
Model Checking Probabilistic Epistemic Logic for
Probabilistic Multiagent Systems

Chen Fu1,2, Andrea Turrini1, Xiaowei Huang3, Lei Song4, Yuan Feng5, Lijun Zhang1,2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences

3 Department of Computer Science, University of Liverpool
4 JD.com

5 Centre for Quantum Software and Information, University of Technology Sydney
{fchen,turrini,zhanglj}@ios.ac.cn, Xiaowei.Huang@liverpool.ac.uk,

songlei3@jd.com, Yuan.Feng@uts.edu.au

Abstract
In this work we study the model checking problem
for probabilistic multiagent systems with respect
to the probabilistic epistemic logic PETL, which
can specify both temporal and epistemic properties.
We show that under the realistic assumption of uni-
form schedulers, i.e., the choice of every agent de-
pends only on its observation history, PETL model
checking is undecidable. By restricting the class of
schedulers to be memoryless schedulers, we show
that the problem becomes decidable. More impor-
tantly, we design a novel algorithm which reduces
the model checking problem into a mixed integer
non-linear programming problem, which can then
be solved by using an SMT solver. The algorithm
has been implemented in an existing model checker
and experiments are conducted on examples from
the IPPC competitions.

1 Introduction
Multiagent systems have found many applications in prac-
tice [Seuken and Zilberstein, 2008], ranging from coordi-
nated helicopter flights [Nair et al., 2005], to distributed sen-
sors [Pynadath and Tambe, 2002]. In this paper, we focus
on probabilistic multiagent systems which can model uncer-
tainty, such as component failure, of the agents and/or their
environment.

In multiagent systems it is typical that agents share incom-
plete information with each other, otherwise multiagent sys-
tems will degenerate to systems with a single agent [Kazmier-
czak et al., 2014]. The incompleteness of information is nor-
mally characterized by defining for each agent i an equiva-
lence relation ∼i over all global states of the systems; two
global states are considered indistinguishable for a given
agent i if they are related by ∼i. Two states that are in-
distinguishable for an agent may be distinguishable for an-

other agent. It is a natural, and realistic, setting that ev-
ery agent makes its own decisions based only on the limited
information it has; namely, the information provided by its
own indistinguishable relation, and nothing else. Decisions
of agents are usually formalized by the notion of schedulers
(also known as policies or strategies), which are functions
taking history executions as input and deciding the next move
for each agent. Schedulers only making use of limited infor-
mation of each agent are called uniform (or decentralized).

To specify the property of probabilistic multiagent sys-
tems, in particular the temporal dynamics of agents’ knowl-
edge, we use Probabilistic Epistemic Temporal Logic (PETL)
(cf. [Delgado and Benevides, 2009]). PETL can be seen as a
combination of epistemic logic [Fagin et al., 2004] and prob-
abilistic computation tree logic (PCTL) [Jonsson and Larsen,
1991]. For its semantics, the knowledge operator Ki is de-
fined over agent i’s indistinguishable relation and the proba-
bilistic operator [ψ]./d is defined over uniform schedulers.

We study the model checking problem [Baier and Katoen,
2008] for PETL logic, with the following contributions. The
first contribution is a set of complexity results, including the
undecidability for the general case and the decidability (in
PNP and NP-hard) when schedulers are memoryless.

The second contribution is a symbolic model checking al-
gorithm for memoryless schedulers. The algorithm reduces
the model checking problem to a mixed integer non-linear
programming problem, which can then be solved with a mod-
ern SMT solver such as Z3. The reduction procedure is novel,
particularly for the part handling loops in the state space.
While both strategic and epistemic reasoning on probabilis-
tic multiagent systems have been studied in theory (mainly
semantics), detailed works on the algorithmic design, imple-
mentation, and validation based on an existing model checker
is not available. This paper presents the first tool to enable
PETL model checking.

Finally, we validate our tool on models from the Interna-
tional Probabilistic Planning Competitions (IPPC). The ex-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4757

perimental results show the scalability of our symbolic algo-
rithm in handling interesting problems.

1.1 Related Work
In the non-probabilistic multiagent systems, schedulers with
incomplete information have been studied extensively; see for
instance [Jamroga, 2003; Jamroga and van der Hoek, 2004].
In [van der Hoek and Wooldridge, 2002], a model check-
ing algorithm is presented for alternating temporal epistemic
logic and it is shown that the problem can be reduced to model
checking alternating temporal logic [Alur et al., 2002].

The logic PETL was introduced in [Delgado and Bene-
vides, 2009]. However, their semantics is defined under
all schedulers, so the corresponding model checking prob-
lem has the same complexity with the standard PCTL one.
[Huang and Luo, 2013] proposes a probabilistic epistemic
logic pATEL∗, which can be seen as a combination of
probabilistic Alternating Time Logic (pATL) [Huang et al.,
2012] and epistemic logic. Different from [Schnoor, 2010],
in [Huang and Luo, 2013] the epistemic accessibility rela-
tions are also probabilistic, namely, there is a probabilistic
distribution over the set of indistinguishable states. Most of
the existing works are theoretical, without detailed algorith-
mic design, implementation, and validation. One exception is
[Huang et al., 2011], which presents a symbolic model check-
ing algorithm for fully probabilistic systems, i.e., systems
without nondeterministic choices. Other exceptions are [Wan
et al., 2013; Sultan et al., 2014], which also consider fully
probabilistic systems. Different from [Huang et al., 2011],
[Wan et al., 2013; Sultan et al., 2014] convert epistemic prob-
abilistic logic model checking problem to the standard PCTL
one, and then make use of the PRISM model checker. How-
ever, their approach can not be extended to deal with our
problem, because our problem is under uniform schedulers
in probabilistic systems with nondeterministic choices.

Existing model checkers for multiagent systems include
MCMAS [Lomuscio et al., 2017], which does not work with
probabilistic systems, and MCK [Huang and van der Mey-
den, 2014; Huang et al., 2011], which cannot handle PETL
model checking problem. Probabilistic model checkers such
as PRISM [Kwiatkowska et al., 2011] do not work with epis-
temic logics and incomplete information systems.

2 Preliminaries
Given a finite set X , a discrete probability distribution on X
is a function µ : X → [0, 1] such that µ(X) =

∑
x∈X µ(x) =

1. Let Disc(X) denote the set of all discrete probability dis-
tributions over X . We denote by δx ∈ Disc(X) the Dirac
distribution such that δx(y) = 1 if y = x, 0 otherwise.

2.1 Probabilistic Concurrent Game Structure
A PO-PCGS (partially observed probabilistic concurrent
game structure) with n agents is a tuple

M = (S, s̄,Agt , {Act i}i∈Agt , {∼i}i∈Agt , T ,AP , L)

where
• S is a finite set of states with initial state s̄ ∈ S;
• Agt is the set of n agents;

• Act i is the set of actions for agent i. We denote by
Act =

∏n
i=1 Act i the set of full actions;

• T : S × Act → Disc(S) is a partial transition function;

• For each i ∈ Agt , ∼i is an accessibility equivalence
relation on S. For s ∈ S, denote by [s]i the equivalence
class of ∼i which contains s;

• AP is a finite set of atomic propositions; and

• L : S → 2AP is a labeling function.

As notation, we let r, s, t, . . . and their variants with indices
range over S, a, b, . . . range over Act i, and α, β, . . . range
over Act . Given a state s and a full action α, we say that
α is enabled by s if T (s, α) = µ, also written s α−→µ. For
an agent i ∈ Agt , we denote by EAi(s) ⊆ Act i the set of
enabled actions by s for agent i. Similarly, we denote by
EA(s) ⊆ Act the set of enabled full actions at state s. We
wirte P (s, α, t) = µ(t) where s α−→µ.

The equivalence relation ∼i for the agent i relates states
that are considered to be not distinguishable by the agent i;
a first consequence is that two related states must enable the
same actions, i.e., whenever s ∼i t, then EAi(s) = EAi(t).

A path π is a finite or infinite sequence of alternating states
and actions s0α0s1α1 . . ., starting (and ending, if finite) with
a state, such that for each k > 0, sk

αk−−→µk and µk(sk+1) > 0.
For π = s0α0s1α1 . . . and k ≥ 0, we denote by π[k] the state
sk. If π is finite, then we denote by |π| the size (or, length)
of π, i.e., the number of states in π, and by π̂↓ its last state.
We denote the sets of finite and infinite paths by Paths∗ and
Pathsω , respectively, and we let π̂ and π and their variants
with indices range over Paths∗ and Pathsω , respectively.

In the following we assume that all states of an PO-PCGS
M are reachable, i.e., for each state s ∈ S, there exists a
finite path π̂ = s0α0s1α1 . . . sn such that s0 = s̄ and sn = s.

Schedulers of PO-PCGS
Schedulers (also known as policies, strategies, or adversaries)
are functions that resolve nondeterminism, i.e., they are used
to choose the next action to be performed (based on the past
history) whenever we reach a state enabling multiple actions.
Once nondeterministic choices are solved, we can define an
appropriate probability measure for the events in a PO-PCGS,
like reaching specific states.

A scheduler for an agent i is a function σi : Paths
∗ →

Act i mapping each finite path π̂ ∈ Paths∗ to an action in
EAi(π̂↓). A uniform scheduler σi for an agent i is a scheduler
such that for each pair of finite paths π̂ = s0α0s1α1 . . . sn
and π̂′ = s′0α

′
0s
′
1α
′
1 . . . s

′
n, it holds that if for each 0 ≤ k ≤ n,

αk = α′k and sk ∼i s′k, then σi(π̂) = σi(π̂
′). A uniform

memoryless scheduler for an agent i is a scheduler such that
for all states s, t, we have that s ∼i t implies σi(s) = σi(t).

A scheduler σ for a PO-PCGS M with n agents is a tu-
ple (σ1, . . . , σn) such that each σi is a scheduler for agent
i. We say that σ is uniform (memoryless) if each σi is uni-
form (memoryless) and we denote by SU and SUM the sets
of uniform and uniform memoryless schedulers, respectively.

A scheduler σ and a state s induce a unique probability
measure Prσ,s on the σ-field generated by cylinder sets of
finite paths. Intuitively, the probability of (the cylinder set

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4758

of) a finite path π = s0α0s1α1 . . . sn is the product of the
probability of going from sk to sk+1 given that σ has chosen
αk, for each k. See [Baier and Katoen, 2008] for more details.

2.2 Probabilistic Epistemic Temporal Logic
In this section we present the syntax and semantics of Prob-
abilistic Epistemic Temporal Logic (PETL) initially intro-
duced in [Delgado and Benevides, 2009] as K-PCTL. PETL
formulas are defined according to the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [ψ]./d | Kiϕ | EGϕ | DGϕ | CGϕ

ψ ::= Xϕ | ϕU ϕ

where ./ ∈ {<,>,≥,≤}, d ∈ [0, 1], i ∈ Agt , p ∈ AP , and
G ⊆ Agt . From the above grammar, we can see that PETL
subsumes both PCTL and epistemic formulas.

Let ∼EG =
⋃
i∈G∼i, ∼DG =

⋂
i∈G∼i, and ∼CG be the tran-

sitive closure of ∼EG. Let s be a state of a PO-PCGS, and ϕ a
PETL formula. We say that s satisfies ϕ, denoted s |= ϕ, iff

• s |= p if p ∈ L(s), s |= ¬ϕ if s 6|= ϕ, and s |= ϕ1 ∧ ϕ2

if s |= ϕ1 and s |= ϕ2, as usual;

• s |= Kiϕ iff t |= ϕ for all t ∈ [s]i;

• s |= EGϕ iff t |= ϕ for all t ∼EG s;

• s |= DGϕ iff t |= ϕ for all t ∼DG s;

• s |= CGϕ iff t |= ϕ for all t ∼CG s;

• s |= [ψ]./p iff for all σ ∈ SU ,

Prσ,s({π ∈ Pathsω | π |= ψ }) ./ q.

where

• π |= Xϕ iff π[1] |= ϕ;

• π |= ϕ1 Uϕ2 iff there exists k ≥ 0 such that π[k] |= ϕ2

and π[j] |= ϕ1 for all 0 ≤ j < k.

Different from [Delgado and Benevides, 2009], the semantics
of PETL in our paper is defined over all uniform schedulers
instead of general schedulers. As we have discussed in the
introduction, this restriction is natural for multiagent systems.

We want to remark that, while the probabilistic operator
[ψ]./d makes use of the schedulers to evaluate the probabil-
ity of the paths satisfying the path formula ψ, the agents are
not aware of the current scheduler, so they can not make use
of such an information in evaluating their knowledge. This
means that the agents do not have to consider the potential
unreachability problem caused by the choices made by the
current scheduler (cf. [Jamroga and van der Hoek, 2004]).

3 Model Checking PETL
In this section, we discuss the problem of model checking
PETL on PO-PCGSs. We show that the problem is in general
undecidable but it becomes decidable if we restrict the sched-
ulers to be memoryless. We then analyze the complexity of
the restricted problem.

3.1 Undecidability of General Cases
Theorem 1. The PETL model checking problem, restricted to
uniform schedulers, is undecidable, even for PO-PCGSs with
a single agent.

Proof. The proof is by reduction of the undecidable prob-
lem about the emptiness of a Probabilistic Finite Automaton
(PFA) [Rabin, 1963; Paz, 1971] to model checking PETL.

The reductions works as follows: given a PFA A, it is con-
sidered as a PO-PCGS MA with a single agent that is only
able to distinguish final from non-final states; each state is
labelled by f if and only if it is final. Then it is possible to
show that, given A and ρ ∈ (0, 1), there exists a finite word
w ∈ Σ∗ such that A(w) > ρ (i.e., w is accepted by A with
probability at least ρ) if and only if s̄ 6|= [tt U f]≤ρ.

3.2 Complexity under Memoryless Setting
Theorem 2. If restricted to uniform memoryless schedulers,
model checking PETL is in PNP and NP-hard. The NP-
hardness holds even for PO-PCGSs with a single agent.

PNP Membership
Propositional formulas and epistemic formulas can be solved
in PTIME. We can decide whether s |= [ψ]./d by:

1. Guessing a scheduler σ ∈ SUM ;

2. Deciding whether Prσ,s({π ∈ Pathsω | π |= ψ }) ./ d,
which is model checking PCTL on Markov chain and
can be solved in PTIME [Baier and Katoen, 2008].

So s |= [ψ]./d can be solved in NP. However, the probabilis-
tic operator can be nested, so a polynomial procedure with
respect to the size of formula is needed to query a NP oracle,
which results the PETL model checking problem in PNP .

NP-hardness
We reduce the 3SAT problem to this problem. Let X =
{x0, . . . , xk} be a set of Boolean variables. An assignment
is a total function θ : X → {0, 1}. Let a clause C be the
disjunction of three Boolean variables or their negations. A
formula is a conjunction of clauses.

The following problem is well-known to be NP-complete:
given any Boolean formula f = C0∧· · ·∧Cl, decide whether
there exists an assignment under which f is true.

Given a Boolean formula f , we encode it as a PO-PCGS
M = (S, s̄, {i},Act , {∼i}, T ,AP , L) as follows:

• S = {s̄} ∪ { sbm,n | b ∈ {0, 1} ∧ 0 ≤ m ≤ k + 1 ∧ 0 ≤
n ≤ l };
• Act = {α, α0, α1} and there is only one agent i;

• ∼i is defined as:

– sbm,n ∼ sb
′

m,n′ for all b, b′ ∈ {0, 1}, 0 ≤ m ≤ k,
and 0 ≤ n, n′ ≤ l;

– sbk+1,n ∼ sbk+1,n′ for all b ∈ {0, 1}, 0 ≤ n, n′ ≤ l;

• T is defined as follows:

– T (s̄, α) = µ where µ(s00,n) = 1
l+1 for 0 ≤ n ≤ l;

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4759

– for each 0 ≤ m ≤ k, 0 ≤ n ≤ l, and b ∈ {0, 1}:

T (s0m,n, α
0) =

{
δs1m+1,n

¬xm ∈ Cn
δs0m+1,n

¬xm /∈ Cn,

T (s0m,n, α
1) =

{
δs1m+1,n

xm ∈ Cn
δs0m+1,n

xm /∈ Cn,

T (s1m,n, α
b) = δs1m+1,n

T (sbk+1,n, α) = δsbk+1,n

• AP = {>}; and
• L is defined as follows: for each s ∈ S,

L(s) =

{
{>} if s = s1k+1,n with 0 ≤ n ≤ l, and
∅ otherwise.

Then we have that f is NOT satisfiable iff s̄ |= [tt U>]<1.
The above reduction is obviously in polynomial time.

4 PETL Model Checking Algorithm
In the previous section we have seen that model checking
PETL is in general undecidable but it becomes decidable if
we restrict the schedulers to be uniform and memoryless. In
this section, we present an algorithm, shown as Algorithm 1,
to model check PETL against uniform memoryless sched-
ulers in SUM .

In Algorithm 1, we use the following notation:

[s]∪G = { s′ ∈ S | ∃i ∈ G : s′ ∈ [s]i },
[s]∩G = { s′ ∈ S | ∀i ∈ G : s′ ∈ [s]i },

and [s](∪G)∗ is the least fixed point of fs,G(X) = { s′ ∈ S |
∃t ∈ X ∪ {s}, i ∈ G : s′ ∈ [t]i }. Note that the computation
of the fixed point of fs,G requires at most |S| iterations.

Algorithm 1 Procedure to compute the set of states satisfying
a PETL formula ϕ

1: procedure Sat(ϕ)
2: if ϕ = p return { s ∈ S | p ∈ L(s) };
3: if ϕ = ¬ϕ′ return S \ Sat(ϕ′);
4: if ϕ = ϕ1 ∧ ϕ2 return Sat(ϕ1) ∩ Sat(ϕ2);
5: if ϕ = Kiϕ

′ return { s ∈ S | [s]i ⊆ Sat(ϕ′) };
6: if ϕ = EGϕ

′ return { s ∈ S | [s]∪G ⊆ Sat(ϕ′) };
7: if ϕ = DGϕ

′ return { s ∈ S | [s]∩G ⊆ Sat(ϕ′) };
8: ifϕ = CGϕ

′ return { s ∈ S | [s](∪G)∗ ⊆ Sat(ϕ′) };
9: if ϕ = [Xϕ′]./d return { s ∈ S | ∀α ∈ EA(s) :
T (s, α)(Sat(ϕ′)) ./ d };

10: if ϕ = [ϕ1 U ϕ2]./d return { s ∈ S | ∀σ ∈ SUM :
Prσ,s({π ∈ Pathsω | π |= ϕ1 U ϕ2 }) ./ d };

Since SUM is finite, Algorithm 1 terminates: similarly to
the model checking algorithm for PCTL on MDPs (see, e.g.,
[Baier and Katoen, 2008]), the algorithm follows a bottom-up
approach based on the structure of the formula ϕ. All cases

follow directly from the semantics; the interesting ones are
about the probabilistic operator [·]./d which has a temporal
formula as argument. For the next operator X, we can di-
rectly consider all actions enabled by the state since the type
of schedulers does not affect the outcome. Instead, for the
until operator U, we have to consider the scheduler, since
ϕ1 U ϕ2 may be satisfied by paths of different length. In the
following section, we describe an algorithm to deal with all
uniform memoryless schedulers at the same time.

4.1 Dealing with Uniform Memoryless Schedulers
In this section we show how to solve the problem of decid-
ing whether s |= [ϕ1 U ϕ2]./d provided that we have com-
puted C = Sat(ϕ1) andB = Sat(ϕ2), i.e., deciding whether
s |= [C U B]./d, with respect of all uniform memoryless
schedulers. In order to decide whether s |= [CUB]./d, it suf-
fices to consider only Prmax

s ({π ∈ Pathsω | π |= C UB })
and Prmin

s ({π ∈ Pathsω | π |= C U B }) over all uniform
memoryless schedulers.

Let’s consider the minimal probability first. Let Agt =
{1, . . . , n} and consider xs = Prmin

s ({π ∈ Pathsω | π |=
C U B }). We write s |= ∃♦B to denote the fact that the set
B is reachable from s in the underlying graph of M. Then
the vector (xs)s∈S ∈ R|S|≥0 yields the unique solution of the
following programming problem whose constraints are:

1. xs = 1 if s ∈ B;

2. xs = 0 if s 6|= ∃♦B or s /∈ C \B;

3. If s ∈ C \B and s |= ∃♦B, then

xs =
∑

a1∈EA1(s)
···

an∈EAn(s)

p[s]1,a1 ·. . .·p[s]n,an ·
∑
t∈S

P (s, a1 . . . an, t)·xt;

4. p[t]i,ai ∈ {0, 1} for all i ∈ Agt , t ∈ S, and ai ∈ EAi(t);

5.
∑
ai∈EAi(t)

p[t]i,ai = 1 for all i ∈ Agt and t ∈ S;

6. 0 ≤ xs ≤ 1 for all s ∈ S,

where xs is minimal.
Note that the above problem is a Mixed Integer Non-Linear

Program (MINLP), while the programs of standard PCTL
model checking are Linear Programs (LP).

Intuitively, having p[s]i,ai = 1 represents the fact that agent
i chooses action ai at each state t ∈ [s]i. Each uniform mem-
oryless scheduler corresponds to one assignment for variables
p[s]i,ai . The minimal xs is the minimal probability we want.

However, it is not straightforward to adapt the above pro-
gram to compute the maximal probability Prmax

s ({π ∈
Pathsω | π |= C U B }). We explain why with the help
of the following PO-PCGS.

0 1

2

3

{p}

a

b

a

0.5

0.5 a

a

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4760

In this PO-PCGS, all states have empty label except for
L(3) = {p}; there is only one agent who can distinguish ev-
ery state. We want to compute xs = Prmax

s [tt U p] for each
state. Clearly, what we want to get is x0 = x1 = 0.5, x2 = 0,
and x3 = 1. However, if we use the above program, when
the agent chooses b at state 1, we get x0 = x1 and x1 = x0,
so x0, x1 can be assigned to any value between 0 and 1. If
we take the minimal value, we get 0; if we take the maximal
value, we get 1: they are both different from the right answer.

The key part of this problem is that states 0 and 1 form
a loop when the agent chooses b at state 1. In this case, x0
and x1 should be both 0, because they can not reach state
3. To force the value of a variable xs to be 0 whenever the
scheduler makes the state s unable to reach B, we extend the
above problem by adding more constraints. We introduce a
new variable fs for each state s, so that 0 ≤ fs ≤ |S|, with
the following meaning: fs = 0 means that s 6|= ∃♦B or
s /∈ C \B; fs ≥ 1 means that there is a path from s toB with
length fs. The corresponding constraints are as follows:

1. fs = 1 if s ∈ B;
2. fs = 0 if s 6|= ∃♦B or s /∈ C \B;
3. If s ∈ C \B and s |= ∃♦B, then

fs = 0 =⇒ xs = 0
fs > 0 =⇒

∨
t∈S fs = ft + 1 ∧ Ps,t > 0

fs = 0 ⇐⇒
∧
t∈S(ft = 0 ∧ Ps,t > 0) ∨ Ps,t = 0

fs 6= 1 ∧ 0 ≤ fs ≤ |S|

where

Ps,t =
∑

a1∈EA1(s)
···

an∈EAn(s)

p[s]1,a1 · · · · · p[s]n,an · P (s, a1 . . . an, t).

Finally, we require that xs is maximal.
Intuitively, fs = 0 =⇒ xs = 0 means that, if state s

can not reach states in B under the current scheduler, then
xs must be 0. The constraint fs > 0 =⇒

∨
t∈S fs =

ft + 1 ∧ Ps,t > 0 represents the fact that under the current
scheduler, s can reach a successor t with positive probability
Ps,t > 0 and fs = ft + 1, i.e., reaching B from s requires
one step more than from t. The constraint fs = 0 ⇐⇒∧
t∈S(ft = 0 ∧ Ps,t > 0) ∨ Ps,t = 0 ensures that s and each

proper successor t of s have value 0, in case under the current
scheduler they are not able to reach B. Finally, fs 6= 1 ∧ 0 ≤
fs ≤ |S| ensures that fs is finite and it is either 0 or an integer
strictly larger than 1 (as byproduct of the equality fs = ft+1
from the second constraint).

Consider again the previous example; we have the follow-
ing constraints (after replacement and simplification):

f3 = 1
f2 = 0
f0 6= 1 ∧ 0 ≤ f0 ≤ 4
f0 > 0 =⇒ f0 = f1 + 1
f0 = 0 ⇐⇒ f1 = 0
f1 6= 1 ∧ 0 ≤ f1 ≤ 4
f1 > 0 =⇒ (f1 = f0 + 1 ∧ p1,b = 1)

∨ (f1 = f2 + 1 ∧ p1,a = 1)
∨ (f1 = f3 + 1 ∧ p1,a = 1)

f1 = 0 ⇐⇒ (f0 = 0 ∧ p1,b = 1) ∧ (p1,a = 0)

size (row × col) |S| |T |
2 × 3 52 506
2 × 4 97 996
2 × 5 156 1650
3 × 3 112 1204
3 × 4 196 2194
3 × 5 302 3476
4 × 5 720 9018
6 × 5 2080 27794

Table 1: Sizes of PCGS

If p1,b = 1 (thus, p1,a = 0), then we have f0 = f1 = 0
because there is no other assignment satisfying 0 ≤ f0 ≤
4 ∧ 0 ≤ f1 ≤ 4 ∧ f0 = f1 + 1 ∧ f1 = f0 + 1; if p1,a = 1
(thus, p1,b = 0), then we have f0 = 3 and f1 = 2.

5 Implementation and Experiments
We have implemented the proposed PETL model check-
ing algorithm in ePMC [Hahn et al., 2014] and we present
the experiment results in this section. In our implementa-
tion, we use the SMT solver Z3 [de Moura and Bjørner,
2008] (version 4.6.0) to solve the MINLP problem. We
have also tried to use CPLEX, a high-performance math-
ematical programming solver, which also supports convex
MINLP problems; however it refuses to solve the MINLP
problems we generate by stating that they are not convex.
The models we use for our experiments are taken from the
IPPC competitions held in 2011 and 2014, and the origi-
nal IPPC domain decription of these models can be found
at https://github.com/ssanner/rddlsim. All experiments were
conducted on a 3.40GHz Intel Core i7-2600 CPU with 8GB
of memory. The source code of our implementation is avail-
able at https://github.com/fuchen1991/epmc-petl.

5.1 Robot Navigation Model
In this model, there are several robots moving in a grid, try-
ing to reach a goal area. Every cell makes the robots dis-
appear with a different probability. Once the robot arrives
at the goal, it will not disappear any more. Each robots has
several actions available at each cell: moving left, right, up,
and down. The robots are totally independent, namely, one
robot does not know other robots’ locations and actions. The
properties we are concerned about are the probabilities of the
robots getting to the goal or disappearing.

In this experiment, we have 2 robots; we varied the size of
the grid by changing the number of rows and columns; the
size of the resulting PO-PCGSs is summarized in Table 1.

Table 2 shows the time needed to compute the maximal
probability of a robot eventually reaching its goal area. We
can see that Z3 takes almost the whole execution time, so one
can get better performance by using a faster solver.

Table 3 shows instead the time needed to get the minimum
probability of a robot eventually reaching its goal area, which
is 0. As we can see, computing minimal probability scales
much better, since Z3 has fewer constraints to satisfy.

It is interesting to observe how the number of variables and
constraints generated for computing Sat([ϕ]./d) is loosely re-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4761

size variables constraints Z3 (s) total (s)
2 × 3 152 523 8 9
2 × 4 262 941 127 128
2 × 5 400 1479 658 659
3 × 3 300 1088 446 447
3 × 4 496 1863 5410 5411

Table 2: Solving time for Prmax[F(at goal1 ∨ at goal2)]

size variables constraints Z3 (s) total (s)
2 × 3 100 268 0 0
2 × 4 165 449 2 2
2 × 5 244 672 2 3
3 × 3 188 512 0 1
3 × 4 300 828 3 4
3 × 5 434 1210 78 80
4 × 5 928 2636 76 78
6 × 5 2440 7060 561 565

Table 3: Solving time for Prmin[F(at goal1 ∨ at goal2)]

lated to the number of transitions |T | of the PO-PCGS (cf.
Tables 1 and 2). This is due to the fact that a single constraint
may correspond to several concrete transitions; for instance,
the choice by the scheduler of each transition s α−→µ from a
state s in [t]i with full action α involving the (agent) action ai
is represented by a single constraint p[t]i,ai ∈ {0, 1}.

As formulas involving epistemic operators, consider
Φ1 = Prmax[G(Krobot1 (row1 6= row2 ∨ col1 6=
col2) ∧ ¬disappeared1 ∧ ¬disappeared2)] and Φ2 =
Prmax[G(Drobot1 ,robot2 (row1 6= row2 ∨ col1 6= col2) ∧
¬disappeared1 ∧¬disappeared2)], requiring to compute the
maximal probability of robot1 (together with robot2 , resp.)
always knowing that the two robots are not in the same cell
and that both robots have not disappeared, respectively. Ta-
ble 4 shows the results for these two formulas on the instance
with 2 rows and 5 columns, where in every cell the proba-
bility of disappearing lies in the interval (0, 1), and the two
robots have different goals and initial cells, with respect to
three different accessibility relations: R1 represents the fact
that each robot is oblivious of the other robot; R2 encodes
the fact that the robots know whether they are in the same
cell; and in R3 each robot knows whether the other robot is
at Manhattan distance at most 2.

First we note that for R1, Z3 is not needed to solve Φ1

because the robot does not know whether it is in the same
initial cell with the other robot. Then, by giving the robots

accessibility relation property result Z3 (s) total (s)

R1
Φ1 0 – 1
Φ2 0.337965 59 60

R2
Φ1 0.337965 31 33
Φ2 0.337965 31 32

R3
Φ1 0 0 5
Φ2 0.621660 230 235

Table 4: Results for different amount of knowledge

N |S| |T | variables constraints Z3 (s) total (s)
2 576 3249 806 2286 15 18
3 2916 23409 3530 10194 53 70
4 9216 88209 10406 30414 643 697
5 22500 239121 67970 175026 15433 15715

Table 5: Solving time for Prmin[F(picture ∧ water)]

size property result Z3 (s) total (s)

2 Φ3 1.0 7 11
Φ4 1.0 7 11

3 Φ3 1.0 238 258
Φ4 1.0 239 260

4 Φ3 1.0 4363 4454
Φ4 1.0 4379 4473

Table 6: Results for Φ3 and Φ4

more knowledge, like by means of DG or by the accessibility
relations, then each robot knows some detail about where the
other robot is so they can avoid to be in the same cell.

5.2 Reconnaissance Model
In this model, there is a N ×N grid with 2 robots, a base for
each robot, some hazard areas, and some objects in different
locations. The main task of the robots is to reach an object
and study its properties; to this aim, one robot has sensors to
detect water while the other has a camera to take pictures. The
robots’ movements are deterministic while taking a picture or
sampling for water are probabilistic: with positive probability
it is possible to get blurred pictures or not recognizing water.
Moreover, if a robot runs into a hazard or it is on an adjacent
square, then it has a positive probability of damaging its sen-
sor, which increases sharply the probability of sensor failure.
The sensor can be repaired at the robot’s base.

Initially, the two robots are in different cells and they know
whether they are in the same location.

Table 5 shows the results regarding the minimum probabil-
ity of taking a good picture and identifying water on different
sizes of the grid. The resulting probability is 0, induced by
a scheduler never making the robots use their sensors. Sim-
ilarly to the navigation model cases, Z3 is the bottleneck of
our implementation, that is anyway scaling reasonably well.

Regarding the effect of analyzing epistemic operators, con-
sider the formulas Φ3 = Prmax[G(rw x 6= rc x ∨ rw y 6=
rc y)] and Φ4 = Prmax[GErw ,rc(rw x 6= rc x ∨ rw y 6=
rc y)] which ask for the maximal probability of the two
robots always (knowing of) being on different cells, respec-
tively; the results are shown in Table 6, with the same num-
ber of variables and constraints as in Table 5. As we can
see, since the robots know whether they are in the same cell,
the two formulas are essentially equivalent and they require
roughly the same time to be computed.

6 Conclusion and Future Work
In this paper we have considered the problem of model check-
ing probabilistic multiagent systems with respect to a proba-
bilistic epistemic logic. We have shown that the problem is

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4762

in general undecidable; we have also shown that it becomes
decidable when restricted to the class of uniform memoryless
schedulers. For the latter class we have proposed a decision
algorithm, analyzed its complexity, and evaluated a prototyp-
ical implementation on models from the IPPC competitions.
The experimental evaluation confirms the theoretical results
about the complexity of the model checking problem. As fu-
ture work, we plan to investigate how to make the algorithm
more scalable in practice as well as how to enrich the logic,
such as by adding reward predicates or ω-regular properties.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (Grants Nos. 61532019, 61650410658,
61761136011), by the CDZ project CAP (GZ 1023), and
by the CAS/SAFEA International Partnership Program for
Creative Research Teams. Yuan Feng was also partially
supported by the Australian Research Council (Grant Nos.
DP160101652 and DP180100691).

References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and

Orna Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

[Baier and Katoen, 2008] Christel Baier and Joost-Pieter
Katoen. Principles of Model Checking. The MIT Press,
2008.

[de Moura and Bjørner, 2008] Leonardo de Moura and
Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS,
volume 4963 of LNCS, pages 337–340, 2008.

[Delgado and Benevides, 2009] Carla A. D. M. Delgado and
Mario R. F. Benevides. Verification of epistemic properties
in probabilistic multi-agent systems. In MATES, volume
5774 of LNCS, pages 16–28, 2009.

[Fagin et al., 2004] Ronald Fagin, Joseph Y Halpern, Yoram
Moses, and Moshe Vardi. Reasoning about knowledge.
MIT press, 2004.

[Hahn et al., 2014] Ernst Moritz Hahn, Yi Li, Sven Schewe,
Andrea Turrini, and Lijun Zhang. IscasMC: A web-based
probabilistic model checker. In FM, volume 8442 of
LNCS, pages 312–317. Springer, 2014.

[Huang and Luo, 2013] Xiaowei Huang and Cheng Luo. A
logic of probabilistic knowledge and strategy. In AAMAS,
pages 845–852, 2013.

[Huang and van der Meyden, 2014] Xiaowei Huang and
Ron van der Meyden. Symbolic model checking
epistemic strategy logic. In AAAI, pages 1426–1432,
2014.

[Huang et al., 2011] Xiaowei Huang, Cheng Luo, and Ron
van der Meyden. Symbolic model checking of probabilis-
tic knowledge. In TARK, pages 177–186, 2011.

[Huang et al., 2012] Xiaowei Huang, Kaile Su, and Chenyi
Zhang. Probabilistic alternating-time temporal logic of in-
complete information and synchronous perfect recall. In
AAAI, 2012.

[Jamroga and van der Hoek, 2004] Wojciech Jamroga and
Wiebe van der Hoek. Agents that know how to play. Fun-
dam. Inform., 63(2-3):185–219, 2004.

[Jamroga, 2003] Wojciech Jamroga. Some remarks on alter-
nating temporal epistemic logic. In FAMAS, pages 133–
140, 2003.

[Jonsson and Larsen, 1991] Bengt Jonsson and Kim Guld-
strand Larsen. Specification and refinement of probabilis-
tic processes. In LICS, pages 266–277, 1991.

[Kazmierczak et al., 2014] Piotr Kazmierczak, Thomas
Ågotnes, and Wojciech Jamroga. Multi-agency is coordi-
nation and (limited) communication. In PRIMA, volume
8861 of LNCS, pages 91–106, 2014.

[Kwiatkowska et al., 2011] Marta Kwiatkowska, Gethin
Norman, and David Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In CAV, volume 6806 of
LNCS, pages 585–591, 2011.

[Lomuscio et al., 2017] Alessio Lomuscio, Hongyang Qu,
and Franco Raimondi. MCMAS: an open-source model
checker for the verification of multi-agent systems. STTT,
19(1):9–30, 2017.

[Nair et al., 2005] Ranjit Nair, Pradeep Varakantham, Milind
Tambe, and Makoto Yokoo. Networked distributed
POMDPs: A synthesis of distributed constraint optimiza-
tion and POMDPs. In AAAI, pages 133–139, 2005.

[Paz, 1971] Azaria Paz. Introduction to probabilistic au-
tomata (Computer science and applied mathematics).
Academic Press, 1971.

[Pynadath and Tambe, 2002] David V. Pynadath and Milind
Tambe. The communicative multiagent team decision
problem: Analyzing teamwork theories and models. J.
Artif. Intell. Res., 16:389–423, 2002.

[Rabin, 1963] Michael O. Rabin. Probabilistic automata. In-
formation and Control, 6(3):230–245, 1963.

[Schnoor, 2010] Henning Schnoor. Strategic planning for
probabilistic games with incomplete information. In AA-
MAS, pages 1057–1064, 2010.

[Seuken and Zilberstein, 2008] Sven Seuken and Shlomo
Zilberstein. Formal models and algorithms for decen-
tralized decision making under uncertainty. Autonomous
Agents and Multi-Agent Systems, 17(2):190–250, 2008.

[Sultan et al., 2014] Khalid Sultan, Jamal Bentahar, Wei
Wan, and Faisal Al-Saqqar. Modeling and verifying prob-
abilistic multi-agent systems using knowledge and so-
cial commitments. Expert Systems with Applications,
41(14):6291 – 6304, 2014.

[van der Hoek and Wooldridge, 2002] Wiebe van der Hoek
and Michael Wooldridge. Tractable multiagent planning
for epistemic goals. In AAMAS, pages 1167–1174, 2002.

[Wan et al., 2013] Wei Wan, Jamal Bentahar, and Ab-
dessamad Ben Hamza. Model checking epistemic prob-
abilistic logic using probabilistic interpreted systems.
Knowledge-Based Systems, 50:279 – 295, 2013.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4763

