, ..., ωk}). (A5.1)

The mathematical treatment of Choquet capacities and integral may be found in

Choquet (1955), Dempster (1967), Shafer (1976), and Schmeidler (1986, 1989).

Bi-Capacities and Choquet-like Aggregation. Bi-capacities are natural gen-

eralization of capacities in the context of decision making where underlying scales

are bipolar as in the prospect theory. Let Q(Ω) := {(A,B) ∈ F(Ω) × F(Ω) |
A∩B = ∅} denote the set of all pairs of disjoint sets. A bi-capacity is a real-valued

set function, η(A,B), defined on Q(Ω) that is normalized (η(∅, ∅) = 0, η(Ω, ∅) =

1 = −η(∅,Ω)) and monotonic (for all A,B in Q(Ω), A ⊆ B ⇒ η(A, ·) ≤ η(B, ·)
and η(·, A) ≥ η(·, B)).60 Suppose Ω = {ωi}n+1

i=1 is finite. Without loss of generality

we rank a real-valued function f(ωk) on Ω as |f(ω1)| ≥ |f(ω2)| ≥ ... ≥ |f(ωn)| and

f(ωn+1) = 0. Then, the expected value (i.e., Choquet-like aggregation) of f on Ω

with respect to a bi-capacity η is expressed as

Eη[f ] =

n∑
k=1

(
|f(ω(k))| − |f(ω(k+1))|

)
η
(
{ω(1), ...ω(k)} ∩N+, {ω(1), ...ω(k)} ∩N−

)
, (A5.2)

where N+ = {ω ∈ Ω | f(ω) ≥ 0} and N− = {ω ∈ Ω | f(ω) < 0}.
60The same symbol, η, is used for both, capacities and bi-capacities. This should not create

any notational confusion since η(·) is a capacity and η(·, ·) is a bi-capacity. A fuzzy version of a
bi-capacity η(·, ·) is further denoted by a superimposed tilde, η̃(·, ·).
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Example A5.1. Let Ω = {ω1, ω2, ω3} and the function f on Ω takes the values

of f(ω1) = 4, f(ω2) = 3, and f(ω3) = −2. Then N+ = {ω1, ω2}, N− = {ω3},

Eη[f ] =
(
|f(ω1)| − |f(ω2)|

)
η({ω1}, {∅})

+
(
|f(ω2)| − |f(ω3)|

)
η({ω1, ω2}, {∅}) + |f(ω3)|η({ω1, ω2}, {ω3})

=η({ω1}, {∅}) + η({ω1, ω2}, {∅}) + 2η({ω1, ω2}, {ω3}).

The mathematical treatment of bi-capacities and Choquet-like aggregation can

be found in Grabisch and Labreuche (2005a, 2005b) and Labreuche and Grabisch

(2006).

Fuzzy Set Theory. The ideas of fuzzy sets and fuzzy logic date back to Black

(1937) and it has been mathematically formalized by Zadeh (1965). The most

common type of fuzzy sets is the standard fuzzy sets. Each of the standard fuzzy

sets is uniquely defined by a membership function of the form µÃ : Ω → [0, 1],

where Ω denotes a universal set and Ã is a fuzzy subset of Ω. Since a characteristic

function of classical sets is a special case of a membership function of fuzzy sets,

{0, 1} ⊆ [0, 1], fuzzy sets are considered a formal generalization of classical sets.

The three basic operations on sets - complementation, intersection, and union -

are not unique in fuzzy sets as they are in classical sets. The standard complement

of a fuzzy set Ã is a fuzzy set Ãc with the membership function µÃc = 1 − µÃ.

The standard intersection of two fuzzy sets Ã and B̃ is a fuzzy set with the

membership function µÃ∩B̃(ω) = min{µÃ(ω), µB̃(ω)} and the standard union of

two fuzzy sets is also a fuzzy set with µÃ∪B̃(ω) = max{µÃ(ω), µB̃(ω)}, where ω ∈ Ω

(see Bellman and Giertz (1973) for axiomatization of these standard operations).

In addition, a fuzzy set Ã is said to be a subset of fuzzy set B̃, Ã ⊆ B̃, if and only

if µÃ(ω) ≤ µB̃(ω), ∀ω ∈ Ω given that fuzzy sets Ã and B̃ are defined on Ω.

One of the most important concepts of fuzzy sets is an α-cut of a fuzzy set which

is one way of connecting fuzzy sets to classical sets. An α-cut of a fuzzy set Ã

on Ω denoted as αA is a classical set that satisfies αA = {ω | µÃ(ω) ≥ α}, where

α ∈ [0, 1]. A strong α-cut, denoted as α+A, is similar to the α-cut representation,
α+A = {ω | µÃ(ω) > α}, but with a stronger condition. 0+A and 1A are called

support and core of a fuzzy set Ã, respectively. When the core of a fuzzy set Ã is

not empty, 1A 6= ∅, Ã is called normal, otherwise it is called subnormal. A fuzzy

set is convex if and only if all its α-cuts are convex sets as in the classical sense.
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Definition A5.2. A fuzzy set Ã on R (a set of real numbers) is a fuzzy number

if (i) Ã is a normal fuzzy set, (ii) αA is a closed interval for every α ∈ (0, 1] and

(iii) the support of Ã is bounded.

When fuzzy numbers are used to formulate linguistic concepts such as very small,

small, and so on, the final constructs are called linguistic variables.

Definition A5.3. Let En be a space of all fuzzy subsets of Rn consisting of fuzzy

sets which are normal, fuzzy convex, upper semi-continuous with compact support.

A fuzzy function is a mapping from universal set Ω to En, f̃ : Ω→ En.

Definition A5.4. Let Ã, B̃ ∈ En. If there exists C̃ ∈ En such that Ã = B̃ + C̃,

then C̃ is called a Hukuhara difference (−h) of Ã and B̃.

Example A5.5. Let Ã and B̃ be triangular fuzzy sets Ã = (5, 7, 9) and B̃ =

(1, 2, 3). Then, Ã −h B̃ = (5, 7, 9) − (1, 2, 3) = (5 − 1, 7 − 2, 9 − 3) = (4, 5, 6).

Hence, B̃ + (Ã−h B̃) = (1, 2, 3) + (4, 5, 6) = (5, 7, 9) = Ã.

Definition A5.6. Given a fuzzy number Ã on Ω, absolute value |Ã| is defined as

µ|Ã|(ω) =

max
(
µÃ(ω), µ−Ã(ω)) for ω ∈ R+,

0 for ω ∈ R−.
(A5.3)

The generalizations of probability theory to the theory of capacities, bi-capacities

and fuzzy sets expand the classical probabilistic framework of information un-

certainty substantially. The mathematical treatment of fuzzy set theory can be

found in Klir and Yuan (1995), uncertainty based analysis of related topics in Klir

(2005), and applications to decision theories in Aliev and Huseynov (2014).
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Conclusion and Future Research

It appears pretentious to have a conclusion section in this dissertation. The disser-

tation is only the tip of the iceberg of ways how multiple dimensions of uncertainty

and various attributes of information can increase our understanding of various fi-

nancial market phenomena. The models proposed in this dissertation are far from

reflecting the ultimate truth about the true complexity of real-world information.

However, they suggest likely qualitative behavior of financial markets and market

participants.

This thesis investigates the issues related to stability and instability in finan-

cial markets and highlights the importance of different dimensions of information

and uncertainty, and decision theories in addressing them. Table 6.1 illustrates

the summary of the economic issues, corresponding decision theories, uncertainty

types, and formalized languages of uncertainty in this thesis.

6.1 Uncertainty about the Fundamental Value

In a sequential trading model, Chapter 2 represents the preferences of liquidity

providers with the Choquet expected utility of Schmeidler (1989) and their beliefs

about payoffs with the neo-additive capacities of Chateauneuf et al. (2007) and

investigates the effects of ambiguity on liquidity, value of information, welfare, and

price-quantity relations in financial markets.
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Chapter Economic Issue Decision Theory Uncertainty Type &

Theory

2 Liquidity & Information Choquet expected utility Fundamental value

value & Welfare & Price- theory uncertainty with non-additive

Quantity analysis probabilities

3 Liquidity and asset pricing & Maxmin and α−maxmin Fundamental value

Benefit of informed trading & expected utility uncertainty with numerical

Complementarity & Sharp price theory probabilities & interval-valued

movements composition uncertainty

4 Order imbalance & Flow Expected utility Fundamental value, composition

toxicity & Flash crashes & theory & signal quality uncertainty

Flash rallies with numerical probabilities

5 Subjective rationality & Expected utility, Choquet, Numerical, interval-valued,

Market efficiency & maxmin, α−maxmin expected second-order uncertain

Behavioral “anomalies” utility, behavioral decision making probabilities, fuzzy & Z

& general theory of decisions uncertainty

Table 6.1: Summary of the thesis
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One interesting interpretation of this approach can be given by the classical dis-

cussion of Weaver (1948). In his classic paper, Weaver (1948) refers to two extreme

problems in science, the problems of “organized simplicity” with little complex-

ity and randomness and the problems of “disorganized complexity” with extreme

complexity and randomness. He emphasizes that most of the real-world prob-

lems are somewhere in between these two extremes, what he calls the problems

of “organized complexity”. In the language of Warren Weaver, the representation

of the market maker’s beliefs with neo-additive capacities captures the “organized

complexity” in the modern liquidity provision.

The representation of liquidity providers’ beliefs recognizes that uncertainty is too

broad to be captured by the probabilistic beliefs alone and suggests a broader

treatment of uncertainty with appropriate decision theory as one way of general-

izing financial market models. The purpose of this chapter is to demonstrate the

potentials of such generalizations in addressing the aberrant behavior of liquidity

and its consequences.

6.1.1 Liquidity deteriorations and improvements

The representation of market making decisions with Choquet Expected Utility

is intuitive and general enough to accommodate sudden liquidity improvements

during financial crisis and deteriorations during reforms in trading rules. The am-

biguous price formation model shows that ambiguity about the fundamental value

and ambiguity aversion of the market maker can impact the perceived adverse

selection risk (number of informed traders) of the market maker, resulting in the

liquidity distortions (either improvements due to ambiguity discount or deteriora-

tions due to ambiguity premium on the bid-ask spread) which are consistent with

the historical financial market behavior.

6.1.2 Value of information and welfare

The resulting liquidity distortions can make private information more or less valu-

able to market participants compared to the standard probabilistic model. Chap-

ter 2 derives the conditions under which the information is more or less valuable

to market participants. Consistent with the intuition, the ambiguity premium

(resp. discount) on the bid-ask spread leads to a value discount (resp. premium)
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on the standard value of information. To investigate the welfare implications of

ambiguity of liquidity providers, Chapter 2 introduces noninformational trading

motives to uninformed traders. Consequently, it shows that uninformed traders

trade more (resp. less) when there is an ambiguity discount (resp. premium),

leading to a welfare gain (resp. loss) to society.

6.1.3 Price-Quantity analysis

Chapter 2 also examines the quotes and bid-ask spread of the market maker and

the profit maximization strategies of the informed traders in the separating and

pooling equilibria in the presence of ambiguity. When the market maker is suffi-

ciently ambiguity averse, ambiguity of the liquidity providers leads the informed

traders to separate themselves by trading only large orders, resulting in a separat-

ing equilibrium. This implies large orders are more likely to be informed orders

during highly ambiguous market events.

6.2 Uncertainty about the Composition of Traders

To investigate the crowded-trade problem in financial markets, Chapter 3 develops

a rational expectations equilibrium model with ambiguity about the composition

of traders. This chapter represents the traders’ preferences with the maxmin

expected utility of Gilboa and Schmeidler (1989) and α−maxmin model of Ghi-

rardato et al. (2004) with the composition of traders given by interval values. An

interval-valued uncertainty is a natural way of taking into account ambiguous in-

formation about the composition of traders and takes a step from the ground level

to the first level in Table 5.1. This representation is general enough to investigate

the asset pricing implications of the financial market microstructure.

6.2.1 Liquidity and asset prices

The analysis in Chapter 3 links the asset prices to liquidity and provides a theoret-

ical explanation for the empirical findings about the impacts of liquidity on prices.

When uncertainty about the composition of traders increases, the uncertainty-

averse uninformed traders change their liquidity provision (decrease if they are
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sufficiently uncertainty averse or increase if they are not), leading the stock price

to deviate from the efficient benchmark price without uncertainty about the com-

position of traders.

6.2.2 Market overvaluation and undervaluation

Numerous authors have documented a stock market overvaluation (e.g., dot-com

bubble) and undervaluation (e.g., global financial crisis) that are hard to explain

with the standard asset pricing models. Uncertainty about the composition of

traders offers an alternative unified explanation for the stock mispricing. In the

presence of uncertainty about the composition of traders, the sufficiently (resp.

insufficiently) uncertainty-averse uninformed traders perceive the equity premium

more (resp. less), leading to a stock undervaluation (resp. overvaluation), explain-

ing the pricing implications of liquidity.

6.2.3 Complementarity in information acquisition

The literature has shown different mechanisms that cause strategic complemen-

tarities (i.e., more agents acquire information and makes it more valuable for the

uninformed agents to acquire private information) in information acquisition and

multiple information market equilibria. The analysis in Chapter 3 also shows that

ambiguity about the composition of traders can cause the complementarity in in-

formation acquisition. This occurs because the insufficiently (resp. sufficiently)

uncertainty-averse traders’ benefit of informed trading increases (resp. decreases)

with the number of informed traders. The sufficiency condition itself, however, de-

creases with the number of informed traders, meaning that a trader with a given

uncertainty aversion can be insufficiently (resp. sufficiently) uncertainty averse for

a low (resp. high) informed trading. Consequently, the benefit of informed trading

becomes non-monotonic in the number of informed traders.

6.2.4 Sharp price movements

The strategic complementarity in information acquisition and equilibrium mul-

tiplicity in information market stemming from the composition uncertainty can
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explain the extreme price jumps that occur nearly every day. Jumping from one

information market equilibrium to the other equilibrium can cause a large price

drop or surge in financial markets. Alternatively, a sudden increase in the uncer-

tainty about the composition of traders can also cause a significant increase (resp.

decrease) in the traders’ perceived equity premium which can result in a large

price drop (resp. surge) in financial markets.

6.2.5 Capital market regulation

Chapter 3 shows that although the informed and uninformed traders are both

subject to ambiguity about the composition of traders, the nature of trading dis-

advantages the uninformed compared to the informed traders. This is important

because the capital market regulation is concerned with maintaining a level play-

ing field for the market participants. The non-monotonicity of benefit of informed

trading with respect to the number of informed traders shows that reducing the

cost of information or greater disclosure rules such as the mark-to-market account-

ing legislation implemented in 2007 may counterintuitively result in lower informed

trading and aggravate market efficiency. Thus the analysis suggests that decreas-

ing the cost of fundamental information to enhance market efficiency may not

work without maintaining a fair trading environment that treats traders equally

about other aspects of the financial market microstructure.

6.3 Learning about the Adverse Selection

Unlike the previous approaches, Chapter 4 formalizes the uncertainty of the mar-

ket participants’ with numerical probabilities. Although probabilistic, the point of

departure from the standard sequential trading model with only uncertainty about

the fundamental value is that Chapter 4 takes different dimensions of uncertainty

into account. More precisely, Chapter 4 investigates the destabilizing role of order

imbalance in financial markets when the market participants are subject to the

fundamental value uncertainty as well as the uncertainty about the adverse selec-

tion risk (composition and/or signal quality uncertainty). In essence, Chapter 4

incorporates the second-order uncertainty in the market maker’s uncertainty (risk)

about the adverse selection. The approach in this chapter takes a step from the

ground level to the second level in Table 5.1 and helps to understand how markets
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digest order imbalance and when they are most susceptible to imbalance-induced

instability.

6.3.1 Liquidity evaporations

When the liquidity providers learn about the adverse selection risk (toxicity),

order imbalance has two opposing effects on liquidity. First, it allows the market

maker to learn about the fundamental value, making the market more liquid due

to reduced uncertainty about the fundamental value. Second, it allows the market

maker to revise her belief about the level of adverse selection risk upward, making

the market less liquid due to increased perceived adverse selection risk. Chapter

4 shows that the second effect dominates the first and results in sudden liquidity

evaporations in the face of order imbalance when the initial belief about the adverse

selection risk is sufficiently low.

6.3.2 Extreme price movements

The model in Chapter 4 can also generate a sharp price decline (resp. surge)

and a quick recovery similar to flash crashes (resp. rallies). This occurs because

when the market maker is uncertain about the proportion of informed traders

or the quality of their information, an order impacts the market maker’s beliefs

about the fundamental value in two ways: (i) a standard price discovery effect

and (ii) a repricing history effect stemming from uncertainty about the adverse

selection risk. By introducing the myopic market maker, Chapter 4 disentangles

these two effects and shows that the repricing history effect causes accelerating

price impacts during continuations in order flow resulting in sharp price changes

and more informative reversals resulting in quick recoveries.

6.3.3 Prevalence of flash crashes

The model in Chapter 4 suggests two reasons for the prevalence of micro flash

crashes in modern financial markets. First, the technological developments (e.g.,

rise of algorithmic trading, availability of market data) have amplified the un-

certainty in asymmetric information problem of the modern liquidity providers
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and made them vulnerable to order imbalance. Second, the increased competition

in modern markets incentivizes learning about the time-varying adverse selection

risk to ensure spreads always reflect the level of toxicity. Therefore, an efficient

learning about the time-varying level of adverse selection is crucial for a liquidity

provider to remain competitive in today’s markets.

6.4 Different Languages of Uncertainty

Chapter 5 has special importance in this dissertation. The chapter breaks away

from traditional approaches to market efficiency and contains a new concept and

a new idea. By using different languages of uncertainty, this chapter discusses

information in the broadest possible way that lends itself to possible quantitative

scrutiny and develops a framework to argue that rationality is a broad and market

efficiency is a fuzzy concept.

6.4.1 Subjective rationality

In the analysis of subjective rationality, Chapter 5 uses Zadeh (2011) classifica-

tion of information (numerical, interval-valued, second-order uncertain, fuzzy, and

Z information) based on its generality. This chapter exemplifies static decision-

making scenarios in each level of information and solves them with appropriate

decision theory. The specific decision-making scenarios show that as the infor-

mation becomes imprecise and partially true, the decision making becomes more

behavioral in nature, suggesting that the imprecision and reliability of information

can connect efficient markets hypothesis and behavioral finance.

6.4.2 Fuzzy market efficiency

The efficient and inefficient markets sit on the two extreme sides of our information-

theoretic framework. Probability calculus lies in the foundation of efficient markets

hypothesis, whereas fuzzy set theory lies in the foundation of behavioral finance.

Consequently, the concept of market efficiency itself can become a fuzzy concept,

meaning that at a given point in time the market efficiency and inefficiency have

a degree of truthness. Indeed, the real-world information is uncertain, imprecise
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and partially true. The shift of the concept of market efficiency from the bivalent

logic to fuzzy logic provides a more real and adequate approach to create a general

model of financial markets. Such a shift may cause a natural concern for cautious

economists. As we move from left to right in Table 5.1, some decision theories do

not have an axiomatization in terms of preference over Savage acts and for some,

the axiomatic backgrounds are yet to be developed. However, the models, exam-

ples, and heuristic arguments in this dissertation point in the same direction. The

multiple dimensions of uncertainty formalized in different languages can explain

financial market phenomena that we otherwise label as anomalies. It is probably

worthwhile to formulate various financial market phenomena at different levels of

information and uncertainty and work on this a little further.

6.5 Work Ahead

This dissertation raises many questions for future research. The discussions of

model extensions at the end of each chapter provide natural directions to extend

the models and generate a more realistic description of financial markets. Al-

though we have tried to carry some of the extensions forward, we mainly focused

on a single risky asset in this thesis. Therefore, one interesting, but at the same

time necessary, direction of future research is to develop a framework with multi-

dimensional uncertainty and multiple assets to explore the joint impact of complex

information structures and diversification in financial markets.

It is also important to develop models where traders are uncertain about the var-

ious dimensions of uncertainty that are economically meaningful. For example, it

would be interesting to investigate the effects of uncertainty about the reliability of

private information of informed traders on the market efficiency. This is econom-

ically meaningful because in the era of the data revolution, stock market trading

is increasingly dominated by informed trading, nevertheless the data revolution

brought the risk of unreliable information by itself. Therefore, the naive intuition

that the data revolution will lead to greater market efficiency can easily fail due to

the risk of fake information. This intuition is consistent with the recent empirical

evidence by Bai, Philippon and Savov (2016) that the revolution in information

technology over the last 50 years has increased the price informativeness for the
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S&P 500 firms, but decreased for the average public firms. A meaningful repre-

sentation of the risk of unreliable information has a potential to justify this and

associated financial market phenomena.

In a broader level, however, this dissertation emphasizes a consistent approach

in developing financial market models at different information levels to explain

economically interesting phenomena that escapes the theories with less complex

information structures. Using broader languages to formalize uncertainty in differ-

ent dimensions is challenging, but at the same time holds the key for the consistent

and unified approach to explain various financial market regularities.
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Easley, D., López de Prado, M. M. and O’Hara, M. (2011), ‘The microstructure

of the “flash crash”: flow toxicity, liquidity crashes, and the probability of

informed trading’, The Journal of Portfolio Management 37(2), 118–128.
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