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Abstract:  Surface expansion measurements have been commonly used to evaluate alkali-silica reaction 
(ASR) effects on the mechanical properties of concrete, including estimating the loss of elastic modulus. 
However, it has been observed at any given level of ASR expansion that there is a significant variation in 
the estimated concrete elastic modulus. In other words, ASR expansion alone is not sufficient for 
providing accurate elastic modulus estimation for ASR affected concretes. This paper presents a new 
approach to evaluate the elastic modulus of ASR-affected concrete by utilizing different soft computing 
techniques, namely artificial neural network (ANN), support vector machine (SVM), adaptive neuro-fuzzy 
inference system (ANFIS) and nonlinear regression (NLR). The proposed approaches take into account 
the influences of various factors observed from experimental and/or field process, consisting of mix 
proportion, reactive aggregate types, exposure conditions and initial strength without damage. By 
intelligently fusing multi-type of information, the proposed models can provide an accurate estimation of 
elastic modulus, which shows a significant improvement from empirical based models used in current 
practice. Among the four soft computing techniques, the ANN model can provide the best prediction result 
compared to the others, with the correlation coefficient of 0.9249. 
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1. Introduction  

Alkali-silica reaction (ASR) is a chemical reaction between alkali hydroxides in the concrete pore solution 
and reactive minerals within the aggregates. The consequences are the initiation of cracks in the reactive 
aggregate particles, propagation of the cracks into the paste matrix, exudation of the gel from the cracks, 
volumetric expansion of the concrete, stress development due to expansive pressure, and changes of 
mechanical properties. A large number of studies have been conducted to investigate changes of strength 
and stiffness in relation to ASR-induced expansion [1,2]. Most of these studies agreed that the elastic 
modulus presents significant reduction compared to the splitting tensile strength and compressive 
strength. The elastic modulus has been thus commonly considered as an indicator of ASR-affected 
concrete deterioration [3]. 

To evaluate the change of elastic modulus due to ASR, many experimental investigations have been 
conducted. However, the results in these studies present significant variations on the measured elastic 
modulus at any given level of expansion [3]. In fact, both the development of ASR and the elastic modulus 
of ASR-affected concrete are influenced by several factors observed from experimental process, e.g. the 
type of reactive aggregate (rock type, reactivity and size) [4], alkali content, and exposure conditions 
consisting of temperature and moisture [5]. In other words, the ASR-induced expansion alone could be not 
sufficient in estimating modulus of elasticity of concretes affected by ASR. 

Recently, artificial intelligence (AI) techniques have been widely employed in the fields of modeling 
concrete material and structures [6]. For instance, Pham and Hadi employed artificial neural networks 
(ANN) to estimate the strain and compressive strength of fiber reinforced polymer-confined concrete 
columns and the result shows satisfactory match between testing data and results from the ANN model 
[7].  Lim et al. designed a novel model based on genetic programming to evaluate the ultimate condition of 
FRP confined concrete [8]. Such type of models is capable of processing complicated data groups 
containing multiple independent variables, calculating the sensitivity degrees of input parameters and 
providing mathematical relationships between independent dependent variables. Accordingly, this paper 
aims to investigate the performances of different AI techniques in predicting the reduction of elastic 
modulus of ASR-affected concrete, including artificial neural networks (ANN), support vector machine 
(SVM), adaptive neuro-fuzzy inference system (ANFIS) and nonlinear regression (NLR) methods. At first, 
the experimental data are collected from a large number of previous studies. Then, the capacities of four 
models are evaluated in terms of statistical evaluation indices of correlation coefficient, root mean square 
error (RMSE) and mean absolute relative error (MARE). 



 

2. Data collection 

Due to the extensive differences in the testing procedure, where many factors influence the development 

of ASR and elastic modulus, it is difficult to compare and evaluate the reduction of elastic modulus due to 

ASR by considering only the expansion. The existing empirical models, however, consider only the 

expansion level for all the testing condition, which may lead to the huge variation of prediction results at 

the given level of expansion. This phenomenon can be observed from Figure 1. Actually, in addition to the 

expansion, other factors that affect to the mechanism of ASR and concrete properties should be 

considered. It is well known that the proportion of different ingredients such as cement (C), water, fine and 

coarse aggregates (FRAC and CRAC) are the key factor in design and determination of concrete modulus 

of elasticity. Reactive aggregate is the source of reactive non-crystalline silica for the alkali silica reaction 

in concrete. However, the utilization of reactive aggregate for investigation of mechanical properties of 

ASR-affected concrete subjected to expansion measurements did not follow the same testing standard. 

Therefore, the maximum measured expansion (MAXEXP), obtained from the expansion measurement 

from same set of data to represent the difference in reactivity of the utilized reactive aggregate, is included 

as an input variable. Moreover, Alkali in concrete is the other reactant for ASR together with the reactive 

non-crystalline silica from reactive aggregate. In this study, the proportion of sodium oxide equivalent as 

an input (ALKALI) is total alkali content of concrete mixes, which is from both cement and adding amount 

to mixing water. Besides the reactive aggregate and alkali content, exposure condition, herein including 

temperature and moisture, creates environment for initiating and developing of the alkali silica chemical 

reaction as well as for curing concrete. Nevertheless, the relative humidity remains at very high levels and 

therefore it is not selected as variable for exposure condition. The other factor, temperature (T), is 

considered as an input for the model development. In current practice, the elastic modulus is commonly 

estimated through compressive strength (CS) due to their strong relationship, which should be selected as 

the input factor. To sum up, the inputs of the models in this study should include mix proportion, proportion 

of reactive sand and coarse aggregate, exposure condition, proportion of sodium oxide equivalent, initial 

compressive strength at the undamaged condition, and maximum measured expansion. On the other 

hand, the output of the developed models is elastic modulus degradation. Here, a new parameter that 

normalizing damaged elastic modulus to the undamaged elastic modulus is adopted to demonstrate the 

elastic modulus change in this study, which is expressed by the following formula: 

𝛽𝐸𝑐 =
𝐸𝑐

𝐸𝑐𝑜
                                                                   (1) 

To develop the soft computing-based predictive models with high accuracy, a large number of data 

samples are required for the training purpose. Hence, this study collected the data set from 11 studies 

with 38 concrete mixes, consisting of 169 testing groups of elastic modulus at different levels of the ASR-

induced expansion [9]. The ranges of input and output variables are shown in Table 1. 

 

Figure 1.  Variations of prediction results from previous studies. 
 

Table 1.  Ranges of model variables. 



 

Type Model variables Symbol Range [min, max] 

Input 

Cement content (kg/m3) 

Fine reactive aggregate/cement ratio 

Coarse reactive aggregate/cement ratio 

Exposure temperature (oC) 

Proportion of sodium oxide equivalent (%) 

Initial compressive strength at “non-expansive” 

condition (MPa) 

Maximum measured expansion (%) 

Measured expansion (%) 

C 

FRAC 

CRAC 

T 

ALKALI 

CS 

 

MAXEXP 

EXP 

[300, 424 ] 

[0, 2.85] 

[0, 3.42] 

[38, 50] 

[1.17, 2.87] 

 

[18.2, 58.5] 

[0.072, 0.916] 

[0.001, 0.916] 

Output Normalized elastic modulus 𝛽𝐸𝑐 [0.163, 1.130] 

 

3. Methodology 

 
3.1  Artificial neural network 

Artificial neural network (ANN) is a computational system which simulates the human biological neural 

system with the ability of reasonably learning and tackling the practical problems. Generally, the ANN is 

made up of a set of inter-connected artificial elements via a layer-by-layer configuration and employs the 

transfer function to transform the information between arbitrary two layers. Through the network training, 

the ANN is able to adaptively change its configuration according to internal and external information, and 

the trained ANN is used to characterize the complicated relationship between the input and output. In a 

standard ANN model, there are three types of network layer: input layer, hidden layer, and output layer. 

The schematic layout of an artificial neural network developed in this study is illustrated in Figure 2. The 

neurons at different layers are connected with each other via the connection weight, the value of which is 

optimized through an objective function of the network during a learning process. The signals are sent 

from the input neurons to the hidden neurons, then processed by linear calculation with weights and bias, 

before passed through a transfer function to obtain signals for the output layer. The tangent sigmoid 

functions, which is one of the most commonly used transfer function, is employed in hidden layer to 

develop the networks in this study. One of the most important tasks in developing ANN is the learning 

process. In this study, Levenberg-Marquardt is selected to train the model. About the model configure, 

except for the input and out layers with confirmed variables, a hidden layer with 8 hidden neurons is 

considered.  

 

Figure 2.  Configuration of ANN model [10]. 

 

3.2  Support vector machine 

Support vector machine (SVM) is regarded as a powerful method to deal with the classification and 

regression problems, which is based on the structural risk minimization principle [11-13]. So far, SVM has 

been successfully applied to the field of nonlinear system modelling. The main idea of SVM is illustrated 

as: Suppose there is a given training set S=[(xi, yi), i=1,2,…,l], where xi and yi denote the input vector and 



the output (target) value, respectively; l is the total number of the data pattern. The objective of SVM is to 

design a regression model to perfectly portray the nonlinear relationship between input and output 

variables, and forecast the output result according to the new input samples. The expression of SVM 

function can be described by: 

( ) ( )

: ,n

f x w x b
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                                                                      (2) 

where ϕ(x) is a nonlinear function in the high-dimensional characteristic space; w and b denote 

coefficients. To obtain w and b, two positive slack variables ξi and ξi
∗ are introduced so that the problem is 

transformed to the following optimization problem: 
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Eventually, the optimal nonlinear regression function (hyper-plane) can be obtained by utilizing above 

minimization function: 

*

1

( ) ( ) ( , )
n

i i i

i

f x k x x b 


  
                                                       (4) 

where k(xi,x) denotes the kernel function, which plays an important role in building the optimal hyper-

plane. The conventional kernel functions include linear function, polynomial function, radial basis function 

and sigmoid function. Different kernel functions have different parameters, which correlate the 

configuration of the feature space as well as the solution complexity. In this study, the radial basis function 

(RBF) is used to perfect performance of nonlinear prediction. The configuration of a typical SVM model is 

shown in Figure 3. 

 

Figure 3.  Configuration of SVM model [14]. 

 

3.3  Adaptive neuro-fuzzy inference system 

The adaptive neuro-fuzzy inference system (ANFIS) has great capacity in dealing with the imprecision and 

uncertainty of nonlinear systems and is frequently implemented to build the fuzzy IF-THEN rules of logical 

inference through its powerful and effective data mining techniques. Data mining techniques are used to 

extract the main features inside the data sets and self-configure their interactive relations. The Sugeno 



fuzzy model is used to establish IF-THEN rules. Regarding the learning procedure and parameter 

adjustment, a feedforward neural network coupled with a supervised learning algorithm is implemented, 

which effectively and appropriately adjusts all parameters of the fuzzy inference system so that the model 

can possess the self-learning and generalization capacity. 

Fig. 3 gives the structure of ANFIS, which is regarded as a five-layer neural network. The first layer 

consists of n membership functions, where the fuzzy decision rule is realized in each function. Each input 

degree can be obtained in the range of [0, 1] in the fuzzification layer. The second layer is rule layer. The 

output of this layer is the outcome of related degrees from the first layer. The third layer is the 

normalization layer, which is used to compute the ratio of each ith rule’s firing strength to the sum of all 

rules’ firing strength. The fourth layer is the defuzzification layer, where each node computes the 

contribution of ith rules towards the whole output. The last layer is to summarize all the outputs. Generally, 

the ANFIS is based on a first order Takagi-Sugeno-Kang (TSK) architecture that is generally composed of 

r rules of the form, given as follows: 

Rule i: IF x is Ai and �̂� is Bi and f is Ci, THEN zi=pix+qi�̂�+sif+di 

where Ai, Bi and Ci denote the fuzzy sets; x, �̂� and f denote the input variables; zi denotes the output 

variable; mi denote the output parameters of fuzzy system. 

 

Figure 4.  Configuration of ANFIS model. 

3.4  Nonlinear regression 

To characterize nonlinear relationship between elastic modulus reduction and the influential factors, the 

nonlinear exponential polynomial function is used to set up the regression model as the following 

expression: 

𝛽𝐸𝑐 = exp(𝑎0 + ∑ 𝑎𝑖 ×
𝑥𝑖

𝑀𝑒𝑎𝑛(𝑥𝑖)

8
𝑖=1 )                                                        (5) 

where a0, a1, …, a5 are coefficients of the regression equation to be identified. In the expression, the 

coefficients are normalized to the mean value of the respective variable data. Therefore, the impact of 

each influential factor on the output could be evaluated based on the sign and magnitude of these 

coefficients. 

 

4. Results and discussions 

The algorithms of soft computing methods are implemented using Matlab v.2018a. Before the models are 

trained, all the input parameters are normalized to eliminate the errors caused by the parameter ranges. 

For the data division for the purpose of training and testing, around 70% of data is used as the training 

samples and the rest is used as the testing samples. To assess the performance of four soft computing 

models for the prediction of the elastic modulus reduction, the correlation coefficient, root mean square 

error (RMSE) and mean absolute relative error (MARE) between real results and model predictions are 

computed with the following expressions: 

𝑅 =
𝑝 ∑ 𝑡𝑖∙𝑜𝑖

𝑝
𝑖=1 −(∑ 𝑡𝑖

𝑝
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𝑝
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𝑝
𝑖=1

)2√𝑝 ∑ 𝑜𝑖
2𝑝

𝑖=1
−(∑ 𝑜𝑖

𝑝
𝑖=1

)2
                                               (6) 



𝑅𝑀𝑆𝐸 = √
1

𝑝
∑ (𝑡𝑖 − 𝑜𝑖)

2𝑝
𝑖=1                                                                  (7) 

𝑀𝐴𝑅𝐸 =
100

𝑝
∑

|𝑡𝑖−𝑜𝑖|

𝑜𝑖

𝑝
𝑖=1                                                                (8) 

where p denotes the sample number; oi and ti denote the ith measured and predicted results. 

The analysis results are shown in Figure 5 and Table 2. It is clearly noted that most data points evenly 

scatter near the fitted line y=x for three models. The closer the distances between the points and the 

regression line are, the more accurate the model is. According to the evaluation results, it is clearly seen 

that ANN and SVM models outperforms ANFIS and NLR models, the R values of which are 0.9185 and 

0.8603, respectively. The RMSE and MARE values of ANN model are 0.1472 and 6.1936 while the 

corresponding values of SVM models are 0.1501 and 6.8239. Apparently, among four models, the ANN 

model has the best prediction accuracy of elastic modulus reduction of ASR-affected concrete, which can 

be considered as a promising tool for elastic modulus evaluation in practice. 
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                                                     (a) ANN                                                                           (b) SVM 
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Figure 5.  Model evaluation results 
 

Table 2.  Evaluation index values of soft computing models. 
 

Model 
Evaluation index 

R RMSE MARE 

ANN 0.9249 0.1472 6.1936 

SVM 0.9236 0.1501 6.8239 

ANFIS 0.9185 0.1763 9.0467 

NLR 0.8603 0.2132 13.7434 

 

 



5. Conclusions 

ASR in concrete is regarded as one of the major factors causing degradations of mechanical properties of 

concrete. According to previous studies, ASR induced reduction in elastic modulus is the most significant 

compared to tensile and compressive strength. Many empirical models have been proposed to evaluate 

mechanical properties degradation based on the expansion level. However, the experimental results from 

the literature present significant variations in the measured elastic modulus at any given level of 

expansion; these empirical models thus could not produce an accurate estimation of the reduction level. In 

fact, both the development of ASR and the elastic modulus of ASR-affected concrete are influenced by 

several factors. Therefore, to consider all the influence factors and develop more accurate models to 

predict the elastic modulus of ASR-affected concrete, soft computing techniques are utilized in this study 

and four predictive models, including ANN, SVM, ANFIS and NLR. The experimental data from existing 

literatures were employed to adjust optimal model parameters via the training procedures. Finally, the 

model performances were evaluated and compared using the statistical indices. The results show that 

ANN model has the best performance in predicting the elastic modulus reduction of concrete due to ASR. 

The relevant values of RMSE, R and MARE are 0.1472, 0.9249 and 6.1936, respectively. The outcome of 

this research can provide the theoretical guidance for the engineers to evaluate the mechanical property 

of ASR-affected concrete structures in the field. 
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