
Non-IID Outlier Detection with
Coupled Outlier Factors

Guansong Pang

Supervisors:

Longbing Cao, Principal

Ling Chen

Huan Liu, Arizona State University

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy

University of Technology Sydney

Faculty of Engineering and Information Technology

April 2019



To my beloved parents, Yuxiang Pang and Shangxing Li.

To my wife Lisha and my son Louis.



Certificate of Original Authorship

I, Guansong Pang, declare that this thesis, submitted in fulfillment of the requirements

for the award of the degree: Doctor of Philosophy, in the Faculty of Engineering and

Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This document has not been submitted for qualifications at any other academic in-

stitution. This research is supported by the Australian Government Research Training

Program.

Guansong Pang

April 1, 2019





Acknowledgments

I am greatly indebted to my principal supervisor, Professor Longbing Cao, one of the best

mentors I have ever met. Over the past three years, Longbing spent tremendous time

on teaching me how to think critically, do solid research and write ‘beautiful’ technical

papers. He has been very nice, thoughtful and supportive to me in that he gave me

large freedom to exclusively explore interesting research problems and publish high-quality

papers at the early stage of my candidature while prepared me for an independent academic

career in my senior candidature by involving me in different professional activities (e.g.,

conference/workshop organization, program committee of leading conferences), conference

tutorials, student mentoring, research proposals, and industry project meetings. Longbing

has been very fruitful, critical and constructive in making comments on research. I will not

forget his massive advice on my designs and manuscripts, which are extremely important

and helpful for sharpening my research designs and paper writings. In addition to research,

Longbing has been a great life mentor of me for sharing many wonderful and undesirable

experiences to encourage me when I was down and to remind me pitfalls when I was in

triumph. I cannot thank him enough for all his supports.

I would like to thank my co-supervisor Dr. Ling Chen and external supervisor Profes-

sor Huan Liu for their helpful and insightful comments on both of my research designs and

papers. I would like to particularly thank Ling for her nice and warm greetings on many

festivals and public holidays. Ling has been always very supportive and understanding

for many aspects in my research and daily life I seek suggestions and help from her. I am

very grateful to Huan for not only having nice and thorough discussions over my research

whenever I met him, but also suggesting interesting directions for my work, offering me

great advice on job applications and career planning.

Besides my supervisors, I would also like to thank the panel members of my candida-

ture assessment, Dr. Wei Liu, Professor Jinyan Li, Dr. Haiyan Lu, and Professor Bogdan

Gabrys, for their constructive comments and great encouragement.

I thank all my friends and colleagues in the Data Science Lab at AAi for being critical

and insightful to my research in our weekly research meetings and being very nice to

me whenever I met them. I particularly thank: Chengzhang Zhu for many wonderful

discussions about our research and careers, Songlei Jian for the nice research discussions

and collaborations, Shoujin Wang and Thac Do for their companion and story sharing

in our quiet lab. I am very grateful to visiting professors Defu Lian, Wenpeng Lu, and

Lizhen Wang for their constructive comments to my research and great help in my career

planning. I really appreciate the collaboration with Hongzuo Xu. It was a pleasure to

iv



v

work with him and I learned many helpful mentoring skills from this experience. I would

also like to thank the other friends in the lab who enrich my research life and/or give

me consistent encouragement: Wei Wang, Liang Hu, Qi Zhang, Ke Liu, Longxiang Shi,

Wenfeng Hou, Qing Liu, Usman Naseem, Yan Xing, Jingyu Shao, Frank Xu, Dr. Allen

Lin, Professor Quangui Zhang, and Dr. Lei Gu. It was always a great time to celebrate

every of our success in the lab and to gather together to have fun and enjoy the holidays

in festivals.

I would like to express my special thanks to Professor Shengyi Jiang who introduced

me to the academic community and was always there to give me advice whenever I seek

help from him. I am also very thankful to Dr. Huidong Jin, Professor Kai Ming Ting, and

Dr. David Albrecht for their enormous time and effort on my previous research which lays

an important foundation to my PhD research. I also thank everyone who has inspired me

and helped me in my research.

I would also like to thank the UTS Advanced Analytics Institute, School of Software,

and Graduate Research School for their quality administration service and financial sup-

port for my domestic and international conference travels. Additionally, I thank Michele

Mooney for her excellent proofreading of this thesis.

Last but not least, I wholeheartedly thank my beloved mother and father for their

everlasting love, amazing encouragement and strong support throughout my life. I am

also specially grateful to my brothers and sisters who are very supportive in taking care

of all the family matters during my graduate study. Special thanks to my dear wife

Lisha Zhang for being patient and extremely supportive during this tough period and for

planning my career and making decisions on our future with me. I am so fortunate to

have her in my life. I would also like to thank my son Louis (Zhizhong) Pang who colors

my life with his cheerfulness, lovely and gorgeous smiles, and chaos of trouble. This thesis

is dedicated to them.



Publications During Candidature

Papers that have been published or accepted for publication:

1. Guansong Pang, Longbing Cao, Ling Chen, and Huan Liu. “Learning Representa-

tions of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection”,

In: 24th SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-18).

London, UK. Accepted (long presentation).

2. Songlei Jian, Guansong Pang, Longbing Cao, Kai Lu, and Hang Gao. “CURE:

Flexible Categorical Data Representation by Hierarchical Coupling Learning”. IEEE

Transactions on Knowledge and Data Engineering (TKDE). Accepted.

3. Guansong Pang, Longbing Cao, Ling Chen, Defu Lian and Huan Liu. “Sparse

Modeling-based Sequential Ensemble Learning for Effective Outlier Detection in

High-dimensional Numeric Data”, In: 32nd AAAI Conference on Artificial Intel-

ligence (AAAI-18). AAAI Press, pp. 3892-3899. New Orleans, US.

4. Guansong Pang, Longbing Cao, Ling Chen and Huan Liu. “Learning Homophily

Couplings from Non-IID Data for Joint Feature Selection and Noise-Resilient Out-

lier Detection”. In: 26th International Joint Conference on Artificial Intelligence

(IJCAI-17). AAAI Press, pp. 2585-2591.

5. Songlei Jian, Longbing Cao, Guansong Pang, Kai Lu and Hang Gao. “Embedding-

based Representation of Categorical Data by Hierarchical Value Coupling Learning”.

In: 26th International Joint Conference on Artificial Intelligence (IJCAI-17). AAAI

Press, pp. 1937-1943.

6. Guansong Pang, Hongzuo Xu, Longbing Cao and Wentao Zhao. “Selective Value

Coupling Learning for Detecting Outliers in High-Dimensional Categorical Data”.

In: 26th ACM International Conference on Information and Knowledge Management

(CIKM-17), Long paper track. ACM, pp. 807-816. Singapore.

7. Guansong Pang, Kai Ming Ting, David Albrecht and Huidong Jin. “ZERO++:

Harnessing the Power of Zero Appearances to Detect Anomalies in Large-Scale Data

Sets”. Journal of Artificial Intelligence Research (JAIR) 57, pp. 593–620, 2016.

8. Guansong Pang, Longbing Cao, and Ling Chen. “Outlier Detection in Complex

Categorical Data by Modeling Feature Value Couplings”. In: 25th International

vi



vii

Joint Conference on Artificial Intelligence (IJCAI-16). AAAI Press, pp. 1902–1908,

2016. New York City, US.

9. Guansong Pang, Longbing Cao, Ling Chen and Huan Liu. “Unsupervised Feature

Selection for Outlier Detection by Modeling Hierarchical Value-Feature Couplings.”

In: 2016 IEEE International Conference on Data Mining (ICDM-16), Long paper

track. IEEE, pp. 410-419. Barcelona, Spain.

10. Guansong Pang, Kai Ming Ting, and David Albrecht. “LeSiNN: Detecting anoma-

lies by identifying Least Similar Nearest Neighbours”. In: 2015 IEEE 15th Interna-

tional Conference on Data Mining Workshops (ICDMW-15). IEEE, pp. 623–630,

2015.

Papers that are under review:

1. Guansong Pang, Longbing Cao, and Ling Chen. “Outlier Detection with Non-IID

Outlier Factors”. Data Mining and Knowledge Discovery (DMKD). Under review.

2. Guansong Pang and Longbing Cao. “Building Optimal Heterogeneous Univariate

Outlier Ensembles”. IEEE Transactions on Neural Networks and Learning System

(TNNLS). Under review.



Abstract

Outliers are data objects which are rare or inconsistent compared to the majority of

objects. Outlier detection is one of the most important tasks in data mining due to its

wide applications in various domains, such as finance, information security, healthcare and

earth science. Most existing outlier detection methods assume that the outlier factor (i.e.,

outlierness scoring measure) of the entities (e.g., feature values, features, data objects) in a

data set is Independent and Identically Distributed (IID), but this assumption is violated

by many real-world applications where the outlierness of an entity is coupled with that of

some other entities, leading to the failure of detecting sophisticated outliers. This issue

is intensified in more challenging environments, e.g., noisy and/or high-dimensional data

sets. To address this challenge, this thesis considers three key questions: what are the

coupling relations between different outlier factors? how can we effectively and efficiently

model these couplings? and how can we leverage these couplings to address challenging

outlier detection problems?

Our explorations result in the following four key contributions. (i) This thesis intro-

duces a new outlier detection task, non-IID outlier detection in multidimensional data,

which opens a new research direction for tackling real-world complex outlier detection

problems. (ii) We introduce the first architecture for the non-IID outlier detection task,

which provides principled approaches to learn the outlierness interdependence at differ-

ent levels from feature values, features, to data objects. The architecture breaks down

the general coupling learning into a series of important finer-grained components: basic

coupling relation, coupling capacity, coupling utility, and coupling passage manners, pro-

viding feasible ways to learn sophisticated couplings between outlier factors with efficient

models. (iii) We propose principled frameworks and their instantiations under the non-IID

outlier detection architecture to learn different types of couplings. Supported by exten-

sive theoretical analysis and empirical experiments on diverse real-world data sets, these

designs are shown to be scalable and effective in addressing some notoriously challenging

problems, including outlier detection in non-IID data, data with many noisy features, or

high-dimensional data. (iv) This thesis also introduces a set of seminal work on unsu-

pervised feature selection for outlier detection in both categorical data and numeric data,

including innovative feature selection methods that capture pairwise or full feature interac-

tions and joint feature selection and outlier detection methods. Our proposed approaches

are able to effectively compute the outlierness of features, which enables outlying feature

selection and substantially improves the efficacy of subsequent outlier detection on data

with high dimensionality or many noisy features.
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Our extensive empirical results show that the average accuracy improvement of our

non-IID outlier detectors over state-of-the-art IID outlier detectors ranges from 4% up to

18% on a large collection of real-world data sets; the maximum accuracy improvement on

single data sets can be more than 50%, in which stat-of-the-art IID detectors only obtain

an accuracy of being nearly equivalent to a random guess. This significant accuracy

improvement can have great business value, e.g., the prevention of millions of dollars loss

in credit card fraud detection, enabling safer digital environments by militating malicious

programs or network intrusions, or saving life by having early detection of fatal diseases.

This thesis also offers much more interpretable outlier detection solutions by enabling

outlier detection in highly relevant and substantially smaller feature subsets.
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Chapter 1

Introduction

This chapter introduces the motivation and the contributions of this research. The struc-

ture of this thesis is given at the end of this chapter.

1.1 Research Motivation

Outliers are data objects which are rare or inconsistent compared to the majority of objects

[2, 27] . Outlier detection is regarded as one of the most important tasks in data mining

due to its wide applications in various domains such as finance, information security,

healthcare and earth science. Some application exemplars are credit card fraud detection,

network attack detection, terrorist detection, and the early detection of diseases.

Numerous outlier detection methods have been introduced over the years. However,

most existing outlier detection methods make a basic assumption that the outlier factor

(outlierness scoring measure) of the entities in a data set (e.g., feature values, patterns or

a combination of feature values, data objects) is Independent and Identically Distributed

(IID), but the outlierness of the entities in many real-world applications is not independent,

such as the following three important applications of outlier detection.

Example 1 (Disease Detection). Suppose people diagnosed with flu (influenza) are out-

liers. Since flu is a respiratory illness that (asynchronously or synchronously) causes mul-

tiple symptoms such as fever, headache, muscle pain, dry cough, sore throat, and runny or

stuffy nose, the outlierness of having these symptoms (i.e., their relevance to flu) is not

independent; rather their outlierness is coupled with each other. Similar phenomena may

also be observed from the symptoms of other diseases, such as Type 2 diabetes and breast

cancer.

Example 2 (Fraud Detection). Suppose fraudulent users who write fake reviews on E-

commerce products are outliers. In contrast to honest users, these fraudulent users write

positive reviews to promote bad products while writing negative reviews on good products

to damage the reputation of these products. As a result, the outlierness of a given user is

dependent on the outlierness of some other users who have similar reviewing behaviors as

the user.

2
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Example 3 (Malware Detection). Suppose malware are outliers. Computers that have

been invaded by malicious programs are much more vulnerable than secured computers and

are easily attacked by other malicious programs. This type of concurrence results in the

interdependence between malicious programs.

These sophisticated couplings between the outlier factors significantly challenge the

methodology of existing methods as they violate the basic assumption of these methods.

As a result, existing methods may fail to detect some important outliers, e.g., outliers that

are too subtle to be identified without using the couplings between the outliers. This issue

is much more severe in challenging outlier detection tasks, such as outlier detection in

noisy data (i.e., data sets with many noisy features), high-dimensional outlier detection,

and outlying feature selection.

To address these issues, we break them down into three key research questions: what

are the relations between different outlier factors? how can we effectively model these

couplings to build more faithful outlier detection models to address the complex outlier

detection problems such as the those given in the aforementioned examples? how can we

leverage these couplings to address other challenging outlier detection problems?

This thesis attempts to build a comprehensive methodology of modeling and leveraging

coupled outlier factors to solve challenging outlier detection problems. Our main focuses

are: (i) coupling learning, which explores and models the relations between the outlier

factors of different entities, such as feature values, features, and data objects, and (ii)

the applicability of the learned models, which links the coupling learning to the solutions

of existing outlier detection challenges. We provide scalable algorithms with extensive

theoretical supports and/or empirical results to justify our coupling-based designs, and we

show how to use them to address some notoriously challenging outlier detection problems,

including noise-resilient outlier detection, high-dimensional outlier detection, and feature

selection for outlier detection.

1.2 Contributions

This thesis presents a series of explorations on learning the couplings of outlier factors to

have reliable outlierness estimation in complex outlier detection problems. As shown in

Figure 1.1, the couplings of outlier factors can occur at different levels, such as feature

values, features, and data objects. Coupling learning involves the understanding of four

elements: basic coupling relationship, such as binary, conditional, or mutual interdepen-

dence; the capacity of couplings, i.e., low-order or high-order interdependence; the utility

of couplings, i.e., whether the couplings are fully or selectively relevant to the research

problem at hand; and the passage of couplings, i.e., is the coupling relation passed on in

a successive 1 or non-successive way. A pathway of linking these four elements results in

novel outlierness estimation methods that are different from those of the other pathways,

which provides flexibility in addressing different outlier detection challenges.

1In this thesis, cascade coupling refers to the successive passage of couplings with loops, while sequential
coupling refers to the sequentially successive passage of couplings without loops.
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Figure 1.1: Conceptual Architecture of Outlier Detection with Coupled Outlier Factors.

We organize our research into two parts: value-level coupled outlier factors and

feature/object-level outlier factors. The research problems and targeted challenges of

each part are summarized in Table 1.1.

Table 1.1: Thesis Overview (Main Body)

Part Research Problem Targeted Challenge Chapter

Conditional cascade couplings:
how is the outlierness of one value
influenced by that of other values?

Outlierness estimation of
coupled values

4

Selective conditional cascade:
how can we only model useful inter-
actions between outlier factors?

High-dimensional outlier
detection in categorical
data

5

Binary cascade couplings: how
can we quickly and accurately learn
the cascade couplings?

Joint feature selection
and outlier detection

6

II: Value-level
Coupled Outlier

Factor

High-order cascade couplings:
how can we efficiently learn the
high-order interactions between out-
lier factors?

Noise-resilient outlier de-
tection

7

III:
Feature/object-
level Coupled
Outlier Factor

Two-way couplings of features:
how is the outlierness of one feature
influenced by that of the other fea-
tures?

Outlying feature selec-
tion

8

Sequential couplings of objects:
how can we sequentially refine a
given outlier factor?

High-dimensional outlier
detection in numeric
data

9

1.2.1 Value-level Coupled Outlier Factors

We explore the couplings between outlier factors from the finest level, the value level. Some

interesting questions we ask include: how is the outlierness of one value influenced by that

of the other values? how can we only model useful interactions between outlier factors?
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how can we quickly and accurately learn the cascade couplings? how can we efficiently

learn the high-order interactions between outlier factors? and more importantly, what

are the benefits of those coupling learning? and how can they address some notoriously

challenging problems in outlier detection? Our novel designs and findings w.r.t. these

questions are briefed as follows:

• We first learn how the outlierness of feature values influences each other by model-

ing conditional cascade relations between the outlierness in Chapter 4. Our design

enables an effective estimation of the outlierness of data with interdependent values,

in which traditional methods are ineffective due to their underlying IID assumption.

This work has been published in IJCAI-16 [91].

• We then consider the coupling utility problem in Chapter 5 and learn selective condi-

tional cascade couplings of the value outlierness, which provides an effective approach

for detecting high-dimensional outliers in categorical data. High-dimensional outlier

detection poses significant challenges to most outlier detection methods due to the

concentration of distances and the very sparse high-dimensional space [128]. By

learning only selective couplings that are important to outlier detection, we work on

highly relevant and condensed space, which enables a more accurate outlierness esti-

mation than other methods. This exploration has resulted in a long paper published

in CIKM-17 [94].

• In Chapter 6 we further propose approaches to efficiently learn the cascade couplings

with trivial, or no, loss in the accuracy, which can be used to well support the com-

putationally costly joint feature selection and outlier detection. Feature selection

for outlier detection is notoriously difficult due to its unsupervised nature and the

extremely imbalanced data distribution [2]. Limited work has been reported in this

area. It is much more challenging for joint feature selection and outlier detection,

which is similar to ‘the chicken or the egg ’ dilemma. Driven by the fast and effective

estimation of value outlierness, we are able to quickly generate and thoroughly ex-

amine candidates of outlying features and outliers to achieve the joint optimization.

This work has been published in IJCAI-17 [93].

• Instead of learning the low-order couplings in the previous three chapters, in Chapter

7 we learn to incorporate high-order coupling information into the cascade couplings

for a more robust outlierness estimation, making our outlier detectors more resilient

to noisy features. Noisy features can substantially mislead learning methods, par-

ticularly when the class labels are unavailable. Unfortunately, a large percentage

of noisy features often presents in outlier detection tasks, because outliers are the

minority objects and consequently the percentage of features that are relevant to

outliers is often small. We leverage a multi-granularity high-order couplings be-

tween values to effectively compute the value outlierness in very noisy data. The

extension of this work is under review by the DMKD journal.
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1.2.2 Feature/object-level Coupled Outlier Factors

We then examine two types of couplings between outlier factors at the feature/object level

to answer the following questions: how is the outlierness of one feature influenced by that

of the other features? how can we sequentially refine a given outlier factor? and what is

their applicability in addressing real-life outlier detection challenges? We introduce novel

solutions for these questions as follows:

• In Chapter 8 we learn non-successive two-way couplings of feature-level outlier fac-

tors to define the outlierness of features, i.e., relevant to outlier detection, which

can be used to perform feature selection for subsequent outlier detection. A novel

parameter-free approach is introduced to efficiently capture pairwise feature interac-

tions with a tight approximation guarantee. This exploration has resulted in a long

paper published in ICDM-16 [96].

• We further explore the couplings of outlier factors at the data object level in Chapter

9, in which we learn sequentially interdependent outlier factors with sequential en-

semble to mutually refine feature selection and outlier detection in high-dimensional

numeric data. Sequential ensembles, such as Adaboost and its variants [43, 124],

achieve state-of-the-art performance in classification, but the exploration of sequen-

tial ensembles for outlier detection is very limited due to the difficulty of obtaining

reliable information to iteratively refine the base models of the ensembles. We in-

troduce a novel way to leverage the correlation between feature selection and outlier

detection to address this issue. Also, unlike the designs of feature selection in Chap-

ters 7 and 8 that only capture pairwise interactions, this work captures the full

feature interactions. The work has been published in AAAI-18 [95].

1.2.3 Summary

The overall contributions of this thesis are summarized as follows:

• This thesis formulates a new outlier detection task, non-IID outlier detection in

multidimensional data, which opens a new research direction to the data mining and

machine learning community for devising effective and scalable solutions to tackle

real-world complex outlier detection problems.

• We introduce the first architecture for the non-IID outlier detection task, which

provides principled approaches to learn the outlierness interdependence at different

levels from feature values, features, to data objects. The architecture breaks down

the general coupling learning into a series of important finer-grained components:

basic coupling relation, coupling capacity, coupling utility, and coupling passage

manner, providing feasible ways to learn sophisticated couplings between outlier

factors with efficient models.

• We propose a collection of principled frameworks and their instantiations under

the non-IID outlier detection architecture to learn different types of couplings, in-

cluding four types of couplings of value-level outlier factors: conditional cascade
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couplings, selective conditional cascade, binary cascade couplings, and high-order

cascade couplings, and two types of couplings of feature/object-level outlier factors:

non-successive two-way couplings of features, and sequential couplings of objects (see

Table 1.1 for the corresponding chapters). Supported by extensive theoretical and

empirical justifications, these designs are shown to be scalable and effective in ad-

dressing some notoriously challenging problems, including non-IID outlier detection,

outlier detection in noisy data, and high-dimensional outlier detection.

• This thesis also introduces a set of seminal work on unsupervised feature selection

for outlier detection in both categorical data and numeric data, including innovative

feature selection methods that capture pairwise or full feature interactions and joint

feature selection and outlier detection methods. Our proposed approaches are able

to effectively compute the outlierness of features, which enables outlying feature

selection and substantially improves the accuracy and/or efficiency of subsequent

outlier detection methods.

In addition to the above theoretical and/or algorithmic contributions, the potential

business values of this thesis are summarized as follows:

• This thesis offers efficient and significantly higher outlier detection accuracy than

existing stat-of-the-art IID outlier detectors, which would be of great importance to

different applications, e.g., preventing the loss of millions of dollars by detecting more

credit card frauds, building safer computer networks by militating more malicious

programs and/or network attacks, or saving life by having early detection of fatal

diseases. Particularly, the average accuracy improvement of our non-IID outlier

detectors over the best IID outlier detector in different contexts ranges from 4%

up to 18% on a large collection of real-world data sets; the maximum accuracy

improvement on single data sets can be more than 50%, in which stat-of-the-art IID

detectors only obtain an accuracy of being nearly equivalent to a random guess.

• We also provide much more interpretable outlier detection solutions for challenging

real-life applications, e.g., noisy and/or high-dimensional business applications. This

is supported by effectively determining the outlierness of features, which enables

users to work on highly relevant and substantially smaller feature subsets and to

have a better understanding of why a data object is identified as an outlier.

1.3 Organization

In the rest of this thesis, we introduce common and fundamental definitions or concepts in

Chapter 2, including the common symbols, basic definitions, and experimental approach

used throughout the thesis. This is followed by a literature review of research achieve-

ments that are related to two or more of the following chapters, including related work in

IID outlier detection, non-IID outlier detection, and high-dimensional outlier detection in

Chapter 3. We discuss additional related work as necessary in the corresponding chapters

to provide a straightforward understanding of our research motivation.
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We then present the main body of the thesis, including two parts: value-level coupled

outlier factors and feature/object-level coupled outlier factors. As shown in Table 1.1, the

part at the value level consists of Chapters 4, 5, 6, and 7. In Chapter 4, we explore a con-

ditional relation between the outlierness of different values, aiming to answer the question:

how is the outlierness of one value influenced by that of other values? This exploration

lays an important foundation to the following chapters. Chapter 5 examines the utility

of couplings between values and their implication in high-dimensional outlier detection in

categorical data. Chapter 6 then explores a fast and effective coupling learning approach

based on binary relations between the values, which shows significant applications in si-

multaneous feature selection and outlier detection. Lastly, Chapter 7 investigates how to

incorporate high-order coupling information into the estimation of value outlierness and

shows its importance in outlier detection in noisy data.

The part at the feature/object level consists of the explorations of higher-level coupled

outlier factors in Chapters 8 and 9. In Chapter 8, we develop methods to capture the two-

way feature interactions for outlying feature selection. This is followed by the examination

of sequential couplings of object-level coupled outlier factors and its application in high-

dimensional outlier detection in numeric data.

The last part of the thesis consists of Chapters 10 and 11. We summarize the thesis

in Chapter 10, and then present the possible future research directions in Chapter 11.



Chapter 2

Preliminaries and Foundation

This chapter begins with a description of the most common symbols, and then introduces

the main notations and definitions in the context of non-IID outlier detection that are

important to understand the methods and algorithms proposed in this thesis. Lastly, we

present the methods for preparing data sets, evaluating and understanding the accuracy

of outlier detection in the experiments throughout this thesis.

2.1 Common Symbols

The common symbols and their descriptions are provided in Table 2.1. We define addi-

tional symbols as necessary in the following chapters.

Table 2.1: Common Symbols and Their Description. Cali-
graphic letters for sets. Bold capital letters for matrices.
Lowercase bold letters for vectors.

Symbol Description

X Multidimensional data set
F , D = |F| Set of D features describing X
x ∈ X and x ∈ RD D-dimensional data object
F ∈ F Feature in F
S ⊆ F Feature subspace
O Set of outlier candidates
I = X \ O Set of inlier candidates
V Set of categorical values

r ∈ RN List of outlier scores
G Graph
A Adjacency matrix

2.2 Non-IID Outlier Detection

This section first introduces some basic definitions and then formally defines non-IID

outlier detection.

9



CHAPTER 2. PRELIMINARIES AND FOUNDATION 10

Outlier factor is a function of an entity that determines the outlierness (or outlier

score) of the entity. The entity can be feature values, features, combinations of multiple

values, and data objects. For example, the inverse of the frequency of frequent patterns

is a widely-used outlier factor in pattern-based outlier detection methods; k-th nearest-

neighbor distance is a commonly used outlier factor in distance-based methods.

Outlierness vector is a vector in which each entry corresponds to an outlier score

of an element of a collection of entities. For example, r ∈ RN is the outlierness vector for

data objects in X .

Coupling refers to any relationship or interaction that connects two or more en-

tities [22]. For example, the interaction can be dependency, correlation, matching, or

neighborhood-based relation.

Independent and identically distributed (IID) random variables refer to a

sequence or other collection of random variables that are mutually independent and have

the same probability distribution [119]. In contrast, non-IID random variables refer to

a sequence or other collection of random variables, in which at least some random variables

are coupled with each other and/or have different probability distributions.

Cascade of outlier factors refers to the phenomenon where the outlierness of an

entity is coupled with the outlierness of its correlated entities, and the outlierness of these

correlated entities are further dependent on that of their own correlated entities, and so

on.

Non-IID outlier detection aims to learn the outlier score of a given entity by modeling

the sophisticated couplings and heterogeneities among the outlier factors, which is formally

defined as follows.

Definition 2.1 (Non-IID Outlier Detection). Let X ∈ RM be a multivariate random

variable or random vector with M outlier factors as its components. Then given an entity

ei, non-IID outlier detection methods define:

Xei 6⊥⊥ Xej , ∃j, 1 ≤ j ≤M & i 6= j, (2.1)

or

Xei ∼ Di, ∀i, 1 ≤ i ≤M. (2.2)

where Di is an unknown distribution.

Unlike most outlier detection methods that treat the outlier factors of the entities in

an IID way, this definition considers the coupling relation between the outlier factor of

one entity and that of the others in Eqn. (2.1) or the heterogeneous distributions taken

by different outlier factors in Eqn.(2.2).

Coupled outlier factors are defined as the outlier factors that are not independent

of each other, as shown in Eqn. (2.1). Instead of using traditional terms like ‘dependent’,
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we use the term ‘coupled ’ to indicate that 6⊥⊥ is not limited to the conditional probability-

based dependence in statistics, but refers to any relationship or interaction that connect

the outlier factors. The following chapters demonstrate how we effectively model different

types of couplings between outlier factors, including conditional probability-based cou-

pling, binary coupling, sequential coupling, and their cascade relations, at different levels

from feature values, features, to data objects.

Since the independent assumption is often violated in many real-world applications,

modeling the couplings between outlier factors helps build outlier detection models that

are more genuine to the underlying data characteristics, and therefore, reduce the false

positive/negative errors. Also, these couplings enable us to have a robust outlierness

estimation of feature values, features, and data objects, making our detection models

resilient to noisy features and addressing some notoriously challenging outlier detection

problems.

Heterogeneous outlier factors consider the heterogeneous probability distributions

taken by the outlier factors of different entities. In other words, one outlier factor that

fits some entities may not work on other entities. Therefore, a set of heterogeneous outlier

factors is required to identify such outlying entities. Due to the unsupervised nature of

outlier detection, some major challenges are: (i) how to determine the effectiveness of a

given outlier factor on the data set, (ii) how to devise a set of optimal outlier factors, and

(iii) how to effectively unify these outlier factors.

While heterogeneous outlier factors are an important direction in non-IID outlier de-

tection, this thesis focuses on coupled outlier factors. We plan to extend our work to the

heterogeneity aspect in the future.

Point outlier is an individual data object that can be considered as outlying w.r.t.

the majority of data objects. In addition to point outliers, there exist two other types

of more complex outliers, namely contextual outliers and collective outliers [27]. While

we focus on the simplest type of outliers, point outliers, to thoroughly understand the

non-IID properties of the outliers, it is possible to extend our findings to the other types

of outliers. Outliers are hereafter referred to as point outliers.

2.3 Experiment Approach

This section presents the common experiment components or operations in all our exper-

iments, including data preparation and detection performance evaluation methods.

2.3.1 Data Preparation

Publicly available real-world data sets are one of the key drivers in promoting the eval-

uation and development of learning algorithms. Unfortunately, there exist far less such

data sets for outlier detection, i.e., data sets with real outliers, than that for other tasks

like classification, regression, and clustering. In our experiments, we use the following

widely-used approaches to convert classification data sets into outlier detection data sets.
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• Downsampling approach downsamples a small class such that the number of

data objects in this class accounts for only a very small percentage of the entire data

set (we adopt 2% throughout this thesis) [7, 21, 129]. The downsampled class is

used as the outlier class and the large class(es) in the original data is treated as the

normal class. This approach is used to convert data sets with relatively balanced

class distributions. Note that this conversion may produce some features containing

only one value in some data sets. We removed these features as they contain no

useful information for outlier detection.

• Rare class conversion is used to transform extremely class-imbalanced data by

treating rare classes as outliers versus the rest of the classes as normal class [7, 21,

73, 77, 121].

The above conversions guarantee that the outlier class chosen is a class with outly-

ing semantics. Additionally, when our purpose is to detect outliers in categorical data,

data sets with both numerical and categorical features are used with categorical features

only. Categorical features are converted into numeric ones by 1-of-` encoding [21] when

applying outlier detection methods that are only applicable to numeric data. The above

transformation methods may produce some features containing only one value in some

data sets. We removed these features as they contain no information for outlier detection.

2.3.2 Detection Performance Evaluation

Given a data set, an outlier detection method yields a ranking of its data objects w.r.t.

the outlier score, r ∈ RN , i.e., the top-ranked objects are the most likely outliers. We

evaluate the quality of the ranking by the area under the ROC curve (AUC), which can

be directly calculated as follows [53]:

AUC =

∑NC0
i=1 [rank i − i]
NC0NC1

, (2.3)

whereNC0 andNC1 are the number of objects in the outlier and normal classes respectively,

and rank i denotes the rank of the i-th outlier in an ascending object ranking.

AUC inherently considers the class-imbalance nature of outlier detection tasks, making

it comparable across different data sets [21]. An AUC value close to 0.5 indicates a

random ranking of the objects. A higher AUC indicates better detection performance.

The consideration of the class imbalance and the easy interpretation make AUC one of the

most widely-used performance measures in outlier detection. As an overall performance

measure, AUC is used throughout all our experiments. In some cases, e.g., Chapter 6,

we also use the precision at the top n positions, i.e., P@n, to evaluate our methods that

attempt to optimize the outlier ranking at the top n positions (see Section 6.5.2 for detail).

For algorithms that involve sampling, their AUCs are the averaged results over 10

independent runs to deliver reliable performance.

The Wilcoxon signed rank test [35] is used by default to examine the significance of

the AUC performance of our proposed methods against its counterparts, unless otherwise

stated.
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2.3.3 Data Indicator for Outlier Detection

Data indicator refers to measures that capture inherent characteristics of data sets, which

is used to understand and quantify the underlying data characteristics that are sensitive

to the performance of learning methods. This has been shown to be critical for the design

and the evaluation of learning methods [21, 24, 39, 58, 74, 109]. A wide range of data

indicators has been introduced to quantify data complexity at the feature and/or object

levels for classification tasks or sequence analysis [24, 58, 74, 109], while little work has

been done for outlier detection.

Two relevant studies are [21, 39]. In [21], a variety of k-nearest-neighbor-based outlier

detection methods is employed to evaluate the complexity of many publicly accessible

data sets via their detection performance. Two data indicators, difficulty and diversity, are

defined based on agreements and conflicts in the performance of the detectors. This is very

different from our work in that we quantify the data complexity from specific data aspects

by designing various data indicators to capture different underlying data characteristics. A

more related study is [39], which introduces three indicators, point difficulty, clusteredness,

and relative frequency, to create benchmark data sets with different characteristics by

varying these three indicators. These indicators are designed at the object level and are

mostly proximity-based. In contrast, we define a set of indicators that span the value to

object levels to capture more affluent data characteristics. However, it should be noted

that having an accurate estimation of the data complexity itself is a very challenging task.

We attempt to use these indicators to gain some insights into the data characteristics and

our empirical results.

Value Coupling Complexity

We introduce a complexity measure κvcc to show how the value coupling relations affect the

detection performance. We first define two concepts: noisy and positive value couplings.

Noisy value couplings are the co-occurrence of multiple infrequent values contained by

normal objects. Positive value couplings refer to the co-occurring infrequent values con-

tained by outliers. Positive value couplings are positive because they are consistent with

the outlier definition. Noisy value couplings are the opposite of the positive couplings and

are therefore negative. Let NC0 and NC1 denote the number of data objects in the outlier

class C0 and the normal class C1, respectively. N ′C0
and N ′C1

denote the number of outliers

and normal objects that contain at least two values with a frequency no more than a low

frequency threshold θ. The rate of noisy and positive value couplings can then be defined

as nvv =
N ′C1
NC1

and pvv =
N ′C0
NC0

, respectively. We then define κvcc as

κvcc =
nvv

pvv + nvv + ε
, (2.4)

where ε is a small constant used to avoid the zero probability problem.

When nvv � pvv , the noisy value couplings dominate a data set, leading to high data

complexity. The outlier detection task is easy if nvv � pvv . κvcc ∈ [0, 1], and a larger κvcc

indicates a greater dominance of nvv over pvv and, therefore, has higher data complexity.
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θ = 0.05 and ε = 0.001 are used in our evaluation.

Relevance of Feature Value Sets

κrel represents the relevance of a set of values w.r.t. the outlier class label. We use the

probability of the outlier label given a single value to measure the relevance of the value.

κrel is then defined as the average conditional probability of the outlier class label over

all its values in a value set U , i.e., κrel (U) = 1
|U|
∑

u∈U P (C0|u). High κrel indicates strong

couplings between the outlier class and the values in U .

Feature Noise Level

Due to the unsupervised nature of outlier detection, irrelevant features, in which outliers

contain values with similar or higher frequencies than that of normal objects, mask normal

objects as outliers. These features are therefore ‘noise’ to outlier detection. The presence of

a large proportion of these features renders outlier detectors less effective. We accordingly

define the feature noise level κfnl as the proportion of noisy features to characterize this

difficulty. κfnl is defined as

κfnl =

∑
i I(Fi)
D

, (2.5)

where I(Fi) is an indicator function, which returns one if feature Fi is considered a noisy

feature and zero otherwise.

A feature is thought of as noise if its AUC-based feature efficiency is smaller than 0.5,

i.e., outliers are more likely to be assigned with smaller outlier scores than normal objects

along that feature in a random selection of object pairs. Per the definition of outliers, we

first return an outlier ranking r using the inverse of the frequency of each object’s value

in a given feature Fi, and then compute the AUC for the feature Fi using Eqn. (2.3).

κfnl ∈ [0, 1] and a large κfnl means a high level of feature noise.

Feature Redundancy Level

Redundant features firstly need to be relevant features. Following the idea in Section 2.3.3,

we defined relevant features as features whose corresponding AUC is more than 0.5. To

examine whether a given relevant feature is redundant or not, we check every pair of the

relevant features to compare the AUC by using pairwise feature combinations with that

using individual features. One feature is thought to be redundant to another if the AUC

difference is less than 0.01. We report the percentage of such combinations as κrdn.

Outlier Separability

One basic measure of the difficulty of outlier detection is the separability of outliers from

normal objects. However, it is challenging to exactly compute this difficulty, since the sep-

arability varies significantly in different subspaces and the number of possible subspaces

is 2D. Rather than searching over such a huge space, existing studies focus on the sepa-

rability in single features, as having strongly relevant features normally enables learning



CHAPTER 2. PRELIMINARIES AND FOUNDATION 15

methods to achieve good accuracy [58, 74]. Feature efficiency is widely used for evaluating

class separability in supervised classification problems [58, 74], in which the separability

is defined by the range of non-overlapping values spanned by classes. However, this defi-

nition is not suitable for outlier detection, for which data has an extremely skewed class

distribution. We are interested in the capability of ranking outliers prior to normal ob-

jects. Based on the definition of outliers, if there exists a feature where the outliers always

contain more infrequent values than normal objects, the outliers can be easily separated

from the normal objects. Such features are the most efficient. When outliers and normal

objects contain the same values, or outliers contain more frequent values than normal

objects, that feature is considered to be inefficient or noisy. The outlier separability of a

feature Fi is defined as

κisep = performance(ri), (2.6)

where ri is the ranking list of data objects using the inverse of the frequencies of the values

in feature Fi and performance(·) is a performance evaluation method. We instantiate

performance(·) by computing the AUC based on ri. We then use the resulting AUC to

denote the efficiency of the feature. Similar to [58, 74], the overall outlier separability κsep

is represented by the maximum feature efficiency:

κsep = arg max
i

κisep . (2.7)

κsep ∈ [0, 1] and a larger κsep indicates better outlier separability and lower data

complexity. Below we use outlier inseparability defined as κins = 1− κsep . This is to have

larger quantization values indicating higher data complexity, making this indicator work

consistent with the other indicators.

Heterogeneity of Categorical Distribution

Most outlier detection methods implicitly assume that distributions taken by different

features are homogeneous. Measuring the heterogeneity between the distributions of the

features therefore offers one basic way to evaluate the problem difficulty in the given

data. It is well known that location parameters convey key properties of probability

distributions. Many statistical tests, e.g., the t-test or signed-rank test [35], are available

for the distribution location test, but they are ineffective in evaluating the heterogeneity

of distributions across the features, which is particularly true for categorical data. This

is because the sample size in categorical distributions (i.e., the number of values per

feature) varies significantly in different features and/or data sets, which often violates the

sample size and distribution assumptions made in these tests. The problem is simplified

as follows. We consider the mode as the key location parameter and use the difference of

the frequencies of the modes across features to define the heterogeneity level. Specifically,

the heterogeneity level κhet is defined as the average difference in mode frequency over all
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possible feature pairs:

κhet =
2

D(D − 1)

∑
1≤ki<kj≤D

freq(mki)

freq(mkj )
, (2.8)

where {mk1 , · · · ,mkD} are the modes of all D features sorted based on their frequencies

in descending order. κhet ∈ [1,∞) and a large κhet indicates strong heterogeneity.



Chapter 3

Literature Review

Outlier detection methods can be generally categorized into supervised methods, semi-

supervised methods and unsupervised methods. Compared to supervised methods and

semi-supervised methods, unsupervised methods are more applicable and widely used in

industry, because obtaining accurately labeled data for most outlier detection applications

often comes at a very high cost [2]. This work therefore focuses on unsupervised methods.

This chapter reviews the literature that is related to the general challenges we intend

to solve throughout this thesis, including outlier detection with IID and non-IID outlier

factors, and high-dimensional outlier detection. Some related work that is particularly

related to a specific chapter will be discussed in the corresponding chapters. A summary

of this review is provided at the end of this chapter.

3.1 Traditional Outlier Detection Methods

Most existing methods for outlier detection assume the outlier factors within a data set

are IID. The methods for both numerical and categorical data are reviewed below.

3.1.1 Methods for Numeric Data

Most existing outlier detection methods focus on numeric data. Among these methods,

proximity-based methods are arguably the most widely-used approach while ensemble

methods have emerged as the leading approach in recent years. We discuss these two

methods as follows. The other types of methods can be found in [2].

Proximity-based Methods

Proximity-based methods include distance-based methods, density-based methods, and

clustering-based methods [2]. Some popular methods include: k-nearest-neighbor dis-

tance, kNN [66, 101]; local outlier factor, LOF [20, 105]; and clustering-based outlier factor,

CBUID [63]. These methods generally assume that objects in the regions of low density

are outliers. This assumption is underpinned by: the k-th or average k nearest-neighbor

distance(s) in distance-based methods; relative lower density in neighborhood-based re-

gions in density-based methods; and large distances to cluster centroids in clustering-based

17
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methods. To compute the outlier scores, the distance-based methods and density-based

methods rely on expensive distance computations with a time complexity of O(N2), where

N denotes the number of objects. This computational time may be reduced to O(N log N)

if the objects are pre-indexed by an indexing scheme like R∗-tree [15] or k-d tree [16]. Some

other strategies, such as pre-clustering or pruning rules [9, 14], have also been explored

to improve the detection efficiency. By using efficient clustering methods to discover the

predefined clusters, clustering-based methods like CBUID are efficient with a linear time

complexity, but it is difficult for these clustering methods to find natural clusters with

different shapes. Using sophisticated clustering methods like DBSCAN [106] may help

solve this issue, but they have the expensive computation issue.

Ensemble Methods

In recent years, ensemble-based methods have shown state-of-the-art detection perfor-

mance in a variety of data sets. This type of methods can be generally categorized into

subsampling-based ensembles [92, 111, 116, 129] and subspace-based ensembles [7, 64, 73,

97]. This section discusses subsampling-based ensembles. The subspace-based methods

are reviewed under a more related topic in Section 3.3.2.

Subsampling-based outlier ensembles compute the distances, local densities or other

measures on small random subsamples to compute outlier scores. These methods sub-

stantially reduce the quadratic time complexity to a (nearly) linear time complexity w.r.t.

data size, while at the same time achieving AUC performance that is comparable to, or

better than, the same outlier factors that work on the full data set. For example, it is

reported in [111] that the method named Sp, which uses the nearest neighbor distances

in a very small single random subsample as outlier scores, can achieve significantly bet-

ter AUC performance than kNN and several of its variants; at the same time, Sp runs

orders-of-magnitude faster than kNN. Similar results are reported in [92, 116], in which a

bagging ensemble of Sp, called LeSiNN, is introduced to provide more stable and better

AUC performance at the expense of trivial computational time.

One of the most popular methods in this category is isolation-based methods [49,

77, 78], of which iForest (Isolation Forest) [77] is the most well-known method. iForest

leverages the property that outliers are susceptible to isolation to build a set of isolation

trees to identify outliers. Each tree is grown using a small random subsample until every

data object is isolated, in which each tree node is built by randomly selected cut points on

a randomly selected feature. To score a data object, the path length traversed from the

root to a leaf node by the data object is used as the outlier score. Because outliers can be

isolated using significantly fewer partitions than normal instances, outliers have a shorter

path length than normal instances. iForest has a linear time complexity w.r.t. data size

and dimensionality and obtains the best AUC performance in many widely-used outlier

detection data sets [77].

The ensemble methods, such as Sp, LeSiNN, and iForest, are state-of-the-art methods

in terms of both effectiveness and efficiency in general data sets. However, they have

problems handling complex data sets. For example, they are ineffective for handing high-
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dimensional data sets. This is because the distances used in Sp and LeSiNN are not

an effective measure in a high-dimensional space since the nearest and farthest neighbor

distances have nearly no difference in this space [128]. For iForest, the volume of the high-

dimensional space is huge, and as a result, iForest has a very rare chance of choosing the

right regions in building their isolation trees since iForest randomly chooses the subsamples

and cut points. More importantly, all these methods are based on the assumption that

the outlier factors within the data are independent, which renders them less effective in

data sets with non-IID entities.

3.1.2 Methods for Categorical Data

By contrast, significantly less research has been conducted on categorical data. Among

the existing methods, most are pattern-based to address its discrete nature in categorical

values. Additionally, there have been some efforts on transforming categorical data into

numeric data to use the aforementioned proximity-based or ensemble methods.

Pattern-based Methods

Pattern-based methods typically search for infrequent/frequent patterns using approaches

such as frequent pattern mining [57, 88, 108, 114], information-theoretic measures [7, 121],

and probability tests [34, 120] and build pattern-based detection models. Those objects

with infrequent patterns are considered to be outlying. Specifically, the most widely-used

frequent pattern-based method, FPOF [57], employs frequent patterns as normal patterns

and computes outlier scores based on the containment of the frequent patterns and their

frequencies. FPOF is one of the most popular and effective outlier detectors for categorical

data [47, 68, 121], performing better than the popular infrequent pattern-based method

LOADED [88] that, in contrast, uses infrequent patterns to detect outliers. CompreX is

a state-of-the-art information-theoretic-based method, which uses the data compression

cost in a minimum description length [13] based feature partition space as outlier scores.

It has powerful detection performance in data sets with different structures. Probability

test-based methods perform statistical tests to obtain normal or abnormal patterns for

detecting outliers. MarP [34] is a marginal probability-based probability test method,

which uses the inverse of marginal probabilities to define outliers. Although it is a simple

method, it performs better than, or comparably to, several other probability test methods

such as Bayesian network-based methods [34].

However, all of these methods ignore the interdependence of patterns but calculate

the outlier scores of individual patterns. As a result, they may fail to capture the genuine

outlying degree of the patterns and overlook important outliers, especially in complex

data. For example, in data sets with many noisy features, these methods identify a large

proportion of misleading patterns. Since they treat potentially wrong and correct patterns

independently, all patterns are scored in an identical way, which can mislead the outlier

scoring process and incorrectly report many normal objects as outliers.

In practice, the pattern discovery-based detection [34, 57, 88, 108] has time and space

complexities that are exponential to the number of features. Though a heuristic search
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was used in [7] to reduce the complexity from exponential to quadratic, the search is

still computationally intensive in high dimensional data. Some other work accelerates the

pattern discovery phase, e.g., by searching condensed representations of patterns [68] or

pattern sampling [47]. However, they may overlook important outliers and/or perform

unstably.

Also, it is non-trivial to tune the parameters (e.g., the minimum support and pat-

tern length) involved in the pattern search, as the characteristics of patterns differ greatly

between data sets [7, 47]. For example, in frequent pattern-based methods, a small min-

imum support generates a substantially large set of normal patterns, which may lead to

false alarms and more expensive computations; while large minimum support results in

an insufficient number of patterns, leading to a high false negative error.

Representation Learning-based Methods

Representation learning-based methods aim to transform categorical data into numeric

data for the use of numeric data-based methods in subsequent outlier detection. The

1-of-` encoding and IDF (Inverse Document Frequency) encoding [21] are the two most

commonly-used categorical-to-numeric data transformation methods. 1-of-` encoding, also

known as one-hot encoding, converts a categorical feature with ` values into ` binary

features, in which the values ‘1’ and ‘0’ indicate the presence and absence of a categorical

value, whereas IDF encodes a feature value as IDF(v) = ln(N/freq(v)). These two methods

are easy-to-implement and very efficient, but they do not capture much intrinsic data

characteristics. Another main research line is similarity or metric learning which represents

categorical data with an object-object similarity matrix. Many similarity measures have

been introduced for categorical data over the years [5, 60, 61, 118, 126], which typically

attempt to capture different types of interactions between values to produce a reliable

similarity matrix. Since they work on the object-object similarity matrix, they often

have quadratic time complexity, which impedes their applications to large-scale data sets.

Another issue for similarity learning methods is that it is difficult to define a consistently

effective similarity measure for data sets with different characteristics [2, 17]. Deep neural

networks-based representation learning has been very popular and successful on image and

text data, while limited work [122] has been done on categorical data because: (i) it is

difficult to define proper loss functions to capture the sophisticated interactions between

the values and (ii) the data size in many applications is not large enough to well train

the neural networks. More efforts are required to explore whether deep learning-based

methods can gain similar success on categorical data. Moreover, all these methods are

mainly focused on capturing the regularity information for clustering tasks, thus, they

may ignore some irregularity information that are important for outlier detection.

3.2 Non-IID Outlier Detection Methods

This section first reviews the research progress in non-IID learning and then discusses

related work in non-IID outlier detection.
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3.2.1 Non-IID Learning

Since the IID assumption generally does not hold in real-world applications, non-IID

learning has received increasing attention. In terms of learning relevant data dependencies,

one main relevant research line is to learn the spatial and/or temporal dependent data [33,

85, 110]. However, significantly less work has been reported on the complex hierarchical

couplings and heterogeneities within a single data set, in which most existing learning

methods cannot have a faithful modeling of these complexities due to their IID assumption

[22, 23, 25]. Typical research models the explicit or implicit dependencies or relations. For

example, the similarity between two observations (images patches) is influenced by the

similarity of the neighbors of these two observations [125]; the sampling of observations

is influenced by the observations (visual words) we sampled before and their distribution

[32]; the similarity between two values is influenced by the similarities of the correlated

values/patterns of these two values [118]. More recent efforts have been made on jointly

learning explicit and implicit couplings, e.g., the explicit and implicit couplings between

users (items) in very large-scale data [37].

On the other hand, learning different types of heterogeneities, such as heterogeneities

between features, subspaces, views, objects, class labels, or graphs [23, 55, 112], using

multi-view/task learning and heterogeneous information networks has been explored in a

range of learning tasks. Another important research line is transfer learning approaches

[90], which are devised to tackle the data distribution shift between training and testing

data sets or between source and target domains.

3.2.2 Outlier Detection with Non-IID Outlier Factors

Limited work has been reported on non-IID outlier detection in static multidimensional

data sets. Similar to non-IID learning, many studies focus on detecting outliers in data

with explicit non-IID properties, e.g., outlier detection in graph or temporal data [6, 25,

50]. However, little research is available on leveraging implicit coupling/interdependent

information to improve the aforementioned IID outlier detection methods, though it shows

to be effective in various other domains [40, 44, 62, 118, 125]. A few related studies

are [29, 82, 113], which exploit homophily couplings (a commonly observed relation in

many real-world applications [42, 69, 115]) between the object-level outlier factors to

identify abnormal events in fraud detection [82] and malware detection [29, 113]. These

studies assume the misstated user accounts and malicious files have homophily couplings,

respectively. Our work is very different from these studies in two major aspects below. (i)

They incorporate domain knowledge (e.g., some labeled data objects) into their homophily

learning models through semi-supervised learning, whereas our methods do not require

labeled data. (ii) They focus on domain-specific problems using graph data, e.g., account-

account graph or file-file graph, whereas we investigate the homophily at different levels

of entities on generic multidimensional data, which has broader applications.

A few studies [102, 107] are also available for capturing heterogeneous outlier factors

in outlier detection. These studies focus on how to construct heterogeneous ensembles of

different outlierness scoring methods (or one method with different parameter settings) by
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leveraging the techniques of ensemble learning. Outlier detection in multi-view data [76,

123] or multi-source data [45] is also related to this topic. While this thesis focuses on the

interdependence aspect of non-IID outlier detection, it is interesting to explore the use of

heterogeneous outlier factors in complex data sets. We plan to investigate this problem in

future work.

3.3 High-dimensional Outlier Detection

High-dimensional outlier detection is a significant challenge due to the curse of dimension-

ality. Existing solutions to this problem can be generally grouped into three categories:

full-space-based methods, subspace-based methods, and feature selection-based methods.

Full-space-based methods attempt to define outlierness measures that are more effective

on a high-dimensional space, while subspace- and feature selection-based methods aim to

select relevant feature subspace(s) for subsequent outlier detection methods to work on,

which helps reduce the effect of the dimensionality curse.

3.3.1 Full-space-based Methods

As discussed above, traditional outlier detection methods like LOF, kNN and their nu-

merous variants [21] rely on pairwise distances on the full data space to define outliers

and they fail in high-dimensional data as the concept of distance becomes less meaning-

ful with increasing dimensionality [128]. Some methods [11, 46, 70, 100] are dedicated

to defining more robust outlierness measures than neighborhood-based measures for high-

dimensional space. One representative state-of-the-art method is the angle-based methods

called ABOD [70, 100], which uses the variance of the angles between a given data objects

and the other objects to define outlier scores. A small angle variance indicates high out-

lierness. Although these methods successfully avoid to the direct use of pairwise distance

in outlier scoring, their premises are dependent on the proximity concept in the original

full space, thus, they are still biased by irrelevant features [128]. Also, these methods often

require an input for the neighborhood size, which is heavily dependent on data size and

data distribution and is difficult to be tuned as class labels are unavailable [97].

3.3.2 Subspace-based Methods

The number of possible feature subspaces increases exponentially with the dimensions.

Therefore, heuristic search and random search methods are used to generate the subspaces

for subsequent outlier detection to make the problem computationally tractable. In gen-

eral, subspace-based outlier detection methods include deterministic and non-deterministic

methods based on the way they generate the subspaces.

Deterministic Subspace-based Methods

Deterministic subspace methods includes local pattern-based methods [4, 10, 57], feature

partition-based methods [7] and statistical dependence-based methods [64]. They are de-

terministic in the sense that they produce exactly the same subspaces/patterns that satisfy
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a given criterion. They normally first search occurrence frequency/local density, minimum

description length or statistical dependence tests-based outlying subspaces/patterns, and

then computes outlier scores in subspaces to avoid the inclusion of irrelevant features. How-

ever, their subspace/pattern search is still computationally costly (e.g., at least quadratic

time complexity) in high-dimensional data. Also, the presence of irrelevant features may

mislead the search to produce irrelevant subspaces, leading to false positive errors [91].

Non-deterministic Subspace-based Methods

In contrast to deterministic methods, non-deterministic methods [73, 77, 97, 104] work

on randomly generated subspaces. These methods generally have substantially better ef-

ficiency than deterministic methods, since they do not require the costly subspace search

and their random subspace generation is very fast. However, the random subspace gen-

eration may include many irrelevant features into subspaces while omit relevant features

in high-dimensional data, where irrelevant features dominate over relevant features. Also,

it is difficult to determine the size of these random subspaces, i.e., the number of features

contained by each subspace.

3.3.3 Feature Selection-based Methods

Alternatively, feature selection-based methods aim to identify a single optimal feature

subset that reveals the exceptional behaviors of all outliers. Although feature selection

has shown effective in enabling clustering and classification for decades [75], there exists

limited work on outlier detection because it is challenging to (i) define feature relevance to

outlier detection given its unsupervised nature and (ii) find a single feature subset enabling

the detection of all outliers.

Very limited feature selection methods have been designed for outlier detection, e.g.,

selecting features for imbalanced data classification or supervised outlier detection [12, 30,

80]. However, they are inapplicable for the context which has no class label information

or where it is too costly to obtain class labels. Unfortunately, many real-world outlier

detection applications fall into this scenario.

Some related work includes [56, 86, 98, 121]. In [56], a partial augmented Lagrangian

method is introduced to co-select objects and features that are relevant to rare class

detection. While the feature selection and rare class detection are shown effective in un-

supervised settings, as pointed out by the authors, they assume that the objects in rare

classes are strongly self-similar. This assumption does not apply to the nature of outlier

detection, where many outliers may be isolated objects and distributed far away from each

other in the data space. In [121], an unsupervised feature weighting for outlier detection

on categorical data, denoted as ENFW, is introduced. This method employs an entropy-

based measure to weight features and highlight strongly relevant features for subsequent

outlier detection. However, it evaluates individual features without considering any feature

interactions, and is thus very sensitive to noisy features. The method denoted as RegFS

in [86, 98] defines the relevance of features by their correlation to the other features. The

assumption is that outliers correspond to the violation of the dependency among normal
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objects and independent features are not useful in capturing such dependency/violation

[2]. This assumption may be invalid since some features can be strongly relevant to outlier

detection but not correlated to other features.

One shared problem for the above subspace/feature selection-based methods is a type

of filter-based methods, which search feature subset(s) independently from the subsequent

outlier detection methods, and they may consequently result in feature subset(s) that are

suboptimal to the outlier detectors.

3.4 Summary

Most existing work on outlier detection in either numeric data or categorical data assume

that the outlier factor of an entity in the data is independent from that of the other

entities, whereas this thesis aims to learn different types of couplings between the outlier

factors of the entities in multidimensional data at the different levels, which are of great

importance to identify outliers in data sets with complex interdependence. There have

been some interesting previous studies on non-IID outlier detection, but they are focused

on data with explicit interdependence, such as temporal data and graph data, rather than

multidimensional data. As far as we know, this thesis provides the first comprehensive

exploration of non-IID outlier detection in multidimensional data.

Irrelevant features can mask outliers as normal objects, which is thus ‘noise’ to out-

lier detection. In addition, they are also one major cause of the curse of dimensionality

issue. To reduce the effect of irrelevant features, many subspace-based methods are pro-

posed to identify relevant subspaces for subsequent outlier detection in noisy data or

high-dimensional data, but the search of relevant subspaces can be misled by these noisy

features, and moreover, the search process is often computationally costly since the search

space increases exponentially with the dimensionality. We show in this thesis that mod-

eling the couplings of the outlier factors provides scalable and effective approaches to

compute the outlierness in noisy data or high-dimensional data. This is one main benefit

brought by non-IID outlier detection.

In addition, outlying feature selection is an alternative approach to outlier detection

in noisy data or high-dimensional data, but limited work has been reported in this area

due to the difficulty in computing the relevance of features to outlier detection.We show in

this thesis that the rich interactions between entities at different levels in multidimensional

data also enable us to reliably compute the feature relevance, which provides principled

approaches for outlying feature selection. This is another main benefit brought by non-IID

outlier detection.



Part II

Value-level Coupled Outlier

Factors

25



Learning Couplings of Value-level

Outlier Factors

Feature values are the foundation element of multidimensional data objects. The outlier-

ness of values is more finer-grained than that of patterns in feature subspaces or the full

space. Therefore, knowing the outlierness of values can provide important insights into

challenging outlier detection problems.

Feature values of data objects are naturally coupled with each other in many applica-

tion cases where the behaviors of the data objects occur asynchronously or synchronously.

Therefore, considering the couplings between the values is required to have a reliable in-

ference of the abnormality of the values. In this part, we examine four different types of

couplings of value-level outlier factors to have a more accurate outlierness estimation of

the values and their applications in addressing challenging outlier detection problems:

• Conditional cascade couplings, which enable the effective outlierness estimation of

not independent values (Chapter 4);

• Selective conditional cascade couplings, which contribute to fast and effective

high-dimensional outlier detection in categorical data (Chapter 5);

• Binary cascade couplings, which can be used to compute value outlierness in a

closed-form and drive joint feature selection and outlier detection (Chapter 6);

• High-order cascade couplings, which enable more accurate value outlierness esti-

mation in noisy data (i.e., data with many noisy features) (Chapter 7).

For each exploration, we provide motivations, generalize abstract frameworks, and

introduce instances of the frameworks, followed by theoretical and empirical justifications

of our frameworks’ instantiations.
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Chapter 4

Conditional Cascade of Outlier

Factors

4.1 Introduction

How can we know the traits of a data object’s behaviors, e.g., the outlierness? How much

can we know about their traits from the traits of other data objects? This chapter focuses

on these questions, and introduces approaches to explicitly capture the mutual influence of

the outlierness between the behaviors, i.e., feature values of the data objects. Particularly,

we are interested in their homophily couplings, which refer to the phenomenon that an

entity tends to bind with other entities that have similar traits and consequently the

entities have mutually positive influence on their traits [42, 83].

As quoted in many idioms like ‘a man is known by the company he keeps’ and ‘birds

of a feather flock together ’, this kind of coupling is common in our real life, e.g., the

function of a protein can be inferred from its interacted proteins of known functions [87];

the happiness of people is influenced by the happiness of their surrounding friends [42]; the

alcohol use, smoking, and aggressive and/or illegal behaviors of adolescence is influenced

by their peers [18].

By having homophily couplings in outlier detection, we posit that the outlying be-

haviors are explicitly and/or implicitly coupled with each other, and the outlierness of

one behavior is positively influenced by the outlierness of other behaviors. As a result,

the outlierness of a behavior is proportional to the outlierness of its coupled behaviors,

and the outlierness of these coupled behaviors are further proportional that of their own

coupled behaviors, and so on. Such couplings form an iterative cascade influence on the

outlierness of behaviors. Capturing these couplings helps to have a faithful measure of the

behaviors’ abnormality, e.g., the unexpected function of proteins and the risk of having

depression.

However, most existing outlier detection methods for categorical data [7, 34, 57, 88,

108, 114, 121], take the IID assumption. Such methods identify a set of normal/outlying

patterns from all possible patterns and compute the outlierness of the identified patterns

independently. In doing this, they ignore the couplings between the patterns and cannot

capture the above cascade influence. Consequently, they may meet with critical problems,

27



CHAPTER 4. CONDITIONAL CASCADE OF OUTLIER FACTORS 28

e.g., they may treat the wrongly identified patterns as important as the genuine ones

and result in high detection errors. Accordingly, properly modeling the outlying behaviors

with homophily couplings is critical and can iteratively reinforce the outlierness of genuine

outlying patterns, which may consequently reduce the impact of the erroneous patterns.

To detect outliers in categorical data with the coupled behaviors, this chapter intro-

duces a novel framework, called Coupled Unsupervised OuTlier detection (CUOT), to

capture the above cascade influence. CUOT estimates the outlierness of each value by

modeling complex couplings between feature values. It uses intra-feature value couplings

that consider the local context within a feature to compute semantically comparable initial

outlierness for the feature values. On the other hand, CUOT uses the inter-feature value

couplings to model the influence of different feature values on the outlierness of values.

As shown in Figure 4.1, CUOT then integrates these two components into a value-value

graph. It subsequently learns the outlierness of values by using off-the-shelf graph min-

ing techniques to capture the cascade outlierness influence between the nodes. The value

graph representation is used because it can support the flexible and effective modeling of

the homophily couplings.

Figure 4.1: Conditional Cascade Couplings of Value-level Outlier Factors. ui represents a value.

The defined outlierness of values can detect outliers in non-IID categorical data in

two ways: (i) by directly computing the outlier scores of objects through consolidating

the outlierness of their values; (ii) by first measuring the relevance of a feature to outliers

through consolidating the outlierness of the values in the feature, i.e., features with high

outlierness are considered to be outlying features, and then selecting important features

for subsequent outlier detection.

CUOT is implemented by a method called Coupled Biased Random Walks (CBRW).

CBRW defines an initial value outlierness via the feature mode-based normalization, and

considers the mutual dependency of the outlierness of values from different features using

the conditional probabilities of those values. The initial value outlierness and the outlier-

ness influence between values are mapped onto a directed attributed value-value graph

and modeled by biased random walks to estimate the outlierness of all values.
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Accordingly, our contributions can be summarized as:

i. A novel coupled unsupervised outlier detection (CUOT) framework is introduced to

estimate the outlier score of each value by modeling intrinsic intra- and inter-feature

value couplings. Modeling value-level interactions provides an effective and efficient

way to model sophisticated value interactions in complex categorical data. Moreover,

the value-level outlier scores are more fine-grained and flexible than the pattern-level

scores. This approach makes outlying feature selection possible in addition to direct

outlier detection.

ii. CUOT is further instantiated to the CBRW method, which integrates the initial out-

lierness of values and the outlierness influence between values in a seamless manner.

CBRW is guaranteed to be converge and perform stably with its only parameter.

Extensive experiments show that: (i) our CBRW-based outlier detection method sig-

nificantly outperforms five state-of-the-art methods on 15 real-world data sets with differ-

ent levels of non-IID values, outlier separability, and feature noise; (ii) the CBRW method

runs substantially faster than pattern-based methods because the costly pattern searching

is not required; (iii) the CBRW-based feature selection method can be used to signifi-

cantly improve two different types of outlier detectors; (iv) the time complexity of CBRW

is linear w.r.t. data size and nearly linear w.r.t. data dimensionality.

The rest of this chapter is organized as follows. The CUOT framework is detailed

in Section 4.2. CBRW is introduced in Section 4.3. A theoretical analysis of CBRW is

presented in Section 4.4. Section 4.5 gives the evaluation results. This chapter is then

summarized in Section 4.6.

4.2 The Proposed CUOT Framework

The CUOT framework is shown in Figure 4.2. CUOT first defines intra- and inter-feature

value coupling functions, δ and η, to capture the intrinsic data data characteristics w.r.t.

the outlierness of values. δ is an outlier factor that computes the initial outlierness of

each value based on the value couplings within individual features {F1,F2, · · · ,FD}. η

considers the outlierness influence between values in a finite set of pairwise value couplings

in feature subsets {S1,S2, · · · ,SD×D}, resulting a value coupling matrix Mη. CUOT then

maps these two components to a value-value graph G and further defines a graph-based

scoring function φ to learn the final value outlierness.

CUOT detects outliers in a way fundamentally different from existing frameworks in

terms of three major aspects. (i) CUOT learns value outlierness by modeling complex value

interactions, whereas the existing frameworks rely on pattern outlierness and focus on the

efficacy of searching for normal/outlying patterns. (ii) CUOT leverages intrinsic value

couplings to capture the intra- and inter-feature outlierness, and further models the joint

effects of the two different component. CUOT therefore obtains a more reliable outlierness

estimation in real-world data with coupled behaviors, while the existing frameworks are

mainly based on the inter-feature outlierness and treat the outlierness of different patterns
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Figure 4.2: The Proposed CUOT Framework. Fi denotes an individual feature. Sj is a feature
subset that contains a pair of features. V denotes the entire value set. δ computes an initial outlier-
ness of feature values. η considers the inter-feature value couplings that highlight the homophily
relations between outlying values. Mη is a |V| × |V| matrix whose entries are determined by η .
G denotes the value-value graph, ω is an edge weighting function based on δ and η, and φ is the
value outlierness learning function on the value graph.

in an independent way. (iii) CUOT produces value outlierness that can determine feature

selection for subsequent outlier detection or directly identify outliers, whereas the existing

frameworks are only aimed for direct outlier detection.

4.2.1 Value Outlierness Initialization

Specifically, the initial value outlierness examines the behavior of a value by considering

the exceptional interactions of this value with other values from the same feature. Each

feature can be treated as a random variable drawn from either a Bernoulli distribution for

features with only two values or a categorical distribution for features with more than two

values. Accordingly, the semantic of the frequency of values in different features differs

significantly; this is even more the case for data with very imbalanced frequency distribu-

tions across features. We aim to obtain an initial value outlierness that is comparable in

different features.

Let each feature F ∈ F has a domain dom(F) = {v1, v2, · · · }, which consists of a finite

set of possible feature values. Note that the semantic of the domain in different features is

different from each other, since each feature has a different context. We therefore assume

that the domains between features are distinct, i.e., dom(Fi) ∩ dom(Fj) = ∅,∀i 6= j. The

entire set of feature values V is the union of all the feature domains: V = ∪F∈Fdom(F).

S ⊂ F is a feature subspace that is denoted by a Cartesian product set of kn features

with 1 ≤ kn ≤ D − 1, i.e., S = dom(Fk1)× dom(Fk2)× · · · × dom(Fkn). Then, the initial

outlierness based on intra-feature value couplings can then be defined as follows.

Definition 4.1 (Initial Outlierness). The initial outlierness w.r.t. a value v ∈ dom(F) is

defined as the outlierness aspect w.r.t. a reference value u from the same feature domain,

denoted as δ(v|u).
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4.2.2 Outlierness Influence Between Values

The outlierness influence vector evaluates the behavior of a feature value by considering

inter-feature value couplings, i.e., exceptional interactions of this value with values from

other features. Here we focus on the homophily couplings between outlying values. Such

homophily couplings indicate that the outlierness of a value is dependent on not only its

own characteristics but also the outlierness of its correlated values. For example, a value

has large outlierness if it has strong linkage to many outlying values. This is analogous

to the homophily effects in social networks, where people with similar characteristics

tend to connect with each other and have mutual influence [31, 42]. The pairwise value

outlierness influence is defined below to facilitate the modeling of the homophily couplings

in subsequent learning stages.

Definition 4.2 (Outlierness Influence Vector). The outlierness influence vector w.r.t.

a value v ∈ dom(F) is defined as a coupling vector q, where each entry captures the

interaction of the value v w.r.t. a specific value u in V.

qv = [η(v, u1), η(v, u2), · · · , η(v, u|V|)]
ᵀ, (4.1)

where η(v, ui) computes the outlierness of the value v w.r.t. the value ui.

η only focuses on the inter-feature value couplings. If u and v are values of the same

feature, we set η(u, v) = 0 as intra-feature value couplings are modeled by the δ function.

For all the values in V, we accordingly obtain a |V| × |V| outlierness influence matrix:

Mη = [q1,q2, · · · ,q|V|]ᵀ. (4.2)

4.2.3 Value Graph Construction

The value-value graph is then defined below to synthesis δ and M. The value graph serves

two purposes. (i) Learning from graph representations is a straightforward and effective

way to capture homophily couplings, and many off-the-shelf graph mining techniques and

theories can then be used to support such learning. (ii) A variety of graph representations,

such as directed/undirected graphs and attributed/plain graphs, provides a multitude of

options for fusing a collection of outlier factors.

Definition 4.3 (Value-value Graph). The value-value graph G is described by a three-

dimensional tuple G =< V, E , ωδ,η >, where

• V represents the node set and each node v ∈ V represents a feature value.

• E denotes a set of edges connecting the nodes, i.e., E ⊆ V × V.

• ω : V × V 7→ R is an edge weighting function based on δ and η.

Since the graph is a value-value graph, the terms ‘value’ and ‘node’ are used inter-

changeably hereafter.
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4.2.4 Value Outlierness Estimation

The value outlierness estimation is then performed on the value graph G to learn a final

outlierness for each value, such that feature values that are positively related to outlier de-

tection have larger outlier scores than the other values. The value graph-based outlierness

estimation models the interactions between δ and η carried by each node of the graph.

Specifically, the outlierness of a node influences the outlierness of its neighboring nodes,

and the outlierness of the neighboring nodes further influences that of its own neighboring

nodes, and so on and forth, forming a cascade influence of outlierness estimation.

Definition 4.4 (Value Outlierness Estimation). The outlier score of a feature value v ∈ V
is learned by a function φ : V 7→ R given the value-value graph G.

There have broad applications of value outlierness, since the value is at the very low-

level for evaluating data objects. For example, the value outlierness can characterize the

importance of features for subsequent outlier detection. It can also measure the outlierness

of data objects and facilitate direct outlier detection.

There are different ways to form the specifications. δ(v|u) may be specified based on

the frequency difference or similarity between the values v and u. η(v, u) may be instanti-

ated based on the frequencies of co-occurring patterns between v and u, their conditional

probabilities, pointwise mutual information, or other value dependency measures. ω may

be specified to project the value-level outlier factors into a directed/undirected and at-

tributed/plain graph. Lastly, φ may be specified to model the process of different types

of random walks, subgraph discovery, or other graph mining techniques.

4.3 A CUOT Instance: CBRW

This section introduces an instantiation of CUOT, called Coupled Biased Random Walks

(CBRW for short). CBRW works as follows. It computes an initial outlierness based

on the deviation of the value’s frequency from the mode’s frequency, and then defines a

conditional probability-based outlierness influence vector. CBRW further integrates the

two components in a seamless manner via a directed and attributed value graph. It finally

estimates the value outlierness according to the stationary probabilities of biased random

walks [48] over the value graph. CBRW addresses the cascade homophily couplings of the

outlier factors via the biased random walks on the value graph.

4.3.1 Mode-based Initial Outlierness

Per the definition of outliers, the outlierness of a feature value is dependent on its rarity.

CBRW employs the frequency of the mode of a feature as a rarity comparison benchmark

and examines the deviation of the value frequency to evaluate the intra-feature outlierness

of a value.

Let supp(v) = |{xi ∈ X|xij = v}| , v ∈ dom(Fj), be the support of the value v. Each

feature F is associated with either a categorical distribution or a generalized Bernoulli

distribution, where F takes on one of the possible values v ∈ dom(F) with a frequency
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freq(v) = supp(v)
N . The intra-feature outlierness serves as an inital value outlierness and is

specified as follows.

Definition 4.5 (Mode). A mode of a categorical distribution of a feature F ∈ F , denoted

as m, is defined as a value vi ∈ dom(F) such that freq(vi) = max(freq(v1), · · · , freq(vO)),

where O is the number of possible values in F.

Definition 4.6 (Mode-based Initial Outlierness). The mode-based intra-feature outlier-

ness of a feature value v ∈ dom(F) is defined by the frequency of the mode and the extent

that the value’s frequency deviates from the mode’s frequency

δ(v) = [
1

2
(base(m) + dev(v))]1, (4.3)

where base(m) = 1− freq(m) denotes the outlierness of the feature mode m and dev(v) =
freq(m)−freq(v)

freq(m) denotes the outlierness of value v compared to the mode.

As the location parameter (or the center) of a categorical distribution, the mode has

the same semantic for different features. As shown in the following two key properties of

function δ(·), this specification not only guarantees the efficiency but also helps normalize

the initial outlierness.

i. ∀v ∈ V, δ(v) ∈ (0, 1)2.

ii. δ(·) makes the intra-feature outlierness of values from features with different cate-

gorical distributions semantically comparable.

Since base(m) ∈ (0, 1) and dev(v) ∈ [0, 1), we have δ(v) ∈ (0, 1). For the second prop-

erty, when two distributions are different in terms of their location parameters, the values

drawn from these two distributions are not comparable without proper normalization. In

δ(·), the outlierness of the mode serves as a base, and the more the frequency of a feature

value deviates from the mode frequency, the more outlying that value is. This results in

a mode-based normalization, making the value outlierness comparable across features.

4.3.2 Conditional Probability-based Outlierness Influence

There is one critical condition for specifying function η in the outlierness influence vector to

capture the homophily outlying couplings: η should be capable of contrasting the strong

couplings between outlying values from the couplings between other values. Below, we

show how the conditional probability-based η satisfies this condition.

Definition 4.7 (Conditional Probability-based Outlierness Influence Vector). The out-

lierness influence vector of a value v due to the other values is defined as

qv = [η(u1, v), η(u2, v), · · · , η(u|V|, v)]ᵀ = [
freq(u1, v)

freq(v)
,

freq(u2, v)

freq(v)
, · · · ,

freq(u|V|, v)

freq(v)
]ᵀ,

(4.4)

1Since we only consider the coupling with the mode, δ(v,m) is hereafter simplified to δ(v) for brevity.
2We have ignored features with freq(m) = 1, as those features contain no useful information relevant

to outlier detection.
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where freq(ul, v) = supp(ul ,v)
N with supp(ul, v) = |{xi ∈ X|xij = ul & xik = v}|, ul ∈ dom(Fj)

and v ∈ dom(Fk).

CBRW considers the interactions of the value v with all the values. Recall that

η(u, v) = 0 if u and v are from the same features, so the vector q captures the outlier-

ness influence based on inter-feature value couplings. Its entry, η(u, v), is essentially the

conditional probability of u given v, and it has three key properties.

i. η(u, v) ∈ [0, 1].

ii. η(u, v) 6= η(v, u) if freq(u) 6= freq(v).

iii. η(u, v) > 0 if η(v, u) > 0; and η(u, v) = 0 if η(v, u) = 0.

Since 0 ≤ freq(u, v) ≤ freq(v) < 1, we have η(u, v) ∈ [0, 1]. The second and third

properties follow directly from the property statements.

We now analyze how Equation 4.4 captures the required value interactions that con-

trast the couplings between outlying values from that between other values. (i) A large

η is expected when the inputs u and v are both outlying values (i.e., infrequent values

contained by outliers). This is because outlying values have low frequency and they are

presumed to be concurrent due to the homophily coupling assumption, resulting in larger

conditional probabilities. (ii) A small η is expected when both of the inputs are normal

values (i.e., frequent values contained by normal objects). Although normal values may

have high co-occurrence frequency, its individual frequency is much higher, resulting in

small η. (iii) A small η is expected when the two inputs are randomly distributed noisy

values (i.e., infrequent values contained by normal objects). Such noisy values also have

low individual frequencies, but they rarely co-occur together if they are randomly dis-

tributed. As a result, they have smaller η than outlying values. (iv) A small η is expected

when one input value is an outlying value and the other input is a normal/noisy value.

Normal or noisy values may also co-occur with outlying values. However, since normal

or noisy values are mainly contained by normal objects while outlying values are mainly

contained by outliers, the conditional probability of outlying values given normal or noisy

values is smaller than that between outlying values.

4.3.3 Directed and Attributed Value Graph

It is challenging to properly integrate δ and q since they are of different lengths, e.g., δ(v)

is a scalar while qv is a |V|-dimensional vector. CBRW tackles this challenge by mapping

these two components onto an attributed value-value graph as follows.

Definition 4.8 (Attributed Value-value Graph). The attributed value-value graph G is

described by G =< V, E , ωδ,η >, where

• V represents the node set and each node v ∈ V represents a feature value.

• E denotes a set of edges connecting the nodes, i.e., E ⊆ V × V.
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• δ(·) : V 7→ (0, 1) is a node property mapping function using the intra-feature outlier

factor in Equation (4.3).

• η(·, ·) : V × V 7→ [0, 1] is an edge weighting function using the outlierness influence

vector in Equation (4.4).

It is easy to see that the graph G is a directed and weighted graph without self loops

according to the properties of its edge weighting function η in Section 4.3.2. The edge

weighting function η is different from the conventional methods that are built on similar-

ities between the nodes. It is used because the conditional probabilities are simple and

they fully capture the desired homophily relationships between outlying behaviors.

Note that although we do not explicitly specify the edge weighting function ω, but we

show in Section 4.4.1 that ω is equivalent to a linear combination of the δ and η functions.

4.3.4 Biased Random Walks for Learning Value Outlierness

CBRW then builds biased random walks (BRWs) on the attributed value graph G to learn

the value outlierness. Let A be an adjacency matrix of G, where A(u, v) denotes the

outgoing edge weight from node u to node v. Then we have

A(u, v) = η(u, v). (4.5)

In building unbiased random walks (URWs), we can obtain a walking (or transition)

matrix W by

W = Adiag(A)−1, (4.6)

where diag(A) denotes the diagonal matrix of A with its u-th diagonal entry d(u) =∑
v∈V A(u, v). The entry W(u, v) = A(u,v)

d(u) represents the probability of the transition

from node u to node v, which satisfies
∑

v∈V W(u, v) = 1.

However, URWs omit the δ-based intra-feature outlierness and only consider the η-

based inter-feature outlierness influence only. Here, CBRW uses BRWs to introduce the

intra-feature outlierness as a bias into the random walk process. This helps capture the

intra-feature value couplings and the joint effects they may have with the inter-feature

value couplings on the subsequent outlierness estimation. The entry of the corresponding

transition matrix is defined as

Wb(u, v) =
δ(v)A(u, v)∑
v∈V δ(v)A(u, v)

. (4.7)

Wb(u, v) can be interpreted as that the transition from node u to node v has a prob-

ability proportional to δ(v)A(u, v). Therefore, every random move is jointly determined

by both the intra-feature outlierness and inter-feature outlierness influence.

CBRW essentially simulates an outlierness propagation process over the value graph

to model the homophily couplings between outlying values. The inter-feature influence

vector maintains the strength of homophily couplings between outlying values during the
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outlierness propagation process, while the intra-feature initial outlierness enables outlying

values to attract more outlierness. As a result, if u and v are strongly coupled and they

have large outlierness, the outlierness propagation from u to v would be large. v has large

outlierness if there are many nodes having a similar relationship as u to v. Similarly, u

has large outlierness if it is coupled with many outlying values. Such a cascade outlierness

of each node can be effectively captured by the probability of the random walker visiting

the node.

Let the vector πt ∈ R|V| denotes the probability distribution of the biased random walk

at time step t, i.e., the probability of a random walker visiting any given node at the t-th

step. Then we have

πt+1 = Wbπt. (4.8)

π will converge to a stationary probability distribution π∗ if the graph G is irreducible

and aperiodic, i.e., π∗ = Wbπ∗ (see Section 4.4 for more detail). This states that the

stationary probabilities of the nodes are independent of the initialization of π, and they

are positively correlated to the incoming weights of the nodes. Motivated by this, we

define the final value outlierness as follows.

Definition 4.9 (CBRW-based Value Outlierness). The outlierness of node v is defined by

its stationary probability

φ(v) = π∗(v), (4.9)

where π∗(v) is the entry w.r.t. the value v in the stationary probability vector, 0 < π∗(v) <

1 and
∑

v∈V π
∗(v) = 1.

The value v has large outlierness iff it demonstrates outlying behaviors within the fea-

ture and co-occurs with many other outlying values. This is because π∗(v) is proportional

to Wb(u, v), which is determined by δ(v) and η(u, v).

4.3.5 The Algorithm and Its Time Complexity

The steps in CBRW are outlined in Algorithm 4.1. Steps 1-8 obtain the intra- and inter-

feature value couplings. The matrix Wb is then generated based on Equations (4.3), (4.4),

and (4.7).

Following [89], Step 12 introduces the damping factor α into Equation (4.8) to guar-

antee the convergence of the random walks

πt+1 = (1− α)
1

|V|
1 + αWbπt. (4.10)

In our experiments, we set α = 0.95 directly rather than learning the parameter.

There are two main reasons to do this. (i) The parameter α has an explicit meaning, so

users can easily determine their own setting based on the application contexts. A detailed

discussion on this issue is presented in Section 4.4.3. (ii) Our empirical results show that

CBRW performs very stably with a wide range of values for α, i.e., α ∈ [0.85, 1). Therefore,
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Algorithm 4.1 Coupled Biased Random Walk

Input: X - data objects, α - damping factor
Output: π∗ - the stationary probability distribution

1: for i = 1 to D do
2: Compute freq(v) for each v ∈ dom(Fi)
3: Find the mode of Fi
4: Compute δ(v)
5: for j = i+ 1 to D do
6: Compute freq(u, v), ∀u ∈ dom(Fj)
7: end for
8: end for
9: Generate the matrix Wb

10: Initialize π∗ as a uniform distribution
11: repeat
12: π∗ ← (1− α) 1

|V|1 + αWbπ∗

13: until Convergence, i.e., |∆π∗| ≤ 0.001 or reach the maximum iteration Imax = 100
14: return π∗

employing advanced procedures to learn the parameter may not have an obvious benefit

in terms of detection performance.

CBRW requires O(ND2) to obtain the value couplings information in Steps 1-8. The

generation of Wb requires at most O(|E|) in Step 9. The random walks in Steps 11-13 is

linear to the maximum iteration step and the number of edges in the value graph, resulting

in O(|E|Imax). Therefore, the overall time complexity is O(ND2 + |E|Imax). N is often

far larger than |E| and Imax is a constant. The time complexity is thus determined by

O(ND2). Theoretically, CBRW is quadratic w.r.t. the data dimensionality, as two loops

are required in Steps 1-8 to obtain the value co-occurrence information. However, the

computation within the inner loop (i.e., Step 6) is a simple counting, which, in practice,

leads to a nearly linear time complexity w.r.t. the number of features.

4.3.6 Applications of CBRW

Feature Weighting and Selection Using CBRW

In outlier detection, relevant features are the features where the outliers demonstrate

outlying behaviors and are distinguishable from normal objects. Thus, the relevance or

importance of a feature can be measured by consolidating the outlierness of each value of

the feature as follows.

Definition 4.10 (Feature Relevance). The relevance of a feature F is defined as

rel(F) = 1−
∏

v∈dom(F)

[1− φ(v)]. (4.11)

Since φ(v) denotes the value outlierness, rel(F) in Equation (4.11) can be interpreted

as the outlying likelihood of the feature F. A large rel(·) indicates high relevance of the

feature to outlier detection. The top-ranked features are the most relevant features, while
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the bottom-ranked features are noisy or irrelevant. In addition to being used as a feature

filter, these relevance weights can also be embedded in the outlier scoring function of an

outlier detector as a feature weighting. One such example is shown in Equation (4.12).

As shown in Steps 1-3 in Algorithm 4.2, our CBRW-based feature selection method

(denoted as CBRWfs) computes the weight of each feature using Equation (4.11). The

top-ranked features for each data set are selected in Step 4. Outlier detectors can then

work on the newly obtained data sets with the selected features.

Algorithm 4.2 Feature Selection

Input: F - feature set, φ - value outlierness estimation function, θ - a decision threshold
(i.e., the number of features to be selected or a relevance threshold)

Output: SubsetF - a subset of features in F
1: for i = 1 to D do
2: rel(Fi)← 1−

∏
v∈dom(Fi)

[1− φ(v)]
3: end for
4: SubsetF ← filter(F): Select the features that meet the threshold θ
5: return SubsetF

Outlier Detection Using CBRW

As shown below, the value outlierness can also measure the outlierness of data objects by

consolidating the outlierness of values contained by the objects.

Definition 4.11 (Object Outlierness). The outlierness of an object xi ∈ X is defined as

score(xi) = 1−
D∏
j=1

[1− φ(xij)]
ω(Fj), (4.12)

where ω(Fj) =
rel(Fj)∑D
j=1 rel(Fj)

is a feature weighting component.

score(·) is used to evaluate the outlying likelihood of an object, with a relevance

weighting factor to highlight the importance of highly relevant features. As shown in Steps

1-3 of Algorithm 4.3, our CBRW-based outlier detection method (denoted as CBRWod)

employs Equation (4.12) to compute the outlying likelihood of each data object. Objects

are then sorted by their outlierness. Outliers are data objects having large outlier scores.

Algorithm 4.3 Outlier Detection

Input: X - data objects, φ - value outlierness estimation function, ω - feature weights
Output: r - an outlier ranking of objects in X

1: for i = 1 to N do
2: score(xi)← 1−

∏D
j=1[1− φ(xij)]

ω(Fj)

3: end for
4: r← Sort the objects in X in descending order
5: return r
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4.4 Theoretical Analysis

This section first presents the convergence analysis of CBRW, followed by a discussion on

the homophily coupling modeling and how to tune the parameter α.

4.4.1 Convergence Analysis

Unbiased random walks (URWs) are easier to be analyzed than biased random walks

(BRWs). Therefore, the equivalent URWs forms for CBRW are provided first to ease

understanding.

Lemma 4.0.1 (Equivalence between BRWs and URWs). BRWs based on the adjacency

matrix A and the bias δ is equivalent to URWs on a graph Gb with an adjacency matrix

B, in which

B(u, v) = δ(u)A(u, v)δ(v), ∀u, v ∈ V. (4.13)

Proof. This lemma holds iff the transition matrix T of Gb satisfies: T ≡ Wb. Since

B(u, v) = δ(u)A(u, v)δ(v), we have

T(u, v) =
B(u, v)∑
v∈V B(u, v)

=
δ(u)A(u, v)δ(v)∑
v∈V δ(u)A(u, v)δ(v)

=
A(u, v)δ(v)∑
v∈V A(u, v)δ(v)

= Wb(u, v).

In addition to the stated equivalence, Lemma 4.0.1 also shows that CBRW implicitly

defines the edge weighting function ω as ω(u, v) = δ(u)η(u, v)δ(v).

Irreducibility and aperiodicity, as defined below, are the two necessities for the con-

vergence of random walks.

Definition 4.12 (Irreducibility). The graph G is irreducible if ∀u, v, ∃t s.t. π0→t
u→v > 0,

where π0→t
u→v > 0 is the probability of visiting v in t steps from the initial state at u.

Definition 4.13 (Aperiodicity). The graph G is aperiodic if ∀u, v, gcd{t : π0→t
u→v > 0} = 1,

where gcd denotes the greatest common divider.

Theorem 4.1 (Convergence of CBRW). If G is irreducible and aperiodic, CBRW will

converge, i.e., π converges to a unique stationary probability vector π∗ such that π∗ =

Wbπ∗.

Proof. If the graph G is irreducible and aperiodic, then based on the Perron–Frobenius

Theorem [84], the URWs on G based on the adjacency matrix A will converge to a unique

probability vector.

Since δ is always positive, the inclusion of δ into A does not change the graph’s

irreducibility and aperiodicity. In other words, B and A have the same irreducibility and

aperiodicity. Therefore, if G is irreducible and aperiodic, so is Gb. We therefore have

π∗ = Wbπ∗.
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However, different data sets may contain very different value couplings; therefore, the

assumption that the graph G is irreducible and aperiodic may not always hold in practice.

A common method to remedy this problem is to introduce a damping factor to transform

the natural random walks into teleporting random walks [89].

Corollary 4.1.1 (Teleporting Random Walks Guaranteeing Convergence). By setting

Wb = (1 − α) 1
|V|1 + αWb, where α ∈ [0, 1), Wbπ will always converge to a unique

probability vector π∗, i.e., π∗ = Wbπ∗.

Proof. It is obvious that Wb becomes a real positive square matrix by the addition of

(1 − α) 1
|V|1. This guarantees that Wb is irreducible and aperiodic. We therefore will

always have π∗ = Wbπ∗.

4.4.2 Modeling Homophily Outlying Behaviors

Random walks are one of the most popular and efficient methods for modeling homophily

couplings [69]. Basically, as SDRW conducts random walks on the value graph, in which

large edge weights indicate large outlierness of the corresponding nodes of the edge, the

final outlierness of a node is determined by the outlierness associated with its direct

neighbor nodes, and the outlierness of these neighbor nodes is governed by the neighbors of

these nodes, and so on. This process models an iterative effect of outlierness propagation.

Definition 4.14 (Direct Neighbor). The direct neighbors of a node u is defined as

N (u) = {v|dist(v, u) = 1, ∀v ∈ G}, (4.14)

where dist(v, u) returns the shortest path from node v to node u.

Proposition 4.1 (Homophily Coupling Modeling). Let N (v) be the direct neighbors of a

node v ∈ V. Then the outlierness of value v is linearly proportional to the outlierness of

its direct neighbors and its coupling strength with these neighbors, i.e., in CBRW, we have

φ(v) ∝
∑

u∈N (v)

φ(u)δ(u)η(u, v)δ(v). (4.15)

Proof. According to Lemma 4.0.1, the biased random walks in CBRW can be represented

by πt+1(v) =
∑

u∈N (v) π
t(u) δ(u)A(u,v)δ(v)∑

v∈V δ(u)A(u,v)δ(v) . Since the denominator is a constant for

all the neighbors of node u under the same context, we can omit it and obtain π(v) ∝∑
u∈N (v) π(u)δ(u)η(u, v)δ(v). Since φ(v) = π(v), we achieve Equation (4.15).

Proposition 4.1 states that the outlierness of a value is mainly determined by its

coupling strength and the outlierness of its direct neighbors, in addition to its intra-feature

outlierness. That is, a value has large outlierness if it is centered around outlying values.

This captures exactly the homophily phenomenon of outlying behaviors - the tendency

of a set of outlying behaviors to join together. Compared to IID methods that treat the

outlierness scoring of outlying behaviors independently, i.e., φ(v) is independent of φ(u),

our models can achieve a more effective outlierness estimation on data with homophily

outlying behaviors.
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4.4.3 Stability w.r.t. Parameter α

It is obvious from Equation (4.10) that the closer the α is to one, the more we respect the

underlying structure of the value graph. On the other hand, if α is close to zero, changes

in α will have a limited effect on the stationary probabilities. This idea is discussed in

detail through the following theorem:

Theorem 4.2 (Effect of α [72]). Let π∗,α be the stationary probability vector obtained

using damping factor α ∈ [0, 1). Then∣∣∣∣dπ∗,α(u)

dα

∣∣∣∣ ≤ 1

1− α
, ∀u ∈ V, (4.16)

and ∣∣∣∣dπ∗,αdα

∣∣∣∣ ≤ 2

1− α
. (4.17)

Theorem 4.2 states that the gaps in the entries in the stationary probability vector

(i.e., the value outlierness) are determined by 1
1−α . Using large α indicates a preference for

a large difference in the outlierness of values, particularly the difference between the top-

ranked values and and the bottom-ranked values. This helps CBRW to well distinguish

outlying values from normal values.

Another interpretation is that a large α results in a large upper bound w.r.t. π∗,

which may lead to performance instability. However, this is based on the underlying

assumption that the random walks are conducted on very sparse dynamic graphs, e.g., a

web graph. Moreover, random walks are often proposed for applications that emphasize

the performance on learning regularities. CBRW is different from these scenarios in the

sense that: (i) we carefully set the edge weights to highlight the irregularities (i.e., the

irregular behaviors of outlying values), and (ii) the graph structure is critical in capturing

the outlying behavior of values. Hence, a large α is more appropriate in our design. Note

that larger α may lead to slower convergence [72]. Therefore, we suggest using α = 0.95

for CBRW to achieve a trade-off between effectiveness and efficiency.

4.5 Experiments and Evaluation

This section first gives the parameter settings of CBRW and its contenders, followed by

the description of data sets, and then presents the performance of outlier detection and

feature selection.

4.5.1 Outlier Detectors and Their Parameter Settings

The proposed method CBRWod with the default setting α = 0.95 is evaluated against

representative categorical data-oriented outlier detectors: FPOF [57], CompreX [7], MarP

[34], and one numerical data-oriented method iForest [77]. They are used as our contenders

because they have shown better or very comparable performance compared to other well-

known methods and thus stand for state-of-the-art methods.
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We also derive two variants of CBRW, named CBRWia and CBRWie, to have a

comprehensive understanding of the performance of CBRW. The variants of CBRW can

be easily obtained by weakening/neglecting either inter-feature value couplings or intra-

feature value couplings, respectively. Specifically, CBRWia is obtained by using the CBRW

with A(u, v) = 1 iff A(u, v) > 0, ∀u, v ∈ V in Equation (4.7), while CBRWie is obtained

by the CBRW with δ(v) = 1 iff δ(v) > 0, ∀v ∈ V.

CBRW and its two variants, FPOF, MarP, MarP+ and iForest are implemented in

JAVA in WEKA [52]. CompreX is obtained from the authors of [7] in MATLAB. All the

experiments are performed at a node in a 3.4GHz Phoenix Cluster with 32GB memory.

4.5.2 Data Sets

We use the following two principles to filter out high-quality data sets: (i) the number of

objects must be at least 1,000 to avoid potential bias caused by small data sets, and (ii) the

data sets contain semantically meaningful outliers or have an extremely imbalanced class

distribution to facilitate direct conversion from classification data into outlier detection

data. Fifteen publicly available real-world data sets are finally adopted, which cover

diverse domains, e.g., intrusion detection, text mining, image recognition, cheminfomatics

and ecology, as shown in Table 4.1. Probe and U2R are derived from KDDCUP99 data

sets using probe and user-to-root attacks as outliers against the normal class, respectively.

Other data sets are transformed from extremely class imbalanced data using the rare class

conversion method presented in Section 2.3.3.

The quantization results of the four data indicators, κvcc , κhet , κins and κfnl (see

Section 2.3.3 for detail.), on 15 the data sets are reported in Table 4.1. We report the value

of each data indicator per data set. Since the semantics of indicators differ significantly

from each other, we rank the data sets and compute an average rank for the data to obtain

an overall complexity quantization. The top-ranked data indicates high data complexity.

Here we compute the unweighted average rank. If the importance of each indicator is

known, a weighted average rank would be more preferable.

The top-10 ranked data sets are BM, Census, AID362, w7a, CMC, APAS, CelebA,

Chess , ADand SF. They are often the top-ranked data sets in terms of individual

indicator-based rankings. The complexity of these data sets are, to some extent, veri-

fied by the AUC results in Table 4.2, where all outlier detectors obtain substantially lower

AUC results on these 10 data sets than on the bottom-ranked five data sets.

4.5.3 Outlier Detection Performance

We first present a summary of outlier detection performance on all data sets, and then

analyze the detection performance on complex and simple data sets separately in the next

two sections.
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Table 4.1: A Summary of 15 Data Sets and Their Complexity Evaluation Results. The
following acronyms are used for brevity: Bank Marketing = BM, aPascal = APAS, Internet
Advertisements = AD, Contraceptive Method Choice = CMC, Solar Flare = SF, Reuters10
= R10, CoverType = CT, and Linkage = LINK. The data sets are ordered by the average
rank in the last column.

κvcc κhet κins κfnl

Data N Outliers Value Rank Value Rank Value Rank Value Rank Avg. Rank

BM 41,188 yes 21.0% 6 2.028 2 0.373 3 90.0% 1 3.0
Census 299,285 50K+ 41.9% 2 1.648 3 0.238 7 57.6% 4 4.0
AID362 4,279 active 32.4% 5 1.140 11 0.396 2 86.0% 2 5.0
w7a 49,749 yes 37.2% 3 1.059 12 0.407 1 48.0% 6 5.5
CMC 1,473 #child>10 3.8% 10 1.579 4 0.344 4 37.5% 7 6.3
APAS 12,695 train 33.0% 4 1.192 10 0.128 11 81.3% 3 7.0
CelebA 202,599 bald 12.1% 8 1.265 9 0.204 8 48.7% 5 7.5
Chess 28,056 zero 0.0% 14 2.242 1 0.264 6 33.3% 9 7.5
AD 3,279 ad. 46.4% 1 1.011 14 0.302 5 4.5% 12 8.0
SF 1,066 F 12.4% 7 1.564 5 0.178 9 9.1% 11 8.0

Probe 64,759 attack 1.3% 12 1.324 7 0.057 12 0.0% 13 11.0
U2R 60,821 attack 1.5% 11 1.285 8 0.015 15 16.7% 10 11.0
LINK 5,749,132 match 0.6% 13 1.392 6 0.021 14 0.0% 13 11.5
R10 12,897 corn 6.1% 9 1.010 15 0.132 10 0.0% 13 11.8
CT 581,012 cottonwood 0.0% 14 1.102 13 0.029 13 34.1% 8 12.0

Overall Performance

The AUC results of CBRWod, CBRWieod, CBRWiaod, MarP+, MarP, FPOF, CompreX

and iForest on the 15 data sets are presented in Table 4.2. The p-value results at the

bottom are based on paired two-tailed t-test using the null hypothesis that the AUC

results of our method and another detector come from distributions with equal means.

CBRWod achieves the best detection performance on four data sets, with six close to

the best (having the difference in AUC no more than 0.03). The significance test results

show that CBRWod significantly outperforms its two contenders FPOF and CompreX at

the 95% confidence level and the other three contenders MarP+, MarP and iForest at the

99% confidence level.

CBRWieod obtains the best AUC results on five data sets, with eight close to the best,

and performs significantly better than iForest, while CBRWiaod obtains the best AUC

result on three data sets, with five close to the best.

It is clear that there exists a large gap of the AUC results between the top 10 data sets

and the last five data sets. It is difficult for detectors to obtain a very good performance

on the top 10 data sets, contrasting to the results on the last five data sets. We therefore

break these data sets into two categories - complex and simple data, and discuss them in

details in the next two subsections.

Handling Complex Data

We break down the analysis into four parts w.r.t. the four indicators in Table 4.1.

Results on Data Sets with Highly Complex Value Couplings. The top-10 data sets with

the largest proportions of negative value couplings are AD, Census, w7a, APAS, AID362,

BM, SF, CelebA, R10 and CMC according to κvcc in Table 4.1. All these data sets fall in

the category of complex data except R10. Although R10 has over 6.1% negative couplings
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Table 4.2: AUC Performance of CBRWod, its Two Variants and Five Contenders on the 15 Data
Sets. ‘◦’ indicates out-of-memory exceptions, while ‘•’ indicates that we cannot obtain the results
within two months. The middle horizontal line roughly separates complex data from simple data
based on average rank in Table 4.1. The best performance for each data set is boldfaced. The
p-value of the null hypothesis rejected at the 1% or 5% confidence level is underlined.

Data CBRWod CBRWieod CBRWiaod MarP+ MarP FPOF CompreX iForest

BM 0.6287 0.6566 0.5999 0.5778 0.5584 0.5466 0.6267 0.5762
Census 0.6678 0.6579 0.6832 0.6033 0.5899 0.6148 0.6352 0.5378
AID362 0.6640 0.6324 0.6034 0.6152 0.6270 ◦ 0.6480 0.6485
w7a 0.6484 0.7338 0.4453 0.4565 0.4723 ◦ 0.5683 0.4053
CMC 0.6339 0.6323 0.6179 0.5623 0.5417 0.5614 0.5669 0.5746
APAS 0.8190 0.8624 0.8739 0.6208 0.6193 ◦ 0.6554 0.4792
CelebA 0.8462 0.9108 0.7135 0.7352 0.7358 0.7380 0.7572 0.6797
Chess 0.7897 0.4058 0.7766 0.6854 0.6447 0.6160 0.6387 0.6124
AD 0.7348 0.8270 0.7250 0.7033 0.7033 ◦ • 0.7084
SF 0.8812 0.8833 0.8867 0.8469 0.8446 0.8556 0.8526 0.7865

Probe 0.9906 0.9907 0.9434 0.9795 0.9800 0.9867 0.9790 0.9762
U2R 0.9651 0.9640 0.8817 0.8848 0.8848 0.9156 0.9893 0.9781
LINK 0.9976 0.9976 0.9976 0.9977 0.9977 0.9978 0.9973 0.9917
R10 0.9905 0.9903 0.9823 0.9866 0.9866 ◦ 0.9866 0.9796
CT 0.9703 0.9703 0.9388 0.9770 0.9773 0.9772 0.9772 0.9364

Avg.(Top-10) 0.7314 0.7202 0.6925 0.6407 0.6337 0.6554 0.6610 0.6009
Avg.(All) 0.8152 0.8077 0.7779 0.7488 0.7442 0.7810 0.7770 0.7247

p-value
CBRWod vs. 0.7959 0.0392 0.0012 0.0008 0.0115 0.0147 0.0040

CBRWieod vs. 0.4225 0.0969 0.0592 0.4316 0.3167 0.0446
CBRWiaod vs. 0.1460 0.1223 0.2886 0.8490 0.0979

and high dimensionality, it has very simple data distributions, good outlier separability

and contains no noisy features, and as a result, even simple outlier detectors like MarP

can achieve very good performance.

CBRWod achieves an average AUC improvement over MarP+ (12%), MarP (12%),

FPOF (13%), CompreX (7%) and iForest (17%) on these 10 data sets, and CBRWieod

achieves more than 16%, 16%, 17%, 11% and 22% improvements, while CBRWiaod achieves

about 6%, 7%, 8%, 2% and 12% improvements.

Most of these data sets contains over 10% negative value couplings. This can result

in many misleading patterns and consequently substantially degrade the performance of

traditional outlier detection methods (i.e., MarP+, MarP, FPOF, CompreX and iForest).

One key difference between positive value couplings and negative value couplings is that

positive value couplings generally are much more stronger than the negative ones due

to the rarity and homophily phenomenon of the positive value couplings. CBRWod and

CBRWieod utilize the cascading outlierness propagation between feature values (i.e., the

inter-feature outlier factor) to capture these properties, resulting in good robustness to

those negative couplings. Although CBRWiaod focuses on the intra-feature outlier factor

by weakening the effects of inter-feature outlier factors through setting η(u, v) = 1, ∀u, v ∈
V, CBRWiaod can often perform well when positive value couplings dominate over negative

value couplings.

Note that κvcc may underestimate the percentage of positive/negative value couplings,

as it does not consider the length of the value couplings. We conjecture that the number of

possible negative value couplings may outnumber that of positive couplings in some data

sets like w7a, and as a result, CBRWiaod performs substantially worse than CBRWod and
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CBRWieod on those data.

Results on Data Sets with Strong Heterogeneity. The top-10 data sets with the

strongest heterogeneity includes Chess, BM, Census, CMC, SF, LINK, Probe, U2R, CelebA

and APAS according to κhet in Table 4.1. Seven out of ten data sets are categorized into

complex data. LINK, Probe and U2R are actually simple data as they have high outlier

separability and simple value couplings.

Compared to MarP+, MarP, FPOF, CompreX and iForest on these 10 data sets, on

average, CBRWod obtains over 9%, 11%, 8%, 6% and 14% improvements, and CBRWieod

achieves more than 6%, 7%, 4%, 3% and 10% improvements, while CBRWiaod achieves

about 6%, 7%, 5%, 3% and 10% improvements, respectively.

Data sets with large κhet indicate diversified frequency distributions taken across their

features, resulting in different semantics of the same frequencies in the features. However,

all competitors of CBRWod ignore this characteristic and treat the same frequencies of

values/patterns from different features/subspaces equally, leading to inaccurate outlier

scoring of objects.

CBRWod and CBRWiaod address this issue by modeling the intra-feature outlier factor

and thus performs substantially better than their competitors. Although CBRWieod also

neglects the heterogeneity, its advantage in handling complex value couplings complement

its overall performance. Nevertheless, CBRWieod may perform poorly in data sets with

very strong heterogeneity, such as Chess, BM and CMC.

Results on Data Sets with Low Outlier Separability. According to κins in Table 4.1,

the top-10 data sets with the lowest outlier separability are w7a, AID362, BM, CMC, AD,

Chess, Census, CelebA, SF and R10. All these data sets are complex data except R10.

On average, CBRWod obtains an improvement over MarP+ (10%), MarP (11%), FPOF

(14%), CompreX (7%) and iForest (14%). CBRWieod achieves more than 8%, 9%, 11%,

5% and 12% improvements, while CBRWiaod achieves about 4%, 5%, 7%, 1% and 1%

improvements.

It is interesting to note that the top-ranked data sets in terms of κins are also top-

ranked in terms of either κvcc or κhet . In other words, the low outlier separability in

those data sets are in part due to their underlying non-IID characteristics. CBRWod and

its two variants model the intra- and/or inter-feature outlier factors to address the non-

IID issue, and thus they perform better than their contenders. CBRWod addresses both

heterogeneity and coupling issues while CBRWiaod and CBRWieod handle one of these

two issues only, so CBRWod obtains averagely better performance than its variants.

Results on Data Sets with High Feature Noise Level. The top-10 data sets with the

highest level of feature noise are BM, AID362, APAS, Census, CelebA, w7a, CMC, CT,

Chess and U2R. All of them are complex data except U2R, which is a 6-dimensional data

with very high outlier separability and simple value couplings.

On average, CBRWod obtains an improvement over MarP+ (13%), MarP (14%), FPOF

(7%), CompreX (8%) and iForest (18%). CBRWieod obtains more than 10%, 11%, 4%, 5%

and 15% improvements. CBRWiaod performs comparably well to FPOF and CompreX,
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and obtains over 6%, 7% and 10% than MarP+, MarP and iForest.

CBRWod and its two variants employ the value outlierness propagation mechanism

to distinguish outlying values from noisy values, so they often perform better than their

competitors, which are misled by noisy features in pattern searching and have a high false

positive error. CBRWieod performs substantially better than CBRWod and CBRWiaod

on CelebA. This may be because some noisy values in CelebA are more infrequent than

outlying values, and as a result, the noisy values have higher intra-feature outlier scores

than the outlying values. Consequently, CBRWod and CBRWiaod fail to differentiate

between outlying and noisy values, while CBRWieod assigns all values with the same

intra-feature outlier and thus becomes insensitive to this problem.

Handling Simple Data

All seven detectors perform very well on the five simple data sets in Table 4.2. This is par-

ticularly true for the data sets R10, Probe and LINK, on which all the detectors, including

the most simple detector MarP, obtain the AUC of (or nearly) one. Although some of

these data sets (e.g., R10 ) are ranked slightly higher than some complex data sets w.r.t.

one or two individual data indicators, they rank at the bottom in most cases, resulting in

an overall low data complexity.

It is clear from the above results that CBRWod, as an integration of CBRWieod and

CBRWiaod, generally performs much better than both CBRWieod and CBRWiaod. This

verifies the need of integrating of both intra- and inter-feature value couplings to handle

complex data. We therefore focus on the analysis of CBRW hereafter.

4.5.4 Performance of Outlying Feature Selection

We evaluate the effectiveness of the feature selection method CBRWfs by examining

whether it can reduce the complexity of data and how it affects the detection performance

of subsequent outlier detection in next two subsections.

Similar to many existing feature selection methods, CBRWfs provides a feature rele-

vance ranking only. Users are required to determine a relevance threshold or the number

of selected features to filter out irrelevant features. Compared to methods that can au-

tomatically return a relevant feature subset, although users may be burdened with this

parameter setting, this type of methods provides more flexibility for users to determine

the final selected feature subset.

Our experiments show CBRWfs obtains stable performance on all 15 data sets in a

wide range of relevance threshold options. We present the results on all our data sets

using a consistent relevance threshold to demonstrate the general applicability of CBRWfs

in practice. We observe that an outlier often demonstrates outlying behaviors in a few

features only. Since the percentage of outliers is very small, it is reasonable to assume

that only a small proportion of features are relevant to outlier detection. We therefore

consider to use a small percentage as the relevance threshold. We found that different

outlier detectors obtain substantially better performance on some data sets with only 10%
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features (e.g., CelebA, CMC ), and on most data sets with 30% features, compared to

their performance on original data. They perform very stably and obtain much better

AUC performance on all 15 data sets using 50% features. So we use 50% as the relevance

threshold.

We compare CBRWfs with its closely related feature-weighting competitor (denoted

as ENFW) introduced in [121] and two baselines, including the performance on the full

feature set (denoted as FULL) and a random feature selector (denoted as RADM) that

randomly select 50% features.

Data Complexity Reduction

Table 4.3 shows the results of data complexity evaluation for each data indicator on data

sets with selected feature subsets as well as full feature sets.

CBRWfs considerably reduce the data complexity in most data indicators for all the

data sets, achieving averagely more than 25%, 8% and 9% simplification in the indicators

κvcc , κhet and κfnl . ENFW obtains markedly larger simplification than CBRWfs in κfnl

and κhet , while it substantially increases the outlier inseparability according to κins . This

is because ENFW evaluate the relevance of features without considering the interactions

between features, and thus noisy features and highly relevant features are filtered out to-

gether. In other words, ENFW reduces the κfnl -based data complexity at the expense of

increasing κins -based data complexity. Also, ENFW is an entropy-based feature weighting

method, which retains features with similar frequency distributions, and thus it obtains

much larger simplification than CBRWfs in κhet . However, since it builds upon the feature

independence assumption, it can remove features that are very relevant when combining

with other features. In contrast, CBRWfs considers the low-level intra- and inter-feature

value couplings, which is sensitive to negative value couplings, value frequency distribu-

tions and noisy features, resulting in an outlier separability secured reduction of data

complexity.

Performance of Different Subsequent Outlier Detectors

The effectiveness of the feature selection results determined by CBRWfs is further verified

by the detection performance of different subsequent outlier detectors. We use MarP and

iForest, two simple and very different outlier detectors, to examine the performance of

incorporating CBRWfs into existing outlier detectors.

The AUC performance of MarP and iForest working on the data ses with feature sub-

sets selected by CBRWfs is shown in Table 4.4. Both of the CBRW-empowered MarP and

iForest obtains substantial improvements (e.g., more than 12%, 17% and 7%) compared

to that of ENFW, RADM and FULL, regardless of the difference working mechanisms of

these two detectors. In particular, the CBRW-empowered MarP and iForest significantly

outperform their counterparts empowered by ENFW and RADM at the 99% confidence

level; and although they use 50% less features, they significantly outperforms MarP and

iForest working on data with full feature sets at the 95% confidence level. The superi-

ority of CBRWfs is understandable, since it considerably reduces the levels of negative
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Table 4.3: Data Complexity Evaluation Results of Data Sets with Feature Subsets Selected by
CBRWfs (denoted as CBRW) and ENFW, Using the Results on Original Data Sets as a Baseline.
The last row ‘Simp.’ indicates the average simplification percentage compared to the baseline on
the original data.

κvcc κhet κins κfnl

Data CBRW ENFW FULL CBRW ENFW FULL CBRW ENFW FULL CBRW ENFW FULL

BM 0.1930 0.5010 0.2098 1.6979 1.3030 2.0278 0.3731 0.5244 0.3731 0.8000 1.0000 0.9000
Census 0.4044 0.5738 0.4194 1.8281 1.1509 1.6477 0.2379 0.3359 0.2379 0.6471 0.7647 0.5758
AID362 0.2789 0.3440 0.3245 1.0362 1.0068 1.1400 0.3959 0.4793 0.3959 0.9298 0.9649 0.8596
w7a 0.2016 0.0983 0.3719 1.0124 1.0044 1.0594 0.4073 0.4422 0.4073 0.2267 0.0267 0.4800
CMC 0.0376 0.0000 0.0376 1.2963 1.2664 1.5794 0.3444 0.3653 0.3444 0.0000 0.5000 0.3750
APAS 0.2226 0.3301 0.3301 1.0593 1.0175 1.1922 0.1280 0.2805 0.1280 0.6562 0.8750 0.8125
CelebA 0.0810 0.1213 0.1213 1.1572 1.0544 1.2647 0.2039 0.3233 0.2039 0.2000 0.4000 0.4872
Chess 0.0000 0.0000 0.0000 1.2220 2.0532 2.2416 0.2642 0.2642 0.2642 0.6667 0.0000 0.3333
AD 0.2620 0.3740 0.4639 1.0037 1.0007 1.0083 0.3378 0.4730 0.3018 0.0077 0.0000 0.0450
SF 0.1465 0.1522 0.1242 1.7204 1.0804 1.5639 0.1779 0.3027 0.1779 0.0000 0.1667 0.0909
Probe 0.0108 0.0000 0.0134 1.3562 1.0361 1.3243 0.0573 0.0675 0.0573 0.0000 0.0000 0.0000
U2R 0.0124 0.0000 0.0152 1.3457 1.0032 1.2851 0.0154 0.1455 0.0154 0.3333 0.0000 0.1667
LINK 0.0000 0.0060 0.0060 1.1880 1.1831 1.3916 0.0209 0.0209 0.0209 0.0000 0.0000 0.0000
R10 0.0123 0.0028 0.0610 1.0022 1.0005 1.0099 0.1323 0.4414 0.1323 0.0000 0.0000 0.0000
CT 0.0000 0.0000 0.0000 1.1715 1.0033 1.1018 0.0291 0.3177 0.0291 0.4545 0.0000 0.3409

Avg. 0.1242 0.1669 0.1665 1.2731 1.1443 1.3892 0.2084 0.3189 0.2060 0.3281 0.3132 0.3645
Simp. (%) 25.42% -0.22% 8.35% 17.63% -1.16% -54.85% 9.97% 14.06%

value couplings, heterogeneity and feature noise while at the same time retains the outlier

separability (i.e., retain the most relevant features).

Table 4.4: AUC Performance of MarP and iForest Using Feature Selection
Methods CBRWfs, ENFW, RADM and Their Baseline FULL Using the Full
Feature Set.

MarP iForest

Data CBRW ENFW RADM FULL CBRW ENFW RADM FULL

BM 0.5926 0.4886 0.5181 0.5584 0.5836 0.5297 0.5544 0.5762
Census 0.6258 0.4525 0.5490 0.5899 0.6106 0.4403 0.5201 0.5378
AID362 0.6620 0.5909 0.6074 0.6270 0.6525 0.6155 0.6267 0.6485
w7a 0.7654 0.8633 0.4594 0.4748 0.7432 0.8251 0.3946 0.4053
CMC 0.6474 0.5082 0.5062 0.5417 0.6607 0.5288 0.5164 0.5746
APAS 0.8569 0.6346 0.5995 0.6193 0.8426 0.6372 0.5543 0.4792
CelebA 0.8597 0.7785 0.7102 0.7358 0.8438 0.7799 0.6764 0.6797
Chess 0.7574 0.6378 0.6076 0.6447 0.6138 0.6241 0.5829 0.6124
AD 0.7624 0.6603 0.6888 0.7033 0.7620 0.6592 0.6775 0.7084
SF 0.8157 0.6666 0.8181 0.8446 0.7667 0.6856 0.7660 0.7865
Probe 0.9805 0.9307 0.8951 0.9800 0.9751 0.8797 0.8990 0.9762
U2R 0.8846 0.8582 0.7911 0.8848 0.9776 0.7854 0.8168 0.9781
LINK 0.9985 0.9938 0.9723 0.9977 0.9984 0.9797 0.9636 0.9917
R10 0.9893 0.7648 0.9627 0.9866 0.9926 0.7566 0.9541 0.9796
CT 0.8570 0.8581 0.6154 0.9773 0.9072 0.8816 0.6374 0.9364

Avg. 0.8037 0.7125 0.6867 0.7444 0.7954 0.7072 0.6760 0.7247

Improvement (%) 12.80% 17.03% 7.97% 12.46% 17.66% 9.75%
p-value (CBRW vs.) 0.0012 0.0002 0.0435 0.0016 0.0008 0.0446

MarP and iForest using ENFW perform much worse than those working on the full

feature set in almost all the used data sets. This is because, as discussed above, ENFW

wrongly removes highly relevant features and degrades the outlier separability of the data

sets, aggravating the detection performance of subsequent outlier detectors. It is inter-

esting to note that MarP and iForest using ENFW perform much better than all their

counterparts on w7a. This improvement is mainly because that ENFW removes almost

95% noisy features (against 53% achieved by CBRWfs) while only loses little outlier sep-

arability on this data, as shown in Table 4.3. This indicates that although w7a contains
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many noisy features, these noisy features have less skewed frequency distributions than

outlying features. As a result, simply examining the frequency distributions of individual

features is probably the best way to clean up those noisy features.

4.5.5 Scalability Test

The scalability of CBRW w.r.t. data size is evaluated using five subsets of the largest

data set LINK. The smallest subset contains 16,000 objects, and subsequent subsets are

increased by a factor of four, until the largest subset which contains 4,096,000 objects.

The scaleup test results w.r.t. data size are presented in the left panel in Figure

4.3. As expected, all the five detectors have runtime linear to data size. The runtime of

CompreX increases by a factor of more than 3,000 when the data size increases by a factor

of 256; while that of CBRW increases by less than 60. Therefore, although CBRW and

CompreX were implemented in different programming languages, the difference in runtime

ratio3 indicates that CBRW runs much faster than CompreX by a factor of more than 50.

CBRW runs faster than iForest by a factor of more than 10, and is comparably fast to

FPOF and MarP.
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Figure 4.3: Scale-up Test Results of the Five Detectors w.r.t. Data Size and Dimensionality.
Logarithmic scale is used in the vertical axis. Note that FPOF runs out-of-memory when the
number of features reaches 80.

The scaleup test w.r.t. the number of features is conducted using seven synthetic data

sets. The data sets have the same number of objects, i.e., 10,000 objects. The data set

with the smallest number of features contains 10 features, and subsequent data sets are

increased by a factor of two, until the data set with the largest number of features contains

640 features.

The results reported in the right panel in Figure 4.3 show that, as expected, CBRW

has runtime nearly linear w.r.t. the number of features, which runs more than five orders

of magnitude faster than FPOF. As indicated by runtime ratio, CBRW runs much faster

than CompreX by a factor of more than 500. Since CBRW models much more complex

underling data characteristics compared to MarP and iForest, it runs slower than these

3Since CompreX was implemented in a different programming language to the other methods, the
runtime between CompreX and other methods is incomparable. Instead, we compare them in terms of
runtime ratio, i.e., the runtime on a larger/higher-dimensional data set divided by that on a smaller/lower-
dimensional data set, for a fairer comparison. Since the data size and the increasing factor of dimensionality
are fixed, the runtime ratio is comparable across the methods in different programming languages.
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two competitors by a factor of more than 30, but it significantly outperforms these two

detectors in the AUC performance shown in Table 4.2.

4.5.6 Sensitivity Test w.r.t. the Damping Factor α

CBRW only has one parameter, the damping factor α. The use of α is to avoid the random

walking getting stuck in isolated nodes by offering a small restart probability (1−α), which

guarantees the algorithmic convergence while does not affect the effectiveness. α = 1.0

is not recommended as this may break the convergence condition. Also, α should be

sufficiently large, e.g., α ≥ 0.85, and the underlying graph structure is ignored otherwise.

Below we examine the sensitivity of CBRW w.r.t. α in a wide range of values [0.85, 0.99]

by performing direct outlier detection. Figure 4.4 reports the AUC results w.r.t. α on all

15 data sets.
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Figure 4.4: Sensitivity Test Results w.r.t. the Parameter α.

The results show that CBRW performs very stably over a large range of tuning options

on most of the data sets, and a large α is more preferable than a small one. This is because

(i) α is introduced to guarantee the convergence of the CBRW algorithm and it is data-

insensitive in terms of effectiveness, which is different from some data-sensitive parameters

in other detectors, such as the minimum support in FPOF and the subsampling size in

iForest; and (ii) the graph structure and edges weights are carefully designed to highlight

the outlying values, and we need to make use of this graph nature by setting a large

α. A large α is needed to achieve the best performance on some data sets, e.g., U2R,

APAS, w7a and AD. These data sets may contain some highly noisy values. A large α

is required to increase the gap between the outlierness of outlying values and the highly

noisy values. On the other hand, a medium α is needed to obtain the best performance

on other data sets, like CT. This may be because some outlying values in these data sets

cannot attract sufficiently large outlierness in the original graph structure, but rather rely

on some outlierness propagated through restart probabilities. Therefore, we recommend

using a relatively large α (e.g., α = 0.95) to leverage both cases.
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4.5.7 Convergence Test

The convergence rate of random walks is governed by two key graph properties - the graph

diameter and the Cheeger constant [36, 41]. The runtime for computing the Cheeger con-

stant is prohibitive for large graphs, so we replace this constant with clustering coefficients.

The graph’s diameter and clustering coefficients of the value graph for each data set are

presented in Table 4.5. It is clear that all the value graphs has small graph diameter and

large clustering coefficient. This is because a value in one feature often co-occurs with

most, if not all, of the values in other features. Moreover, there exist linkages between

values as long as the values co-occur together, resulting in a highly connected dense value

graph. Fast convergence rates are expected for random walks on such graphs [36, 41].

The convergence test results in Figure 4.5 show that CBRW converges quickly on all 15

data sets, i.e., within 70 iterations. CBRW converges after about 10 iterations on 13 data

sets, but takes about 70 iterations to converge on Probe and U2R. This is because these two

data sets contain a large proportion of feature values having frequencies of less than three.

This is particularly true for Probe. As a result, although their overall clustering coefficient

is high, its Cheeger constant can be quite small, which leads to slower convergence.

Table 4.5: Two Key Properties of a
Value Graph. Data is sorted by clus-
tering coefficient. ‘◦’ indicates out-
of-memory exceptions.

Data Diameter Coefficient

Census 2 0.76
Chess 2 0.79
U2R 2 0.80
SF 2 0.81
Probe 2 0.82
BM 2 0.85
LINK 2 0.86
CT 2 0.87
CMC 2 0.89
APAS 2 0.90
R10 2 0.91
AID362 2 0.92
w7a 2 0.93
CelebA 2 0.99
AD ◦ ◦
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Figure 4.5: Convergence Test Results.

4.6 Summary

This chapter introduces a novel outlier detection framework (CUOT) and its instantiation

(CBRW) for detecting outliers in data with interdependent feature values. Compared
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to traditional pattern-based methods, CUOT is data-driven, which learns from low-level

intra- and inter-feature value couplings to estimate outlier scores of feature values. The

outlier scores of feature values can determine the outlying ranking of both data objects

and features. Motivated by the homophily phenomenon, CBRW models a value outlierness

propagation process by a biased random walk on an attributed value-value graph to capture

the cascade relation of value-level outlier factors. The effectiveness of CBRW is supported

by significant AUC improvement over five state-of-the-art competitors on a large collection

of 15 data sets with different complexities. CBRW is particularly superior in complex data,

e.g., data sets contain sophisticated value couplings, high levels of noisy features, and/or

low outlier separability.

CUOT may be extended to project the categorical values into a numeric low-dimensional

outlier-resilient embedding space, in which each categorical value is represented by a low-

dimensional vector, such that off-the-shelf numeric data-based learning methods (e.g.,

existing state-of-the-art classification, clustering and regression methods) can be applied

to extract more sophisticated knowledge from categorical data while being outlier-resilient.

Actually, CUOT has already projected the categorical values onto a one-dimensional new

space where each categorical value is represented by a numeric outlier score, but it only

attempts to capture the exceptional characteristics of the values. When CUOT captures

more intrinsic data characteristics, the embedding of value would have better representa-

tion power and facilitate different outlier-resilient learning performance.

The instance CBRW only captures intra-feature value couplings and pairwise inter-

feature couplings, which may omit long-length outlying patterns. On the other hand,

simply using patterns obtained by pattern mining approaches fail to work effectively,

in particular for data with noisy features. Considering the couplings between patterns

in value outlierness estimation may help address this issue. Therefore, incorporating

arbitrary-length patterns and their complex couplings into the CUOT framework may

further improve the performance in data sets with long-length outlying patterns and so-

phisticated noisy features.



Chapter 5

Selective Conditional Cascade of

Outlier Factors

5.1 Introduction

In Chapter 4, we justified how the outlierness of a behavior can be influenced by its

coupled behaviors, which provides important insights into the importance of considering

the couplings between the outlier factors of values. In this chapter, we investigate whether

all the couplings are relevant to the outlier detection tasks. Different from the previous

chapter that considers the full couplings between the outlier factors, this chapter examines

the use of selective couplings to build more cost-effective and efficient outlier detectors,

which is particularly important for high-dimensional outlier detection.

This is due to two main challenges brought by high dimensionality. (i) High-dimensional

data often contains a complex mixture of relevant and irrelevant features. The irrelevant

features are ‘noise’ to outlier detection, since outliers are masked as normal objects by

these features. Moreover, the sophisticated couplings within irrelevant features and be-

tween relevant and irrelevant features bring about substantially more ‘noise’ that impedes

the separability of outliers from normal objects. (ii) It also presents a huge search space,

i.e., 2D, resulting in great difficulty in exploring the mixed couplings across the features.

Most existing full space-based methods [46, 70, 100] can be largely biased by irrelevant

features, particularly when the percentage of irrelevant features is large. This issue also

applies to subspace/feature selection-based methods [7, 10, 57, 91, 96, 97] . This is because

they need to search the outlying features/subspaces in the original data space indepen-

dently from the subsequently outlier scoring, and subsequently may retain features that

are irrelevant to the outlier scoring functions. Also, such search is very costly on high-

dimensional data due to its huge search space.

The above analysis suggests that how to effectively and efficiently identify and model

on a clean and condensed space from the original data space is the key to detecting high-

dimensional outliers. Accordingly, this chapter proposes a novel high-dimensional outlier

detection framework for categorical data by modeling Selective Value Couplings (the Se-

lectVC framework for short), i.e., selective feature value interactions that are positively

related to outlier detection. As shown in Figure 5.1(b), SelectVC aims to model the out-

53
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lierness influence from only a set of the candidate outlying values {uk, uk+1, · · · , uk+l} to

all the values in V and iteratively update the outlierness of values and the candidate out-

lying value set, forming a selective cascade couplings of the outlier factors of the values.

This is very different from the conditional cascade couplings in Figure 5.1(a) that capture

the full value interactions. Since only a small percentage of behaviors are abnormal in

real-life applications, learning the selective cascade couplings is more faithful in modeling

the homophily couplings between outlying behaviors.

Figure 5.1: Comparison of Selective Conditional Cascade Couplings and the Conditional Cascade
Couplings Presented in Chapter 4.

We further instantiate the SelectVC framework to a method called POP. POP simu-

lates Partial Outlierness Propagation from the value subset to the full value set to model

the selective cascade couplings. The partial outlierness propagation is efficient for han-

dling very high-dimensional data and is resilient to the large number of noisy features in

those data.

Accordingly, this chapter makes the following two major contributions:

• The proposed SelectVC framework for outlier detection is novel for high-dimensional

categorical data. Different from existing approaches that primarily work on the orig-

inal full space and/or feature subsets identified independently from outlier scoring,

SelectVC works on a clean and condensed data space composed by the couplings

between the outlying value set and the full value set, by jointly optimizing outlying

value selection and value outlierness scoring. This enables SelectVC to have a more

reliable outlierness estimation on data with overwhelming irrelevant features.

• The performance of SelectVC is verified by its instance POP. POP models the con-

trasting couplings between outlying-to-outlying values and normal/noisy-to-outlying

values by partial outlierness propagation. Our theoretical analysis shows that such

outlierness propagation biases towards outlying behaviors, which assists POP to

assign larger outlierness to outlying behaviors than non-outlying behaviors.

Extensive experiments show that POP (i) significantly outperforms five state-of-the-art

full space- or subspace-based outlier detectors and their combinations with three feature

selection methods (5%-39% AUC improvement) on 12 real-world high-dimensional data
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sets with different levels of irrelevant features; (ii) obtains good scalability w.r.t. data size

and dimensionality; (iii) performs stably w.r.t. its only parameter k; and (iv) obtains fast

convergence rate.

In the rest of this chapter, SelectVC is detailed in Section 5.2. POP is introduced

in Section 5.3, followed by a theoretical analysis in Section 5.4. Empirical results are

provided in Section 5.5. We conclude this chapter in Section 5.6.

5.2 The Proposed SelectVC Framework

SelectVC jointly optimizes value selection and value outlierness scoring, which is described

as follows. Let dom(F) = {v1, v2, · · · } be the domain of a feature F and V be the whole set

of feature values in F : V = ∪F∈Fdom(F), where dom(F)∩dom(F′) = ∅,∀F 6= F′. As shown

in Figure 5.2, given an initial value outlierness vector q ∈ R|V|, SelectVC first defines a

value selection function ψ(q) to select a set of outlying values, U ⊂ V. SelectVC further

defines a value scoring function φ(U) that computes an outlier score for every single value

in the full value set V by modeling the couplings between the single value and the values

in the value subset U . These two functions are iteratively reinforced until a stationary

q is found. After obtaining value outlierness, given an object x, we can integrate the

outlierness of values contained by x to compute the object outlierness.

Figure 5.2: The SelectVC Framework for Estimating Value Outlierness Based on Selective Value
Couplings. The outlierness of data objects can then be obtained using value outlierness. SVC is
short for Selective Value Couplings.

Outliers often demonstrate multiple outlying behaviors in high-dimensional data, i.e.,

outlying behaviors are often concurrent. Moreover, outlying behaviors have very low

individual frequency. This results in strong mutual couplings between outlying behaviors.

On the other hand, although outlying behaviors also co-occur with non-outlying behaviors

(including normal behaviors and noisy behaviors - frequent and infrequent values which are

mainly contained by normal objects, respectively), non-outlying behaviors are distributed

very differently from outlying behaviors since they are manifested by respective normal

objects and outliers. This results in weak couplings between non-outlying behaviors and

outlying behaviors. The strength of couplings between outlying behaviors is therefore

contrasting to that between non-outlying behaviors and outlying behaviors. SelectVC

essentially models such contrasting couplings to iteratively assign larger outlierness to

outlying values than normal/noisy values. The efficiency of SelectVC is mainly determined
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by the value selection function (ψ).

SelectVC is fundamentally different from existing frameworks in that: (i) SelectVC

models the interactions with only the outlying behaviors. This avoids the interference from

irrelevant couplings between irrelevant features, which significantly challenge full space-

based approaches; and (ii) SelectVC unifies the two dependent tasks, value selection and

outlier scoring, to optimize its outlier scoring, while existing subspace/feature selection-

based approaches separate subspace/feature selection from outlier scoring and thus the

subspaces/features retained by subspace/feature selection may be irrelevant to subsequent

outlier detectors.

5.2.1 Value Subset Evaluation Function ψ

Since SelectVC aims to capture interactions of a value with only outlying values, function

ψ is required to select a value subset U that consists of the most likely outlying values to

facilitate the value outlier scoring in the next stage.

Definition 5.1 (Value Selection). Value subset evaluation function ψ is to select a value

subset U that contains the most likely outlying values from all the possible
(|V|
|U|
)

subsets.

The value selection here is similar as feature selection, but we work on the value

level. Nevertheless, subset search methods for feature selection, such as sequential search,

random search and complete search [75], can be used to select a proper value subset.

5.2.2 Selective Value Coupling-based Scoring Function φ

Outlying behaviors are often strongly bond together while they are weakly coupled with

other behaviors [91]. For example, the abnormal symptoms of diseases (e.g., the sus-

pected signs like frequent urination, tiredness, and excessive thirsty for diabetes) are often

concurrent, whereas they have weak association with normal symptoms or misdiagnosed

abnormal symptoms.

SelectVC exploits such contrasting couplings to compute value outlierness by modeling

the selective value couplings with only the outlying value set U .

Definition 5.2 (Value Scoring). The value scoring function φ : V 7→ R exploits the

couplings of a given value v ∈ V with the value subset U to compute the outlierness of the

value v:

q(v) = φv(U) = �s∈Uη(v, s), (5.1)

where η(·, ·) captures the relation between the two values v and s, e.g., joint probability

and conditional probability, and � denotes one type of integration over η, e.g., first-order

linear (or polynomial non-linear) summation and multiplication.

By working on the selective value couplings, SelectVC minimizes the interference from

irrelevant features while captures the sufficient relevant information to assign larger out-

lierness to outlying values than normal/noisy values.
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5.2.3 Stationary Criterion

The total number of possible value subsets is huge and different value subsets will result

in very different value outlierness vectors. SelectVC aims to produce a stationary value

outlierness vector to facilitate stable outier detection performance. Since we evaluate the

convergence w.r.t. a vector, widely-used vector norms can be used. Let t be the iteration

number, then a p-norm-based stationary criterion can be defined as follow.

lim
t→∞
||qt+1 − qt||p ≤ ε, (5.2)

where p ≥ 1 and ε is a small constant.

5.3 The SelectVC Instance: POP

The SelectVC framework can be instantiated by specifying its three components: value

scoring function φ, value subset evaluation function ψ, and the stationary criterion. The

POP instance specifies these three components as follows. POP first specifies the functions

ψ and φ by a top-k value selection function and a partial outlierness propagation-based

value scoring function, respectively. POP then defines a stationary criterion using `1-norm.

5.3.1 Specifying ψ Using Top-k Outlying Value Selection

Given a value outlierness vector q, POP defines a top-k outlying value selection function

to select a value subset U containing a k proportion of the most outlying values from the

full value set V.

Definition 5.3 (Top-k Outlying Value Selection). The top-k outlying value selection se-

lects a value subset U with the cardinality k|V| from the full value set V as follows.

ψ(q) = arg max
U⊂V and |U|=k|V|

∑
s∈U

q(s). (5.3)

Since q contains the outlierness of all feature values, after using the entries in q to sort

the values in a descending order, Equation (5.3) is equivalent to selecting the top-ranked

k|V| values. This value selection can be done in linear time, which well guarantees the

scalability of POP to very high-dimensional data.

Note that outlying value selection is nontrivial due to the presence of noisy values

and the huge search space. Simply selecting the most infrequent values may include

the noisy values and consequently downgrade the quality of value outlierness estimation.

Therefore, in the next section, POP initializes the value selection based on the frequencies

of individual values but jointly optimizes the value selection and value scoring to obtain

reliable outlying value sets and value outlierness.

5.3.2 Specifying φ by Partial Outlierness Propagation

POP defines a partial outlierness propagation-based function φ to leverage the contrasting

couplings between outlying values to the selected subset U and normal/noisy values to the
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subset U .

POP first builds a |V| × |U| matrix to capture the selective couplings of the values in

the full value set V with the values in U using conditional probability.

Definition 5.4 (Selective Coupling Matrix). The relation between the values in V and

the values in U is captured by the selective coupling matrix M ∈ R|V|×|U| which is defined

as:

M =


η(v1, s1) . . . η(v1, s|U|)

...
. . .

...

η(v|V|, s1) . . . η(v|V|, s|U|)

 , vi ∈ V, sj ∈ U , (5.4)

where η(vi, sj) = P (sj |vi) =
freq(vi,sj)
freq(vi)

∈ [0, 1] and freq denotes a frequency counting func-

tion.

Let u and u′ be outlying and normal values, respectively. Given an outlying values

s ∈ U , since outlying values are often concurrent and the co-occurrence frequency is upper

bounded by the frequency of s, we often have freq(u, s) ' freq(u′, s). Moreover, per

definition of outliers, freq(u) � freq(u′). Therefore, we normally obtain η(u, s) > η(u′, s)

or η(u, s)� η(u′, s).

Let u′′ be a noisy value. We may assume freq(u) ≈ freq(u′′) as both u and u′′ are

infrequent. Since noisy values and outlying values are mainly contained by normal objects

and outliers, respectively, u′′ is presumed to have lower joint probabilities with the outlying

values in U , compared to the outlying value u. Thus, we also obtain η(u, s) > η(u′′, s). This

demonstrates that the inherent asymmetrical property of conditional probability enables

POP to effectively capture the aforementioned contrasting couplings.

POP further defines a partial outlierness propagation-based value scoring function φ

by using M to propagate the outlierness of values in U to influence the scoring of values

in V .

Definition 5.5 (Partial Outlierness Propagation-based Value Scoring). The partial out-

lierness propagation-based value scoring function φ is defined as follows.

qt+1(v) = φv(Ut) =
∑
s∈Ut

M̃(v, s)qt(s), (5.5)

where M̃ denotes a column-wise normalization of M, qt is normalized into a `1-norm

unit, and t ∈ Z+ is a positive integer.

Equation (5.5) models the selective value couplings by simulating to partially prop-

agating the t-th step value outlierness to the outlierness scoring in the (t + 1)-th step.

Such partial outlierness propagation assits POP to iteratively enlarge the outlierness gap

between the top-ranked values and the rest of values in the outlierness vector q.

We initialize the vector q using a similar function as δ presented in Section 4.3.1 to

produce a good initialization when the frequency distributions are very skewed across the

features.
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5.3.3 `1-Norm Stationary Criterion

A `1-norm-based stationary criterion is used in POP.

Definition 5.6 (`1-Norm Stationary Criterion). A value outlierness vector q is stationary

when satisfying:

∆ = ||qt+1 − qt||1 =
∑
v∈V
|qt+1(v)− qt(v)| ≤ ε, (5.6)

where ε = 10−4 is used.

Actually, since the matrix M is fixed, POP obtains the stationary status when the

values and their ranks in U do not change.

5.3.4 The Algorithm and Its Time Complexity

Algorithm 5.1 presents the procedures of POP. Steps (1-6) are performed to obtain a

|V| × |V| full value coupling matrix M′. Since the conditional probabilities are fixed

for all value pairs, we generate M′ to facilitate quick access to the selective coupling

matrix M, which avoids re-scanning the data in the later iteration. Steps (7-11) performs

the joint value selection and value scoring process to obtain the stationary q. We then

compute the outlierness of data objects in Steps (13-15). In Step (14), we compute the

outlierness of an object xi as the weighted outlierness summation of its values, in which

ωj =
∑

v∈dom(Fj) q(v). Such weighted outlierness integration highlights relevant features

and facilitates a proper object outlierness estimation. We found that this object outlierness

calculation achieves similar detection performance as the one used in CBRW in Eqn.

(4.12). An object outlierness ranking r is finally returned in Step (16).

Algorithm 5.1 POP-based Outlier Detection

Input: X - data objects, k - a proportion of the full value set
Output: r - an outlier ranking

1: Initialize a |V| × |V| matrix M′ for full value couplings
2: for v in V do
3: for v′ in V do
4: M′(v, v′)← freq(v,v′)

freq(v)
5: end for
6: end for
7: Initialize q ∈ R|V|
8: repeat
9: U ← arg max

U⊂V and |U|=k|V|

∑
s∈U q(s)

10: q← M̃|V|×|U| × q|U|×1(U)
11: until Converge or reach the maximum iteration 200
12: Initialize r ∈ R|X | as an outlierness vector for data objects
13: for xi in X do
14: ri ←

∑
Fj∈F q∗(xij)ωj

15: end for
16: return r
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POP requires one scanning over the data objects to obtain M′ in Steps (1-6), which

has O(|X ||V|2). The iterations in Steps (8-11) have O(|V||S|) time complexity. The object

outlierness scoring and sorting take O(|X ||V|) in Steps (12-16). Therefore, the overall time

complexity of POP is linear w.r.t. the data size and quadratic w.r.t. the total number of

values. Since the average number of values per feature is normally very small, POP also

has quadratic time complexity w.r.t. the number of features.

5.4 Theoretical Analysis

This section analyzes the quality of the vector q∗, the capability of POP in handling

high-dimensional data, and the setting of k.

5.4.1 Quality of the Stationary Vector q∗

We show below that q becomes stable when the values in the selected subset U have the

largest total pointwise mutual information.

Theorem 5.1 (Stationary Vector). Let pmi(W) be the total pointwise mutual information

among the values in a value set W, i.e., pmi(W) =
∑

u∈W
∑

u′∈W log P (u,u′)
P (u)P (u′) . Then,

the value outlierness vector q converges to a vector q∗ s.t. ∀W ⊆ V and |W| = |U∗|,
pmi(U∗) ≥ pmi(W), where U∗ is the stationary value subset.

Proof. At each iteration of POP, the subset U is updated until convergence, while the

value conditional probability matrix M is fixed. Therefore, q becomes stationary when U
does not change, i.e., ||qt+1 − qt||1 ≤ ε if Ut ⊆ Ut+1 and Ut+1 ⊆ Ut.

Since q is updated using the conditional probabilities of a given value v ∈ V on

the value subset U , q(v) is primarily determined by the probabilities of the values in

U given value v. Therefore, q(v) ∝
∑

s∈U P (s|v) and thus q(U) =
∑

s′∈U q(s′) ∝∑
s′∈U

∑
s∈U P (s|s′). We have q(U) ∝

∑
s′∈U

∑
s∈U

P (s|s′)
P (s) after taking account of the

way we initialize q. We will obtain a value subset U∗ which has the largest pmi by maxi-

mizing q(U), and subsequently obtain q∗ based on the subset U∗. U∗ remains unchanged

since ψ(U∗) is already maximized, and thus q∗ becomes stationary.

It is well known in natural language processing that pointwise mutual information

biases towards rare words [117], i.e., pointwise mutual information between concurrent

rare words are generally much larger than commonly-used or frequent words. In our case,

this implies that the top-ranked values in the stationary vector q∗ are normally outlying

values - values which are exceptionally rare and have mutual interactions. In other words,

POP can often obtain a highly discriminate outlierness vector where outlying values have

larger outlierness than normal and noisy values.

5.4.2 Handling Distance Concentration Effect

The concentration of distances is a major issue in the curse of dimensionality. The distance

concentration effect states that the discrimination between the near and far neighbors of
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a data object diminishes with increasing dimensions, in particular when the increased

dimensions are irrelevant features [128].

Since we focus on value outlierness estimation, in general, we expect ||qt(u)−qt(v)||p
to be sufficiently large if u and v are respective outlying values and normal/noisy values,

and to be small otherwise. Let v to be a normal value, without loss of generality, there

exists a normal value u as its nearest neighbor and an outlying value w as its farthest

neighbor. For a given value set W ⊆ V, according to the concentration effect theory [128],

however, we have

lim
|W|→∞

max d −min d

min d
= 0, (5.7)

where max d = ||
∑

w′∈W M̃′(v, w′)q′t(w
′)−

∑
w′∈W M̃′(w,w′)q′t(w

′)||p and

min d = ||
∑

w′∈W M̃′(v, w′)q′t(w
′) −

∑
w′∈W M̃′(u,w′)q′t(w

′)||p denote the largest and

smallest distances to v, respectively.

As shown in [128], the concentration effect becomes more and more severe as the

number of irrelevant features increases. Therefore, the larger the size of the value subset

W is, we would be likely to have more severe concentration effect. The concentration effect

is maximal when we use the full value couplings, i.e., to set W = V. POP substantially

reduces such effect by working on a small value subset. POP could well overcome the

concentration effect when setting k to be a sufficiently small value, but POP may lose

relevant value couplings when k is too small. We will provide a general guideline for

setting k in the next section.

5.4.3 Guidelines for Setting k

This section provides some guidelines for tuning the only parameter k, in particular for

high-dimensional and small-sized data, based on three observations that (i) outliers typ-

ically account for only a small proportion of a data set; (ii) outliers often demonstrate

their exceptional behaviors in only a small feature subset in high-dimensional data; and

(iii) large k may lead to more severe distance concentration effect.

Theorem 5.2 (Maximum Number of Outlying Values). Let O be the set of outlier objects

in the data set X , I be the maximum number of outlying values contained by an outlier

o ∈ O, and H be the total number of all possible outlying values in X . Then

H ≤ I|O|. (5.8)

Proof. When all outliers in O manifest different outlying values, we have H = I|O|. If

there exists at least one o ∈ O sharing the same outlying values with other outliers, then

H < I|O|.

Corollary 5.2.1 (Upper Bound for k). Let U∗ be the value subset containing exactly

all the possible outlying values, i.e., |U∗| = H and k∗ = |U∗|
|V| . In high-dimensional and
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small-size data, i.e., |V| > |F| > |X |, we have

k∗ ≤ I|O|
|V|

<
I|O|
|X |

. (5.9)

According to Corollary 5.2.1, k∗ is upper bounded by the outlier proportion |O|
|X | and

the number of outlying values contained per outlier I in a high-dimensional and small-size

data set. In general, k∗ < 0.5 is a good bound based on the above three observations.

Since our goal is to select a reliable outlying value subset and to substantially reduce the

concentration effect, k < k∗ is suggested. We show in Section 5.5.7 that POP with k = 0.3

obtains stable performance in data sets with diverse dimensions.

5.5 Experiments and Evaluation

We perform experiments to answer the following six questions:

• Q1. Effectiveness in real-world data. How accurately does POP detect outliers

in real-world high-dimensional data with different levels of irrelevant features?

• Q2. Significance of partial outlierness propagation. How well does partial

outlierness propagation perform compared to full outlierness propagation?

• Q3. Significance of joint value selection and outlier scoring. Can we re-

place POP with two independent successive modules: feature selection and outlier

detection?

• Q4. Scalability. Does POP have good scalability?

• Q5. Sensitivity. How sensitive is POP to k?

• Q6. Convergence. How fast does POP converge?

5.5.1 Experiment Environment

POP and its competitors are implemented in JAVA. The implementations of all the com-

petitors are obtained from their authors or the open-source platform ELKI [1]. All the

experiments are executed at a node in a 3.4GHz Titan Cluster with 96GB memory.

5.5.2 Data Sets

Twelve publicly available real-world data sets are used, which cover diverse domains, e.g.,

Internet advertising, image object recognition, web page classification and text classifi-

cation, as shown in Table 5.1. The data indicators are defined in Section 2.3.3. The

four balanced data sets, PCMAC, BASE, WebKB, and RELA, are transformed into out-

lier detection data sets using the downsampling method described in Section 2.3.1, while

the other eight highly imbalanced data sets are directly transformed using the rare class

conversion method.
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Table 5.1: A Summary of Data Sets Used and Indicator Quantization

Results. κlivc = κrel (U)−κrel (V)
κrel (V) describes the level of irrelevant value

couplings per data. The middle horizontal line roughly separates data
sets with high κlivc from that with low κlivc .

Data Summary Data Indicators

Data Acronym |X | |F| κrel (V) κrel (U) κlivc κsep
w7a - 49749 300 0.1490 0.4440 197.99% 0.5927
wap.wc - 346 4229 0.0306 0.0866 183.01% 0.9713
Reuters8 R8 3974 9467 0.0358 0.0980 173.74% 0.9358
Caltech-16 CAL16 829 253 0.1099 0.2961 169.43% 0.9613
InternetAd AD 3279 1555 0.1923 0.4370 127.25% 0.6982
Caltech-28 CAL28 829 727 0.0654 0.1465 124.01% 0.9780
CelebA - 202599 39 0.0307 0.0665 116.61% 0.7961
PCMAC - 1002 3039 0.0327 0.0638 95.11% 0.7721

BASEHOCK BASE 1019 4320 0.0347 0.0613 76.66% 0.6292
WebKB - 1658 6601 0.0303 0.0526 73.60% 0.7501
RELATHE RELA 794 4080 0.0320 0.0554 73.13% 0.6365
Arrhythmia Arrhy 452 64 0.2548 0.4287 68.25% 0.6293

5.5.3 Effectiveness in Real-world Data

Experimental Settings

POP is compared with five detectors: CBRW [91], ZERO [97], iForest [77], ABOD [70]

and LOF [20] on the 12 real-world data sets to evaluate its effectiveness.

• Subspace-based Competitors: ZERO and iForest. Both ZERO and iForest are state-

of-the-art non-deterministic subspace methods1. Their performance is taken average

from 10 runs. iForest and ZERO are used with the recommended settings in [77,

97], respectively.

• Full Space-based Competitors: CBRW, ABOD and LOF. CBRW is a state-of-the-art

outlier detector for categorical data and it is closely related to POP. ABOD is an

angle-based method which is specially designed for high-dimensional data. LOF is

one of the most popular methods that works on full dimensionality and it is used

as a baseline competitor. As recommended in [91], α = 0.95 is used in CBRW.

ABOD is parameter-free. For LOF, small values are suggested for the neighborhood

size MinPts in [20]. We performed LOF with a range of different MinPts, i.e.,

{1, 5, 10, 20, 40, 60, 80, 100}, and report the results with MinPts = 5 as LOF using

MinPts = 5 performs more stably across the data sets.

POP uses k = 0.3 by default. We will compare POP with feature selection-enabled

methods in Section 5.5.5. Note that categorical data is transformed into numeric data to

allow iForest, ABOD and LOF to work on the same data. The data sets are transformed

by using a commonly used method 1-of-l (or one-hot) encoding [21, 97].

1The computational time of deterministic subspace methods like FPOF [57] and Comprex [7] is pro-
hibitive for high-dimensional data, and they run out of memory or cannot output the results for most of
the used data sets within four weeks. Also, the empirical results in [91] show that CBRW significantly
outperforms these methods. Thus, we focus on the comparison with CBRW and the other four competitors.
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Findings - POP Performing Significantly Better Than Five State-of-the-art

Outlier Detectors on Real-world High-dimensional Data

The AUC performance of POP and its five competitors: CBRW, ZERO, iForest, ABOD

and LOF is reported in Table 5.2. POP performs better than all its five competitors on

nine data sets, and significantly outperforms them at the 95% confidence level. On average,

POP obtains more than 10%, 18%, 26%, 25% and 39% improvement over CBRW, ZERO,

iForest, ABOD and LOF, respectively.

The data indicators κrel (V) andκrel (U) describe the coupling strength of the outlier

class with the values in V and the values in U , respectively. κlivc = κrel (U)−κrel (V)
κrel (V) therefore

captures the level of irrelevant value couplings composed by the intersection of irrelevant

value sets and the full value set. κlivc is a fine-grained value-level indicator which also

implies the amount of irrelevant features per data. Higher κlivc indicates a larger percent-

age of irrelevant features a data set may contain. κlivc is used below to further explore

the performance of these six detectors in data sets with different levels of irrelevant value

couplings (or irrelevant features).

(1) Handling Data Sets with High κlivc . POP obtains the best performance on all the

eight data sets with high κlivc (e.g. κlivc > 90%) (i.e., w7a, wap.wc, R8, CAL16, AD,

CAL28 , CelebA and PCMAC ), and it averagely achieves substantial AUC improvement

over its five competitors CBRW, ZERO, iForest, ABOD, and LOF by more than 13%,

21%, 30%, 24%, and 66%, respectively.

Table 5.2: AUC Performance of POP, POP+ and Their Competitors:
Five Full Space- or Subspace-based Outlier Detectors. CBRW runs out of
memory on high-dimensional data R8 and WebKB. ABOD runs out-of-
memory on large data w7a and CelebA.

Our Methods Competitors

Data POP POP+ CBRW ZERO iForest ABOD LOF

w7a 0.8673 0.8054 0.6460 0.5375 0.4053 NA 0.4996
wap.wc 1.0000 0.9666 0.7900 0.6552 0.5558 0.5243 0.5161
R8 0.9479 0.9324 NA 0.8827 0.8443 0.7856 0.8916
CAL16 0.9928 0.9930 0.9925 0.9878 0.9742 0.9766 0.3881
AD 0.9290 0.8300 0.7348 0.7062 0.7084 0.7023 0.5507
CAL28 0.9608 0.9616 0.9599 0.9538 0.9377 0.9268 0.4390
CelebA 0.8968 0.8981 0.8462 0.7595 0.6797 NA 0.4726
PCMAC 0.6935 0.6617 0.6332 0.5266 0.4767 0.4903 0.6198

BASEHOCK 0.6521 0.6329 0.6177 0.5287 0.4731 0.4883 0.6639
WebKB 0.7306 0.7266 NA 0.6950 0.6773 0.6701 0.8250
RELA 0.7449 0.7173 0.7014 0.6047 0.5578 0.5685 0.7432
Arrhy 0.6762 0.6890 0.6910 0.6644 0.6868 0.5948 0.6008

Average (Top-8) 0.9110 0.8811 0.8004 0.7512 0.6978 0.7343 0.5472
Average (All) 0.8410 0.8179 0.7613 0.7085 0.6648 0.6728 0.6009
P-value - 0.0269 0.0098 0.0005 0.0010 0.0020 0.0122

The superiority of POP is mainly because POP computes the outlier scores based on

only selective (relevant) value interactions, which substantially improves the resilience of

POP to irrelevant value couplings. LOF performs poorly on all these data sets due to

two major reasons: (i) the severe distance concentration effect caused by the presence

of a large amount of irrelevant features and (ii) the heavy dependency on an optimal

neighborhood size MinPts, which varies substantially in data with different data sizes

and data distributions. Compared to LOF, the competitors ABOD, ZERO and iForest
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are less sensitive to the irrelevant couplings, as they use more robust measures to define

outlierness (e.g., angle between data objects) or work on feature subspaces. CBRW models

complex value couplings to enlarge the outlier score difference between outlying values

and other values, which enables CBRW to obtain significant improvements over the other

four competitors. Nevertheless, CBRW still works on the full value couplings, and its

performance is significantly downgraded by the irrelevant couplings compared to POP.

It is interesting that the methods like CBRW, ZERO, iForest and ABOD can obtain

very good AUC performance in some data sets with many irrelevant couplings, e.g., CAL16

and CAL28. This may be due to their high outlier separability, e.g., CAL16 with κsep =

0.9613 and CAL28 with κsep = 0.9780. In other words, these data sets contain some

highly relevant features which, to some extent, enable these methods to address the noise

brought by irrelevant features.

(2) Handling Data Sets with Low κlivc . As for the rest of the four data sets with low

κlivc , i.e., BASE, WebKB, RELA and Arrhy, POP obtains the best performance on one

data set, with two close to the best (having the difference in AUC less than 0.02), which is

comparable to the best performer LOF. This is understandable since POP may omit some

relevant value couplings when data sets have only limited irrelevant couplings, whereas

LOF works on the full value interactions and thus captures the relevant couplings better.

It is interesting that all outlier detectors obtain quite small AUC values on these four

data sets. This may be because all the four data sets have rather low outlier separability,

as shown by the indicator κsep in Table 5.1, and it is very challenging for learning methods

to perform well on data sets without highly relevant features.

5.5.4 Significance of Partial Outlierness Propagation

Experimental Settings

POP is compared with its extreme variant called POP+ which simulates full outlierness

propagation by setting k = 1.0 to evaluate the significance of partial outlierness propaga-

tion in POP. Specifically, POP+ computes value outlierness by qt+1(v) =
∑

u∈V M̃′(v, u)qt(u),

where M′ is a |V|×|V| full value coupling matrix and M̃′ is its column-wise normalization.

Therefore, POP+ is exactly the same as POP except that it uses the full value set V rather

than the value subset U in POP.

Findings - POP Using Partial Outlierness Propagation Significantly Outper-

forming Its Counterpart Using Full Outlierness Propagation

The AUC performance of POP and POP+ is reported in Table 5.2. Although POP uses

more than two-thirds less information than POP+, it obtains about 3% improvement over

POP+ and significantly outperforms POP+ at the 95% confidence level. POP outperforms

POP+ on eight data sets, with the maximal improvement up to 11%, and it performs very

comparably to POP+ on the other four data sets.

POP+ works on the original data space which contains much more irrelevant value

couplings than the clean data space that POP works on, as indicated by the substantial
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difference between κrel (V) and κrel (U) in Table 5.1. As a result, even though POP+ is

operated on the data space that contains the condensed data space used by POP, its per-

formance is significantly degraded due to two major reasons: (i) its distance concentration

effect is more severe and (ii) its full outlierness propagation amplifies irrelevant couplings

and makes negative propagation.

Note that although POP+ underperforms POP, it substantially outperforms all the

five competitors in Table 5.2. This may explain that the (either partial or full) outlierness

propagation mechanism well captures contrasting couplings between outlying-to-outlying

values and normal/noisy-to-outlying values and has better capability in handling high-

dimensional data than the five competitors.

5.5.5 Significance of Joint Value Selection and Outlier Scoring

Experimental Settings

There are two major ways to replace POP with two independent successive modules:

feature selection and outlier detection, which are described as follows.

• The value subset selected by POP can be used to perform feature selection. That is,

for each data set, we create a corresponding new data set with a subset of features

spanned by the values in the selected value subset. We denote this feature selection

method as POFS. The existing outlier detectors can then be performed on the newly

created data.

• Alternatively, existing outlier detectors can be combined with previously proposed

feature selection methods which are designed for outlier detection. Two of the latest

outlying feature selection methods: CBRW FS (denoted by CBFS) [91] and DSFS

[96] are used. CBFS only returns a feature ranking. CBFS is aligned with POFS

and selects the top-ranked |F ′| features, where F ′ denotes the feature subset selected

by POFS. DSFS outputs a feature subset F ′′ without any parameters.

The five outlier detectors with the same settings described in Section 5.5.3 are used

with POFS, CBFS and DSFS to have a comprehensive comparison to POP. This enables

us to examine how critical it is for the joint process of value selection and outlier scoring,

compared to perform feature/value selection and outlier detection independently.

Findings - Joint Value Selection and Outlier Scoring Enabling POP to Obtain

More Than 5% Improvement Over the Best Performer Among All the Succes-

sive Combinations of Three Outlying Feature/Value Selection Methods and

Five State-of-the-art Outlier Detectors

The AUC performance of POP and all the 15 combinations of the three feature selection

methods POFS, CBFS and DSFS and the five detectors CBRW, ZERO, iForest, ABOD

and LOF is reported in Table 5.3. The results show that POP significantly outperforms

all the 15 combinations and obtains over 5% to 50% improvements.
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The POFS or CBFS-empowered CBRW, ZERO, iForest and ABOD substantially im-

prove the AUC performance over its original editions, but they still perform significantly

less effectively than POP. This is due to two major reasons: (i) POFS or CBFS selects

features independently from the these outlier detectors and thus the selected features are

not optimal to these detectors, in contrast to POP in which value selection and value

outlierness scoring function are simultaneously optimized; and (ii) POP works on value

subsets whereas its competitors operates on feature subsets, so POP captures more fine-

grained value interactions than its counterparts. All three feature selection methods do

not improve the performance of LOF. This is mainly because LOF needs to re-tune its

neighborhood size MinPts to obtain desirable performance on the data sets with reduced

feature sets due to its sensitivity to the data distribution.

Table 5.3: AUC Results of POP and the Combinations of CBRW, ZERO, iForest and LOF with
Three Feature Selection Methods POFS, CBFS and DSFS on the 12 Data Sets. The performance
of ABOD using POFS, CBFS or DSFS is similar to that of CBRW, ZERO, and iForest. We
therefore omit the results of ABOD to fit the table well.

POP CBRW ZERO iForest LOF

Data - POFS CBFS DSFS POFS CBFS DSFS POFS CBFS DSFS POFS CBFS DSFS

w7a 0.8673 0.8220 0.7738 0.5155 0.7701 0.7885 0.5155 0.5893 0.7674 0.5155 0.5661 0.6108 0.5010
wap.wc 1.0000 0.9026 0.8739 0.6387 0.7339 0.7429 0.5395 0.5902 0.6816 0.5121 0.6065 0.7161 0.4856
R8 0.9479 NA NA 0.9249 0.8902 NA 0.8758 0.8370 NA 0.8426 0.8772 NA 0.7252
CAL16 0.9928 0.9930 0.9928 0.9931 0.9910 0.9900 0.9903 0.9828 0.9824 0.9811 0.4327 0.4428 0.2923
AD 0.9290 0.7845 0.7456 0.7432 0.7547 0.7587 0.7428 0.7345 0.7723 0.7435 0.5760 0.6652 0.5233
CAL28 0.9608 0.9603 0.9604 0.9599 0.9566 0.9584 0.9540 0.9488 0.9524 0.9421 0.2247 0.2393 0.3345
CelebA 0.8968 0.8901 0.8818 0.8502 0.8519 0.8511 0.7722 0.8038 0.8213 0.6973 0.5644 0.6051 0.5220
PCMAC 0.6935 0.6759 0.6678 0.6413 0.5952 0.5793 0.4959 0.5509 0.5425 0.4745 0.6605 0.6574 0.5988
BASE 0.6521 0.6294 0.6558 0.5760 0.5396 0.5897 0.4375 0.5096 0.5417 0.4233 0.6666 0.6984 0.6187
WebKB 0.7306 0.7449 NA 0.7251 0.7377 NA 0.6995 0.7292 NA 0.6891 0.4543 NA 0.8246
RELA 0.7449 0.7256 0.7352 0.6984 0.6580 0.6793 0.5987 0.6268 0.6459 0.5844 0.7141 0.7334 0.6965
Arrhy 0.6762 0.6095 0.6527 0.5625 0.6074 0.6540 0.5626 0.6065 0.6543 0.5624 0.6004 0.6230 0.5534

Average 0.8410 0.7943 0.7940 0.7357 0.7572 0.7592 0.6820 0.7091 0.7362 0.6640 0.5786 0.5992 0.5563
P-value - 0.0098 0.0117 0.0010 0.0024 0.0020 0.0005 0.0005 0.0020 0.0005 0.0010 0.0098 0.0024

5.5.6 Scalability Test

Experiment Settings

We examine the scalability of POP w.r.t. both of data size and dimensionality.

We use six subsets of the largest data set CelebA to test the scalability w.r.t. data

size. The smallest data subset contains 6,250 objects, and the sizes of subsequent subsets

are increased by a factor of two until the largest subset containing 200,000 objects. All

these data subsets contain the same number of features (i.e., 39).

In terms of scalability w.r.t. the number of features, four subsets of the data set with

the largest number of features, R8, are used. The data subset with the lowest dimen-

sionality contains 1,000 features, and subsequent data sets are created by increasing the

dimensionality by a factor of 2, until the data set with highest dimensionality containing

8,000 features. All these four data subsets contain the same number of objects (i.e., 3,974).
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Findings - POP Obtaining Good Scalability

As expected, POP is linear to the data size and quadratic to the number of features, as

shown in Figure 5.3. In the left panel, POP runs comparably fast to CBRW, iForest and

ZERO, and is two to four orders of magnitude faster than LOF and ABOD. In the right

panel, POP and CBRW have similar runtime and they run considerably slower than the

other four detectors, since both POP and CBRW model complex value interactions while

the other four detectors ignore these interactions. Although POP and CBRW runs slower,

they obtain significantly better AUC performance than their counterparts, as shown in

Tables 5.2 - 5.3.
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Figure 5.3: Scalability Test Results. ABOD and CBRW run out of memory when the number of
objects reaches 25,000 and the number of features reaches 8,000, respectively.

5.5.7 Sensitivity Test

Experimental Settings

We investigate the sensitivity of POP w.r.t. its only parameter k on all the 12 data sets

using a wide range of k, i.e., {0.1, 0.2, 0.3, 0.4, 0.5}.

Findings - POP Performing Stably w.r.t. k

The sensitivity test results of POP are shown in Figure 5.4. POP performs very stably

w.r.t. k on all the data sets except w7a and Arrhy when k is chosen in {0.2, 0.3, 0.4}. This

may be because POP is able to retain stable outlierness of the top-ranked outlying values in

the value outlierness vector when the selected value subset mainly contains outlying values.

We conjecture that the two data sets w7a and Arrhy may contain a larger proportion of

outlying values, so a larger k is required to have a more effective modeling of the selective

value couplings. In general, k = 0.3 is recommended in practice.

5.5.8 Convergence Test

Experimental Settings

We examine the `1-norm convergence, i.e., ∆ = ||qt+1 − qt||1, on the 12 data sets.
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Figure 5.4: Sensitivity Test Results of POP w.r.t. k

Findings - POP Obtaining Rapid Convergence

The convergence test results are presented in Figure 5.5. As expected, POP converges

on all the 12 data sets. POP converges within 100 iterations in most of the data sets.

POP takes slight longer time to converge in a few data sets, e.g., w7a, BASE, WebKB

and Arrhy. This may be because these data sets contain larger percentages of outlying

values, or they contain many noisy values that behave quite similarly as outlying values.

Nevertheless, POP converges within 160 iterations on these data sets.
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Figure 5.5: Convergence Test Results

5.6 Summary

A novel framework SelectVC is proposed to combine value selection with outlier scoring

by iteratively learning selective value couplings to detect outliers in high-dimensional cat-
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egorical data. SelectVC is further instantiated to a partial outlierness propagation-based

method called POP. Our extensive empirical results show that (i) POP performs signifi-

cantly better than 20 competitors, including five state-of-the-art full space- or subspace-

based outlier detectors and their combinations with three outlying feature selection meth-

ods, on 12 real-world high-dimensional data with a variety of irrelevant features; (ii) The

partial outlierness propagation enables POP to obtain about 3% AUC improvement, while

the joint optimization enables POP to gain at least 5% AUC improvement; and (iii) POP

obtains good scalability, stable performance w.r.t. the only parameter k and fast con-

vergence rate. These results justify our key insight that modeling only selective value

couplings enables us to well contrast outlying behaviors to non-outlying behaviors.

SelectVC and POP explores the binary coupling utility, i.e., focusing on only the

couplings that are believed to be relevant to our tasks, which may not be able to fully

capture the fine-grained utility of the couplings. One interesting extension to this work is

to examine weighted functions to compute different weights for a more reliable modeling

of different utilities.



Chapter 6

Binary Cascade of Outlier Factors

6.1 Introduction

In Chapters 4 and 5, we explored iterative methods to estimate the outlierness of values

based on the conditional cascade couplings of the values. These methods are sufficiently

efficient for single-run outlierness estimation, but they are too computationally costly when

we need to repeatedly re-compute the outlierness to adapt to the change of the value graph.

In this chapter, we focus on closed-form solutions to leverage complex couplings for value

outlierness estimation. The closed-form solutions make use of the underlying intrinsic

couplings but do not involve the iterations for outlierness approximation. Thus, they offer

much faster yet effective outlierness estimation, which is of great importance in problems

that require quick outlierness re-computation w.r.t. any changes of the value graph, e.g.,

joint outlier detection and feature selection, and streaming outlier detection.

Specifically, instead of working on the directed value graphs in Figure 6.1(a), we

define a simplified undirected value graph by focusing on binary interactions between the

values, as shown in 6.1(b). The use of the undirected value graph enables us to easily

obtain efficient closed-form value outlierness estimation and to capture the binary cascade

couplings between the outlier factors of values.

Here we show the significance of the closed-form outlierness estimation in the problem

of joint outlier detection and feature selection. As discussed in previous chapters, outlying

feature selection is very important for effective outlier detection in data with noisy features,

while limited work has been done in this area. Moreover, the methods we introduced in

[91, 96] are filter -based approaches [75] that select a feature subset independently from

subsequent learning methods. Consequently, the relevant features they retain can be

noisy w.r.t. subsequent outlier detection methods. In contrast to filter-based approaches,

wrapper -based approaches choose an optimal feature subset w.r.t. the learning methods

[67]. However, although wrapper-based feature selection is popular for classification and

clustering [75], as far as we know, no such work has been reported on outlier detection.

This chapter proposes a novel Wrapper-based Outlier Detection framework (Wrap-

perOD) to detect outliers in noisy data. WrapperOD unifies the outlier ranking quality

with the feature subset relevance into one objective function, i.e., it measures the relevance

of a feature subset by the quality of the outlier ranking produced in the feature subset, and

71
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Figure 6.1: Comparison of Binary Cascade Couplings and the Conditional Cascade Couplings
Presented in Chapter 4.

makes a joint optimization. One big challenge lies in the efficiency of the optimization,

since the number of possible feature subsets can be very large. Another challenge is how

to properly evaluate the quality of the outlier ranking in an unsupervised way.

To address these two challenges, we instantiate WrapperOD to a Homophily cOupling-

based oUtlieR detection method, called HOUR, for categorical data which has been in-

sufficiently explored. HOUR first constructs a value graph with binary edge relations as

shown in Figure 6.1(b) and then defines an efficient closed-form outlier scoring function

based on the value graph. It further specifies the outlier ranking evaluation function to

guide the joint optimization by maximizing the margin between the top-ranked k objects

and the other objects.

Accordingly, this work makes the following two main contributions.

• We propose a novel WrapperOD framework to identify outliers in noisy data. In

contrast to existing solutions that search feature subset(s) independently from out-

lier scoring, WrapperOD simultaneously optimizes its outlier scoring and feature

selection, which enables its outlier scoring function to produce a much more reliable

outlier ranking in noisy data.

• The performance of WrapperOD is verified by an instance HOUR. HOUR models

homophily couplings between outlying behaviors to construct a noise-resilient outlier

scoring function that empowers the joint optimization in WrapperOD. HOUR is

built upon an efficient closed-form outlier scoring solution, which well guarantees

the efficiency of the joint optimization.

Extensive experiments show that HOUR (i) significantly outperforms three state-of-

the-art outlier detectors and their combination with two of the latest outlying feature

selection methods in terms of AUC and/or P@n on 15 real-world data sets with a diverse

range of noise levels; (ii) performs stably w.r.t. k in most cases; and (iii) obtains good

scalability: it is linear to data size and quadratic to the number of features.
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In the rest of this chapter, WrapperOD is detailed in Section 6.2. HOUR is introduced

in Section 6.3, followed by a theoretical analysis in Section 6.4. Empirical results are

provided in Section 6.5. We conclude this chapter in Section 6.6.

6.2 The Proposed WrapperOD Framework

WrapperOD aims to perform outlier detection and feature selection simultaneously using

a wrapper-based approach. The procedure of WrapperOD is presented in Figure 6.2.

WrapperOD first defines an outlier scoring function φS to compute object outlierness in

a given feature subset S ⊆ F and then sorts the objects based on their outlierness to

obtain an outlier ranking rφS . WrapperOD further defines an outlier ranking evaluation

function J to compute the quality of rφS and uses this ranking quality as the relevance

indicator of the subset S. This means that the task of finding the best feature subset is

equivalent to finding the best outlier ranking. WrapperOD iteratively performs function

φS and function J to obtain the best feature subset S∗ and outlier ranking r∗φS∗ . Overall,

the problem can be formally stated as:

arg max
S

J(rφS ). (6.1)

Figure 6.2: The Proposed WrapperOD Framework

WrapperOD is very different from existing outlier detection and outlying feature se-

lection frameworks in that: WrapperOD unifies the two correlated tasks, outlier detection

and outlying feature selection, to simultaneously obtain the optimal outlier ranking and

feature subset, while existing solutions treat these two tasks independently and are very

sensitive to noisy features.

6.2.1 Fast Outlier Scoring Function

The scoring function can be defined as φS : XS 7→ R, where XS ∈ RN×|S|. That is,

φS computes the outlier scores of data objects in the feature subset S and outputs an

outlier ranking r ∈ RN . In general, φS has to meet at least the two requirements: (i)

being sufficiently resilient to noisy features, and it may opt for noisy features other than

relevant features otherwise; and (ii) being very efficient as it will be repeatedly performed

to evaluate a large number of feature subsets.
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6.2.2 Outlier Ranking Evaluation

The J function takes the outlier ranking r ∈ RN as input and outputs a scalar to indicate

the quality of the ranking r. J is essentially an internal evaluation measure for a given

outlier ranking, i.e., evaluating outlier rankings without class labels. Internal evaluation

measures have been extensively studied for clustering tasks, while very little work has

been done on outlier detection [81]. One related work is [81], which uses pseudo binary

classification to evaluate the ranking quality. However, this method has O(N3) time

complexity, which is computationally prohibitive to use here.

6.2.3 Feature Subset Generation

The last component is the feature subset generation that determines the feature subset

the φ and J functions work on. Feature subset search methods, including complete search,

sequential search, and random search [75], can be used to generate the feature subset S.

Although complete search outputs an optimal subset, it has exponential time complexity.

Sequential search and random search may produce a suboptimal subset, but they are more

practical than complete search as they run substantially faster.

6.3 A WrapperOD Instance: HOUR

We further instantiate WrapperOD for categorical data by proposing HOUR. HOUR spec-

ifies its three components by a homophily coupling-based outlier scoring function φS , a

score margin-based outlier ranking evaluation function J , and a heuristic feature subset

search method.

6.3.1 Specifying φS with Homophily Couplings

Most outlier detectors are sensitive to noisy features and/or are computationally costly.

HOUR exploits the homophily couplings between feature values to construct a fast and

robust function φS . Let dom(F) = {v1, v2, · · · } be the domain of a feature F ∈ S, which

consists of a finite set of unordered feature values, and V be the whole set of feature values

in S: V = ∪F∈Sdom(F), where dom(F) ∩ dom(F′) = ∅,∀F 6= F′.

Definition 6.1 (Outlierness Influence). The outlierness influence of a feature value v ∈ V
is defined as follows.

τ(v) =

∑
u∈Nv

δ(v)δ(u)∑
v∈V

∑
u∈Nv

δ(v)δ(u)
, (6.2)

where Nv denotes a set of values that co-occur with v and δ(·) : V 7→ (0, 1) is an initial

outlierness influence estimation of a value based on intra-feature frequency distribution.

Similar to the δ function in Section 4.3.1, we use δ(v) = 1
2

(
freq(m)−freq(v)

freq(m) + 1
freq(m)

)
,

∀v ∈ dom(F), m is a value that occurs most frequently in F (i.e., the mode) and freq(·) is

a frequency counting function. Such mode absolute deviation helps δ(·) address features

with imbalanced frequency distributions.
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Essentially, δ estimates the outlierness influence independently from the values of other

features. τ further utilizes the binary homophily couplings between values from different

features to have a better estimation of outlierness influence. This outlierness influence is

then used to infer the value outlierness based on the coupling strength between feature

values.

Definition 6.2 (Value Outlierness). The outlierness of a feature value v ∈ V is defined

as follows.

ψ(v) =
∑
u∈Nv

ρ(u, v)τ(u), (6.3)

where ρ(u, v) = log P (u,v)
P (u)P (v) is pointwise mutual information to measure the coupling

strength between two values.

Similar to CBRW in Chapter 4, given an object xi, its outlierness is defined as a

weighted product of value outlierness.

φS(xi) = 1−
∏
Fj∈S

[1− ψ(xij)]
ωj , (6.4)

where ωj = 1−
∏
v∈dom(Fj)[1− ψ(v)] computes the weight of Fj .

Section 6.4.1 will discuss how this outlier scoring models the homophily couplings and

why it is fast and noise-resilient.

6.3.2 Specifying J with Average Score Margin

We introduce a score margin-based outlier ranking evaluation measure. The measure has

a linear time complexity, which helps guarantee the efficiency of the joint optimization.

J(rφS , k) =
∆S
|S|

=
1

k|S|
∑
x∈O

[φS(x)− φS(x′)], (6.5)

where O is a set of top-ranked k objects and φS(x′) is the median outlierness in the

remaining objects. ∆S = 1
k

∑
x∈O[φS(x) − φS(x′)] is the average score margin between

the top-k objects and the center of the other objects, which also indicates the relevance

of feature subset S. So maximizing J finds an outlier ranking that jointly maximizes the

object outlierness margin and the feature subset relevance.

6.3.3 Recursive Search of Feature Subset S

A sequential search method, namely Recursive Backward Elimination (RBE), is used with

the functions φS and J to search for an approximately best subset. As shown in Algorithm

6.1, RBE recursively eliminates one feature at a time until no feature remains, and only

retains the feature subset that results in the largest J . RBE is used because it helps

guarantee a 2-approximate J to the optimal one (see Section 6.4.2).
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Algorithm 6.1 RBE (F)

Input: F - full feature set
Output: S - the feature subset selected

1: while |F| > 0 do
2: for F ∈ F do
3: Compute J(F \ F)
4: end for
5: Remove the feature F that results in the largest J(F \ F)
6: end while
7: return Return the subset with the largest J(·) as S

6.3.4 The Algorithm and Its Time Complexity

Algorithm 6.2 presents the procedure of HOUR. Steps (1-3) evaluates the outlier ranking

in the full feature set, followed by the evaluation of outlier rankings in feature subsets

generated by RBE in Steps (4-14).

Algorithm 6.2 HOUR(X , k)

Input: X - data objects, k - the number of targeted outliers
Output: r - an outlier ranking of objects, S - a feature subset
1: ψ(v)←

∑
u∈Nv

ρ(u, v)τ(u), ∀v ∈ V
2: Compute φF (x),∀x ∈ X
3: θ ← J(RφF , k)
4: while |F| > 0 do
5: for i = 1 to |F| do
6: Compute φF\Fi

(x),∀x ∈ X
7: Compute Ji(r

′
φF
, k)

8: end for
9: Find feature Fi with the largest Ji(r

′
φF
, k)

10: F ← F \ Fi and update ψ(v) for all v contained in F
11: if Ji(r

′
φF
, k) ≥ θ then

12: r← r′, S ← F and θ ← Ji(r
′
φF
, k)

13: end if
14: end while
15: return r and S

Steps (1-2) require one database scan to perform ψ and φS respectively, which is linear

w.r.t. N . Step (3) needs to rank X , which has O(N logN) in the worst case, and thus

they have O(N logN). The two loops in Steps (4-14) result in O(D2) in the worst case,

and the core computation within the loops performs outlier scoring and ranking, which

has the same time complexity as the first three steps. Hence, the worst time complexity

of HOUR is O(D2N logN).

6.4 Theoretical Analysis

6.4.1 Robustness w.r.t. Noisy Features

We analyze the robustness of HOUR from the value level to the feature level. At the value

level, as per the definition of outliers, outlying values are infrequent values contained
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by outliers, while noisy values are also infrequent but contained by normal objects. In

contrast, normal values are frequent values contained by both outliers and normal objects.

In the following, we discuss how the outlier scoring function in HOUR can efficiently

distinguish outlying values from normal and noisy values.

Theorem 6.1 (Closed-form Homophily Modeling). The value influence estimation τ(v)

in Eqn.(6.1) is equivalent to the stationary probability of visiting v in random walks on

a strongly connected undirected value-value graph G =< V, E , η(·, ·) >, where a feature

value v represents a graph node, e(u, v) ∈ E denotes an edge between two nodes u and v,

and η(u, v) = δ(u)I(u, v)δ(v) (I(u, v) = 1 if u and v have occurrences, and I(u, v) = 0

otherwise) is the weight of edge e(u, v), ∀u, v ∈ V.

Proof. Let π∗(v) be the stationary probability, P (u, v) be the transition probability from

u to v, d(v) =
∑

u∈Nv
η(v, u) be the weighted degree of v and vol(G) =

∑
v∈V d(v) =∑

v∈V
∑

u∈Nv
δ(v)δ(u) be the graph volume. Then we have:

π∗(v) =
∑
u∈V

π∗(u)P (u, v) =
∑
u∈V

d(u)

vol(G)

δ(u)I(u, v)δ(v)

d(u)
,

and we obtain:

π∗(v) =

∑
u∈Nv

δ(v)δ(u)∑
v∈V

∑
u∈Nv

δ(v)δ(u)
= τ(v),

which completes the proof.

Theorem 6.1 indicates that given ∀u, v ∈ V, if value u has lower frequency and stronger

couplings with other infrequent values compared to value v, i.e., d(u) > d(v), then τ(u) >

τ(v). This essentially models the binary homophily couplings between outlying values.

However, this homophily coupling modeling does not take account of the coupling strength

between values. We further enhance the modeling by adding pointwise mutual information

in Eqn. (6.3). There exist other ways to model homophily couplings. We use such a two-

stage modeling because it has a closed-form solution which guarantees the efficiency of

outlier scoring.

Outlying Values vs. Noisy Values. Noisy values have similarly low frequencies as outly-

ing values, but they are supposed to co-occur randomly or follow a Gaussian distribution.

Their homophily couplings are therefore weaker than those of outlying values. As a result,

HOUR assigns smaller outlierness ψ to noisy values than outlying values.

Outlying Values vs. Normal Values. Normal values have much lower δ and τ than

outlying values due to their high occurrence frequencies. Their high frequencies also result

in weak couplings with infrequent values. As a result, they obtain substantially smaller

outlierness ψ than outlying values.

At the feature level, HOUR prefers features that contain values of higher outlierness

to maximize its objective function. Since outlying values have higher outlierness than

normal or noisy values, the features HOUR iteratively eliminates are those containing

normal and/or noisy values, resulting in a cleaned feature subset for its outlier scoring

function.
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6.4.2 Theoretical Bound

This section shows that HOUR is guaranteed to obtain an outlier ranking with the margin

of at least half of the optimum value, provided that features are dependent on each other

as in the homophily coupling modeling.

Theorem 6.2 (2-Approximation). Let r and S be the outlier ranking and feature subset

returned by HOUR. Assume ΘF be the contribution of feature F ∈ S to the outlier ranking r

by integrating its conjunctive functions with other features θ(F∧F′), i.e., ΘF =
∑

F′∈S θ(F∧
F′), and ∆S = 1

2

∑
F∈S ΘF. Then we have J(rφS , k) ≥ 1

2Jopt , where Jopt is the optimum

value of J .

Proof. Since Jopt is the optimum value of J , we have

Jopt =
∆S∗

|S∗|
≥ ∆S∗ −ΘF

|S∗| − 1
, ∀F ∈ S∗.

We obtain ΘF ≥ Jopt after some replacements. Let F ∈ S∗ be the feature that HOUR

removes first among those contained in S∗ during the iteration of RBE and T be the

feature set before F is removed, i.e., S∗ ⊂ T . Since HOUR removes the least contributive

feature at a time, we have ΘF′ ≥ ΘF ,∀F′ ∈ T when HOUR chooses to remove F, and

thus ΘF′ ≥ Jopt . As a result, we obtain
∑

F′∈T ΘF′ ≥ Jopt |T |, and thus 2∆T ≥ Jopt |T |,
resulting in J(r′φT , k) = ∆T

|T | ≥
Jopt

2 . Since HOUR retains S that results in the largest J

and T is one of the candidates, we finally obtain J(rφS , k) ≥ J(r′φT , k) ≥ Jopt
2 .

6.5 Experiments and Evaluation

6.5.1 Data Sets

Fifteen real-world data sets are used, which cover diverse domains, e.g., bank marketing,

image object recognition, network intrusion, and credit card fraud detection, as shown in

Table 6.1. Most of the data sets are used in our previous chapters. We add some new

data sets, including SylvaA, SylvaP, CUP14, Alcohol, Turkiye, and Credit, to examine the

detection performance on data sets with a wide range of feature irrelevancy and outlier

separability, which are respectively measured by the two data indicators, κfnl and κsep

(see Section 2.3.3 for their definitions). These new data sets are transformed into outlier

detection data sets using the rare class conversion method presented in Section 2.3.1.

6.5.2 Experiment Environment

HOUR is evaluated against three representative outlier detectors for categorical data:

FPOF [57], CompreX [7] and CBRW [91]. FPOF is chosen because it is the most popular

pattern-based method. CompreX is a state-of-the-art subspace method that captures

arbitrary-length outlying behaviors. CBRW is a closely related value outlierness-based

method. k in HOUR is set to the number of outliers by default. CompreX is parameter-

free. FPOF and CBRW are used with their default settings.
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We also compare HOUR to the combination of outlier detectors with two of our re-

cently proposed outlying feature selection methods, CBFS [91] and DSFS [96]. CBFS

returns a feature ranking. DSFS outputs a feature subset without any parameters. To

have a fair comparison, CBFS selects the top-ranked |S| features so that CBFS and HOUR

select the same number of features.

All methods are in Java in WEKA [52] except CompreX which is in MATLAB. All

these methods are executed on a node in a 3.4GHz Phoenix Cluster with 32GB memory.

In terms of performance evaluation, the precision at n, i.e., P@n (where we set n as the

number of outliers in a data set), is used to evaluate the ability of the outlierness margin-

based optimization objective in ranking outliers in the top positions, in addition to the

AUC performance presented in Section 2.3.2. Higher P@n indicates better performance.

6.5.3 Effectiveness in Real-world Data Sets

Obtaining Significantly Better Global or Top-n Outlier Ranking Than Other

Outlier Detectors

We compare HOUR with CBRW, CompreX and FPOF in terms of AUC and P@n in

Table 6.1. In terms of AUC, HOUR obtains the best performance on 11 data sets; and

on average, it obtains about 2%, 7% and 21% improvement over CBRW, CompreX and

FPOF, respectively. HOUR significantly outperforms FPOF in AUC. In terms of P@n,

HOUR performs significantly better than CBRW and CompreX and obtains more than

30%, 37% and 90% improvements over CBRW, CompreX and FPOF, respectively.

Table 6.1: AUC and P@n Performance on 15 Data Sets. Data is sorted by κfnl . ‘O’
indicates the feature reduction rate of HOUR. FPOF runs out of memory in four high-
dimensional data sets.

AUC P@n

Data N |F| |S|(O) κfnl HOUR CBRW CompreX FPOF HOUR CBRW CompreX FPOF

SylvaA 14,395 172 16(91%) 91% 0.9829 0.9353 0.8855 NA 0.7483 0.5914 0.3770 NA
BM 41,188 10 5(50%) 90% 0.6939 0.6287 0.6267 0.5466 0.3265 0.2474 0.2565 0.1369

AID362 4,279 114 8(93%) 86% 0.5147 0.6640 0.6480 NA 0.0833 0.0500 0.0167 NA
APAS 12,695 64 13(80%) 81% 0.9065 0.8190 0.6554 NA 0.0000 0.0000 0.0000 NA
SylvaP 14,395 87 15(83%) 78% 0.9725 0.9715 0.9537 NA 0.6907 0.6151 0.5700 NA
Census 299,285 33 3(91%) 58% 0.4867 0.6678 0.6352 0.6148 0.0616 0.0677 0.0675 0.0637
CelebA 202,599 39 12(69%) 49% 0.8879 0.8462 0.7572 0.7380 0.2085 0.1748 0.1533 0.1256
CUP14 619,326 7 3(57%) 43% 0.9833 0.9420 0.9398 0.6041 0.6730 0.2671 0.2671 0.0000
Alcohol 1,044 32 3(91%) 38% 0.9365 0.9254 0.8919 0.5468 0.3889 0.3333 0.3889 0.0556
CMC 1,473 8 4(50%) 38% 0.6647 0.6339 0.5669 0.5614 0.0345 0.0345 0.0345 0.1034
CT 581,012 44 3(93%) 34% 0.9688 0.9703 0.9772 0.9770 0.0499 0.0386 0.0688 0.0644

Chess 28,056 6 3(50%) 33% 0.8507 0.7897 0.6387 0.6160 0.0000 0.0000 0.0000 0.0000
Turkiye 5,820 32 21(34%) 25% 0.5256 0.5116 0.5101 0.4746 0.0776 0.0746 0.0687 0.0597
Credit 30,000 9 6(33%) 11% 0.7204 0.5804 0.6543 0.6428 0.4875 0.2215 0.3502 0.3333
Probe 64,759 6 2(67%) 0% 0.9661 0.9906 0.9790 0.9867 0.8440 0.8579 0.7928 0.8548

Average 128,022 44 8(69%) 50% 0.8041 0.7918 0.7546 0.6644 0.3116 0.2383 0.2275 0.1634
p-value 0.1876 0.0730 0.0322 0.0068 0.0068 0.1055

Using outlier scoring results to guide outlying feature selection enables HOUR to

remove most, if not all, of the noisy features while having little or no loss in outlier

separability on most data sets, e.g., the 11 data sets on which HOUR obtains the best

AUC performance (see the κfnl and κsep results of HOUR in Table 6.3). Hence, although

HOUR works with 69% less features than its counterparts, it performs substantially better

as it works on much cleaner data. Also, maximizing the margin of the top-k objects from

the others helps rank more outliers in the top, resulting in significant improvement in P@n.
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On the other hand, HOUR opts for strongly relevant features that help rank outliers in

the top, so it may remove weakly relevant features that distinguish outliers from normal

objects in other positions. As a result, HOUR may obtain worse AUC performance while

comparable P@n compared to its counterparts, e.g., the results on AID362 and Census.

Outperforming the State-of-the-art Outlying Feature Selection Methods

HOUR is compared with a combination of CBRW and CompreX with outlying feature

selection methods CBFS and DSFS in Table 6.2. The results show that, although the

two feature selection methods largely improve CBRW and CompreX in terms of AUC

and/or P@n, HOUR remains the best performer on most data sets. HOUR obtains

significantly better performance than the combination of CBRW and CompreX with CBFS

(i.e., CBRW† and CompreX† in Table 6.2) in AUC and significantly outperforms all the

four different combinations in P@n.

Table 6.2: AUC and P@n Performance Comparison between HOUR and the Combination
of CBRW and CompreX with CBFS (Denoted by †) and DSFS (Denoted by ‡).

AUC P@n

Data HOUR CBRW† CBRW‡ CompreX† CompreX‡ HOUR CBRW† CBRW‡ CompreX† CompreX‡

SylvaA 0.9829 0.8793 0.9381 0.8726 0.8858 0.7483 0.5327 0.5948 0.4831 0.3781
BM 0.6939 0.6104 0.6114 0.6239 0.6239 0.3265 0.2259 0.2269 0.2567 0.2575
AID362 0.5147 0.4659 0.6518 0.4982 0.6342 0.0833 0.0000 0.0500 0.0000 0.0167
APAS 0.9065 0.6621 0.8807 0.6532 0.8771 0.0000 0.0000 0.0000 0.0000 0.0000
SylvaP 0.9725 0.9582 0.9707 0.9307 0.9628 0.6907 0.5553 0.5609 0.6140 0.5892
Census 0.4867 0.4844 0.6999 0.4841 0.7135 0.0616 0.0604 0.0732 0.0635 0.0991
CelebA 0.8879 0.8865 0.8502 0.8855 0.7594 0.2085 0.2098 0.1698 0.2142 0.1482
CUP14 0.9833 0.9821 0.9358 0.9821 0.9618 0.6730 0.6686 0.2671 0.6686 0.3224
Alcohol 0.9365 0.9264 0.9294 0.8919 0.8595 0.3889 0.3889 0.4444 0.3889 0.0556
CMC 0.6647 0.6366 0.6444 0.6475 0.6586 0.0345 0.0345 0.0345 0.0345 0.0345
CT 0.9688 0.9192 0.9673 0.9187 0.9670 0.0499 0.0000 0.0386 0.0000 0.0386
Chess 0.8507 0.7268 0.7649 0.7529 0.6305 0.0000 0.0000 0.0000 0.0000 0.0000
Turkiye 0.5256 0.5161 0.5108 0.5145 0.5119 0.0776 0.0716 0.0716 0.0746 0.0776
Credit 0.7204 0.5712 0.5712 0.6566 0.6566 0.4875 0.2131 0.2131 0.3531 0.3531
Probe 0.9661 0.9591 0.9591 0.9794 0.9794 0.8440 0.8397 0.8397 0.7672 0.7672

Average 0.8041 0.7456 0.7924 0.7528 0.7788 0.3116 0.2533 0.2390 0.2612 0.2092
p-value 0.0001 0.0730 0.0006 0.1070 0.0029 0.0269 0.0098 0.0029

The superiority of HOUR is because the wrapper-based feature selection scheme en-

ables HOUR to remove substantially more truly noisy features than the filter-based meth-

ods CBFS and DSFS. This is verified by the κfnl and κsep differences between the full

feature set and feature subsets selected by HOUR, CBFS and DSFS shown in Table 6.3.

On average, HOUR removes over 57% of the noisy features, which is about triple and dou-

ble more than that of CBFS (17%) and DSFS (32%), respectively; while at the same time,

it obtains a very comparable outlier separability. In addition, we observe that filter-based

methods like DSFS generally retain many more features than HOUR. These extra features

contain noisy features as well as relevant features. This is why DSFS obtains a smaller

noise reduction level but a better outlier separability than HOUR in Table 6.3. The extra

relevant features retained by DSFS enable CBRW and CompreX to outperform HOUR

in data sets where HOUR makes very aggressive feature reduction, e.g., on AID362 and

Census.
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Table 6.3: Data Complexity Evaluation Results on F , S, S ′ and S ′′. F is the
original feature set. S, S ′ and S ′′ are feature subsets retained by HOUR, CBFS
and DSFS, respectively.

Feature Noise Level (κfnl ) Outlier Separability (κsep)

Data F S (O) S ′ (O) S ′′ (O) F S (O) S ′ (O) S ′′ (O)

SylvaA 91% 13%(86%) 75%(18%) 91%(0%) 0.78 0.78(0%) 0.78(0%) 0.78(0%)
BM 90% 80%(11%) 80%(11%) 75%(17%) 0.63 0.63(0%) 0.63(0%) 0.63(0%)
AID362 86% 100%(-16%) 100%(-16%) 85%(1%) 0.60 0.49(19%) 0.47(23%) 0.60(0%)
APAS 81% 38%(53%) 85%(-4%) 50%(38%) 0.87 0.87(0%) 0.72(18%) 0.87(0%)
SylvaP 78% 0%(100%) 53%(32%) 71%(9%) 0.78 0.78(0%) 0.78(0%) 0.78(0%)
Census 58% 100%(-74%) 100%(-74%) 50%(13%) 0.76 0.49(35%) 0.49(35%) 0.76(0%)
CelebA 49% 0%(100%) 0%(100%) 50%(-3%) 0.80 0.78(2%) 0.78(2%) 0.80(0%)
CUP14 43% 0%(100%) 33%(22%) 50%(-17%) 0.92 0.92(0%) 0.92(0%) 0.92(0%)
Alcohol 38% 0%(100%) 0%(100%) 18%(53%) 0.91 0.91(0%) 0.91(0%) 0.91(0%)
CMC 38% 0%(100%) 0%(100%) 0%(100%) 0.66 0.66(0%) 0.66(0%) 0.66(0%)
CT 34% 0%(100%) 67%(-96%) 0%(100%) 0.97 0.97(0%) 0.97(0%) 0.97(0%)
Chess 33% 33%(0%) 6%(-100%) 25%(25%) 0.74 0.59(19%) 0.74(0%) 0.74(0%)
Turkiye 25% 14%(43%) 14%(43%) 21%(4%) 0.58 0.55(4%) 0.55(4%) 0.55(4%)
Credit 11% 0%(100%) 0%(100%) 0%(100%) 0.70 0.70(0%) 0.70(0%) 0.70(0%)
Probe 0% 0%(NA) 0%(NA) 0%(NA) 0.94 0.94(0%) 0.94(0%) 0.94(0%)

Average 50% 25%(57%) 44%(17%) 39%(32%) 0.78 0.74(5%) 0.74(5%) 0.77(0%)

6.5.4 Sensitivity Test

We examine the stability of HOUR w.r.t. k in Figure 6.3. HOUR shows stable performance

in most of the 15 data sets. Here we selectively illustrate representative and interesting

trends in its AUC performance w.r.t. a wide range of k on four data sets. HOUR performs

very stably on CelebA and CUP14. It is very challenging to rank outliers in the top-k

positions in data sets which contain only a very small proportion of outliers but have many

noisy features (e.g., CT ), as the outliers are easily masked as normal objects in those data.

Due to these false negatives, HOUR requires a large k (e.g., 0.5% or 1.0%) to perform well

on CT. On the other hand, HOUR can identify outliers more accurately using a smaller k

in Census which contains a larger proportion of outliers, as the use of a large k in HOUR

might lead to false positives. A general guideline is to set k = 0.5%×N or k = 1.0%×N
to leverage the effect of false negatives and false positives.
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Figure 6.3: Representative AUC Performance of HOUR w.r.t. k. HOUR performs stably in most
of the other data sets. The dashed line shows HOUR’s performance with k = outlier%.
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6.5.5 Scalability Test

The scale-up test results are presented in Figure 6.4. As expected, HOUR is linear w.r.t.

data size and quadratic w.r.t. dimensionality. HOUR runs comparably fast to CBRW

and FPOF w.r.t. different data sizes. In the right panel, HOUR runs over five orders of

magnitude faster than FPOF, while the iterative optimization process makes HOUR run

considerably slower than CBRW. Nevertheless, HOUR is easy to parallelize. In future

work we plan to reduce its time complexity to be nearly linear w.r.t. dimensionality by a

parallel implementation of Steps (5-8) in Algorithm 6.2.
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Figure 6.4: Scale-up Test w.r.t. Data Size and Dimensionality. FPOF runs out of memory when
dimensionality reaches 80.

6.6 Summary

A wrapper-based outlier detection framework WrapperOD and its instance HOUR are

introduced to joint top-k outlier detection with feature selection for handling data with

noisy features. HOUR is more plausible than its counterparts: (i) it performs significantly

better in global and/or local outlier ranking; and (ii) it obtains stable performance w.r.t.

k and good scalability. The capability of returning the top k outliers with superior P@n

performance makes HOUR a good candidate for real-world applications, since investigation

resources are often only sufficient for limited suspicious objects.

This is the first work to explore the applicability of wrapper approaches for outlier de-

tection. One key challenge for WrapperOD is the efficiency, which is addressed in HOUR

by a closed-form outlierness estimation based on binary cascade couplings between the

outlier factors of values. However, this solution only works for categorical data. Simi-

lar efficient outlierness estimation methods are required to implement an instantiation of

WrapperOD for numeric data. One potential solution is to design parallel implementa-

tions of existing outlier detectors to achieve desirable efficiency. Another challenge is the

internal performance evaluation measures of outlier detection. HOUR defines an efficient

outlierness margin-based measure, but it requires users to manually set the parameter,

k, which is difficult to tune without proper prior knowledge. More easy-to-use internal

evaluation measures are needed.



Chapter 7

High-order Cascade of Outlier

Factors

7.1 Introduction

All the previous three chapters focus on low-order couplings of outlier factors, i.e., the

outilerness coupling between pairs of nodes in the value graph. The solutions therein

work very well for the cases that the noisy values do not interact with each other, and

they may fail otherwise. This is because the noisy values may obtain outlierness that is

comparable to, or even larger than, the outlying values when they are coupled with each

other. Recall that both outlying values and noisy values have low occurrence frequency,

but we assume the outlying values are successively coupled with each other while the noisy

values only have very weak random couplings or do not have any couplings. However, this

assumption may be violated in some challenging situations, e.g., when the total number of

outlying values is small in data sets with a limited number of outliers, or when adversarial

manipulations are done to generate a few strongly coupled noisy values.

In this chapter, we explore high-order couplings of value outlierness to address this

issue. Instead of only considering the outlierness influence between pairs of values, we

consider the outlierness influence among a set of values in the subgraphs of the value

graph. As an example in Figure 7.1, the outlierness of a value u2 is not only based on

its first-order neighbors but also locally and directly dependent on the other higher-order

neighbors in the relevant subgraphs. This is different from our previous methods that

capture the outlierness influence from high-order neighbors in an indirect way, which are

easily biased by the noisy values.

This idea motivates us to introduce a refined framework, called HOCOF, to have

a noise-resilient outlierness estimation. HOCOF builds upon the CUOT framework pre-

sented in Chapter 4. HOCOF first leverages the value graph in CUOT to derive a set of its

relevant subgraphs, and computes the outlierness of each value based on these subgraphs.

These outlierness is then used to replace the initial value outlierness that is originally based

on low-order intra-feature value couplings. HOCOF finally uses the stationary probability

of the biased random walks as the value outlierness. The subgraph-based value outlierness

is the key to capturing the high-order couplings. The cascade influence is still captured in

83
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Figure 7.1: High-order Cascade Couplings. The top subgraphs denote a collection of high-order
couplings between multiple values, capturing certain local interactions. We aim to use this type of
local high-order couplings w.r.t. each node (e.g., u2) or edge to augment the outlierness estimation
in the original value graph that only captures pairwise low-order couplings

the random walks, but this cascade effect is built upon the high-order couplings.

The HOCOF framework is implemented by a method, called multiple-granularity Sub-

graph Densities augmented Random Walks (SDRW). SDRW defines mutual information-

based outlierness influence vectors and works to capture the inter-feature value couplings,

resulting in an undirected value graph that is different from the graph used by CBRW

in Chapter 4 and HOUR in Chapter 6. More importantly, SDRW adds a new subgraph

density-based outlier factor to capture high-order homophily couplings to further enhance

its tolerance to noisy values.

Accordingly, this chapter makes two major contributions.

i. A novel coupled unsupervised outlier detection (HOCOF) framework estimates the

outlier score of each value by incorporating high-order couplings into the cascade

homophily modeling, which substantially improves its resilience to noisy values or

adversarial manipulations.

ii. HOCOF is further instantiated by the SDRW method. Although SDRW involves

high-order couplings, it has a similar efficiency as the low-order methods (e.g.,

CBRW) while it is much more tolerant to noisy data.
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Extensive experiments show that: (i) our SDRW-based outlier detection method per-

forms significantly better than five current state-of-the-art methods on 15 real-world data

sets with different levels of feature noise, and it also significantly outperforms the CBRW-

based detector, achieving more than 5% average improvement on complex data sets; and

(ii) the SDRW-based feature selection method performs comparably well to the CBRW-

based method, and both of them yield high-quality feature subsets, which help significantly

improve the current state-of-the-art methods.

The rest of this chapter is organized as follows. The HOCOF framework is detailed

in Section 7.2. The SDRW instance is introduced in Section 7.3. A theoretical analysis of

SDRW is presented in Section 7.4. The evaluation results are given in Section 7.5. This

work is then concluded in Section 7.6.

7.2 The Proposed HOCOF Framework

The HOCOF framework aims to incorporate the high-order coupling relationships into the

outlierness propagation step. As shown in Figure 7.2, the whole procedure of HOCOF is

exactly the same as CUOT in Chapter 4 except that HOCOF defines a subgraph-based

value outlierness to replace the initial value outlierness before performing the outlierness

propagation. Note that here we focus on incorporating the high-order information into

each node, i.e., the refinement in the left, but we may also be able to use this high-order

information to improve the outlierness influence matrix M, i.e., the refinement in the right.

Figure 7.2: The Proposed HOCOF Framework. {SG1,SG2, · · · } is a set of subgraphs derived from
the value graph G.

The high-order outlierness is defined as follows.

Definition 7.1 (High-order Outlier Factor). Let {SG1,SG2, · · · } be a set of subgraphs of G

with no less than two nodes, ∀u ∈ V, φ(u|SGi) denotes a outlierness measure that assigns

a local outlierness to u under the context of SGi. The high-order outlier factor of u is

defined as the average of {φ(u|SG1), φ(u|SG2), · · · }.

Note that φ(u|SGi) computes the outlierness of u based on the whole context of SGi,

rather than the cascade of pairwise outlierness propagation over the whole value graph

in CBRW, so φ(u|SGi) captures high-order information and its outlierness is also locally

sensitive within the subgraph.
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7.3 A HOCOF Instance: SDRW

This section introduces an instantiation of HOCOF, called multiple-granularity Subgraph

Densities augmented Random Walks (SDRW). SDRW is motivated by CBRW, but it is

a significantly enhanced instance compared to CBRW. Specifically, SDRW uses the same

intra-feature mode-normalized initial outlierness as CBRW, but it replaces the conditional

probability-based outlierness influence with pointwise mutual information-based influence.

Although this change is minor, it effectively transforms the value graph into an undirected

graph, which also captures more information than the binary coupling-based undirected

graph in Chapter 6. Subsequently we can derive a more effective and parameter-free closed-

form solution for learning value outlierness. More importantly, to enhance its tolerance to

noisy features, SDRW uses a multiple-granularity dense subgraph mining to learn a more

reliable bias into the biased random walks. A summary of the differences between CBRW

and SDRW is provided in Table 7.1.

Table 7.1: Conceptual Comparison of CBRW and SDRW

CBRW SDRW

Initial Value Outlierness Mode-based Normalization

Outlierness Influence Vector Conditional Probability Pointwise Mutual Information
Value Graph Directed Undirected

Value Outlierness Learning BRWs Noise-tolerant BRWs
Closed-form Solution No Yes

Parameters α None
Time Complexity O(ND2) +O(|E|Imax ) O(ND2) +O(|E|)

To differentiate between the specifications for CBRW and SDRW, a superscript ‘′’ is

added to the notations in SDRW if the same notation is used in CBRW. Since SDRW and

CBRW use the same method to compute the intra-feature initial outlierness, here we start

with outlierness influence vectors (see Section 4.2.1 for the definition of the intra-feature

initial outlierness).

7.3.1 Pointwise Mutual Information-based Outlierness Influence

Pointwise mutual information (PMI) is a widely-used measure to define the correlation

between two values. PMI replaces the conditional probabilities in the outlierness influence

vector as follows.

Definition 7.2 (PMI-based Outlierness Influence Vector). The PMI-based outlierness

influence vector of a value v due to all the other values is defined as

q′v = [η′(u, v), · · · , η′(w, v)]ᵀ

= [
freq(u, v)

freq(u)freq(v)
, · · · , freq(w, v)

freq(w)freq(v)
]ᵀ, ∀u,w ∈ V \ v.

(7.1)

where freq(u,v)
freq(u)freq(v) is the pointwise mutual information between the values u and v with the

logarithm removed.
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Note that −∞ ≤ PMI (u; v) ≤ min{− logP (u),− logP (v)}. The logarithm in PMI

is thus removed to guarantee that when q′v is used to construct the value graph, the

adjacency matrix of the graph is non-negative. The resulting inter-feature outlier factor

has the following two key properties.

i. η′(u, v) ∈ [0, 1].

ii. η′(u, v) = η′(v, u).

PMI captures more rigorous homophily couplings than conditional probabilities be-

cause it includes the individual frequencies of both values. Particularly, the difference

obtained by η′(u, v)− η′(w, z) is much larger than η(u, v)− η(w, z) in CBRW, when both

values u and v are outlying values and at least one of the values w and z is not an outlying

value. This helps obtain a stronger correlation between outlying values, resulting in a

higher contrast between the couplings of outlying values and that of other values.

7.3.2 Refining the Value Graph with Subgraph Densities

SDRW then also constructs an attributed value graph G′ =< V, E ,Θδ′,η′ > in the same

way as CBRW built the graph G. Since SDRW and CBRW use the same mode-based

initial outlierness, we have δ′ = δ. Here the key difference between SDRW and CBRW is

that G′ is an undirected graph as η′(u, v) = η′(v, u). while G is a directed graph.

Let A′ be the adjacency matrix of G′ with its entry A′(u, v) = η′(u, v). According to

Lemma 4.0.1, the attributed value graph can be equivalently transformed to a plain graph

with an adjacency matrix C, in which its entry is

C(u, v) = δ′(u)η′(u, v)δ′(v), ∀u, v ∈ V. (7.2)

One major problem with C(u, v) (or B(u, v) in CBRW) is that δ′ (or δ) may mislead

the subsequent value outlierness learning when u or v is a noisy value. This is because noisy

values may have a lower frequency than outlying values. Consequently, noisy values have

larger intra-feature outlierness δ than outlying values. When there are many such noisy

values, this can downgrade the quality of the outlierness learning. One simple solution is

to remove the term δ′, but that would also remove important intra-feature value coupling

information, making the solution less effective when outliers demonstrate obvious outlying

behaviors in individual features (See the empirical results in Section 7.5.2).

Instead, SDRW learns a noise-tolerant term to replace δ′ by aggregating the density

of a collection of multiple-granularity dense subgraphs associated with a specific value.

Our intuition is as follows. Due to the homophily couplings between outlying values,

the neighbors of outlying values in the value graph are much more likely to be outlying

values than noisy values. Since the edge weights convey the value outlierness, the outlying

values are located in denser subgraphs than noisy values. We therefore define the following

subgraph density-based outlier factor:

Definition 7.3 (Subgraph Density-based High-order Outlier Factor). Let the densest

k subgraph SGk be the densest subgraph of exactly k nodes in graph G′, and let G =
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{SG2, SG3, · · · , SG|V|−1} be the complete set of the densest k subgraphs. The subgraph

density-based outlier factor of a value v is defined as the average density of all the densest

k subgraphs that contain v, i.e.,

ad(v) =
1

|Gv|
∑

SGv∈Gv

den(SGv), (7.3)

where Gv is the set of the densest k subgraphs that contain v and the subgraph density is

computed by

den(SGv) =

∑
u∈Vv

∑
v∈Vv δ

′(u)η′(u, v)δ′(v)

2|Vv|
, (7.4)

where Vv denotes the set of nodes contained in SGv.

ad is built on the homophily couplings and is designed to capture the possible cascade

relations of outlying values. This helps increase the outlierness of the outlying values that

are surrounded by only a few direct outlying nodes, but their outlying neighbor nodes

(or the neighbors of them, and so on) are coupled with many outlying values. However,

finding single densest k subgraph has been proven to be an NP-hard problem [65]. We

resort to a greedy method in Algorithm 7.1 to produce a set of dense subgraphs, G+,

to approximate G. Note that SG1 and SG|V| are excluded from G, since they provide no

distinguishing information for computing the ad of each value.

Algorithm 7.1 Dense Subgraph Discovery

Input: X - data objects
Output: G+ - a set of dense subgraphs

1: Generate C using Equation (7.2)
2: Compute the weighted degree of each node v ∈ V
3: Initialize G+ as an empty set
4: repeat
5: Let v ∈ V be the node having the minimal weighted degree in G′

6: G′ ← G′ \ v
7: G+ ← G+ ∪ {G′}
8: until Only one node left in G′

9: return G+

Although Algorithm 7.1 cannot find the exact set of the densest k subgraphs, us-

ing G+ to compute ad guarantees that values with more outlying neighbors (i.e., with a

larger weighted degree) obtain a larger ad . Moreover, it has linear time complexity w.r.t.

|V|, which enables SDRW to compute ad very efficiently. Other desirable properties of

this algorithm include: (i) the densest subgraph in the subgraphs it produces has a 1
2 -

approximation to the optimal densest subgraph without size constraints; and (ii) it is able

to produce the densest subgraph with at least k nodes (a relaxed problem to the problem

of finding the densest k subgraph) having 1
3 -approximation to the optimal solution [8, 65].

These two properties make the use of G+ obtain a good approximation to the exact ad .

We further replace δ with ad in Equation (7.2) and obtain

B′(u, v) = ad(u)η′(u, v)ad(v), ∀u, v ∈ V, (7.5)
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where ad can be seen as an enhanced δ based on the inter-feature outlierness function

η for better tolerance to noisy values. Unlike η′ that captures low-order pairwise value

couplings, ad captures high-order homophily couplings.

7.3.3 Noise-tolerant Random Walks for Learning Value Outlierness

SDRW then performs random walks with the adjacency matrix B′. The transition matrix

is as follows:

T′(u, v) =
B′(u, v)∑
v∈V B′(u, v)

=
ad(u)A′(u, v)ad(v)∑
v∈V ad(u)A′(u, v)ad(v)

. (7.6)

This is equivalent to biased random walks with the following transition matrix

Wb′(u, v) =
ad(v)A′(u, v)∑
v∈V ad(v)A′(u, v)

, (7.7)

in which the terms ad and A′(u, v) replace δ and A(u, v) in Equation 4.7, respectively.

ad improves the tolerance to noisy values over δ, while η′(u, v) improves the homophily

coupling modeling over η(u, v).

We can accordingly define the value outlierness as follows.

Definition 7.4 (SDRW-based Value Outlierness). The outlierness of node v is defined as

φ′(v) = π∗′(v), (7.8)

where π∗′ = Wb′π∗′ denotes the stationary probabilities of biased random walks with the

transition matrix Wb′.

As shown in Section 7.4.1, we can derive a closed-form of φ′(v) as

φ′(v) =

∑
u∈V ad(v)η′(u, v)ad(u)∑

v∈V
∑

u∈V ad(v)η′(u, v)ad(u)
, (7.9)

where the nominator is the weighted degree of node v and the denominator is the volume

(i.e., total weighted degree) of the graph G′.

Similar to CBRW in Chapter 4, after obtaining the outlierness of values, we can

respectively use Eqn. (4.11) and Eqn. (4.12) to compute the outlierness of features and

data objects for outlying feature selection and outlier detection.

7.3.4 The Algorithm and Its Time Complexity

Algorithm 7.2 presents the procedures of SDRW. Step 1 computes the dense subgraph-

based outlier factor ad , followed by the generation of B′ in Step 2. Steps 3-5 further

estimate the outlierness of each value using the closed-form of the stationary probability

distribution of biased random walks.

Both the iterative removal of nodes in Algorithm 7.1 and the calculation of ad in

Step 2 have a time complexity of O(|E|). Similar to CBRW, SDRW requires O(ND2) to
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Algorithm 7.2 Subgraph Density Augmented Random Walks

Input: X - data objects
Output: π∗′ - the stationary probability distribution

1: Compute ad using Equation (7.3) with G+ returned by Algorithm 7.1
2: Obtain B′ using Equation (7.5)
3: for v ∈ V do
4: π′(v)←

∑
u∈V ad(v)η′(u,v)ad(u)∑

v∈V
∑

u∈V ad(v)η′(u,v)ad(u)

5: end for
6: return π∗′

obtain B′ using Equation (7.5). The subsequent estimation of value outlierness has a time

complexity of O(|E|). Therefore, SDRW has an overall time complexity of O(ND2 + |E|).

7.4 Theoretical Analysis

7.4.1 Closed-form Solution

The closed-form solution to the value outlierness estimation function φ′(v) is proven as

follows.

Theorem 7.1 (Closed-form Outlierness Estimation). Let G′ be the graph with its adja-

cency matrix B′ such that B′(u, v) = ad(u)η′(u, v)ad(v), ∀u, v ∈ V. Then we have

π∗′(v) =
d′(v)

vol(G′)
, ∀v ∈ V, (7.10)

where d′(v) =
∑

u∈V B′(u, v) =
∑

u∈V ad(v)η′(u, v)ad(u) denotes the weighted degree of

node v and vol(G′) =
∑

v∈V d
′(v) is the volume of G′.

Proof. To prove Equation (7.10), we need to show that when π′(u) = d′(u)
vol(G′) , ∀u ∈ V, we

have π′ = Wb′π′, i.e., π′ becomes steady w.r.t. the time step.

First, the probability of visiting v in a time step is π′,t+1(v) =
∑

u∈V π
′,t(u)Wb′(u, v).

We then have

π′,t+1(v) =
∑
u∈V

π′,t(u)
B′(u, v)∑
w∈V B′u,w

.

When π′,t(u) = d′(u)
vol(G′) , we have

π′,t+1(v) =
∑
u∈V

d′(u)

vol(G′)

B′(u, v)∑
w∈V B′u,w

==
∑
u∈V

d′(u)

vol(G′)

B′(u, v)

d′(u)
=
∑
u∈V

B′(u, v)

vol(G′)
.

Since B′(u, v) = B′(v, u), we further have

π′,t+1(v) =
∑
u∈V

B′(u, v)

vol(G′)
=
∑
u∈V

B′(v, u)

vol(G′)
=

d′(v)

vol(G′)
.

Therefore, we also have π′,t+1(u) = d′(u)
vol(G′) = π′,t(u), and thus π′ becomes steady.
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Note that the above form is not necessarily the unique convergence form of the random

walks. It becomes a unique convergence if, and only if, G′ is irreducible and aperiodic [84].

However, this closed-form well captures the homophily outlying couplings. Hence, it is

used to compute the outlierness of all values.

7.4.2 Handling Noisy Features

To handle data with noisy features, a fundamental requirement for value outlierness-based

outlier detectors is to assign larger outlierness to outlying values (i.e., infrequent values

contained by outliers) than noisy values (i.e., infrequent values contained by normal ob-

jects). The outlierness scoring methods in IID methods, such as 1 − freq(·) or 1
freq(·) ,

assign similar outlierness to outlying and noisy values, since these two types of values

often have a similarly low frequency. These methods therefore fail to distinguish outlying

values/patterns from noisy ones and become ineffective in handling data with many noisy

features. By contrast, modeling homophily couplings enables CBRW and SDRW to con-

trast the outlierness of outlying values from the noisy ones. We demonstrate this intuition

with a straightforward example, as follows.

Let u′ and w′ be outlying and noisy values of the same frequency, respectively. Assume

both u′ and w′ share the same direct neighbor set N , in which N o ⊂ N is a set of outlying

values and N \ N o is the set of normal values. Then, according to Proposition 4.1, we

have

φ(u′) ∝
∑
u∈N o

φ(u)δ(u)η(u, u′)δ(u′) +
∑

w∈N\N o

φ(w)δ(w)η(w, u′)δ(u′). (7.11)

We can obtain a similar proportional form for φ(w′) by replacing u′ with w′ in the

above equation. Since u′ and w′ share the same direct neighbor set, the outcomes of

the terms φ and δ on the right-hand side of φ(u′) are the same as that in φ(w′). We

can therefore simplify them as φ(u′) ∝
∑

u∈N o η(u, u′) +
∑

w∈N\N o η(w, u′) and φ′(w′) ∝∑
u∈N o η(u,w′) +

∑
w∈N\N o η(w,w′). When there exist homophily couplings among the

outlying values while noisy values are randomly coupled with the outlying values, we have∑
u∈N o η(u, u′) >

∑
u∈N o η(u,w′). If the values u′ and w′ have similar co-occurrence pat-

terns with the set of normal values N \N o, then
∑

w∈N\N o η(w, u′) ≈
∑

w∈N\N o η(w,w′).

Hence, φ(u′) > φ(w′) holds in CBRW.

For SDRW, we can obtain the following equivalence due to Theorem 7.1

φ′(u′) =
∑
u∈N o

δ(u)η′(u, u′)δ(u′) +
∑

w∈N\N o

δ(w)η′(w, u′)δ(u′), (7.12)

where SDRW retains the δ function but changes the η function from conditional prob-

abilities to PMI. Since the normal value w generally has a high frequency, η′(w, u′) is

marginalized by freq(w) and δ(w) is very small. Hence, the second term in Equation

(7.12) can be generally left out. Similar to the cases in CBRW, we can omit δ. We

therefore obtain φ′(u′) =
∑

u∈N o η′(u, u′) and φ′(w′) =
∑

u∈N o η′(u,w′). In such cases, we

achieve φ′(u′) > φ′(w′) in SDRW even when not using ad . Compared to CBRW that ob-
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tains φ(u′) > φ(w′) under certain conditions, SDRW can achieve the same result without

such constraints. This demonstrates the benefit of replacing η with η′.

However, many real-world data sets may demonstrate much tougher cases than the

example as above. For example, the frequency of noisy values can be much lower than

that of outlying values, and the values u′ and w′ have different direct neighbor sets. In

such cases, if δ is still used in SDRW, we have δ(w′) > δ(u′), and consequently φ′(w′)

can obtain larger outlierness from its normal value neighbors, compared to φ′(u′). If

w′ randomly occurs with some outlying values while u′ has limited outlying values in its

direct neighbors, φ′(w′) can also obtain larger outlierness from its outlying value neighbors,

leading to the undesired result φ(u′) < φ(w′). To tackle this problem, ad is introduced

into SDRW to consider both direct neighbors and indirect neighbors. It is assured that

ad(u′) is much larger than ad(w′) when the outlying values bond together, e.g., in the

form of cascade. This enables SDRW to obtain much larger outlierness from the direct

and indirect outlying value neighbors for the outlying value u′, compared to the noisy

value w′. As a result, replacing δ with ad in Equation (7.12) largely increases the ability

of SDRW to assign larger outlierness to outlying values than noisy ones.

7.5 Experiments and Evaluation

This work uses the same data sets as that in Section 4.5. We also add our previous method

CBRW [91] and another state-of-the-art method Sp [111] into our competing methods to

perform more comprehensive empirical analyses.

The first three subsections provide the experimental evaluation results of outlier detec-

tion, algorithmic component justification, and outlying feature selection on the 15 bench-

mark data sets, respectively. The fourth subsection reports the scale-up test results.

7.5.1 Effectiveness of Outlier Detection

We first present a summary of detection performance on all data sets, and then analyze

the detection performance on complex and simple data sets separately.

Overall Performance

The AUC results of SDRWod, CBRWod, MarP, FPOF, CompreX, iForest and Sp on the 15

data sets are presented in Table 7.2. SDRWod achieves the best detection performance on

10 data sets, with four close to the best (having the difference in AUC no more than 0.01).

SDRWod obtains more than 5% improvement over CBRWod and 16%-28% improvement

over the other detectors. The significance test results show that SDRWod significantly out-

performs CBRWod and FPOF at the 95% confidence level and the other four contenders,

MarP, CompreX, iForest and Sp, at the 99% confidence level.

Handling Complex Data

This analysis is separated into four parts based on the four indicators in Table 4.1.
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Table 7.2: AUC Performance of SDRWod and Its Six Contenders on the 15 Data
Sets. ‘◦’ indicates out-of-memory exceptions, while ‘•’ indicates that we cannot
obtain the results within two months. Simiar to the empirical analysis for CBRW
in Chapter 4, we separate complex data from simple data sets based on average
rank in Table 4.1. The best performance for each data set is boldfaced.

Data SDRWod CBRWod MarP FPOF CompreX iForest Sp

BM 0.6511 0.6287 0.5584 0.5466 0.6267 0.5762 0.6006
Census 0.6371 0.6678 0.5899 0.6148 0.6352 0.5378 0.6175
AID362 0.6665 0.6640 0.6270 ◦ 0.6480 0.6485 0.6678
w7a 0.8059 0.6484 0.4723 ◦ 0.5683 0.4053 0.4517
CMC 0.6415 0.6339 0.5417 0.5614 0.5669 0.5746 0.5901
APAS 0.8544 0.8190 0.6193 ◦ 0.6554 0.4792 0.7401
CelebA 0.8845 0.8462 0.7358 0.7380 0.7572 0.6797 0.7132
Chess 0.8387 0.7897 0.6447 0.6160 0.6387 0.6124 0.6410
AD 0.8482 0.7348 0.7033 ◦ • 0.7084 0.7183
SF 0.8817 0.8812 0.8446 0.8556 0.8526 0.7865 0.8434

Probe 0.9891 0.9906 0.9800 0.9867 0.9790 0.9762 0.9654
U2R 0.9941 0.9651 0.8848 0.9156 0.9893 0.9781 0.9886
LINK 0.9978 0.9976 0.9977 0.9978 0.9973 0.9917 0.9952
R10 0.9837 0.9905 0.9866 ◦ 0.9866 0.9796 0.9870
CT 0.9703 0.9703 0.9773 0.9772 0.9772 0.9364 0.9601

Avg. (Top-10) 0.7710 0.7314 0.6337 0.6554 0.6610 0.6009 0.6584
Avg. (All) 0.8430 0.8152 0.7442 0.7810 0.7770 0.7247 0.7653

p-value
SDRWod vs. 0.0245 0.0006 0.0117 0.0031 0.0001 0.0004

CBRWod vs. 0.0004 0.0137 0.0067 0.0003 0.0020

Results on Data Sets with Highly Complex Value Couplings. The 10 data sets with the

largest proportions of negative value couplings are AD, Census, w7a, APAS, AID362, BM,

SF, CelebA, R10 and CMC according to κvcc. On these 10 data sets, SDRWod achieves

an average AUC improvement over MarP (17%), FPOF (18%), CompreX (12%), iForest

(23%) and Sp (13%). SDRWod obtains more than 4% improvement over CBRWod. Most

of these data sets contain more than 10% negative value couplings. This can result in

many misleading patterns and, consequently, substantially degrade the performance of

traditional outlier detection methods (i.e., MarP, FPOF, CompreX, iForest and Sp). In

contrast, the positive homophily couplings captured by SDRWod and CBRWod enable

them to identify outliers more effectively in such adverse environments. Additionally,

SDRWod incorporates the subgraph density outlier factor ad , which further enhances its

ability to tackle the negative couplings over CBRWod.

Results on Data Sets with Strong Heterogeneity. The 10 data sets with the strongest

heterogeneity are Chess, BM, Census, CMC, SF, LINK, Probe, U2R, CelebA and APAS

according to κhet. SDRWod achieves an average AUC improvement over MarP (13%),

FPOF (10%), CompreX (8%), iForest (16%) and Sp (8%). SDRWod and CBRWod per-

form very comparably in this case, with only a 1% difference in terms of the average

AUC performance. Data sets with a large κhet indicate diversified frequency distributions

across their features, resulting in different semantics of the same frequency in the features.

However, the five competitors ignore this characteristic, treating the same frequencies of

values/patterns from different features/subspaces equally. This leads to inaccurate outlier

scoring of objects. SDRWod addresses this issue by the intra-feature mode-normalized out-

lierness. Thus, they performs substantially better than their competitors. Since SDRWod

and CBRWod use the same intra-feature initial outlierness, they have very similar perfor-

mance on these 10 complex data sets.
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Results on Data Sets with Low Outlier Separability. According to κins , the 10 data sets

with the lowest outlier separability are w7a, AID362, BM, CMC, AD, Chess, Census,

CelebA, SF and R10. Compared to MarP, FPOF, CompreX, iForest and Sp, SDRWod

achieves 16%, 19%, 12%, 20% and 14% average improvements. SDRWod obtains more

than 4% improvement over CBRWod on these low separable data sets. It is interesting

to note that the top-ranked data sets in terms of κins are also top-ranked in terms of

κvcc . In other words, the low outlier separability in these data sets is in part due to their

underlying non-IID characteristics. SDRWod and CBRWod with coupled outlier factors

may therefore perform better than the other five detectors.

Results on Data Sets with High Feature Noise Level. The 10 data sets with the highest

level of feature noise are BM, AID362, APAS, Census, CelebA, w7a, CMC, CT, Chess and

U2R. SDRWod achieves an average AUC improvement over MarP (19%), FPOF (11%),

CompreX (12%), iForest (23%) and Sp (13%). SDRWod also gains more than 4% im-

provement over CBRWod. One major reason for the tolerance of SDRWod and CBRWod

to noisy features is due to their homophily coupling modeling, as discussed in Section

7.4.2. However, the use of the intra-feature initial outlierness δ in CBRWod is less effective

on data sets, where outlying values are difficult to distinguish from noisy values. SDRWod

replaces δ with the high-order outlier factor ad and is, therefore, more tolerant to such

data sets. This is justified by the further 4% improvement obtained by SDRWod over

CBRWod.

Handling Simple Data

All seven detectors perform very well on the five simple data sets in Table 4.2. This is

particularly true for R10, Probe and LINK, on which all the detectors, including the most

simple detector MarP, obtain the AUC of (or nearly) one. Although some of these data

sets (e.g., R10 ) are ranked slightly higher than some complex data sets w.r.t. one or two

of the data indicators, they rank toward the bottom in most cases, resulting in an overall

low data complexity.

7.5.2 Justification of Algorithmic Components

Similar to CBRWod, SDRWod consists of three main components: an intra-feature initial

value outlierness, an inter-feature outlierness influence, and a graph mining method that

integrates the two components to learn value outlierness. This section presents empirical

results to justify the contribution of each component to the value outlierness learning.

Specifically, we first derive a baseline method, called BASE, that assumes all features

are completely independent and only uses the intra-feature outlier factor to obtain value

outlierness. We then builds on two additional baselines: SDRWiaod/CBRWiaod has a

weakened inter-feature factor by setting η(u, v) = 1 iff u and v co-occur; SDRWieod/CBRWieod

uses the original η in SDRW/CBRW while ignores the intra-feature value couplings by set-

ting all δ(·) to one.

The AUC results for SDRWod, CBRWod and their variants are shown in Table 7.3. The
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following four observations can be made from these results. (i) BASE substantially under-

performs the other six methods on nearly all the data sets. This indicates that assuming

the independence of features is often not desirable in practice. (ii) SDRWiaod/CBRWiaod

performs comparably to SDRWieod/CBRWieod in terms of average AUC. This is because

intra-feature or inter-feature outlier factor capture only partial value couplings of the data

and it works well only when the outlier factor fits well the specific data set. Since each

of the data sets has very different intrinsic characteristics, Significantly weakening intra-

feature or inter-feature outlier factor therefore results in a considerable loss of the detection

accuracy in the misfitted data sets. (iii) Although SDRWod/CBRWod performs less effec-

tively than its variants on a few data sets, it obtains averagely better performance and

performs more stably. This indicates that the way SDRWod and CBRWod integrate the

two outlier factors are generally reasonable, but a better method of integration is needed to

improve the performance on the data sets like Census, APAS, and CelebA. (iv) Although

SDRWiaod (SDRWieod) and CBRWiaod (CBRWieod) have very comparable average per-

formance, SDRWod demonstrates substantially large improvement over CBRWod. This

indicates that the way SDRWod integrates the two outlier factors is more faithful than

CBRWod.

Table 7.3: AUC Performance of SDRWod, CBRWod and Their Variants Created by
Removing One or Two Components. The best performance within CBRW/SDRW
is boldfaced.

Data BASE CBRWiaod CBRWieod CBRWod SDRWiaod SDRWieod SDRWod

BM 0.5778 0.5999 0.6566 0.6287 0.5988 0.6698 0.6511
Census 0.6033 0.6832 0.6579 0.6678 0.7259 0.6231 0.6371
AID362 0.6152 0.6034 0.6324 0.6640 0.6572 0.6307 0.6665
w7a 0.4744 0.4477 0.7363 0.6484 0.6106 0.8002 0.8059
CMC 0.5623 0.6179 0.6323 0.6339 0.6075 0.6373 0.6415
APAS 0.6208 0.8739 0.8624 0.8190 0.6660 0.8604 0.8544
CelebA 0.7352 0.7135 0.9108 0.8462 0.7367 0.8998 0.8845
Chess 0.6854 0.7766 0.4058 0.7897 0.7692 0.2322 0.8387
AD 0.7033 0.7250 0.8270 0.7348 0.6600 0.8426 0.8482
SF 0.8469 0.8867 0.8833 0.8812 0.8650 0.8809 0.8817
Probe 0.9795 0.9434 0.9907 0.9906 0.9807 0.9854 0.9891
U2R 0.8848 0.8817 0.9640 0.9651 0.8793 0.9949 0.9941
LINK 0.9977 0.9976 0.9976 0.9976 0.9976 0.9976 0.9978
R10 0.9866 0.9823 0.9903 0.9905 0.9874 0.9837 0.9837
CT 0.9770 0.9388 0.9703 0.9703 0.9607 0.9581 0.9703

Avg. 0.7500 0.7781 0.8078 0.8152 0.7802 0.7998 0.8430

7.5.3 Outlying Feature Selection Performance

This section presents the results of data complexity reduction by feature selection, followed

by the AUC performance of two outlier detectors on the reduced data.

Data Complexity Reduction

Table 7.4 shows the results of the data complexity evaluation for each data indicator on

the data sets with selected feature subsets as well as full feature sets.

SDRWfs and CBRWfs considerably reduce the data complexity in most data indicators

on all data sets. Specifically, SDRWfs reduces the complexities of κvcc , κhet and κfnl by
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25%, 7% and 19% respectively; and CBRWfs achieves respective 25%, 8% and 10% simpli-

fication in the indicators κvcc , κhet and κfnl . ENFW obtains markedly large simplification

in κfnl and κhet , whereas it substantially increases the outlier inseparability according

to κins . This is because ENFW evaluate the relevance of features without considering

their interactions. Thus, noisy features and highly relevant features may be filtered out

together. In other words, ENFW reduces the data complexity in terms of κfnl at the ex-

pense of increasing the data complexity in terms of κins . Also, ENFW is an entropy-based

feature weighting method, which retains features with similar frequency distributions. As

a result, ENFW can simply the data far more than SDRWfs and CBRWfs in terms of κhet .

However, since it builds upon the feature independence assumption, it can remove features

that are very relevant when combining with other features. By contrast, both SDRWfs and

CBRWfs consider the low-level intra- and inter-feature value couplings, which are sensitive

to negative value couplings, value frequency distributions and noisy features, resulting in

an outlier separability secured reduction of data complexity.

Table 7.4: Complexity Quantification of Data Sets with Feature Subsets Selected by SDRWfs,
CBRWfs, ENFW and FULL. The last row shows the percentage of the average complexity reduc-
tion compared to the baseline FULL. We use SD = SDRWfs, CB = CBRWfs, EN = ENFW, and
FU = FULL to concisely present the results.

κvcc κhet κins κfnl

Data SD CB EN FU SD CB EN FU SD CB EN FU SD CB EN FU

BM 0.28 0.19 0.50 0.21 1.91 1.70 1.30 2.03 0.37 0.37 0.52 0.37 0.80 0.80 1.00 0.90
Census 0.41 0.40 0.57 0.42 1.85 1.83 1.15 1.65 0.24 0.24 0.34 0.24 0.71 0.65 0.76 0.58
AID362 0.28 0.28 0.34 0.32 1.01 1.04 1.01 1.14 0.40 0.40 0.48 0.40 0.93 0.93 0.96 0.86

w7a 0.13 0.20 0.10 0.37 1.01 1.01 1.00 1.06 0.41 0.41 0.44 0.41 0.01 0.23 0.03 0.48
CMC 0.04 0.04 0.00 0.04 1.30 1.30 1.27 1.58 0.34 0.34 0.37 0.34 0.00 0.00 0.50 0.38
APAS 0.25 0.22 0.33 0.33 1.06 1.06 1.02 1.19 0.13 0.13 0.28 0.13 0.69 0.66 0.88 0.81
CelebA 0.08 0.08 0.12 0.12 1.20 1.16 1.05 1.26 0.20 0.20 0.32 0.20 0.15 0.20 0.40 0.49
Chess 0.00 0.00 0.00 0.00 1.22 1.22 2.05 2.24 0.26 0.26 0.26 0.26 0.67 0.67 0.00 0.33
AD 0.26 0.26 0.37 0.46 1.01 1.00 1.00 1.01 0.30 0.34 0.47 0.30 0.01 0.01 0.00 0.05
SF 0.11 0.15 0.15 0.12 1.72 1.72 1.08 1.56 0.18 0.18 0.30 0.18 0.00 0.00 0.17 0.09

Probe 0.00 0.01 0.00 0.01 1.42 1.36 1.04 1.32 0.06 0.06 0.07 0.06 0.00 0.00 0.00 0.00
U2R 0.00 0.01 0.00 0.02 1.37 1.35 1.00 1.29 0.02 0.02 0.15 0.02 0.00 0.33 0.00 0.17
LINK 0.00 0.00 0.01 0.01 1.19 1.19 1.18 1.39 0.02 0.02 0.02 0.02 0.00 0.00 0.00 0.00
R10 0.03 0.01 0.00 0.06 1.00 1.00 1.00 1.01 0.34 0.13 0.44 0.13 0.00 0.00 0.00 0.00
CT 0.00 0.00 0.00 0.00 1.17 1.17 1.00 1.10 0.03 0.03 0.32 0.03 0.45 0.45 0.00 0.34

Avg. 0.12 0.12 0.17 0.17 1.30 1.27 1.14 1.39 0.22 0.21 0.32 0.21 0.29 0.33 0.31 0.36

O (%) 25 25 -0.2 - 7 8 18 - -7 -1 -55 - 19 10 14 -

Performance of Different Subsequent Outlier Detectors

The effectiveness of SDRWfs is further verified by the AUC performance of different sub-

sequent outlier detectors using their resultant feature subsets. Two very different outlier

detectors, MarP and iForest, are used here.

The AUC performance of MarP and iForest working on the data ses with feature

subsets is shown in Table 7.5. SDRWfs-empowered MarP and iForest obtains substan-

tial improvements than ENFW (12%), RADM (17%) and FULL (7%), regardless of the

difference working mechanisms of MarP and iForest. The SDRWfs-empowered MarP and

iForest significantly outperform their counterparts empowered by ENFW and RADM at

the 99% confidence level. Although they use 50% less features, they significantly outper-

form MarP and iForest working on data with full feature sets at the 95% confidence level.
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SDRWfs-based MarP and iForest do not show significantly improvement over that using

CBRWfs, this may be because MarP and iForest do not capture high-order information,

and as a result, the high-order couplings reserved by SDRWfs are not really caught up by

the two outlier detectors. It is interesting to note that MarP and iForest using SDRWfs

and ENFW perform much better than all their counterparts on w7a. This improvement

is mainly because SDRWfs and ENFW remove more than 95% of the noisy features with

little or no loss to the outlier separability in this data, as shown in Table 4.3.

Table 7.5: AUC Performance of MarP and iForest Using SDRWfs, CBRWfs, ENFW, RADM,
and FULL.

MarP iForest

Data SDRWfs CBRWfs ENFW RADM FULL SDRWfs CBRWfs ENFW RADM FULL

BM 0.5627 0.5926 0.4886 0.5181 0.5584 0.5618 0.5836 0.5297 0.5544 0.5762
Census 0.6052 0.6258 0.4525 0.5490 0.5899 0.5801 0.6106 0.4403 0.5201 0.5378
AID362 0.6612 0.6620 0.5909 0.6074 0.6270 0.6641 0.6525 0.6155 0.6267 0.6485

w7a 0.8413 0.7654 0.8633 0.4594 0.4748 0.8084 0.7432 0.8251 0.3946 0.4053
CMC 0.6474 0.6474 0.5082 0.5062 0.5417 0.6609 0.6607 0.5288 0.5164 0.5746
APAS 0.8454 0.8569 0.6346 0.5995 0.6193 0.8385 0.8426 0.6372 0.5543 0.4792
CelebA 0.8652 0.8597 0.7785 0.7102 0.7358 0.8388 0.8438 0.7799 0.6764 0.6797
Chess 0.7574 0.7574 0.6378 0.6076 0.6447 0.6859 0.6138 0.6241 0.5829 0.6124
AD 0.8256 0.7624 0.6603 0.6888 0.7033 0.8206 0.7620 0.6592 0.6775 0.7084
SF 0.8343 0.8157 0.6666 0.8181 0.8446 0.7838 0.7667 0.6856 0.7660 0.7865

Probe 0.9837 0.9805 0.9307 0.8951 0.9800 0.9842 0.9751 0.8797 0.8990 0.9762
U2R 0.9937 0.8846 0.8582 0.7911 0.8848 0.9879 0.9776 0.7854 0.8168 0.9781
LINK 0.9985 0.9985 0.9938 0.9723 0.9977 0.9986 0.9984 0.9797 0.9636 0.9917
R10 0.8705 0.9893 0.7648 0.9627 0.9866 0.8705 0.9926 0.7566 0.9541 0.9796
CT 0.8570 0.8570 0.8581 0.6154 0.9773 0.9122 0.9072 0.8816 0.6374 0.9364

Avg. 0.8099 0.8037 0.7125 0.6867 0.7444 0.7998 0.7954 0.7072 0.6760 0.7247

p-value
SDRW vs. 0.6772 0.0009 0.0016 0.0340 - 0.2890 0.0005 0.0013 0.0262
CBRW vs. 0.0023 0.0005 0.0113 - - 0.0023 0.0004 0.0131

7.5.4 Scalability Test

Both SDRW-based outlier detection and feature selection are linear consolidation of the

value outlierness. Hence, they have similar scalability. Here, we show the scalability of

SDRWod.

The scalability of SDRWod w.r.t. data size is evaluated using four subsets of the largest

data set LINK. The smallest subset contains 64,000 objects, and subsequent subsets are

increased by a factor of four, until the largest subset which contains 4,096,000 objects.

The scaleup test results w.r.t. data size are presented in the left panel in Figure 7.3.

As expected, all the seven detectors have runtime linear w.r.t. data size. SDRWod runs

faster than iForest and Sp by a factor of more than 20 and 30, respectively. SDRWod

runs slightly faster than CBRWod, since SDRWod requires no iteration to obtain the value

outlierness. Nevertheless, CBRWod runs faster than iForest and Sp. Both SDRWod and

CBRWod are slightly slower than MarP but comparably fast to FPOF.

The scaleup test w.r.t. the number of features is conducted using seven synthetic data

sets. The data sets have the same number of objects, i.e., 10,000 objects. The data set

with the smallest number of features contains 10 features, and subsequent data sets are

increased by a factor of two, until the data set with the largest number of features contains

640 features.

The results reported in the right panel in Figure 7.3 show that, as expected, SDRWod
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Figure 7.3: Scale-up Test Results of the Seven Detectors w.r.t. Data Size and Dimensionality.
Logarithmic scales are used in both axes. Note that FPOF runs out-of-memory when the number
of features reaches 80.

and CBRWod have runtime nearly linear w.r.t. the number of features, which run more

than five orders of magnitude faster than FPOF. SDRWod and CBRWod run much faster

than CompreX by a factor of more than 600 and 250 in terms of runtime ratio1, re-

spectively. Compared to Sp, SDRWod and CBRWod run faster on data sets with lower

dimensions, but they may become slower on data sets with higher dimensions. This is be-

cause the runtime of SDRWod and CBRWod increase at a much faster rate than Sp. Since

SDRWod and CBRWod model much more complex data characteristics than MarP and

iForest, they run substantially slower than these two competitors, but with significantly

better accuracy in terms of AUC, as shown in Table 4.2.

7.6 Summary

This chapter introduces an outlier detection framework, HOCOF, which extends the

CUOT framework by incorporating high-order value coupling relations. HOCOF is further

implemented by the SDRW method that uses the densities of multi-granularity subgraphs

of the value graph to capture the high-order coupling information. Extensive experi-

ments show that (i) the SDRW-based outlier detector performs significantly better than

six state-of-the-art detectors - CBRW, MarP, FPOF, CompreX, iForest and Sp, at the

95% confidence level; (ii) our SDRW-based outlying feature selection method considerably

reduces the complexities of different data sets while retains their outlier separability, which

enables two different outlier detectors to significantly outperform the competing feature

selection methods; and (iii) SDRW has linear or nearly linear time complexity w.r.t. data

size and the number of features.

Compared to CBRW, SDRW is significantly better in terms of overall AUC per-

formance, computational time, parameter tuning effort and tolerance to noisy features.

1Since CompreX was implemented in a different programming language to the other methods, the
runtime between CompreX and other methods is incomparable. Instead, we compare them in terms of
runtime ratio, i.e., the runtime on a larger/higher-dimensional data set divided by that on a smaller/lower-
dimensional data set, for a fairer comparison. Since the data size and the increasing factor of dimensionality
are fixed, the runtime ratio is comparable across the methods in different programming languages.
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Therefore, SDRW is generally recommended when the complexity of a given problem is

unknown, or when the problem has high requirements on computational cost, users’ in-

puts, or robustness to feature noise. However, SDRW seems to less effective than CBRW

to identify outliers in cleaner data sets, e.g., data with only a few noisy features and some

strongly relevant features like Census and R10, since SDRW reduces the effect of δ by

replacing δ with ad . Therefore, CBRW is recommended for outlier detection in cleaned

data sets.

SDRW uses the value subgraphs to capture the couplings of multiple values. Since the

value graph is built upon pairwise value interactions, the value subgraphs may not be able

to capture the couplings involving the concurrence information of multiple values. Fre-

quent/infrequent patterns derived from pattern mining may be helpful for capturing this

type of information, but using pattern mining-based methods may be too computationally

costly. More advanced methods are needed to efficiently and effectively to capture more

sophisticated high-order value coupling information.



Part III

Feature/object-level Coupled

Outlier Factors

100



Learning Couplings of Feature- or

Object-level Outlier Factors

In addition to the outlierness estimation of data objects, quantifying the outlierness of

features is another important goal in outlier detection, since it can determine relevant

features for subsequent outlier detection methods, or explain the reasons why a data

object is reported as an outlier.

The interactions between feature values intrinsically contribute to the interactions

between features or between data objects. In this part, we examine the higher-level (feature

or object level) couplings of outlier factors to understand the abnormality of features or

objects, and their ability in addressing challenging outlier detection problems:

• Two-way feature-level couplings, which enable a parameter-free outlying feature

selection with approximation guarantees (Chapter 8);

• Sequential couplings at the object level, which provide manners for mutual refine-

ment of feature selection and outlier detection that is important in high-dimensional

outlier detection (Chapter 9);

For each exploration, we have the same structure as the chapters in Part II, including

motivation, abstract framework, instantiation, and theoretical and empirical justifications.
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Chapter 8

Two-way Couplings of

Feature-level Outlier Factors

8.1 Introduction

How can we know the outlierness of a feature, i.e., its relevance to outlier detection? and

how is the outlierness of one feature influenced by that of the other features? In this

chapter, we explore methods to estimate the outlierness of features for different impor-

tant outlier detection applications, e.g., feature selection for subsequent outlier detection

methods or outlier explanation.

However, it is very challenging to determine the relevance of features to outlier de-

tection because (i) we often do not have class labels due to its unsupervised nature, (ii)

there are complex interactions between noisy/redundant features and relevant features,

and (iii) the data distribution is extremely imbalanced. We demonstrated in Chapter 4

that the outlierness of a feature can be effectively measured by the consolidation of the

outlierness of values contained by the feature, but the outlierness of a feature is com-

puted independently from that of the other features therein, which may be ineffective for

data with interdependent features. In an attempt to address this issue, this chapter ex-

plores the two-way couplings of the feature outlierness. Motivated by the success of value

outlierness-based estimation of feature outlierness in Chapter 4, as shown in Figure 8.1,

here we define the feature outlierness using the feature interactions in a feature-feature

graph derived from the value graph, which helps capture more reliable feature outlierness

than the method introduced in Chapter 4 when handling data with coupled features.

Feature selection is of great importance to outlier detection. This is because outliers

are easily masked as normal objects in irrelevant/noisy features - features for which out-

liers do not demonstrate any suspected behaviors. For example, in loan fraud detection,

suspects may be spotted by partial features, such as marital status and income level, while

they may fake themselves as normal with other features, such as education and profession.

In addition, many data sets contain a large number of redundant features - weakly rele-

vant features that contribute a very limited capability, or none, to outlier detection when

combined with other features, e.g., property holdings to income level.

Eliminating noisy and redundant features may therefore substantially improve the
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Figure 8.1: Two-way Couplings of Feature-level Outlier Factors. The outlierness of features is
inferred from the value-level outlierness interdependence.

effectiveness and efficiency of subsequent outlier detection. This is particularly true for

outlier detection methods for categorical data (e.g., [7, 34, 57, 108, 114, 121]), which are

mainly pattern-based methods. These methods search for outlying/normal patterns and

employ pattern frequency as a direct outlierness measure. However, these methods fail to

perform effectively and efficiently in data sets that have the aforementioned characteristics

for two main reasons: (i) many noisy features mislead the pattern search and result in

a large proportion of faulty patterns and a high ‘false positive’ rate; and (ii) feature

redundancy results in numerous redundant patterns and considerably downgrades the

efficiency of the pattern search and outlier detection.

In this chapter, by utilizing hierarchical value-feature couplings, we propose a novel

Coupled Unsupervised Feature Selection framework (CUFS) to filter out noisy and redun-

dant features for outlier detection in categorical data. CUFS first estimates the outlierness

of feature values by modeling the low-level intra- and inter-feature value couplings. These

value couplings reflect the intrinsic data characteristics and facilitate the differentiation

between relevant and other features. We further incorporate the value-level outlierness

into feature outlierness by learning value-to-feature interactions. This value-to-feature

outlierness is then mapped onto graph representations, on which existing graph mining

techniques and theories are used to identify the desirable relevant feature subset.

We further instantiate CUFS to a Dense Subgraph-based Feature Selection method

(DSFS), which synthesizes the advantages of hierarchical couplings captured in CUFS and

the dense subgraph search theories. DSFS computes value outlierness by integrating intra-

feature value frequency deviation and inter-feature value correlation, and obtains feature

outlierness by a linear combination of value outlierness. The feature subset max-relevance

criterion and sequential search strategy are then used to identify the most relevant feature

subset, which is equivalent to the discovery of the densest subgraph of a feature graph.

Accordingly, this chapter makes the following two main contributions.

i. We propose a novel and flexible coupled unsupervised feature selection (CUFS)

framework for detecting outliers in categorical data, in which relevant features are

highly mixed with noisy and redundant features. CUFS captures two-way feature
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interactions by modeling the outlierness (relevance) of features w.r.t. hierarchical

intra- and inter-feature couplings, which distinguish relevant features from noisy and

redundant features.

ii. The CUFS framework is instantiated to a parameter-free feature subset selection

method DSFS. We prove that the feature subset selected by DSFS has a 2-approximation

to the optimal subset. This demonstrates the flexibility of CUFS in enabling state-of-

the-art graph mining techniques to tackle the feature selection challenge in unlabeled

and imbalanced categorical data.

Extensive experiments show that (1) DSFS obtains a large average feature reduction

rate (48%) on 15 data sets with a variety of complexities, including different levels of noisy

and redundant features, and greatly improves three different types of pattern-based outlier

detectors in AUC and/or runtime performance; (2) DSFS substantially outperforms its

feature weighting-based contender (maximally 94% improvement on a data set); and (3)

DSFS achieves good scalability w.r.t. data size (linear to data size, completing execution

within one second for a data set with over one million objects) and the number of features

(completing the execution within 20 seconds for a data set with over 1000 features).

The rest of this chapter is organised as follows. CUFS is detailed in Section 8.2. DSFS

is introduced in Section 8.3. A theoretical analysis of DSFS is presented in Section 8.4.

Empirical results are provided in Section 8.5. This work is summarized in Section 8.6.

8.2 The Proposed CUFS Framework

In this section, we introduce the CUFS framework. CUFS builds and integrates two-

level hierarchical couplings, i.e., feature value couplings and feature couplings, toward

a proper estimation of the feature relevance to outlier detection. Specifically, it learns

the intra- and inter-feature value couplings to compute outlierness on the feature value

level and constructs a value graph with the outlierness being the edge weights. We then

feed the value graph to the feature-level coupling analysis and construct a feature graph

by aggregating the value-level outlierness. Our coupled feature selection framework for

unsupervised outlier detection (i.e., CUFS) is shown in Figure 8.2.

Figure 8.2: The Proposed CUFS Framework. VCA and FCA are short for Value Coupling Analysis
and Feature Coupling Analysis, respectively.

The value coupling analysis captures the intrinsic interactions between the values of

data objects, which enables a proper estimation of the value outlierness in data and helps
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distinguish outlying values from noisy values. As the features build their capability on

their values, feature outlierness is thus modeled by aggregating value outlierness in terms

of the value-to-feature interactions. Such feature couplings distinguish useful features from

noisy and redundant features.

As a result of these factors, CUFS builds on the deep understanding of intrinsic data

characteristics in outlying data, and effectively combines the advantages of data-driven

complex feature relation analysis with unsupervised feature selection and graph theories

for outlier detection. It has the graph properties and a feature subset search strategy as

input to search and select a feature subset for outlier detection.

8.2.1 Value Graph Construction

The outlying behaviors of a feature value are captured by intra-feature and inter-feature

value couplings. Accordingly, we define value couplings and value graph as follows.

Definition 8.1 (Value Coupling). The couplings in a value v of feature F are represented

by a three-dimensional tuple VC = (F, δ(·), η(·, ·)), where

• F ∈ F , where F is the feature space.

• δ(·) captures the outlying behaviors of the value v w.r.t. the value interactions within

feature F. For example, δ(·) may be a function of deviations of value frequencies from

the mode frequency or value similarities, etc.

• η(·, ·) captures the outlying behaviors of the value v w.r.t. interactions with the values

in the rest of the features in F . For example, η(·, ·) may be a function of value co-

occurrence frequency, conditional probabilities or other value correlation quantization

methods.

With the value couplings of all feature values, a value graph can be built to present

their relationship.

Definition 8.2 (Value Graph). The value graph G is defined as G =< V,A, g(δ(·), η(·, ·)) >,

where a value v ∈ V represents a node, the entry of the weighted adjacency matrix A(v, v′)

(i.e., edge weight) is determined by function g(·, ·), which is a joint function of δ(v) and

η(v, v′), ∀v, v′ ∈ V.

The graph G can be an undirected or directed graph depending on how the edge weight

is defined.

One major benefit of mapping the value couplings to the value graph is that we

can utilize the value graph properties (e.g., ego-network, shortest path, node centrality,

or random walk distance [26]) to infer deeper value interactions and to further explore

feature interactions by building the following feature graph.

8.2.2 Feature Graph Construction

The feature couplings are derived from the value couplings to capture the value-to-feature

interactions.
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Definition 8.3 (Feature Coupling). The couplings within a feature F are described as a

three-dimensional tuple FC = (dom(F), δ∗(·), η∗(·, ·)), where

• dom(F) is the domain of the feature F, which consists of a finite set of possible feature

values contained in F.

• δ∗(·) computes the outlying degree of F based on its value outlierness δ(·). For exam-

ple, δ∗(F) may be a linear or non-linear function for combining all δ(v), ∀v ∈ dom(F).

• η∗(·, ·) captures the outlying degree of F w.r.t. its value interactions with other fea-

tures in F . Specifically, given ∀F′ ∈ F \ F, η∗(F,F′) may be a linear or non-linear

function for incorporating η(v, v′) for ∀v ∈ dom(F) and ∀v′ ∈ dom(F′).

These couplings are then mapped into a feature graph G∗.

Definition 8.4 (Feature Graph). The feature graph G∗ is defined as G =< F ,A∗,
h(δ∗(·), η∗(·, ·)) >, where a feature F ∈ F represents a node and the entry of the weighted

adjacency matrix A∗(F,F′) is determined by h(·, ·), a function combining δ∗(F) and η∗(F,F′)

for ∀F,F′ ∈ F .

With the feature graph, existing graph mining algorithms and theories (e.g., dense

subgraph discovery, graph partition and frequent graph pattern mining [26]) can then be

applied to identify the most relevant feature subset for outlier detection. As presented

in Section 8.3, by utilizing dense subgraph discovery theories, the CUFS instance can

efficiently retain a 2-approximation feature subset.

8.2.3 Feature Subset Selection

Our goal here is to find a feature subset, i.e., a subgraph of the feature graph, which

reserves feature nodes with high outlierness while at the same time reduces redundancy

between the reserved features.

The feature subset search contains two major ingredients: search strategy and objective

function (i.e., subset evaluation criteria) [79]. Typical search strategies include complete

search, sequential forward or backward search, and random search. Complete search can

obtain an optimal feature subset, but its runtime is prohibitive for high-dimensional data.

Sequential search and random search are heuristic and result in a suboptimal subset, but

they are more practical than complete search as they have much better efficiency.

A generic objective function for this context is:

arg max
S

J(S), (8.1)

where J(·) is a function evaluating the outlierness in the feature subset S, which needs to

be specified based on the chosen search strategy.

As illustrated in Figure 8.2, we may need to iteratively update the value graph and

feature graph during the subset searching, e.g., when adding or removing features in

sequential search, before obtaining an optimal subset.
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8.3 A CUFS Instance: DSFS

The CUFS framework can be instantiated by first specifying the three functions δ, η and

g for constructing the value graph and the other three functions δ∗, η∗ and h for building

the feature graph. A subset search strategy can then be formed by utilizing the graph

properties of the feature graph to identify the desired feature subset.

We illustrate the instantiation of CUFS by identifying the dense subgraph of the

feature graph, i.e., DSFS. DSFS uses the recursive backward elimination search with the

subgraph density as the objective function.

8.3.1 Specifying Functions δ, η and g for the Value Graph

Per the definition of outliers, the frequencies of values are closely related to the degree

of outlierness. Hence, the outlierness of feature values is dependent on its intra-feature

frequency distribution and inter-feature value co-occurrence frequencies. Motivated by

this, we specify the intra- and inter-feature value outlierness in terms of frequency deviation

and confidence values.

Definition 8.5 (Intra-feature Value Outlierness δ). The intra-feature outlierness δ(v) of

a feature value v ∈ dom(F) is defined as the extent to which its frequency deviates from

the frequency of the mode:

δ(v) =
freq(m)− freq(v) + ε

freq(m)
, (8.2)

where m is the mode of the feature F, freq(·) is a frequency counting function and ε = 1
N .

In Equation (8.2), the mode frequency is used as a benchmark, and the more the

frequency of a feature value deviates from the mode frequency, the more outlying the value

is. We use ε = 1
N to estimate the outlierness of the mode, which is proportional to the

data size. δ(·) makes the outlierness of values from different frequency distributions more

comparable, which differs from many existing studies [7, 57, 108] in which the outlierness

of each pattern is measured without considering its associated frequency distributions.

Definition 8.6 (Inter-feature Value Outlierness η). The inter-feature outlierness η(v, v′)

of a value v ∈ dom(F) and another value v′ ∈ dom(F′) is defined as follows:

η(v, v′) = δ(v)conf (v, v′)δ(v′), (8.3)

where conf (v, v′) = freq(v,v′)
freq(v′) .

η(v, v′) models a simple outlierness diffusion effect. That is, a value has high outlierness

if it has a strong correlation with outlying values. For example, a person experiencing

both weight loss and frequent urination is more suspected of having health problems than

someone who has the symptoms of weight loss and normal urination, assuming weight loss

and frequent urination are outlying symptoms.
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Definition 8.7 (Edge Weighting Function g for Value Graph G). The edge weight of the

value graph G, i.e., the entry (v, v′) of the weight matrix A, is defined as follows:

A(v, v′) = g(v, v′) =

δ(v), v = v′

η(v, v′), otherwise
. (8.4)

We have δ(·) ∈ (0, 1) and η(·, ·) ∈ [0, 1) according to Equations (8.2) and (8.3), and

thus g(·, ·) ∈ [0, 1). That is, the edge weight would be zero iff two distinctive nodes v and

v′ have no association.

Note that although the two cases in Equation (8.4) are in slightly different ranges,

they are used independently in the next section to avoid incomparable issues. We also

discuss in Section 8.4 how this function helps to distinguish noisy features from relevant

features.

Overall, the value graph G has the following properties.

i. G is a directed graph with self loops, as there exists A(v, v′) 6= A(v′, v) and A(v, v) 6=
0.

ii. Its adjacency matrix A is a value outlierness matrix, representing the outlying degree

of individual values and pairs of distinctive values. The larger a matrix entry is, the

higher the outlierness is.

8.3.2 Specifying Functions δ∗, η∗ and h for the Feature Graph

For simplicity and the consideration of common scenarios, we assume that the intra-

feature and inter-feature value outlierness measures are linearly dependent. Accordingly,

we estimate the intra- and inter-feature outlierness of a feature and their integration for

feature-level outlierness by simply summing its associated δ and η values.

Definition 8.8 (Intra-feature Outlierness δ∗). The intra-feature outlierness of a feature

F ∈ F is specified below:

δ∗(F) =
∑

v∈dom(F)

δ(v). (8.5)

Definition 8.9 (Inter-feature Outlierness η∗). The inter-feature outlierness of a feature

F w.r.t. feature F′ is quantified as:

η∗(F,F′) =
∑

v∈dom(F),v′∈dom(F′)

η(v, v′). (8.6)

Similar to g, we specify the function h using intra-feature outlierness as diagonal

entries and inter-feature outlierness as off-diagonal entries in the weight matrix A∗.

Definition 8.10 (Edge Weighting Function h for Feature Graph G∗). The edge weight

A∗(F,F′) of the feature graph G∗, i.e., the entry (F,F′) of A∗, is measured as:

A∗(F,F′) = h(F,F′) =

δ∗(F), F = F′

η∗(F,F′), otherwise
. (8.7)
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Note that, to make the entries in A∗ comparable, δ∗ and η∗ are normalized into the

same range [0, 1] for further use in feature subset searching.

The feature graph G∗ has the following key properties.

i. G∗ is a complete graph with self loops, as δ∗(·) > 0 and η∗(·, ·) > 0.

ii. G∗ is an undirected graph, as we always have A∗(F,F′) = A∗(F′,F) for ∀F′,F ∈ F .

iii. Its adjacency matrix A∗ is a feature outlierness matrix, representing the outlying

degree of features and their combinations. Larger values in A∗ indicate higher out-

lierness.

iv. The total edge weight of a feature node F is large if both of its intra- and inter-feature

outlierness are high.

8.3.3 The Search Strategy

Our target is to find a subset of features with the highest relevance to outlier detection,

i.e., with the highest outlierness. A feature has high outlierness if it has large edge weights

in the feature graph G∗, according to the properties (3) and (4) of G∗. However, simply

selecting the top-ranked k features does not necessarily obtain the best feature subset,

since the outlierness of a feature also depends on its coupled features. This distinguishes

our design from existing methods that overlook feature interactions.

Motivated by the max-relevance idea in [99], the following max-relevance objective

function is designed to search for the most relevant feature subset S:

arg max
S

1

|S|
∑
F∈S

∑
F′∈S

A∗(F,F′). (8.8)

In other words, we specify J(·) in Equation (8.1) as J(S) = 1
|S|
∑

F∈S
∑

F′∈S A∗(F,F′).

Searching the exact S is computationally intractable for high dimensional data, as the

search space is 2D. A heuristic sequential search strategy, namely Recursive Backward

Elimination (RBE), is used to search for an approximately best subset. RBE conducts an

iterative search as shown in Algorithm 8.1. In the next section, we prove that the resultant

subset is a 2-approximation to the optimum.

Algorithm 8.1 RBE (F)

Input: F - full feature set
Output: S - the feature subset selected

1: while |F| > 0 do
2: for F ∈ F do
3: Compute J(F \ F)
4: end for
5: Remove the feature F that results in the largest J(F \ F)
6: end while
7: return Return the subset with the largest J(·) as S
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8.3.4 The Algorithm and Its Time Complexity

Algorithm 8.2 presents the procedures of the proposed instantiation DSFS. Steps (1-7) and

(8-13) construct the value graph G and the feature graph G∗, respectively. Steps (14-19)

obtain the feature subset S. As proved in Lemma 8.0.2, Steps (16-17) are equivalent to

Steps (2-5) in RBE in Algorithm 8.1.

DSFS requires only one database scan to compute the intra- and inter-feature value

outlierness in Steps (1-7), and thus has O(N). DSFS has O(D2), as inner loops are

required in order to generate the adjacency matrices of the value graph and the feature

graph. However, the computation within the inner loop, i.e., Steps (5) and (11), is a very

simple multiplication and value assignment, enabling it to complete the execution quickly

in high dimensional data. Hence, DSFS has good scalability w.r.t. data size and the

number of features.

Algorithm 8.2 DSFS (X )

Input: X - data objects
Output: S - the feature subset selected

1: Initialize A as a |V | × |V | matrix
2: for F ∈ F do
3: Compute δ(v) for each v ∈ dom(F)
4: for F′ ∈ F do
5: A(v, v′)← g(v, v′), ∀v′ ∈ dom(F′)
6: end for
7: end for
8: Initialize A∗ as a |D| × |D| matrix
9: for F ∈ F do

10: for F′ ∈ F do
11: A∗(F,F′)← h(F,F′)
12: end for
13: end for
14: Set S ← F and s← den(A∗)
15: for i = 1 to D do
16: Find F that has the smallest weighted degree in A∗

17: F ← F \ F and update A∗

18: S ← F and s← den(A∗) if s ≤ den(A∗)
19: end for
20: return S

8.4 Theoretical Analysis

Theoretical analysis is provided for DSFS in the first subsection and we then discuss why

DSFS can handle noisy and redundant features in the remaining two subsections.

Approximation

Following the definition of subgraph density for unweighted graphs in [28, 65], we define

the subgraph density for weighted graphs by replacing the total number of edges with the
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total weight defined in our graph.

Definition 8.11 (Subgraph Density). The density of an undirected weighted subgraph S
is its average weighted degree:

den(S) =
vol(S)

|S|
, (8.9)

where vol(S) =
∑

F∈S
∑

F′∈S A∗(F,F′)
2 is the volume of S.

With Equations (8.8) and (8.9), we have the following lemma.

Lemma 8.0.1 (Equivalence to the Densest Subgraph Discovery). Equation (8.8) is equiv-

alent to calculating the maximum of den(S), i.e., the densest subgraph of the feature graph

G∗.

Proof. It is easy to see that Equation (8.8) is equivalent to maximizing 2den(S), and thus

the densest subgraph of G∗ is the exact solution S to Equation (8.8).

We show below that the RBE search with quadratic time complexity can be simplified

to an equivalent procedure with linear time complexity. Following theorems of dense

subgraph discovery in unweighted graphs [28, 65], we further prove that the RBE search

on the weighted graph G∗ achieves a feature subset with a 2-approximation to the optimum.

Lemma 8.0.2 (Search Strategy Equivalence). Steps (2-5) of RBE in Algorithm 8.1 are

equivalent to the removal of the feature node F with the smallest weighted degree.

Proof. If the feature node F has the smallest weighted degree,
∑

F′∈F\F
∑

F′′∈F\F A∗(F′,F′′)

is the largest in the current iteration. Since 1
|F\F′| is the same ∀F′ ∈ F , the removal of F

results in the largest J(·).

Instead of recursively computing J(·) for each feature in each iteration, we therefore

remove the feature node with the smallest weighted degree to achieve the same result,

which avoids the inner loop and has linear time complexity.

Theorem 8.1 (2-Approximation). The feature subset S created by the RBE search is a

2-approximation to the optimal subset.

Proof. Let Sopt be the set of feature nodes in the densest subgraph. According to Lemma

8.0.1, below we show den(S) ≥ den(Sopt)
2 to prove the theorem.

Since Sopt forms the densest subgraph, we have

den(Sopt) =
vol(Sopt)
|Sopt|

≥ vol(Sopt)− d(F)

|Sopt| − 1
, ∀F ∈ Sopt,

where d(F) =
∑

F′∈Sopt A∗(F,F′) denotes the weighted degree of a feature node. After

some replacements, we have d(F) ≥ den(Sopt), ∀F ∈ Sopt, i.e., every node in Sopt has a

weighted degree of at least den(Sopt).
Let Ti be the set of feature nodes left after the i-th node is removed. Considering the

iteration of RBE, let Tj be the set of remaining nodes when the first node F contained in
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the optimal subset Sopt is removed, so Tj−1 is the set of remaining nodes before node F is

removed, which indicates that d(F′) ≥ den(Sopt), ∀F′ ∈ Tj−1, according to Lemma 8.0.2.

Since G∗ is a complete graph, we have

2vol(Tj−1) ≥ den(Sopt)|Tj−1|.

We then have

den(Tj−1) =
vol(Tj−1)

|Tj−1|
≥ den(Sopt)

2
.

Since RBE returns the feature subset S with the largest subgraph density over all

iterations and Tj−1 is one of the feature subset candidates, den(S) has at least
den(Sopt)

2 .

Handling Noisy Features

According to Equation (8.4), a value node has high outlierness if δ and η are high. Given

a noisy feature value that occurs infrequently but is contained by normal objects, since it

has low frequency, its intra-feature value outlierness δ is high. However, since these noisy

values tend to be more frequent or only contained by normal objects, they are presumed

to have stronger couplings with normal values versus weak/no couplings with outlying

values. On the other hand, truly outlying values have high outlierness in terms of both

δ and η, because the frequency is low and the couplings with other outlying values are

strong, and thus the overall value outlierness is often much higher than that of noisy

feature values. Since the intra- and inter-feature outlierness is linearly correlated to intra-

and inter-feature value outlierness respectively, the intra- and inter-feature outlierness of

outlying features is also higher than that of noisy features. As a result, the noisy features

are removed during the iterative procedure in RBE, while the relevant features are reserved

in order to maximize J(·).

Handling Redundant Features

Redundant features refer to features that are weakly relevant when evaluating the features

individually while having very limited or no capability for outlier detection when they are

combined with strongly relevant features [67]. In other words, redundant features have

quite high intra-feature outlierness, but their inter-feature outlierness is low. This results

in a low overall feature outlierness, and consequently these features are not retained in S
since all the features in S have high outlierness.

8.5 Experiments and Evaluation

8.5.1 Data Sets

Fifteen publicly available real-world data sets are used, which cover diverse domains,

e.g., intrusion detection, image object recognition, advertising and marketing, population

and ecological informatics, as shown in Table 8.1. The two data sets, Probe and U2R,

are derived from the KDDCUP99 data sets which integrates multiple types of probing
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and user-to-root attacks as outliers; we transform two balanced classification data sets,

Mushroom and Optdigits with classes ‘1’ and ‘7’, by the downsampling method described

in Section 2.3.1. The other 11 data sets are directly transformed from highly imbalanced

data using the rare class conversion method.

8.5.2 Baselines and Settings

We first evaluate the feature selection method DSFS by examining its capability to improve

the effectiveness and efficiency of unsupervised outlier detectors. Three different types

of representative pattern-based outlier detection methods, MarP [34], CompreX [7] and

FPOF [57], are compared. MarP and CompreX are parameter-free. Following [57], FPOF

is set with the minimum support threshold supp = 0.1 and the maximum pattern length

l = 5.

We further compare DSFS with the entropy-based feature weighting method (denoted

by ENFW) [121] for outlier detection using the above three detectors. Feature weighting

methods only assign relevance weights to features and require a decision threshold to select

a feature subset. To have a fair comparison, the top-ranked D′ features are selected, where

D′ is the number of features in the feature subset selected by DSFS.

The scalability of DSFS w.r.t. data size and the number of features is evaluated on six

subsets of the two UCI data sets LINK and AD, which have the largest number of objects

and features in our data sets. For LINK, the smallest subset contains 1,000 objects, and

subsequent subsets are increased by a factor of four until the largest subset which contains

1,024,000 objects. For AD, the data with the smallest feature subset contains 40 features,

and subsequent subsets are increased by a factor of two, until the largest feature subset

which contains 1,280 features.

DSFS, ENFW, FPOF and MarP are implemented in JAVA in WEKA [52]. CompreX

is obtained from the authors of [7] in MATLAB. All the experiments are performed at a

node in a 3.4GHz Phoenix Cluster with 32GB memory.

8.5.3 Feature Reduction Rate

We record the number of selected features by DSFS, D′, and the reduction rate, RED.

The reduction rate is defined as the rate of the reduced number of features in the feature

subset selected by DSFS to that in the full feature set, which is shown in the last column

in Table 8.1. The results show that DSFS leads to a significant reduction rate, ranging

from 13% up to 97% across the 15 data sets. On average, DSFS obtains 48% reduction

rate.

The two data indicators κfnl and κrdn demonstrate that nearly all data sets have a

large proportion of noisy or redundant features. These noisy and redundant features make

the three types of pattern-based outlier detectors less effective and efficient. We show in

the next section that proper feature selection is essential to enable the detectors to handle

the data complexities.
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8.5.4 Performance of Different Subsequent Outlier Detectors

The AUC performance and runtime of the three detectors: MarP, CompreX and FPOF

compared with their editions by incorporating DSFS: MarP∗, CompreX∗ and FPOF∗ are

presented in Table 8.31. On average, MarP∗, CompreX∗ and FPOF∗ obtain 6%, 4% and

3% AUC improvements respectively while they only use 52% of the features compared to

their counterparts. In particular, the maximal improvement that MarP∗ achieves is 42%

on aPascal, CompreX∗ achieves 33% on aPascal, and FPOF∗ gains 18% on Census. It is

interesting to see that less improvement is made on UCI data sets, which is understandable

as the UCI data sets tend to be highly manipulated and simpler.

Table 8.1: Feature Selection Results on Data Sets with Different
Characteristics. The data sets are sorted by κfnl. The middle
horizontal line roughly separates data sets with many noisy fea-
tures (i.e., κfnl > 35%) from the other data sets. RED = D−D′

D
(%) denotes the reduction rate by DSFS.

Data Acronym κfnl κrdn N D D′ RED

BankMarketing BM 90% 0% 41188 10 4 60%
aPascal - 81% 0% 12695 64 20 69%
Sylva - 78% 0% 14395 87 66 24%
Census - 58% 0% 299285 33 10 70%
CelebA - 49% 4% 202599 39 34 13%
CMC - 38% 4% 1473 8 5 38%

CoverType CT 34% 22% 581012 44 5 89%
Chess - 33% 0% 28056 6 4 33%
U2R - 17% 7% 60821 6 3 50%
SolarFlare SF 9% 0% 1066 11 8 27%
Optdigits DIGIT 8% 26% 601 64 46 28%
Mushroom MRM 5% 2% 4429 22 13 41%
Advertisements AD 5% 78% 3279 1555 49 97%
Probe - 0% 7% 64759 6 2 67%
Linkage LINK 0% 0% 5749132 5 4 20%

Avg. 34% 10% 470986 131 18 48%

With regard to efficiency, MarP∗, CompreX∗ and FPOF∗ run orders of magnitude

faster than their counterparts as they work on the highly reduced feature subsets. For

example, FPOF∗ runs six orders of magnitude faster than FPOF on CT. DSFS enables

CompreX and FPOF to perform outlier detection on high dimensional data, such as Sylva

with 87 features and AD with 1555 features, where these detectors are otherwise pro-

hibitive in terms of runtime and/or space requirements.

A more straightforward benefit is that the simplest detector MarP empowered by DSFS

can obtain the AUC performance that is the same as, or very competitive with, that of the

two other complex detectors CompreX and FPOF, while at the same time saving several

orders of magnitude in runtime. In other words, only simple detectors are needed to obtain

the desired efficacy with the premise of DSFS.

Next two subsections further explore the performance of these three detectors in data

sets with many noisy or redundant features, respectively.

1All runtime refers to the runtime of the detectors only, excluding that of DSFS, but our empirical
results show that the runtime of DSFS is within one second in most data sets which is almost negligible
in practice.
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Table 8.2: AUC Performance of the Three Detectors with or without DSFS. The three
baseline detectors are MarP, CompreX and FPOF. Their editions using DSFS are
MarP∗, CompreX∗ and FPOF∗, respectively. IMP indicates the AUC improvement of
the detectors combined with DSFS. ‘◦’ indicates out-of-memory exceptions. ‘•’ indicates
that we cannot obtain the results within four weeks, i.e., 2,419,200 seconds.

Data MarP MarP∗ IMP CompreX CompreX∗ IMP FPOF FPOF∗ IMP

BM 0.56 0.59 5% 0.63 0.62 -2% 0.55 0.58 5%
aPascal 0.62 0.88 42% 0.66 0.88 33% ◦ 0.88 ◦
Sylva 0.96 0.96 0% 0.95 0.96 1% ◦ ◦ ◦
Census 0.59 0.69 17% 0.64 0.71 11% 0.61 0.72 18%
CelebA 0.74 0.74 0% 0.76 0.76 0% 0.74 0.75 1%
CMC 0.54 0.66 22% 0.57 0.66 16% 0.56 0.65 16%

CT 0.98 0.97 -1% 0.98 0.97 -1% 0.98 0.97 -1%
Chess 0.64 0.64 0% 0.64 0.63 -2% 0.62 0.61 -2%
U2R 0.88 0.92 5% 0.99 0.99 0% 0.92 0.97 5%
SF 0.84 0.85 1% 0.85 0.86 1% 0.86 0.86 0%
DIGIT 0.95 0.95 0% 0.97 0.97 0% 0.96 0.94 -2%
MRM 0.89 0.89 0% 0.93 0.94 1% 0.91 0.91 0%
AD 0.70 0.74 6% • 0.75 • ◦ 0.74 ◦
Probe 0.98 0.98 0% 0.98 0.98 0% 0.99 0.98 -1%
LINK 1.00 1.00 0% 1.00 1.00 0% 1.00 1.00 0%

Avg. 6% 4% 3%

Table 8.3: Runtime of the Three Detectors with or without DSFS. Three baseline detec-
tors are MarP, CompreX and FPOF. Their editions using DSFS are MarP∗, CompreX∗

and FPOF∗, respectively. SU indicates the runtime speedup of the detectors combined
with DSFS.

Data MarP MarP∗ SU CompreX CompreX∗ SU FPOF FPOF∗ SU

BM 0.17 0.15 1 212.46 170.43 1 0.85 0.57 1
aPascal 0.31 0.12 3 451.36 41.00 11 ◦ 53.29 ◦
Sylva 0.21 0.20 1 1137.07 498.59 2 ◦ ◦ ◦
Census 1.62 0.51 3 18174.49 12878.14 1 30790.78 75.23 409
CelebA 0.89 0.82 1 1647.47 1169.27 1 159377.51 50188.65 3
CMC 0.14 0.01 11 5.14 2.42 2 0.10 0.06 2

CT 3.14 0.36 9 3914.33 341.98 11 410016.55 1.09 377547
Chess 0.12 0.08 1 95.35 49.30 2 0.42 0.18 2
U2R 0.28 0.13 2 318.95 255.28 1 0.39 0.22 2
SF 0.02 0.01 1 6.33 4.40 1 0.39 0.09 4
DIGIT 0.04 0.03 1 217.10 111.51 2 10196.85 31.99 319
MRM 0.07 0.07 1 48.72 32.18 2 19.32 2.70 7
AD 0.85 0.10 9 • 126.35 • ◦ 54088.52 ◦
Probe 0.28 0.11 3 576.08 456.00 1 0.47 0.20 2
LINK 2.74 2.27 1 6365.26 5203.67 1 23.56 17.93 1

Avg. 3 3 31525

Substantially Enhancing both AUC and Runtime on Data Sets with High

Feature Noise Level

In data with many noisy features, e.g., BM (90% w.r.t. κfnl), aPascal (81%), Sylva (78%),

Census (58%), CelebA (49%) and CMC (38%) (see Table 8.1), on average, DSFS removes

45% features and enables MarP, CompreX and FPOF to respectively obtain 14%, 10%

and 10% AUC improvements as shown in Table 8.3, compared to their counterparts. This

is because DSFS successfully removes many noisy features from these highly noisy data,

and enables pattern-based detectors to work on much cleaner data, and thus perform more

effectively.

In other data sets (e.g., Sylva and CelebA) where feature reduction rates are smaller,

resulting in a number of noisy features retained in the selected feature subset, it is very
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difficult to separate them from the relevant features. As a result, the detectors make

very limited, or none, AUC improvements. This shows that such tough noisy features

are deeply mixed with the outlier-discriminative features, and generate higher outlierness

than truly outlying features. In these cases, it is too difficult for DSFS to distinguish them

from outlying features.

In addition to the AUC improvement, the DSFS-enabled detectors can also have a

significant speedup due to the significant feature reduction rate, e.g., FPOF runs 409

times slower than FPOF∗ on Census.

Achieving a Substantial Speedup on Data Sets with High Feature Redundancy

In data sets with a high feature redundancy level, e.g., CT (22% w.r.t. κrdn) and AD

(78% w.r.t. κrdn), DSFS generates very aggressive feature reduction, removing 89% and

97% features, respectively. Although this massive feature reduction might result in little

loss in terms of AUC, e.g., 1% on CT, the outlier detectors can obtain up to six orders of

magnitude speedup by working on a substantially smaller feature set, e.g., FPOF on CT

and CompreX on AD. On the other hand, MarP using DSFS obtains 6% AUC improvement

on AD even if it works on the data with only 3% original features left.

For data sets such as U2R, SF, MRM, Probe and LINK, the reduction rates are more

than the sum of κfnl and κrdn. It should be noted that we only have a conservative

estimation of κfnl and κrdn, so the true feature noise and redundancy levels might be

much higher than the estimated values. This explains why the three detectors empowered

by DSFS can still perform equally well or very competitively on these data sets, compared

to their counterparts not using DSFS.

8.5.5 Comparison to Feature Weighting-based Contenders

A comparison between two feature selection methods ENFW and DSFS via the perfor-

mance of the three detectors on data with selected feature sets is shown in Table 8.4.

On average, MarP, CompreX and FPOF using DSFS obtain 24%, 25% and 24% AUC

improvements, compared to MarP, CompreX and FPOF using ENFW, respectively. Im-

pressively, the maximal improvement that the DSFS-empowered MarP gains is 91% on

aPascal, the DSFS-empowered CompreX makes 94% on CT, and the DSFS-empowered

FPOF achieves 91% on aPascal, compared to their ENFW-empowered counterparts.

We further explore the power of DSFS on noisy data. As shown in 8.4, DSFS generally

performs much better than ENFW on almost all data sets that contain noisy features.

This is mainly because ENFW evaluates features independently and wrongly takes noisy

features as relevant features. However, DSFS estimates the outlierness of features based on

the intra- and inter-feature couplings embedded within/between features, thus can much

better filter out noisy features than ENFW.

The exceptional cases are on CelebA and Chess, where DSFS and ENFW perform

equally well. This is because both DSFS and ENFW cannot remove a sufficient number

of noisy features, and as a result the three detectors not using DSFS and ENFW obtain

equally good performance as their counterparts using either DSFS or ENFW. This also
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Table 8.4: AUC Performance Comparison of the Three Detectors Using
ENFW and DSFS respectively. IMP denotes the improvement of DSFS
over ENFW.

MarP CompreX FPOF

Data ENFW DSFS IMP ENFW DSFS IMP ENFW DSFS IMP
BM 0.53 0.59 11% 0.56 0.62 11% 0.53 0.58 9%
aPascal 0.46 0.88 91% 0.46 0.88 91% 0.46 0.88 91%
Sylva 0.82 0.96 17% 0.82 0.96 17% ◦ ◦ ◦
Census 0.43 0.69 60% 0.43 0.71 65% 0.46 0.72 57%
CelebA 0.74 0.74 0% 0.76 0.76 0% 0.75 0.75 0%
CMC 0.50 0.66 32% 0.52 0.66 27% 0.51 0.65 27%

CT 0.51 0.97 90% 0.50 0.97 94% 0.51 0.97 90%
Chess 0.64 0.64 0% 0.63 0.63 0% 0.61 0.61 0%
U2R 0.86 0.92 7% 0.83 0.99 19% 0.86 0.97 13%
SF 0.81 0.85 5% 0.82 0.86 5% 0.83 0.86 4%
DIGIT 0.93 0.95 2% 0.95 0.97 2% 0.93 0.94 1%
MRM 0.89 0.89 0% 0.93 0.94 1% 0.90 0.91 1%
AD 0.56 0.74 32% 0.56 0.75 34% 0.56 0.74 32%
Probe 0.93 0.98 5% 0.88 0.98 11% 0.93 0.98 5%
LINK 1.00 1.00 0% 1.00 1.00 0% 1.00 1.00 0%

Avg 24% 25% 24%

shows the challenge of identifying intrinsic characteristics and sophisticated interactions

between features for outlier detection.
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Figure 8.3: Scale-up Test Results of DSFS against ENFW w.r.t. Data Size and the Number of
Features.

8.5.6 Scalability Test

The scalability test results of DSFS against ENFW as a baseline are illustrated in Figure

8.3. As expected, DSFS has linear time complexity with respect to data size and is

quadratic to the number of features. Although DSFS runs slower than ENFW, it still has

quite good scalability with respect to both data size and the number of features, given that

DSFS completes its execution within one second for the largest data set with 1,024,000

objects and less than 20 seconds for the high-dimensional data with 1,028 features.



CHAPTER 8. COUPLINGS OF FEATURE-LEVEL OUTLIER FACTORS 118

8.6 Summary

This chapter introduces a novel and flexible unsupervised feature selection framework

for outlier detection (CUFS). Unlike existing feature selection and unsupervised outlier

detection, CUFS effectively captures the low-level hierarchical interactions embedded in

relevant features which are mixed with noisy and redundant features. We further intro-

duce a parameter-free instantiation (DSFS) of the CUFS framework. DSFS combines the

advantage of CUFS with graph-based strategies. We prove that the feature subset selected

by DSFS achieves a 2-approximation to the optimum.

Our extensive evaluation results show that, on average, (i) DSFS obtains 48% feature

reduction rate on 15 real-world data sets with different levels of noisy features and redun-

dant features, and (ii) DSFS enables three different types of pattern-based outlier detectors

(i.e., MarP, CompreX and FPOF) to respectively obtain 6%, 4% and 3% AUC improve-

ments compared to their counterparts not using DSFS. On data sets with a high noise level,

in particular, DSFS is able to remove a large proportion of noisy features, resulting in more

than 10% improvement for all three detectors. Moreover, by working on data sets with

significantly smaller feature subsets, CompreX and FPOF, which have at least quadratic

time complexity w.r.t. the number of features, perform orders of magnitude faster than

on the original full feature set. Compared to its feature selection contender ENFW, DSFS

performs substantially better on most data sets with noisy features. On average, all three

DSFS-based detectors obtain more than 20% AUC improvements compared to ENFW.

This work showcases the applicability of leveraging value-level coupled outlier factors

to infer the feature-level coupled outlier factors. One main implication here is that the

value-level coupled outlier factors explored in Chapters 4, 5, 6, and 7 may provide im-

portant hints for designing methods to capture the rich couplings of outlier factors at the

feature/object level.



Chapter 9

Sequential Couplings of

Object-level Outlier Factors

9.1 Introduction

The previous chapters focus on exploiting the interdependence of value/feature outlierness

based on pairwise or high-order outlierness influence in a graph representation of the

data. In this chapter, we work on a very different type of couplings to extend the scope

of this thesis. Particularly, we are interested in exploring a sequential coupling of the

outlierness at the data object level to successively refine the outlierness scoring results,

and demonstrate its importance in the problem of high-dimensional outlier detection.

The major challenge in high-dimensional outlier detection is due to the curse of di-

mensionality [128]. Therefore, most existing high-dimensional outlier detection solutions

are based on subspace/feature selection methods, which search for relevant feature sub-

set(s) to apply off-the-shelf outlier detection methods on these relevant feature subset(s)

to alleviate the dimensionality curse or bias brought by irrelevant features. However, we

often do not have supervision information to guide the feature subset search, and thus, it

is very difficult to identify the truly relevant feature subset(s) in a single pass, leading to

inaccurate outlierness scoring of data objects in the identified feature subset(s).

To address this issue, we leverage a sequential collection of models to successively

refine the outlierness scoring of the objects. As shown in Figure 9.1, we use the outlierness

obtained by a scoring function φ in Step t−1 to guide the feature selection in Step t, which

enables us to select a feature subset S that is specifically optimal to the φ scoring function,

and thus, we expect to obtain improved outlierness scoring results when performing φ on

the subset S that is tailored for it. The improved outlierness scoring results in Step t in

turn refine the feature selection in Step t + 1. This mutual refinement results in more

effective high-dimensional outlier detection.

We introduce a novel SparsE Modeling-based Sequential Ensemble learning (SEMSE )

framework based on the this idea, which is focused on outlier detection in high-dimensional

numeric data. Specifically, SEMSE first uses a given outlier scoring method to compute

the outlier scores of data objects, and defines an outlier thresholding function to identify a

set of outlier candidates. SEMSE then performs sparse regression on the outlier candidate

119
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Figure 9.1: Sequential Couplings of Object-level Outlier Factors. φS denotes the outlierness scoring
performed on the feature subset S. Therefore, the sequential couplings indicate that the feature
subset St is successively determined by the outlierness scoring function φ on the feature subset
St−1, which helps iteratively enhance the feature subset selection for the φ function.

set by treating the outlier scores as a target feature and the original features as predictors

to select the most relevant features w.r.t. the outlier scores. This process is referred to

as fragmentary sparse modeling to highlight that the sparse regression is built on a small

data subset (i.e., the outlier candidate set) rather than the full data set. SEMSE finally

applies the same given outlier detector to the data with the selected features to produce

a refined outlier scoring. These three steps are iteratively performed to produce a set of

outlier scores until the loss function of the sparse regression does not decrease.

Essentially, this learning procedure integrates the two correlated tasks: feature selec-

tion and outlier detection, and obtains a set of sequentially coupled outlier detection (or

outlying feature selection) models which are commonly known as sequential ensemble [43].

This enables SEMSE to produce feature subsets that are tailored for the outlier scoring

method. A single sequential ensemble may perform unstably in data sets with many noisy

features. We therefore have a boostrap aggregating (i.e., bagging) [19] of the sequential

ensembles (i.e., an ensemble of sequential ensembles) to further enhance its capability and

stability.

We further implement SEMSE by defining a Cantelli ’s INequality-based Fragmentary

lassO, termed CINFO, to build the sequential ensembles. Specifically, CINFO first de-

fines a Cantelli ’s inequality [38] based outlier thresholding function to select the outlier

candidates, and further applies lasso-based fragmentary sparse regression on the outlier

candidate set to obtain the relevant feature subset. Two diverse subsampling-based outlier

scoring methods, namely LeSiNN [92] and iForest [77] that respectively work on the full

space and random subspaces of the input data, are respectively used to obtain the outlier

scores to demonstrate the flexibility of SEMSE.

Unlike the well-established ensemble methods for clustering and classification, outlier

ensemble learning has attracted wide attention only in recent years [3, 127]. Most existing

outlier ensembles [73, 77, 92, 111] are in the parallel ensemble learning paradigm that

constructs a set of independent base models. In contrast, sequential ensembles construct

dependent base models by using the results of the current base model to refine the next one.
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It is very difficult to construct sequential ensembles for outlier detection as class labels are

often assumed to be unavailable. As far as we know, the method called CARE in [103] is

the only work of this kind, which intends to reduce the masking and swamping effects [51]

by iteratively removing potential outliers to refine the base models. This does not help in

addressing the aforementioned issues in high-dimensional space. SEMSE is fundamentally

different from CARE, as we explore how to iteratively eliminate noisy features to mutually

refine feature selection and outlier scoring.

Accordingly, this chapter makes two main contributions:

i. We introduce a novel sequential ensemble learning framework SEMSE for identifying

outliers in high-dimensional numeric data. SEMSE defines a recurrent fragmentary

sparse modeling process to build the sequential ensembles, in which feature selec-

tion and outlier scoring are iteratively and mutually refined. It results in more

reliable outlier scores on data with many noisy features, compared to existing sub-

space/feature selection-based solutions.

ii. SEMSE is further instantiated to CINFO, a method that introduces a Cantelli ’s

inequality-based fragmentary lasso to learn the sequential ensembles. The Cantelli ’s

inequality provides a false positive upper bound for outlier thresholding with no spe-

cific probability distribution assumption on the outlier scores, which well guarantees

the refinement of feature selection and outlier scoring in the later stage of sequential

ensembles.

A series of empirical results shows that (i) the CINFO-enabled LeSiNN and iForest

perform significantly better than three state-of-the-art competitors and the bare versions

of LeSiNN and iForest on 11 real-world high-dimensional data sets; (ii) CINFO has much

better resilience to noisy features than its competitors; and (iii) CINFO has linear time

complexity w.r.t. data size and data dimensionality.

In the rest of this chapter, SEMSE is detailed in Section 9.2. CINFO is introduced

in Section 9.3, followed by a theoretical analysis in Section 9.4. Empirical results are

provided in Section 9.5. We conclude this chapter in Section 9.6.

9.2 The Proposed SEMSE Framework

The SEMSE framework builds a set of sequential ensembles to mutually refine outlier

scoring and feature selection. As shown in Figure 9.2, SEMSE works as follows. At the

t-th iteration, given a set of N data objects X={x1,x2, · · · ,xN} described by a set of D

features (i.e., xi={xi1, xi2, · · · , xiD}) and their outlier score vector yt−1 ∈ RN obtained in

the previous iteration, SEMSE first defines an outlier thresholding function ηt to yield a

set of Lt outliers Rt ∈ RLt×(D+1). Rt contains D + 1 dimensions as it concatenates the

original D dimensions and yt−1. SEMSE further treats yt−1 as the target feature and the

other D features as predictors, and applies a sparse regression model ψt on Rt to produce

a new data set St with a set of M t optimal features w.r.t. yt−1, i.e., St ∈ RN×Mt
, together

with an empirical error mset. SEMSE then uses an outlier scoring function φt on St to
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re-compute an outlier score vector yt. SEMSE repeats these recurrent steps to yield a set

of outlier score vectors until mset+1 > mset. These recurrent steps compose a sequential

ensemble model. SEMSE finally performs bagging to aggregate a set of sequential ensemble

models to obtain the final outlier scores.

Figure 9.2: Our SEMSE Framework. y contains outlier scores of all data objects. η, ψ and φ are
functions for outlier thresholding, fragmentary sparse modeling, and outlier scoring, respectively.

Essentially, SEMSE uses the pseudo target feature yt−1 to generate St with a feature

subset that is mostly correlated to the outlier scores produced by the scoring function

φt−1. Since φt works on St with the selected features that are tailored for it, SEMSE

likely obtains an enhanced score vector yt, and it can in turn yield a better feature subset

in St+1 in the next iteration. This cycle enables SEMSE to obtain more reliable outlier

scores compared to that computed on the original feature space. The sequential ensembles

help SEMSE reduce the learning bias while the final bagging stage helps reduce the learning

variance [2].

SEMSE has good generalizability since it can be instantiated to a specific sequential

ensemble method by specifying its three components η, ψ and φ. We introduce an instance

of SEMSE in the next section and then verify its performance by theoretical and empirical

analyses.

9.3 A SEMSE Instance: CINFO

CINFO instantiates SEMSE by a Cantelli ’s inequality-based outlier thresholding function

η, a lasso-based fragmentary sparse regression function ψ, and a subsampling-based out-

lier scoring function φ. After building a sequential ensemble with these three functions,

bagging is performed to obtain a set of such sequential ensembles and combine their outlier

scores to well identify high-dimensional outliers.

9.3.1 Building a Sequential Ensemble

Outlier Thresholding η with Cantelli ’s Inequality.

The outlier thresholding function η is to identify a set of most likely outliers. We define a

Cantelli ’s inequality-based η as follows, which provides an upper bound for false positives.

Definition 9.1 (Outlier Thresholding). Given an outlier score vector y ∈ RN , in which

large scores indicate high outlierness, and let µ and δ2 be its expected value and variance,
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then the outlier candidate set R is defined as follows:

R = {(xi, yi)|η(yi, a) ≥ 0}, ∀xi ∈ X , yi ∈ y, (9.1)

where η(yi, a) = yi − µ− aδ and a is user-defined.

This outlier thresholding is equivalent to selecting the outlier candidates with a false

positive upper bound of 1
1+a2

based on Cantelli ’s inequality (see our theoretical support

in the next section).

Fragmentary Sparse Modeling ψ with Lasso.

CINFO performs fragmentary sparse modeling on the data subset R ∈ RL×(D+1). R is

the newly created data set with reduced objects at the outlier thresholding stage, in which

L represents the number of data objects identified as outliers by the η function and thus

L� N . Specifically, CINFO conducts a univariate sparse regression learning as follows:

ψ(R, λ) = arg min
ω

(
1

2L

L∑
i=1

(yi − xᵀ
iω)2 + λ||ω||1

)
, (9.2)

where ω is the coefficient vector and λ is a regularization parameter. When λ is large,

solving Eqn. (9.2) obtains a shrinking solution to the least squares model, resulting in a

number of zero-coefficient features that are not correlated to the outlier score y. We then

obtain another newly created data set S ∈ RN×M with reduced features (i.e., M < D):

S = {x.i|ωi 6= 0, 1 ≤ i ≤ D}, (9.3)

The parameter λ is critical to the performance of lasso. Inappropriate λ will lead to

overfitting or underfitting. To address this issue, we use 10-fold cross validation on R to

choose the best λ that minimizes the mean square error mse.

CINFO performs fragmentary sparse modeling for two major reasons. (i) Restricting

the sparse modeling only on the outlier candidate set R enables CINFO to select features

that are mostly relevant to outlier identification. Since outliers are normally a minority

of the data, sparse modeling on the full data set can be dominated by normal objects

and fail to obtain outlier-sensitive features. (ii) It helps tune the parameter λ much more

efficiently. Since L� N , performing the cross validation on R is substantially much faster

than on the full data set X .

Subsampling-based Outlier Scoring φ.

To demonstrate the flexibility of SEMSE, we use the two very different subsampling-based

outlier scoring methods LeSiNN and iForest to specify φ, respectively.

LeSiNN is a subsampling-based ensemble of the nearest-neighbor outlier detector using

the full dimensionality of the input data S. Given a data object xi ∈ S, its outlier score
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is computed as the average of the nearest neighbor distances in l subsamples:

yi = φ(xi) =
1

l

l∑
j=1

nn dist(xi|Mj), (9.4)

where Mj ⊂ S is a random data subsample and nn dist returns the nearest neighbor

distance of xi in Mj .

iForest posits that outliers are susceptible to isolation and builds isolation trees on

random subspaces in S to identify outliers. Each tree is grown by using a random sub-

sample until every data object is isolated, where the feature and cut-point at each tree

node are randomly selected. The inverse of the path length traversed from the root to a

leaf node by xi is used as its outlier score:

yi = φ(xi) = (2
−E(h(xi))

c(|M|) )−1, (9.5)

where h(xi) denotes the path length of xi in a subsample M, E(h(x)) = 1
l

l∑
j=1

hj(xi|Mj)

is the average path length of xi from a set of l isolation trees, and c(|M|) is the expected

path length given the subsample size |M|.
The use of subsampling results in the linear time complexities in LeSiNN and iForest,

which is critical to the efficiency of CINFO. LeSiNN and iForest are the state-the-of-art

detectors and they are expected to yield fairly good outlier scores to ensure that there are

at least some outliers in R output by η.

Combination of Outlier Scores.

CINFO performs the aforementioned three recurrent components η, ψ and φ until the

mean squared error mse produced by ψ does not further decrease. Assume the sequential

ensemble learning terminates after T iterations, i.e., t = {1, 2, · · · , T}, we obtain a set of

T outlier score vectors and their associated mse. We employ the commonly-used weighted

summation [43] to combine the outlier score vectors with mse as weights, and define an

outlier score for each data object in the sequential ensemble as follows:

seq score(xi) =
1

T

T∑
t=1

wtτ(yti), (9.6)

where wt is a normalized weight by wt = Zmse−mset∑T
t=1[Z−mset]

with Z =
∑T

t=1 mset, and τ(yti) =

yti
||yt||1 is a vector normalization function that normalizes the vector y into a unit norm to

address the heterogeneity of the outlier scores from heterogeneous feature subsets.

Note that the initial outlier score vector y0 is not integrated into the above weighted

combination. This is because y0 is obtained from the original full feature space with noisy

features and is thus not as reliable as the later score vectors.
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9.3.2 Aggregating a Set of Sequential Ensembles

Using single sequential ensemble may produce high detection errors, when the initial out-

lier score vector y0 happens to mislead the subsequent outlier scoring in the sequential

ensemble. We therefore further aggregate a set of sequential ensembles to address this

issue by bagging. Bagging is a representative approach for building a set of base models

independently, which can largely reduce the generalization error [19]. Specifically, the final

outlier score of a given object is the average over its outlier scores obtained from a set of

independent sequential ensembles:

score(xi) =
1

m

m∑
j=1

seq scorej(xi), (9.7)

where m is the number of sequential ensembles we built.

9.3.3 The Algorithm and Its Time Complexity

Algorithm 9.1 presents the procedure of CINFO. Given a data set X , Step 2 obtains

the initial outlier scores. Steps 4-10 use the three recurrent functions η, ψ and φ to

build a sequential ensemble for the iterative refinement of the selected feature subset in S
and outlier scores y. The lasso problem in Step 7 is implemented by alternating direction

method of multipliers (ADMM), and ω, mse and λ are obtained by 10-fold cross validation

on R. The outer loop in Steps 1-12 builds a set of independent sequential ensembles by

bagging, followed by the average combination of the outlier scores from these sequential

ensembles in Step 13. CINFO then returns an outlier ranking based on the outlier scores.

Algorithm 9.1 CINFO
Input: X - data objects, a - outlier thresholding parameter, m - bagging size
Output: r - an outlier ranking of objects
1: for j = 1 to m do
2: y0 ← φ(X )
3: mse0 = 1, t = 0
4: repeat
5: t← t+ 1
6: Rt ← η(yt−1, a)
7: ωt, mset ← ψ(Rt, λt)
8: St ← {x.i|ωti 6= 0, 1 ≤ i ≤ D}
9: yt ← φ(St)

10: until mset > mset−1

11: seq scorej(X ) = 1
T

∑T
t=1(wt)ᵀτ(yt)

12: end for
13: score(X ) = 1

m

∑m
j=1 seq scorej(X )

14: r← Sort X w.r.t. score
15: return r

The sequential ensemble learning in Steps 4-10 often terminates after a few iterations

(e.g., within 10). The bagging in the outer loop typically converges quickly, say after

about 10-30 iterations. Therefore, the time complexity of CINFO is determined by the

complexity of the three functions η, ψ and φ. Obviously, η has a linear time complexity
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w.r.t. data size and the number of features. The LeSiNN/iForest-based φ function has a

similar linear time complexity [77, 92]. Moreover, a linear convergence rate is expected

for ADMM-based lasso implementation according to [59]. We therefore expect that the

overall time complexity of CINFO is linear w.r.t. data size and dimensionality size.

9.4 Theoretical Analysis

The following three subsections present some theoretical support for the specifications of

the three functions η, ψ and φ in CINFO, respectively.

9.4.1 Upper Bound for Outlier Thresholding

Corollary 9.0.1 (False Positive Bound). Assume the scores in y have the expected value

µ and variance δ2. Let yi ∈ y, the outlier thresholding function η(yi, a) = yi−µ− aδ then

has a false positive upper bound of 1
1+a2

.

Proof. We have P (yi ≥ µ+α) ≤ δ2

δ2+α2 per Cantelli ’s inequality. By replacing α = aδ, we

obtain

P (yi ≥ µ+ aδ) ≤ 1

1 + a2
. (9.8)

This states that the values in y have a maximum probability of 1
1+a2

being greater

than µ + aδ. Since large yi indicates high outlierness, this inequality implies that the

probability that we could wrongly identify normal objects as outliers is up to 1
1+a2

when

we define the threshold as µ+ aδ.

Cantelli ’s inequality is a one-sided Chebyshev ’s inequality. Similar to Chebyshev ’s

inequality, it makes no assumption on specific probability distributions. It holds for a wide

class of probability distributions that have statistical mean and variance. This property

enables η to be data-dependent and to perform well for y following different distributions.

9.4.2 Optimal Feature Subsets w.r.t. Outlier Scoring φ

Since the sparse modeling in Eqn. (9.2) is a convex problem [54], the feature subset in

S is expected to be globally optimal w.r.t. the target y on the outlier candidate set R.

In other words, the selected features are customized to the outlier scoring function φ that

produces the score vector y. This enables φ to work on a more reliable feature set when

re-computing the outlier scores by using S, resulting in refined outlier scores compared to

that in the previous iteration.

In the best case, the outlier scoring or feature selection is iteratively refined. In

another extreme, when the outlier scores are poor, e.g., no true outliers are in the outlier

candidates, it can mislead the feature selection and does not help improve the successive

outlier scoring. The next section analyzes the use of subsampling to obtain quality outlier

scores.
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9.4.3 Obtaining Good Outlier Scores by Subsampling

In addition to substantial speedup, using subsampling can well guarantee the outlier scor-

ing quality, which is supported by theoretical results from the perspectives of, e.g., density

estimation [129], data distribution [111] and variance reduction [2]. We provide the fol-

lowing analysis to further complement these existing theoretical results.

Following [129], for two data objects x1 and x2, their expected kNN distance k dist in

X can be respectively approximated by E(k dist(x1|X )) = r
(
k
N1

) 1
D

and E(k dist(x2|X )) =

r
(
k
N2

) 1
D

, where N1 and N2 are the number of objects uniformly distributed in the r-

radius sphere of x1 and x2, respectively; and their expected k dist in a random subsample

R of size L can then be given by E(k dist(x1|R)) = r

(
k

N1
L
N

) 1
D

and E(k dist(x2|R)) =

r

(
k

N2
L
N

) 1
D

. After some transformation, we can obtain:

E(k dist(x1|R))− E(k dist(x2|R))

E(k dist(x1|X ))− E(k dist(x2|X ))
= (

N

L
)

1
D . (9.9)

Eqn. (9.9) implies that the contrast between the kNN-based densities in the sub-

samples and those in the full data set are enlarged and are inversely proportional to the

subsampling size. This indicates that subsampling helps enhance the contrast between

kNN/density-based outlier scores. Moreover, it also guarantees a ranking-stable result,

i.e., E(k dist(x1|R)) > E(k dist(x2|R)) if E(k dist(x1|X )) > E(k dist(x2|X )). These

two properties enable the subsampling-based scoring to yield better outlier scores [71].

Numerous existing outlier scoring methods including LeSiNN assume that outliers are

data objects in low-density regions. Therefore, the above results are widely applicable,

and subsampling is recommended for the specification of φ in CINFO when using this type

of methods.

9.5 Experiments and Evaluation

9.5.1 Data Sets

As shown in Table 9.1, 11 real-world data sets are used, which cover diverse domains,

e.g., intrusion detection, molecular bioactivity detection, Internet advertising and image

object recognition. Some data sets like AD, AID362, Probe, U2R and Thrombin contain

semantically real outliers. For the other data sets, we use the rare class conversion method

in Section 2.3.1 to transform them into outlier detection data sets.

9.5.2 Experiment Environment

CINFO and its competitors are implemented in MATLAB. All the experiments are exe-

cuted at a node in a 3.4GHz Phoenix cluster with 32GB memory. In all our experiments,

CINFO uses a = 1.732 (i.e., the upper bound for false positives in η is 25%) and m = 30
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1; and the number of subsamples l and subsampling size |M| for LeSiNN and iForest are

set as the recommended settings of their authors.

9.5.3 Effectiveness in Real-world Data

Experimental Settings.

We compare the CINFO-enabled LeSiNN and iForest with their bare versions to evaluate

whether CINFO can eliminate irrelevant features and retain (or improve) the performance

of these two detectors.

Findings - CINFO Significantly Improves Different Types of Outlier Detectors.

Table 9.1 demonstrates the feature reduction and AUC performance of CINFO-based

LeSiNN and iForest, compared to LeSiNN and iForest performing in the original feature

space. CINFO-enabled LeSiNN and iForest work with about 10% (e.g., on AID362 and

BM ) to over 95% (e.g., on Isolet, SECOM and Thrombin) less features, while their per-

formance is substantially better than, or roughly the same as, their bare versions. On

average, CINFO enables LeSiNN and iForest to gain about 4% and 7% improvement, re-

spectively. Our significance test shows that CINFO enables LeSiNN and iForest to achieve

significantly better AUC performance at the 95% and 99% confidence levels, respectively.

Table 9.1: Feature Reduction and AUC Performance of CINFO-enabled LeSiNN and
iForest (denoted by LeSiNN* and iForest*). D is the original feature number. D′ and
D′′ are the average numbers of features retained by LeSiNN* and iForest*, respectively.
The average iteration for sequential ensembles per data is 2 to 5.

Data Info. Feature Reduction AUC Performance

Data N D D′ D′′ LeSiNN LeSiNN* iForest iForest*

AD 3279 1555 197 245 0.7107 0.8666 0.6830 0.7907
AID362 4279 117 106 94 0.6704 0.6710 0.6461 0.6658
aPascal 12695 64 34 46 0.7308 0.8554 0.6755 0.7963
BM 41188 62 54 52 0.6854 0.7100 0.7316 0.7678
Caltech16 829 253 59 50 0.9861 0.9869 0.9636 0.9684
Census 299285 500 399 422 0.6344 0.6620 0.6276 0.6616
Isolet 730 617 27 28 1.0000 1.0000 0.9996 1.0000
Probe 64759 34 27 25 0.9975 0.9978 0.9899 0.9908
SECOM 1567 590 27 18 0.5316 0.5867 0.5448 0.6506
U2R 60821 36 28 30 0.9879 0.9890 0.9908 0.9922
Thrombin 1909 139351 114 58 0.8997 0.8916 0.8843 0.9044

Average 0.8031 0.8379 0.7943 0.8353

CINFO uses the sequential ensemble learning to mutually improve its feature selection

and outlier scoring, which enables CINFO to safely remove noisy features in these high-

dimensional data sets. As a result, CINFO-enabled LeSiNN and iForest work on much

cleaner data sets and thus can achieve significant performance improvement.

1CINFO performs very stably when m ≥ 30. m = 30 is thus used.
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9.5.4 Comparison to State-of-the-art Competitors

Experimental Settings.

CINFO is compared with three state-of-the-art competitors: feature bagging (FB for short)

[73], RegFS [98], and CARE [103] from three different but relevant research lines.

• Subspace-based method - FB. FB is a framework for enabling outlier detectors to

handle high-dimensional data by using feature bagging, i.e., working on a set of

random feature subsets of size between bD2 c and (D − 1). It can also be seen as a

random feature selection ensemble.

• Feature selection-based competitor - RegFS. RegFS only returns a feature relevance

ranking. For a thorough comparison, RegFS selects the top-ranked drDe features

with a wide range of r, i.e., r = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We report

the results of r = 0.7, with which the used detectors obtain the best performance.

• Sequential outlier ensemble - CARE. CARE attempts to iteratively refine detection

models by removing outlier candidates. It uses feature bagging to introduce diversity

and handle high-dimensional data.

Findings - CINFO Significantly Outperforms Three State-of-the-art Competi-

tors.

The AUC performance of CINFO, RegFS, FB, and CARE is reported in Table 9.2. The

CINFO-enabled LeSiNN and iForest obtain the best performance on eight data sets, with

three very close to the best (having the difference in AUC less than 0.01), and they

obtain about 4%-7% improvement over their respective competitors. The improvement is

significant at the 95% (w.r.t. RegFS and FS) or 90% (w.r.t. CARE) confidence level.

Unlike FB and RegFS which ignore the outlier scoring methods when they perform

feature selection, CINFO couples these two dependent tasks to iteratively refine their

performance by sequential ensembles. This enables CINFO to substantially reduce its

detection errors and obtain more than 4%-22% AUC improvement over its competitors

in tough data sets like AD, aPascal, Census, and SECOM, which likely contain a large

proportion of noisy features.

CINFO and CARE are two very different sequential ensemble methods. CARE builds

sequential ensembles horizontally, which iteratively removes likely outliers for identifying

some outliers that are otherwise masked by the removed outliers. In contrast, CINFO

works in a vertical manner, which iteratively remove noisy features. Although feature

bagging is incorporated into CARE, the FB method itself has limited capability in handling

noisy features. CINFO therefore obtains similarly large AUC improvement (i.e., 6%-24%)

over CARE on the aforementioned noisy data sets.
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Table 9.2: AUC Performance of CINFO, RegFS, FB, and CARE Empowered LeSiNN
and iForest. ‘NA’ indicates the execution cannot be completed in two weeks.

LeSiNN iForest

Data CINFO RegFS FB CARE CINFO RegFS FB CARE

AD 0.8666 0.7058 0.7111 0.6934 0.7907 0.6832 0.6892 0.6989
AID362 0.6710 0.6371 0.6704 0.6767 0.6658 0.6421 0.6659 0.6752
aPascal 0.8554 0.7464 0.7319 0.7349 0.7963 0.7085 0.6642 0.6829
BM 0.7100 0.6943 0.6879 0.6818 0.7678 0.7328 0.7440 0.7444
Caltech16 0.9869 0.9874 0.9869 0.9874 0.9684 0.9728 0.9670 0.9691
Census 0.6620 0.6112 0.6340 0.6198 0.6616 0.5638 0.6290 0.6416
Isolet 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000 1.0000
Probe 0.9978 0.9943 0.9974 0.9970 0.9908 0.9900 0.9908 0.9941
SECOM 0.5867 0.5343 0.5294 0.5282 0.6506 0.5636 0.5533 0.5589
U2R 0.9890 0.9645 0.9877 0.9853 0.9922 0.9717 0.9904 0.9903
Thrombin 0.8916 NA 0.8995 0.9023 0.9044 NA 0.9024 0.9034

Average 0.8379 0.7875 0.8033 0.8006 0.8353 0.7828 0.7997 0.8053
p-value - 0.0078 0.0273 0.0840 - 0.0098 0.0078 0.0840

9.5.5 Resilience to Noisy Features

Experiment Settings.

Following [128], we create a collection of 100-dimensional synthetic data sets with different

percentages of relevant features (or noisy features). In this data, normal objects are from

a Gaussian distribution and outliers lie at two standard deviations of the distribution in

relevant features, and the other features are from a uniform distribution and used as noisy

features. For each noise level, we generate 10 data sets with the same number of noisy

features and average AUC over them to have more reliable results.

Figure 9.3: AUC Performance on Data with Different Levels of Noisy Features. ‘ORG’ denotes
the bare LeSiNN/iForest. All methods obtain AUC of one with more than 32% relevant features.

Findings - CINFO Greatly Enhances the Resilience of the Outlier Detectors

w.r.t. Noisy Features, Especially for Very Noise-Sensitive Detectors.

The AUC performance on the synthetic data sets is shown in Figure 9.3. CINFO-enabled

LeSiNN and iForest perform consistently better than their four other versions in a wide

range of noise levels. The advantage of CINFO is much more obvious in enabling LeSiNN

than iForest. This may be due to the fact that LeSiNN works on the full space of the
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input data while iForest operates on feature subspaces, and as a result, LeSiNN is much

more sensitive to the noisy features retained by the feature subset selection methods and

is more difficult to enhance compared to iForest. The substantially better performance of

the CINFO-enabled LeSiNN over its competitors highlights its superiority in eliminating

noisy features and upgrading very noise-sensitive detectors.

9.5.6 Scalability Test

Experiment Settings.

We generate data sets by varying the data dimension w.r.t. to a fixed data size (i.e., 1000),

as well as varying the data size while fixing the data dimension (i.e., 50), respectively.

Findings - CINFO Obtains Linear Time Complexity w.r.t. Data Size and

Dimensionality.

The runtime of the five versions of LeSiNN is shown in Figure 9.4. In the left panel, all the

methods have linear time complexity. CINFO is comparably fast to RegFS and CARE.

These three methods are slower than FB and the bare LeSiNN, since they incorporate

more sophisticated components to enhance the accuracy of LeSiNN. In the right panel,

the CINFO/FB/CARE-enabled and the bare LeSiNN have linear time complexity, and

they run considerably faster than RegFS that has a quadratic complexity.

Figure 9.4: Runtime of CINFO and Its Competitors Using LeSiNN. ‘ORG’ denotes the bare
LeSiNN. Logarithmic scales are used. Similar trends can be expected when using iForest as the
outlier detector, since LeSiNN and iForest have similar time complexities.

9.6 Summary

This chapter introduces a sequential ensemble-based high-dimensional outlier detection

framework SEMSE and its instance CINFO. They perform an iterative mutual refinement

of feature selection and outlier scoring, and can efficiently obtain reliable outlier scores

in high-dimensional numeric data with many noisy features. Although CINFO works on

considerably smaller feature subsets, it obtains significantly better AUC performance in

11 real-world high-dimensional data sets, substantially better resilience to noisy features,
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compared to its four competitors. CINFO also has linear time complexity w.r.t. data size

and dimensionality.

SEMSE may be instantiated into other instances by using lasso-based sparse modeling

with other sparse constraints to capture different types of feature interactions. Another

possible extension to SEMSE is that, instead of performing univariate regression, we can

include the outlier scores in all the t− 1 stages to perform multivariate regression at the

t-th stage, which helps capture much richer sequential couplings between the object-level

outlier factors.

Different from the other chapters that focus on categorical data, this work focuses

on the data object level in numeric data. It would be interesting to explore whether

the value/feature-level coupled outlier factors in the previous chapters could be similarly

defined to enable more effective outlier detection in complex non-IID numeric data.
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Chapter 10

Conclusion

The detection of outliers provides important insights into numerous real-world applications

in various domains, ranging from fault detection in mechanical engineering and manufac-

turing, and fraud detection and insider detection in business and government management,

to disease detection in healthcare, and the discovery of new stars/planets in astronomy.

Unlike most outlier detection methods that assume the independence between the out-

lier factors of the data entities, this thesis formulates the task of non-IID outlier detection

in multidimensional data and examines different types of coupling relationships between

the outlier factors of the data entities at different levels from feature values, features, to

data objects, and leverages these coupling modelings to address challenging outlier detec-

tion problems. Our explorations result in a principled architecture for learning complex

interactions between the outlier factors at different levels. Under this non-IID outlier de-

tection architecture, in each chapter of Chapters 4-9, we show that each pathway of the

architecture can be further formalized into a flexible framework and the framework can

be implemented to be a scalable and effective method for addressing a targeted challeng-

ing outlier detection problem. This demonstrates the flexibility and applicability of our

proposed architecture for complex real-world outlier detection tasks. Although feature

selection for outlier detection is known to be extremely difficult, we show that the rich

intrinsic couplings underlying the data can be harnessed to effectively select relevant fea-

tures for subsequent outlier detection, resulting in a set of seminal work on unsupervised

outlying feature selection. A detailed conclusion of this thesis is provided as follows.

10.1 Learning Couplings of Outlier Factors

To learn different types of complex interactions between the value-level outlier factors,

we provided flexible and principled frameworks and their instantiations with scalable and

theoretically sound graph mining techniques for addressing the following four issues:

• “How is the outlierness of one value influenced by that of other values?”:

We introduced the CUOT framework and its instance CBRW that incorporates

interactions of feature values within and between the features into the modeling of

the outlierness couplings between the values. Our experiments on a large collection of

134
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real-world data sets demonstrate significant AUC improvement over several state-of-

the-art traditional outlier detectors, indicating strong couplings among the feature

values. One key implication is that the feature values are the finest elements in

multidimensional data, and thus, this level couplings can contribute the couplings

at the higher levels, such as features, feature subspaces, and data objects.

• “How can we only model useful interactions between outlier factors?”:

We posited and justified that only a subset of the couplings between the outlier

factors are important while the rest of the couplings are redundant or noisy us-

ing the proposed selective coupling learning framework, SelectVC, and its instance

POP. By considering such kinds of coupling utility, we achieve state-of-the-art AUC

performance in high-dimensional outlier detection in categorical data.

• “How can we quickly and accurately learn the cascade couplings?”: We

contributed the joint feature selection and outlier detection framework, WrapperOD,

and its instance HOUR. Joint optimization is often computationally expensive, which

is particularly true for simultaneously optimizing the feature subset and data subset

since it involves an exponential combination of the features/objects. The proposed

method HOUR is driven by the proposed binary cascade coupling learning that can

effectively and efficiently compute outlierness in an efficient closed-form.

• “How can we efficiently learn the high-order interactions between outlier

factors?”: We introduced the high-order coupling learning framework, HOCOF,

and its instance SDRW. SDRW extends our CBRW method by incorporating a

granularity of subgraph-based density outlier factors. The subgraph density consid-

ers the interactions of a set of values to capture the high-order interdependence. We

leverage the state-of-the-art dense subgraph discovery techniques to guarantee the

efficiency of our method by identifying relevant subgraphs in linear time.

To learn the sophisticated couplings between the higher-level outlier factors, we devised

novel scalable and principled frameworks and their instantiations that draw methods from

subgraph discovery and ensemble learning to find answers to the following two questions:

• “How is the outlierness of one feature influenced by that of the other fea-

tures?”: We introduced the CUFS framework and its instance DSFS to capture non-

successive two-way interactions between the outlierness of features for outlying fea-

ture selection. The DSFS method is parameter-free and achieves a 2-approximation

guarantee. Moreover, it is scalable and enables different types of pattern-based out-

lier detectors to obtain substantial AUC improvement and/or significant speedup.

• “How can we sequentially refine a given outlier factor?”: We contributed

the SEMSE framework and its instance CINFO to capture the sequentially coupled

outlier factors by mutually refining feature selection and outlier detection, which is

shown powerful in enabling high-dimensional outlier detection in a large collection of

real-world numeric data. The proposed framework provides principled approaches for

capturing the full feature interactions in joint feature selection and outlier detection.
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10.2 Significance of Non-IID Outlier Detection

The significance of the proposed non-IID outlier detection task is demonstrated by the sig-

nificantly better detection performance of our methods in addressing challenging outlier

detection problems compared to existing state-of-the-art outlier detectors. Specifically,

the challenging contexts we address include outlier detection in interdependent multidi-

mensional data, data with many noisy features, and data with high dimensionality. Under

these contexts, in some particular cases, existing state-of-the-art IID outlier detectors can

only obtain an accuracy of being nearly equivalent to random guess results, while our

non-IID methods obtain significantly better performance, achieving more than 50% AUC

improvement; on average, our non-IID approach achieves 4%-18% AUC improvement over

the best outlier detector in any of the aforementioned three challenging contexts. This

improvement has two main implications: to the academic community, these results imply

new research directions of devising non-IID outlier detectors to well identify sophisticated

outliers in real life applications; to the industry, this significant improvement may mean

the prevention of millions of dollars loss by fraud detection or life saving due to a successful

early detection of fatal diseases.



Chapter 11

Vision and Future Work

While we showed in the previous chapters that our proposed non-IID outlier detection

methods are significantly more effective than traditional IID methods in handling many

real-world data sets, to build easy-to-use and effective non-IID outlier detection systems,

several more interesting directions require further exploration and are discussed as follows.

11.1 Broadening Non-IID Outlier Detection

This thesis explored only several types of coupling relationships between the outlier factors.

To have a systematic understanding and a complete theory of non-IID outlier detection,

more explorations are required in the following important research directions.

11.1.1 Further Exploration of Coupled Outlier Factors

We explored several types of couplings between the outlier factors at different levels. One

next step is to examine: whether the couplings of outlier factors that are effective in one

level (e.g., the value level) are also applicable to the other levels (e.g., the feature or object

level), and how to have a hierarchical consolidation of the couplings at different levels to

build more powerful non-IID outlier detectors. Another interesting direction is to learn

coupling relationships beyond the ones we examined here for the same targeted outlier

detection challenges or other challenges.

11.1.2 Heterogeneous Outlier Factors

We only examined the not-independent aspect of the non-IID outlier detection. Another

important aspect for future research is heterogeneous outlier factors. Many complex data

sets may require heterogeneous outlier factors in that different outliers may be generated

from different mechanisms. Some interesting questions include: how can we determine

what types of outlier factors are suitable for a given data? how can we make use of the

complementary and consensus information of a set of heterogeneous outlier factors while

avoiding the negative effects due to their conflicts?
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11.1.3 Exploration of Coupled Heterogeneous Outlier Factors

A more challenging area is to simultaneously capture both the not-independent and the

not-identically-distributed aspects of non-IID outlier detection. This might be the ultimate

goal of unlocking the full ability of non-IID outlier detectors. Once we have solutions

for coupled outlier factors and heterogeneous outlier factors, we are then interested in

combining them in a compatible and semantically reasonable way. Particularly, we may

need to determine which levels of coupled/heterogeneous outlier factors to include in the

combination and how to properly model these coupled and heterogeneous outlier factors.

11.2 Selection of IID/non-IID Outlier Detection Methods

Having obtained a pool of IID and non-IID outlier detection methods, a natural question

to ask is: how can we determine whether we use IID methods or non-IID methods for a

given data set? A possible solution to this challenging problem is to define a series of data

indicators to measure the underlying data characteristics of the given data set and their

association with the accuracy performance of specific types of outlier detection methods.

These indicators then serve as the key to the selection or combination of the IID and/or

non-IID outlier detection methods.

11.2.1 Data Indicators for Measuring the IID/Non-IID Information

We defined some data indicators in Section 2.3.3 to provide insights into the detection

performance of our proposed methods on real-world data sets at a post-detection stage,

but they are insufficient for the above purpose. First, since we focus on unsupervised

outlier detection, all data indicators are supposed to be unsupervised. Second, the data

indicators also need to be linked to specific types of outlier detectors, in addition to the

data characteristics.

11.2.2 Automatic Selection or Combination of IID/Non-IID Methods

We then need to learn the correlation between a set of data indicators and the detection

performance of outlier detectors to achieve the goal of automatic selection or combination

of the IID and non-IID outlier detection methods. This enables the use of advanced

outlier detection methods without any domain expertise requirements, which would largely

promote the deployment of outlier detection systems in different domains. However, this

would be very challenging since we do not have class labels to guide the learning. We

may address this issue by leveraging a limited amount of labeled outliers to devise highly

discriminative data indicators and learn a reliable correlation.



Appendix A

Codes and Data Sets

To promote the research reproducibility, the source codes of all our algorithms in this thesis

are made publicly available at https://sites.google.com/site/gspangsite/sourcecode; and

the implementations of most of the competing methods are available in two well-known

open-source data mining projects, WEKA [52] and ELKI [1].

All the 33 data sets used in this thesis are from real-world applications. We provide

the sources of these data sets to acknowledge the contributors. Specifically, 15 data sets,

including Bank Marketing (BM), Internet Advertisements (AD), Contraceptive Method

Choice (CMC), Solar Flare (SF), CoverType (CT), Linkage (LINK), Chess, Arrhyth-

mia (Arrhy), Alcohol, Turkiye, credit card (Credit), Mushroom (MRM), Optical digits

(DIGIT), SECOM, and Isolet, are available from the UCI Machine Learning Repository

at http://archive.ics.uci.edu/ml/. The sources of the other 18 data sets are listed in Ta-

ble A.1. Some data sets, including AD, CMC, Arrhy, Credit, U2R, Probe, CUP14, and

Thrombin, contain real outliers. The other data sets are originally used for classification

evaluation, which are transformed into outlier detection data sets using the downsampling

or rare class conversion method presented in Section 2.3.1.

Table A.1: Data Sources.

Data Acronym Source

U2R - http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Probe - http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
CelebA - http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
aPascal APAS http://vision.cs.uiuc.edu/attributes/
Reuters10 R10 http://sci2s.ugr.es/keel/
w7a - https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
BASEHOCK BASE http://featureselection.asu.edu
PCMAC - http://featureselection.asu.edu
RELATHE RELA http://featureselection.asu.edu
CalTech-16 CAL16 https://people.cs.umass.edu/vmarlin/data.shtml
CalTech-28 CAL28 https://people.cs.umass.edu/vmarlin/data.shtml
wap.wc - http://tunedit.org/repo/data/text-wc
KDD CUP 2014 CUP14 https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose
WebKB - http://ana.cachopo.org/datasets-for-single-label-text-categorization
Reuters8 R8 http://ana.cachopo.org/datasets-for-single-label-text-categorization
Sylva Agnostic SylvaA http://www.agnostic.inf.ethz.ch/
Sylva Prior SylvaP http://www.agnostic.inf.ethz.ch/
Thrombin - http://pages.cs.wisc.edu/∼dpage/kddcup2001/
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