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Abstract: In the working process, the load mass of the thrust magnetic bearing has a significant change.
If the load mass changes greatly, the original fixed control parameters cannot ensure that the system is
in the optimal stable suspension state, and the performance of the system will become worse or even
self-excited. Firstly, a single freedom degree of the suspension control system model is established,
and the critical condition of the system is analyzed when a self-excited oscillation occurs. Then, a linear
adaptive control law is proposed for the system with variable parameters, which can tolerate the wide
range of load mass. The simulation results show that the adaptive control law can keep the stability of
the system when the load mass varies in a large range and avoid the self-excited vibration.
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1. Introduction

In recent years, magnetic bearing has been developed and commercialized due to its advantages
of no mechanical contact and no need of lubrication. In all kinds of active magnetic bearings, the thrust
magnetic bearing can adjust the axial displacement of the rotor shaft, and is usually used in the
thrust direction active suspension control [1]. For the thrust magnetic bearing, the load mass often
changes greatly during the working process.When the load mass of the thrust bearing changes,
the corresponding parameters of the system will change, and the balance point of the system will also
deviate from the original balance point [2,3]. At this time, the original fixed control parameters will
not ensure that the system is in the optimal stable suspension state, and the performance of the system
will become worse or even self excited [4].

Self-excited vibration is often encountered in the magnetic levitation control system and is one of
the most difficult problems to be solved [1,5,6]. On the one hand, the self-excited vibration aggravates
the workload of control system and increases the energy consumption of the system. On the other hand,
the self-excited vibration makes the performance of control system deteriorate and directly affects the
stability of the whole system. Therefore, the control stability of the thrust magnetic bearing must be
solved when the load mass is changed in a large range.

The study shows that the self-excited vibration of the magnetic levitation thrust bearing is
closely related to the bifurcation of the system equation [1,7,8]. In fact, the thrust magnetic bearing
is a typical open-loop unstable nonlinear system. In engineering, the nonlinear system is often
linearized at its equilibrium point, and then a corresponding PID controller is designed for the
nonlinear system. The practice shows that the stability range of the linear controller designed for
the nonlinear system is limited. When the change of the equilibrium point of the nonlinear system
is relatively small, the designed linear controller is usually effective. Once a certain parameter of the
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system changes greatly, such as the parameter of the load mass, the balance point of the system will
also shift considerably. Then, the above linear controller will not adapt to the new state [2,8,9].

Many researchers have considered the effect on the stability and bifurcation of the active
thrust magnetic bearing rotor systems [10,11]. The model is reduced by a component mode
synthesis method, which can conveniently account for nonlinear magnetic forces and moments of the
bearing. Then, the system equations are obtained by combining the equations of the reduced mechanical
system and the equations of the decentralized PID controllers. The local stability and bifurcation behaviors
of periodic motions are obtained by using Floquet theory.

In fact, there are some common ways to solve this problem for this nonlinear system. The feedback
linearization method is mainly used in the design of nonlinear system controller, and it has received
extensive attention in recent years [12–14]. Because the feedback linearization method utilizes all the
nonlinear descriptions of maglev system, its control performance will not change with the change
of system working point in a large range. The disadvantage of this method is that the whole states
of the system are need to be measured, and in practical engineering practice, it is often difficult
to meet. In addition, when the system parameters are uncertain, the performance of the system with
the feedback linearization control method cannot be guaranteed [14].

In view of the above problems, this paper focuses on the linear adaptive control method of
magnetic levitation thrust bearing when the load mass varies greatly. First, the suspension control
system model of the thrust magnetic bearing is given, and then the characteristics of the system
are analyzed. An adaptive control law considering the variable parameters of load mass is designed.
Finally, the effectiveness of the above method is verified by simulation.

2. Linear Stability Analysis and Existence of Hopf Bifurcation

The suspension control system of the electromagnetic thrust bearing is shown in Figure 1. It is
composed of the electromagnet, the coils, the suspension controller, the displacement sensor, the load
and so on.

controller

load

magnet

coil

sensor

Figure 1. The suspension control system of the electromagnetic thrust bearing.

As shown in Figure 1, the sensor can detect in real time the displacement between the electromagnet
and the load platform, and transmit the displacement signal to the controller. The controller can calculate
the appropriate control value and then provide the appropriate current to the electromagnet coil winding.
The magnet will generate enough electromagnetic force to overcome the gravity of the load and achieve a
stable suspension state.
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The relationship about the electromagnetic force generated by the electromagnet, the current and
the magnetic gap is [6,15,16]

F =
u0N2 Ai2

4z2 = k
i2

z2 , (1)

where u0 is the magnetic permeability in vacuum, N is the number of turns of coil, A is the pole area, i
is the current and z is the length of the magnetic gap.

The dynamical equation of the load is

ma = mg− F + fd, (2)

where m is the load mass, g is the acceleration of gravity, a is the gravity acceleration in the vertical
direction of the load, and fd represents the disturbance force on the load.

The electrical equation of the electromagnet coil is [6,15,16]

u = Ri +
2k
z

i̇− 2ki
z2 ż, (3)

where u is the port voltage of the electromagnet winding and R is the resistance of the electromagnet.
The feedback control is often applied to the port voltage of the electromagnet, that is

u = U + kp(z− z0) + kd ż, (4)

where U represents the port voltage in the static state, and kp and kd are, respectively, displacement
and velocity feedback control coefficients.

By combining the above equations, we have
ż = v;
v̇ = g− k i2

mz2 +
fd
m ;

i̇ = − z
2k Ri + i ż

z +
z

2k (U + kp(z− z0) + kd ż).
(5)

By adjusting the control parameters kp and kd, the system can maintain the stable suspension state.

3. Analysis of Vibration Characteristics

When the system is self-excited, the system often has a stable periodic solution near its equilibrium
point [17,18]. To ensure the stability of the suspension control system, the above situation should be
avoided [19–21].

Based on the above system equation, by ignoring the disturbance fd, the equilibrium point of the
system is solved. Let (ż, v̇, i̇) = (0, 0, 0) and the isolated equilibrium point of the system P is

P = (z0, v0, i0) = (i0

√
k

mg
, 0,

U
R
). (6)

The Jacobian matrix of the system at the equilibrium point is [22]

A =


0 1 0
2g
z0

0 − 2
z0

√
kg
m

kpz0
2k

kdz0
2k +

√
mg
k − Rz0

2k

 . (7)

The characteristic equation of the matrix A is

| λI − A |= λ3 +
Rz0

2k
λ2 + kd

√
g

km
λ + kp

√
g

km
− Rg

k
. (8)
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The Routh table of the characteristic equation is shown as Table 1 [22,23].

Table 1. Routh table of the characteristic equation of the matrix A.

λn(n = 0, 1, 2, 3) Ci1(i = 1, 2, 3, 4) Cj2(j = 1, 2, 3, 4)

λ3 C11 = 1 C12 = kd

√
g

km

λ2 C21 = Rz0
2k C22 = kp

√
g

km −
Rg
k

λ1 C31 =
2mg
kz0

+ kd

√
mg
k3 −

2kp
Rz0

√
mg
k

λ0 c41 = kp

√
g

km −
Rg
k

According to the above Routh table, we can conclude the following:
(1) If the values of the first column of the Routh table are positive, namely C11 > 0, C21 > 0, C31 > 0,

C41 > 0, all the characteristic roots of the matrix A have negative real parts. That is, corresponding to the
nonlinear system in Equation Group (5), the linear system at equilibrium point P is stable [22] .

At this point, the matrix A has no pure virtual root, and the nonlinear system in Equation (5)
is derivable in the neighborhood of the point P. The nonlinear system in Equation (5) and its
corresponding linear system in Equation (7) in the equilibrium point P have the same topological
structure, namely the nonlinear system in Equation (5) is also stable at the equilibrium point P.

(2) It is obvious that C11 > 0, C21 > 0. When C31 = 0 or C41 = 0, the matrix A has a characteristic
root with negative real part, and the other two are pure virtual roots. That is, the linear system in
Equation (7) is critical stable [22].

At this point, the nonlinear system in Equation (5) may exist the bifurcation with C31 = 0, C41 = 0.
In Case (2), the nonlinear system in Equation (5) may appear stable periodic solution, namely

may induce the stable self-excited vibration.

When c41 = 0, kp = R
√

mg
k . As R, m, g, k are constant, kp should also be constant. In fact,

the control parameter kp is constantly changing, and it is quite a coincidence that the above equation is met.
Thus, the main discussion is the case c31 = 0.

When c31 = 0, one of the characteristic roots of the matrix A is a negative real root, and the other
two are pure virtual roots. Let us assume that this pair pure virtual root is λ = a± ib, and the other
negative real root is λ = d. Obviously, a = 0.

Then, we have [24]

(λ− a + ib)(λ− a− ib)(λ− d) = λ3 +
Rz0

2k
λ2 + kd

√
g

km
λ + kp

√
g

km
− Rg

k
. (9)

Then, 
−2a− d = Rz0

2k ;

b2 + 2ad = kd

√
g

km ;

−b2d = kp

√
g

km −
Rg
k .

(10)

According to Equation Group (10), we solve a′(kp, kd). If only a′(kp, kd) 6= 0, we can get [20,22,25]

− kp + kd + R
√

mg
k
6= 0. (11)

Then, a Hopf bifurcation would occur at the point c31 = 0 of the trust bearing system, which means
that the system has the periodic solution at this point and a stable self-excited oscillation appears.
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To achieve the stale suspension control and avoid the self-excited oscillation, according to c11 > 0,
c21 > 0, C31 > 0, C41 > 0, we can also have

R
√

mg
k

< kp < R
√

mg
k

+
kdRz0

2k
. (12)

4. Design of the Adaptive Control Law

In the work process of the electromagnetic thrust bearing, the load mass changes very often.
The inequality in Equation (12) would not hold if kp remains the same with the load mass variation,
which will cause that the system may lose its stability or reach a critical steady state. Here, we design
the adaptive controller parameters, that is the suitable selection of the suspension displacement
coefficient kp and the differential feedback coefficient kd, to make the above inequality hold.

In practical engineering, to make the inequality in Equation (12) exist, we let kp

kp = R
√

mg
k

+
3Rz0kd

10k
. (13)

In the above equation, the load mass m is hard to measure directly. However, according to the
previous analysis, at the isolated point P of the system, we have

U0 = Ri0, mg = k
i20
z2

0
, (14)

where U0 is the port voltage of the electromagnet at the equilibrium point. The port voltage U of the
electromagnet coil is easy to measure.The adaptive control law with variable load mass is designed as
follows [20,22,26]  kp = U

z0
+ 3Rz0kd0

10k

√
U
U0

;

kd = kd0

√
U
U0

,
(15)

where kd0 is the velocity feedback coefficient of the equilibrium point.

5. Numerical Simulations

The system parameters of the thrust magnetic bearing system is given in Table 2.

Table 2. Parameter values of the electromagnetic thrust bearing system.

Name m g k R i0 z0

Value 40 9.8 8.82× 10−6 1 1 0.00015
Unit kg m/s2 N×m2/A2 Ω A m

(1) Stable suspension

By choosing kp = 6700, kd = 60, we can calculate c31 > 0, c41 > 0. Then, all the eigenvalues of the
Jacobian matrix of the system have the negative real part, which means that the system can suspend
stably without Hopf bifurcation and self oscillation. The suspension displacement curve with the
above parameters is shown in Figure 2.
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Figure 2. The suspension displacement curve with stable suspension.

Figure 3 shows that, with the above parameters, the suspension gap reaches the equilibrium
position 0 mm in the 1 s time, and then suspends stably without self-excited vibration.
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Figure 3. The suspension displacement curve with self-excited oscillation.

(2) Self-existed oscillation

By choosing kp = 7177, kd = 60, we can calculate c31 = 0. Therefore, the eigenvalues of the
Jacobian matrix of the system has a pair of pure virtual root. The suspension displacement curve with
the above parameters is shown in Figure 3.

Figure 2 shows that, with the above parameters, the suspension gap curve is in the periodic
oscillation state and the obvious self-excited vibration occurs, which is consistent with the previous
simulation analysis.

Discussion 1. In Figures 2 and 3, when control parameters are changed, we discuss whether the
system is stable. In Figure 2, the eigenvalues of the Jacobian matrix of the system have negative real
part and the suspension displacement curve is convergent. While the control parameter kp is changed
in Figure 3, the eigenvalues of the Jacobian matrix of the system have pure virtual part. The suspension
displacement curve is divergent.

(3) The control parameters remain the same while the load mass changes

When the load mass changes up to 60 kg, the displacement curve is shown in Figure 4 while the
control parameters remain the same.
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Figure 4. The suspension displacement curve while the load mass changes and the control parameters
remain the same.

As Figure 4 shows, while the load mass suddenly changes, with the same control parameters,
the suspension displacement would oscillate and the amplitude would increase gradually, and the
system will lose the stability eventually.

(4) Adopting the adaptive control law while the load mass changes

When he load mass changes up to 60 kg, the displacement curve of the system by adopting the
adaptive control law is shown in Figure 5.
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Figure 5. The suspension displacement curve with the adaptive control parameters while the load
mass changes.

In Figure 5, when the suspension mass suddenly changes, the curve of the displacement gradually
approaches the new equilibrium point, while it maintains a stable suspension state by adopting the
adaptive control law.

Discussion 2. In Figures 4 and 5, when the load mass is increased, we discuss whether the system
is stable. In Figure 4, the control parameters keep unchanged, so the suspension displacement curve
is divergent. However, if the adaptive control law is adopted, the suspension displacement curve is
convergent in Figure 5.

6. Conclusions

Since a wide range of load mass variation of the electromagnetic thrust bearing would degrade the
system performance significantly and even cause the self-excited vibration problem, we put forward
a kind of adaptive control law which can tolerate this large range of load changes. By changing the
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nonlinear system as a class of linear systems, this paper analyzes the boundary conditions when the
self-excited oscillation exists. The designed control law can adjust the controller parameters according
to the change of the load mass, which makes the system away from self-excited oscillation area and
possess a good stability margin.
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