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Abstract
As commonly understood, the noise spectroscopy problem—characterizing the statistical properties
of a noise process affecting a quantum systembymeasuring its response—ismathematically ill-posed,
in the sense that no unique noise process leads to a set of responses unless extra assumptions are taken
into account. Ad-hoc solutions assume an implicit structure, which is often never determined. Thus, it
is unclear when themethodwill succeed orwhether one should trust the solution obtained.Here, we
propose to treat the problem from the point of view of statistical estimation theory.We develop a
Bayesian solution to the problemwhich allows one to easily incorporate assumptionswhich render
the problem solvable.We compare several numerical techniques for noise spectroscopy andfind the
Bayesian approach to be superior inmany respects.

1. Introduction

Quantum technologies will very likely ultimately rely on active error correction. However, at every stage—
crucially in current experiments—open-loop control techniques to suppress errors need to be employed [1].
They can be thought of as a layer-0 level of protection designed tomake the errors in any operation as small as
possible, before themachinery of quantum error correction and fault-tolerant quantum computing takes over.

These techniques can be roughly classified in terms of their robustness to uncertainty in the knowledge of the
noise they attempt to suppress. Exemplifying this, dynamical decoupling (DD) [2] sits on one end of the
spectrum as a highly robust technique—DD sequences only require the noise to be ‘slow’ (in some appropriate
metric wewill discuss inmore detail later), but beyond this the details of the noise are not important. On the
other hand, optimal control techniques can be used to design pulse sequences capable of efficiently suppressing a
wide range of noises, both ‘fast’ and ‘slow’, but only if detailed knowledge of the noise is available [3, 4]. The ideal
strategy is thus a function of the knowledge available about the noise. Unfortunately this detailed information is
often absent, since in an open quantum system scenario the bath or environment generating such noise cannot
be directlymeasured or controlled. Phenomenologicalmodels and intimate control over the fabrication process
of a given quantum system can alleviate this, but can atmost give partial information about the noise sources
affecting a qubit.

In order to bridge this gap in knowledge, quantumnoise spectroscopy protocols of varying generality have
been developed and implemented in recent years [5–13]. Their objective is to characterize the actual noise
affecting a quantum systemof interest, regardless of its source, in terms of its correlations, ormore specifically
the set of power polyspectra [14]. The key point is that the information these protocols output, togetherwith
optimal control techniques, should enable one to design control routines tailored to suppress the actual noise
affecting the quantum systemof interest [15]. Very recently, for example, a 10 min record-breaking coherence
timewas achieved in trapped-ions [16] using this principle. Operationally, spectroscopy protocolsmeasure the
response of a quantum system to the noise affecting it. This is achieved by exploiting the ability to prepare a set of
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initial states, to apply suitable control sequences, and tomeasure a set of convenient observables. Themain
difficulty is that noise correlations influence the dynamics of the quantum system in a highly nonlinear way.
Thus, inferring these correlations in detail from the response of the quantum system is generally an ill-posed
problem, unless a priori information on the noise is assumed. Evenwhen standard assumptions, such as
Gaussian noise or a dephasing coupling are satisfied, the problem remains nonlinear and inverting it carries
along a set of non-trivial complications that in turn constrain the type of noise that can be characterized. For
example, in [8–12] a control-induced frequency comb approach is used in order to overcome the nonlinear
character of the problembut it comes at the cost of being only effective when the noise correlations are smooth
functions in frequency space.

We propose thatmany of these problems can be ameliorated, or at least properly quantified, using a
statistically principled approach.Within the statistical phrasing of the problemwe provide a Bayesian solution
[17], complete with a numerical implementation.We show the problem can be solved analytically in the limit of
large of amounts of experimental data. At the other extreme—the small-data limit—a numerically stableMonte
Carlo algorithm [18] approximates the full Bayesian solution.Our two approaches provide a robust solution to
the software side of the noise spectroscopy problem, and can be used to improve state-of-the-art spectroscopy
protocols [8–12]. These two regimes are schematically depicted infigure 1. Though the physicalmodel we
consider is simplified to illustrate the novel aspects of this work, we note that our approach is very versatile.We
discuss this later.

We summarize the performance of our approach for the large- and small-data limits in section 6, with
complete details including all source code in the supplementarymaterial. In the large data limit, our approach
can give almost an order ofmagnitude improvement in performance over state-of-the-art estimation strategies.
By contrast, in the small-data regime, we can even achieve two orders ofmagnitude improvement with just 2500
bits of data. Thus, our approaches yield immediate and dramatic benefits in terms of experimental costs.

An expert readermay have realized that ourwork seems related to recent work of Zwick, Alvarez andKurizki
(ZAK) [19]. It is useful to highlight themain differences between thatwork and ours. There the authors discuss
the problemof designing experiments tomaximize the expected information of select spectral properties (‘bath
parameters’). Themain difference is that ZAK treat the single parameter case, and are thus able to obtain clever
analytic solution to the experiment design problem. In contrast, our approach is inherentlymultidimensional
and thusmore general, but thismeanswe only provide numerical algorithms. These works can thus be seen as
complementary7. Recent work has utilized Bayesian parameter estimation in trap ion noise spectroscopy
experiments [20, 21] aswell as optomechanical systems [22].

Our paper is organized as follows. In section 2wemotivate the problem froma physical perspective. In
section 3we extract the coremathematics, simplifying asmuch as possible the physical equations in order to
phrase the problem as one of statistical estimation theory.We provide two solutions (as discussed infigure 1) at
varying degrees of complexity and economy. In section 4we provide theGaussian processmodel which is valid
in the large data limit. In section 5 the full Bayesian solution is outlined and applied to the ubiquitous 1/fnoise

Figure 1.Estimation demands data. At some point (the exact location ofwhich depends are far toomany factors to quantify), the
distribution of data becomeswell-approximated by aGaussian, allowing an effective linearization of the problem. This greatly
simplifies the calculations required to solve the estimation problem.When this is not the case, the problemdemandsmore resources
andmore clever numerical algorithms to approximate the solution. In any case, themore parameters one has in theirmodel, themore
data is required to learn anything.

7
Moreover, thoughZAK suggest a Bayesian approach to the problem, they do not detail what numerical Bayesian updating algorithm is

used.Our software is capable of realizing the protocol of ZAK for their specific problem and itsmultidimensional generalization.
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model. A summary of thefindings fromour numerical experiments is given in section 6.Wewrap up in section 7
with a brief discussion. Full implementation details and code to reproduce the results are listed in the ancillary
files for this paper. In particular, this paper can be seen as a living document as follows: when the source is
downloaded and run, new random variables will be drawn and the data will change. Therefore, the figures will
also change, while—hopefully!—the conclusions drawn from themwill not.

2. Physicalmotivation

In order to present our results, it is useful to introduce a concrete physicalmodel that is simple enough that the
open quantum systems and control language does not distract from themain features of our statistical approach,
but that is sufficiently non-trivial to be a relevantmodel from the physical point of view. This is in line with our
core intention in this paper, to introduce specialized tools from statistical analysis into the very relevant problem
of noise characterization.

Our toy physicalmodel is the dynamics of a two-level system (TLS) in the presence of dephasing noise
generated by a zero-mean, Gaussian, stationary process. The TLS and its environment are assumed to be
initialized in a factorizable state of the form ρSB=ρS⊗ρB, with ρB being the initial state of the bath.
Furthermore, their dynamics is ruled by aHamiltonian that, in the interaction framewith respect to the natural
dynamics of the bath, takes the form

s= Ä +( ) ( ) ( ) ( )H t B t H t , 1z ctrl

whereB(t) represents the bath noise, and ( )H tctrl is a controlHamiltonian acting solely on the TLS.Wewill
describe the bath as if it is quantumbut a classical bath is of course just a special casewhere the bath operator that
appears in our equations commutes at different times, i.e. [B(t1),B(t2)]=0. For simplicity, we shall assume

( )H tctrl to enact instantaneousσx pulses at times {ti}, i.e. d s= å -p( ) ( )H t t ti xctrl 2
, such that, in the so-called

toggling framewith respect to the control, theHamiltonian takes the even simpler form

s= Ä( ) ( ) ( )H t y t B t ,z

with y(t) a binary function taking values in {−1, 1} and switching at times {ti}.Wewill be interested in the
expectation value of a Pauli operatorσα at a timeT, given by s r r sá ñ = Ä Äa a( ) [ ( ) ( ) ( )]†T U T U T 1Tr S B , with

the unitary evolution given by the appropriate time ordered exponential = ò+
-( ) ( )( )U T e H s si d

T

0 . It is
important to highlight that when the bathB(t) has a componentβ(t) that is a classical stochastic process, one can
only access the average expectation value ofσα overmany realizations ofβ(t). That is one canmeasure sa⟪ ( )⟫T c

with á ñ· c denoting average over realizations ofβ(t). To ease the notationwewill denote simply by ⟪·⟫when both
averages are taken.Under these conditions, the expectation value of an operatorσα is given by [12]

 òs r r s=a a+
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The assumption thatB(t) is aGaussian, zero-mean, stationary process, implies that only the second cumulant of
the process is non-vanishing, i.e. r r= á ñ = á + - ñ "( ( ) ( )) [ ( ) ( ) ] [ ( ) ( ) ]( )C B t B t B t B t B t t t B t tTr Trc B c B
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In turn this leads to the exact solution, in both time and frequency domains, being given by [12, 14]
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Here s s s s=a a a[ ]f tr 2z z z, takes values in w w- ={ } ( ) ∣ ( )∣( )F T F T1, 1 , , ,1 2 is thefilter function, and

òw = w
-¥

¥ -( ) ( )( ) { ( ) ( )}S tCd eB t B t2 , 0

2
i , where {·, ·} denotes the anticommutator, is the symmetric or classical

power spectrumof the noise process. Additionally, òw = w( ) ( )( )F T t y t, d e
T t1

0
i is the so-called order-one

fundamentalfilter functionwhich depends purely on the control [23, 24]. These equations capture the dephasing
behaviour of a qubit in the presence of a classical—as in the various semiclassical approximations oftenmade in
NV centers [25] orNMR [10]—noise, or quantumnoise—as in the case of a bosonic bath in a thermal
state [14, 26].

In this language, suppressing the decoherence is akin tominimizing the value of the exponent on the right
hand side of equation (3). This can be achieved via the use of control: one can choose a routine whosefilter has a
small overlapwith the power spectrum.DD sequences, for example, achieve this by generating filters which
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vanish atω=0 and areflat around it. They are thus very effective against decoherence generated by ‘slow’ noise,
where S(ω) ismostly supported aroundω=0. For noise with considerable high frequency contributions, the
DD sequence can be ineffective or can, in analogy to the anti-Zeno effect [27], even generate the opposite effect,
i.e. decoherence enhancement. On the other hand, if information about the power spectrum is available then
optimal control techniques can be used tofind a control routine thatminimizes the overlap and thus the
decoherence [23, 24]. This is clearly the ideal situation, but it raises the question if the necessary information can
be obtained in an open quantum system scenario.

Complete knowledge of theHamiltonian describing the decoherence process and of the initial state of the
environment would grant us perfect knowledge of the power spectrum and, in such situations, optimal control
methods could be used tominimize the decoherence of the TLS.However, evenwhenGaussianity is imposed
a priori [14], such knowledge is rarely available. For example, the temperature of the thermal state of a bosonic
environment or the dispersion relation for the bosonicmodes is usually unknown. Fortunately, as seen from the
equations above, the decoherence process only depends on S(ω), i.e. not on the actual formofB(t) or even ρB but
on the bath correlations they induce. This quantity, while not directlymeasurable can be inferred from the
measurable (average) response of the TLS to different controlHamiltonians.

This is theworking principle behind recently proposed noise spectroscopy protocols. Schematically, one such
protocol wouldwork as follows. Imagine preparing a+1 eigenstate of sx at time t=0, in suchway that the
expectation value of the observableσx at the final time t=T, given ( )H tctrl , is as in equation (3). Different
choices of ( )H tctrl result in different filters F(ω,T), and different experimentally accessible values of
s⟪ ( )⟫∣ ( )Tx H tctrl

. In principle, it should be possible to choose a sufficiently large set of different control sequences
in suchway that the integral in the exponent can be deconvolved, and information about S(ω) can be inferred.
Different approaches to this problem, under different simplifying assumptions, have been proposed and even
experimentally implemented [10, 11, 13, 16, 28].More exotic protocols have been proposed to characterize
more general noise processes, such as non-Gaussian noise [11] or noise affectingmultiple qubits [12, 29].While
wewill not consider themhere in detail, we note that the statisticallymotivatedmethods can in principle be also
used there via an appropriate generalization. It should be highlighted that bymeasuring the response of the qubit
to the presence of the bath and qubit control the best one can expect to estimate are the bath correlation
functions alluded to earlier. From them, information about physical parameters of the bath can be extracted but
only under concrete assumptions. For example, if one is given the prior that the bath consists of collection of
harmonic oscillators in a thermal state and system and bath couple through linearly as in [12] then one can
extract the temperature of the bath from S(ω).

In the remainder, wewill abstract asmuch physical detail as possible for brevity and generality. This allows
us to easily apply techniques from statistical decision and estimation theory.

3. Bayesian spectral estimation

In the physical description above, wemake reference to observations as being the average values of observables.
By contrast, in real experiments, observations aremade by acquiring single bits of data at a time through
projectivemeasurements of single quantum systems. These two views of experimental observations agree only in
the limit that very large numbers of projectivemeasurements aremade on identical copies of the system.
Reasoning about noise spectroscopy in the presence of experimental constraints is thus, at its core, a statistical
problemnot suited to the ‘data-fitting’ paradigmwe aremore used to. That is, when statisical fluctuations are
dominanted by those force on us by quantummeasurement uncertainties, fitting points to lineswithout regard
for the statisicalmodels theywere generated from is not a robust approach.

Tomake this precise we first extract the coremathematical elements of the problem.Mathematically, we are
interested in the exponent appearing in (3),

òc
p

w w w=
W

( ) ( ) ( ) ( )S F S F;
1

2
d , 4j j

0

whereΩ is a high frequency cut-off which is often imposed experimentally and required for the numerical
integrationwe use. So as to not introduce toomany complications, we assume thatΩ is known.

Recall that we do not have direct access toχ as it is only exposed experimentally through the statisticalmodel
in (3).Moreover, expectation values of observables also cannot bemeasured directly andwill always comewith
fluctuations due tofinite sample sizes. Thus, we prefer towork from the bottomup, considering the precise
distribution of each bit of data. To this end, let r be a the binary randomvariable with distribution

= = + c-( ∣ ) ( ) ( )( )r S FPr 1 ;
1

2
1 e , 5j

S F; j
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such that the expectation value in (3) obeys

s = = - = -⟪ ⟫ ( ∣ ) ( ∣ )r S F r S FPr 1 ; Pr 1 ; .x j j

This is themost fundamental statisticalmodel andwe should process data at this level whenever possible.What
exactly wemean by process datawill bemade explicit next.

The notation ( ∣ )A BPr is read ‘the probability ofA being true givenB is known to be true’. So, =( ∣ )r S FPr 1 ; j

is the probability of observing r=1 given thefilter Fj is used and the spectrum is S. However, the spectrum is the
thingwe are not given. To rectify this, we invert the probability using Bayes’ rule:

=( ∣ )
( ∣ ) ( ∣ )

( ∣ )
( )S r F

r S F S F

r F
Pr ;

Pr ; Pr

Pr
. 6j

j j

j

Some terminology [30]: ( ∣ )r S FPr ; j is called the likelihood function and in physics it is always given by the physical
model; ( ∣ )r FPr j is called the evidence and it is usually ignored as it can be determined by normalization; ( ∣ )S FPr j is
called the prior and encodes the informationwe have about the spectrumbefore the data is take; and finally,

( ∣ )S r FPr ; j is called the posterior, which is the informationwe have about the spectrum after the experiment—
exactly whatwewant to know!

In general, performing this inversion is both analytically and computationally intractable. There are two
general approaches to solving this problem. Either wemake analytical approximations orwe employ clever
numerical integration techniques. Herewe demonstrate both. But, the problem and solutions are also not
decoupled fromhowmuch can be assumed known about the spectrum—the dimension ofmodel—and the
amount of data available, such that the domain of applicability of each solution is restricted in subtle ways. This
is shownpictorially in figure 1.

3.1. Big data: analytical approximationswithweak assumptions
In the large data8 limit, we can appeal to the central limit theorem. In theGaussian limit of the likelihood
functionwe effectively linearize themodel. For brevity, wewill denote c c( ) ≕S F; j j. Suppose the number of
binary samples taken per filter function used isN. Denote each binary sample rji and

å=
=

ˆ ( )y
N

r
1

. 7j
i

N

ji
1

Then ŷj is a binomial randomvariable withmean and variance given by

 = + c-[ ˆ ] ( ) ( )y a
1

2
1 e and 8j

j

 = - c-[ ˆ ] ( ) ( )y
N

b
1

4
1 e . 8j

2 j

Consider the randomvariable c = - -ˆ ( ˆ )ylog 2 1j j . Taylor expanding about themean—that is, about the
variable -ˆ [ ˆ ]y yj j —wehave

 c c»[ ˆ ] ( )a, 9j j

 c »
-c

[ ˆ ] ( )e

N
b

1
. 9j

2 j

Anotherway to specify data when this approximation is valid is to treat c c s~ˆ ( ),j j j
2 , for eachfilter Fj, where

s =
-c

( )e

N

1
. 11j

2
2 j

Though this approximationwill be validwhen strong assumptions aremade to reduce themodel dimension
on S, it’s real utility is in allowing a tractable solution forweak assumptions on S. In section 4, wewill specify
precisely howwemodel Swhen this approximation holds.

3.2. Small data: sequentialMonteCarlo (SMC)
For smaller data sets, the normality assumptionsmade in the previous section are difficult to justify, andmay fail
altogether. Thus, wemust take an alternative approach to calculating the posterior distribution given by (6). To
do so, we note that themain advantage of theGaussian approach of the previous sectionwas that it will allowus
to represent the prior and the posterior distributions as being differentmembers of the same family of
distributions. A promising alternative approach, then, is to considermore general families of distributions,
perhaps at cost of greater computational effort. In particular, wewill use the SMC approximation, which
represents the distributions ( ∣ )S FPr j and ( ∣ )S r FPr ; j appearing in (6) byweighted sums of δ-distributions. This

8
The definition of ‘large’ is intentionally left ambiguous as it depends on far toomany things to give a precise number to.
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approximation is very general, andwill allowus to bemuchmore general in our treatment of ( ∣ )r S FPr ; j . In
particular, using SMCwill allowus to easily expressmodels for spectral density functions that can be described
using a small number of parameters, such as 1/ωα for an unknown powerα.

On the other hand, using SMC forgoes the benefits of the analytic approximations described in the previous
section, such that there is a natural tradeoff between the two approaches with the amount of data being taken,
andwith the formof themodels under consideration.We detail the SMC-based approach and compare it to the
Gaussian process approach in section 5.

3.3. Filter functions and ‘naive’ estimator
For our numerical experiments we consider filters that arise from compressing so-calledCPMG sequences [31]
of increasing number of pulses in afixed total timeT, as was done in [32] for example. For aCPMG sequence of p
pulses, y(t) is a functionwhich switches between−1 and 1 at every pulse time = +( ) ( )t i T p2 1 2i .More
involved sequence choices can bemade, if one is interested in exploring higher frequency regimes, for example
[12, 33], but this simple choice is enough for our purposes. A useful feature of this choice is that it provides an
intuitive way of producing filters whosemain support is in a given frequency range.More specifically, the larger
p is the higher in frequency themain peak of F(ω) is. This is important because if nofilter had support in a given
frequency range it would be impossible to accurately estimate the power spectra in that regime.We plot the filter
functions used in this paper infigure 2.

For the large data limit, we can use a simple data fitting estimator for a point of reference. In forming our

naive spectral density estimate, wewill require the normalizations ò w w
W

≔ ( )f Fdj j0
and themaxima

w ww≔ ( )Fargmaxj j . For thefilters we consider (seefigure 2), the normalizations andmaxima are plotted in
figure 3.Next, we approximate eachfilter function as

w d w w» -( ) ( ) ( )F f . 12j j j

The above leads to

c
w

p
»

( )
( )

S f

2
. 13j

j j

Supposewe identify the experimentally observed random variables ĉj with the theoretical values cj. Then,
inverting (13), we define the naive estimate

Figure 2.The filter functions of the 25 sequenceswe consider in this work.
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pc

=ˆ ( )
ˆ

( )S
f

2
. 14j

j

j

naive

Wehighlight that this is the same approximationmade in earlier spectroscopy experimental studies, see for
exampled [28], and thus our naive estimator is essentially equivalent to those approaches. This will be compared
to somemore sophisticated, butmore computationally expensive estimators. An example output of the naive
estimator is shown infigure 4.We stress thatmore advanced spectroscopy protocols do exist, based on control
generated frequency combs for example (see also [34] for a recent comprehensive review on the topic), that are
capable of providingmore detailed estimates of the spectrum, butwe chose here themost basic protocol
available to avoid distracting an interested reader.

4. Big data: Gaussian process regression

Supposewe are in the large data limit. That is,N is big enough that all distributions are roughlyGaussian. To deal
with the notion of a prior, ormeasure, on functionswe treat the unknown spectrum as a random function S(ω).
Denote the distribution of S as ( )SPr . To specify this concretely we discretize the support of the distribution to
the setW={ω1,K,ωM}. Thismeans that, whenever a numerical calculation is performed, we really only
consider randomvariables w≔ ( )S Sk k , which can be represented collectively as the vector S.

The simplest non-trivial distribution is Gaussian (or normal):  m~ ( )S k, , where w w≔ ( )k k ,jk j k and
m m w≔ ( )j j are the covariance andmean. In the function space picturewewrite this

w m w w w~ ¢( ) ( ( ) ( ))S k, , , where  stands forGaussian process [35],μ is themean function and k is the
covariance function, or kernel. In standard notation,

m w w=( ) [ ( )] ( )S and 14S

w w w m w w m w¢ = - ¢ - ¢( ) [( ( ) ( ))( ( ) ( ))] ( )k S S, . 15S

In principle we can choose any functionsμ and k as ourmean and kernel functions. However, there are natural
choices and ones that have been found to performwell in a broad range of problems. Themost common kernel

Figure 3.Normalization fk (top) and peak frequency wk (bottom) of each of the 25filter functions infigure 2.
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is the so-called squared exponential9,

w w k¢ = - w w
d

- ¢
( ) ( )

( )
k e, , 16

2

where δ is a hyperparameter which controls the correlation in S for nearbyω andκ controls the overall prior
uncertainty. In a purely Bayesian context, we should have a priori values forμ,κ, and δ. In other words, we
believe the ‘true’ spectrum is drawn according to aGPwith these parameters. If this is the case, then nomore
needs to be done. If not, wewould need to performmodel selection [36]. The topic ofmodel selection is beyond
the scope of this work and sowewill chose specific values forμ,κ, and δ. To get some intuition for how this
relates to qubit noise spectra, we have plotted a visualization of theGP prior wewill use infigure 5.

If we beginwith aGP prior and the distribution of data is alsoGaussian, then the posterior is Gaussian and
we can derive an analytic expression for itsmean function and kernel. As discussed above, in the large data limit
we can do just this.Moreover, since each experiment is uncorrelated, we can process the data at once treating

c c S~ˆ ( ), , whereS is a diagonal covariancematrix with entries given by s j
2.

Since the prior is Gaussian and the likelihood function is Gaussian, the posterior is alsoGaussian.
Determining itsmean and covariance is a simple exercise inmultivariate completing the square. Denote G as the
matrix with entries w w w p= - -( )( )G F 4kj j k k k 1 , such that the trapezoidal rule applied toχj is written

åc
p

w w w w» - -( ) ( )( ) ( )F S
1

4
, 17j

k
j k k k k 1

å= ( )G S . 18
k

jk k

Figure 4.A randomly chosen true spectrum, compared to naive estimates fromnoiseless and noisy data. The data for each estimate is
simulated using the 25 control sequences discussed in themain text, with the noisy data being simulated forN=1000 repetitions per
control sequence, andwith the noiseless data being simulated for the limit of infinite repetitions per sequence. The discrepancy
between the noiseless data curve and the true curve is due to the approximation of the filters as delta functions in the theory.

Figure 5.Avisualization of aGaussian Process. Here themean functionμ is taken to be aGaussian function andwe use the squared
exponential kernel in (16)with parametersκ=0.02 and δ=100. In red, themean and 95% credible band is plotted. The other
curves are samples from this GP.One of them, in solid black, we take to be the true spectrum.

9
Note that aGaussian function describes five different things in this paper!
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Then, Bayesian updating amounts to updating the covariance andmean as follows [35]:

S¢ = +- - ( )k k G G k , 19T 1 1

m c mS¢ +- - - ( ) ( )k G k . 201 T 1 T 1

Note that these equations do not take account of postivity of S. To a large extent, this is guaranteed by the prior.
However, outlier data can force the credible regions to extend to S<0. In such cases, we treated those
simulations as heralded outliers.We also briefly investigated forced truncations aswell as truncatedGuassian
approximations. Bothworked aswe expected, but offered only a small increase in accuracy at the cost of
simplicity and computation. Thus, we provide the results of the unconstrained algorithm.

Let us take a look at an example simulation and use this GP estimator tofind the spectrum. In all simulations,
the resoultion on the vector of frequencies is taken to beM=100. First, infigure 6we plot the simulated data for
N=1000 repetitions per experiment.

Using the data plotted infigure 6, we apply equations (19) and (20) to get the posterior Gaussian Process.We
plot themean function and 95% credible band infigure 7.We see that the naive andGP estimator agree
reasonably well when plenty of data is available.We also plot the same procedures formuch less data (N= 100),
where it is evident that naive estimator fails completely.Whereas, theGP estimator correctly hedges its bets by
not suggesting any extreme features deviating the priorGP—it ‘knows’ it does not have enough data to do so. A
more extensive analysis of this difference is presented in section 6.

Figure 6. ForN=1000 repetitions, and using the true spectrum in figure 5, we plot the observed data superposed over the theoretical
(infinite precision)χʼs.

Figure 7.The posteriorGaussian Process, naive estimator and true spectrumusing the data plotted infigure 6 (top), andwith similar
data taken using 100 shots perfilter function (bottom).
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TheGP estimator is not a silver bullet, however. First, as already noted, it is only validwhen the data are
drawn according to aGaussian distribution—for example, when theCentral Limit theorem applies. Second,
unless augmentedwithmore sophisticatedmachine learning algorithms, theGP estimator can only reliably
estimate features with sizes the order of δ. To illustrate this, consider now the one-on-fmodel (or,more generally
the 1/f αmodel, with f andω being interchangeable here). This corresponds to a spectrum,

w a
w

=
+a

( ) ( )S A c
A

c
; , , , 21

where c gives an effective low frequency cut-off. In this case, the spectrumhas a high amount of structure.
Indeed, the entire functional form is dictated by only a few parameters.We do not expect, then, that with the
freedomallowed by theGP, it will be able tofind this structure without a large amount of data. Infigure 8, we see
that theGP is blind to the structure in the 1/f αmodel and estimates additional non-existent features.While the
naive estimator also suffers from this problem, in the next sectionwewill showhow to incorporate information
about this structure by themethod of hyperparameters. This provides an alternative approach for cases inwhich
a global property of the spectrum is ofmore experimental interest than the spectrum itself (as in, for
example, [37]).

After we describe the final estimator, wewill provide an extensive numerical comparison of all estimators in
section 6.

5. Small data: hyperparameterized nonlinear regression

In the 1/f α example discussed in the previous section, the prior uncertainty was concentrated on a small number
of parameters, such that the distribution of the spectra at each point is very highly correlated. That is, if we
perfectly knew the parametersA,α, and c as they appear in (21), wewould be able to precisely predict the value of
S(ω) at arbitraryω.

Thoughwe can describe these correlations using themethods of the previous section, such that the
covariance kernel is effectively a low-rank linear operator, it can also be very useful to describe our learning
problemmore directly. For example, in (21), we can interpret (A,α, c) as a vector of parameters in its own right,
as this vector describes the distribution over the alternative parameterization implied by our discretization of
S(ω).

Inmaking this interpretation, wewill use themethod of hyperparameters to incorporate our knowledge of
an appropriate functional form for spectra into our estimationmodel directly. This is the standard approach in
Hamiltonian parameter estimation, for example, where prior knowledge of the physics allows for a drastic
reduction inmodel dimension [38]. Bayesian inference can be then applied directly to the such hyperparameters
instead of at the level of the bare physicalmodel.

Generally, if the likelihood function h( ∣ )rPr depends on amodel vector h that itself is distributed as h q( ∣ )Pr
for some other vector q, thenwe can consider themarginalized distribution

q h q= h q( ∣ ) [ ( ∣ )] ( )∣r r aPr Pr , 22

ò h h h q=
h

( ∣ ) ( ∣ ) ( )r bd Pr Pr 22
supp

as a likelihood function in its own right.
Returning to the problemof spectral density estimation, we note thatwe can readily define themodel vector

h by the inner product òc w w wá ñ = =
p

( ) ( ) ( )S F S F S F, ; dk k k
1

2
, as predicting each inner productχk is

Figure 8.The posteriorGaussian Process and true spectrum for a 1/f αmodel (21), demonstrating that theGaussian Process
formalism does not consider the additional structure provided by the spectralmodel. For this simulation, each experiment was
repeatedN=50 times andαwas chosen uniformly at random in the interval [1/2,1]. (A=10, c=3.)
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sufficient to reproduce the entire likelihood function. From this perspective, if we can reproduce eachχk from a
lower-dimensionalmodel q (that is, amodel with less parameters than the number offilter functions used to
gather data), then q represents amore efficient hyperparameterization than taking h directly. For example,
consider hyperparameterizing (4) following a 1/f αmodel,

òqc
w

w
w=

+a

W
( ) ( ) ( )AF

c
d , 23k

k

0

for a given ultraviolet cut-offΩ andwith q a= ( )A c, , . Thismodel has been studied experimentally, in
particular as a diagnostic for superconducting and spin qubits [6, 7], such that improvements even in this simple
example immediately yield experimental benefits.

By expressing the estimation problem in terms of the hyperparameters q, we introduce a subtle distinction
in howwe report ourfinal estimates Ŝ oncewe have obtained a datum r.We can report the spectrum evaluated at
the estimated hyperparameters q q=ˆ [ ∣ ]r for our recorded data. This estimate achives the best possiblemean-
squared error for reporting the hyperparameters themselves, but does not necessarily provide the best estimate
of S. As an alternative, we can instead report the Bayesianmean estimate of the spectrumdirectly,

 qw w= qˆ ( ) [ ( )∣ ] ( )S S r; . 24

That is, by taking the spectra and then themean, we obtain the Bayesian estimate of the spectrum, using our
knowledge of the hyperparameters. Though these twomethods coincide for spectrummodels that are linear
functions of their hyperparameters, formodels such as 1/f α, the difference can be quite significant, as
demonstrated infigure 9.

Critically, bothmethods for estimating S from a posterior over hyperparameters can be generated easily
from the same datawithout additional analysis. Thus, we are free to report the optimal estimate for questions of
experimental interest, rather than assuming a priori that only one questionwill be asked of our data.

In any case, we treat the spectrummore generally as being drawn froma parameterized distribution of
spectra, such that qw d w w= - q( ( )∣ ) ( ( ) ( ))S S SPr and q is a real-valued vector for a functional form wq ( )S
such as the 1 / f αmodel discussed above. Therefore, oncewe have specified q, we have specified the unknown
spectrum. Following Bayes’ rule (6) as usual gives us a posterior distribution over the parameters q, conditioned
on a data record r,

q q q
=( ∣ ) ( ∣ ) ( )

( )
( )r

r

r
Pr

Pr Pr

Pr
. 25

Although the denominator looks like an innocuous normalization constant, producing accurate estimates of q
requires its calculation. Sincewe do not assume that qS is a linear function of q, and sincewe are concernedwith
efficiently utilizing small amounts of data, the analytic solution in terms ofGaussian process regression used for
the process-model case cannot be directly applied here. In lieu of that, our preferredmethod is SMC [18], also
known as particle filtering. This algorithm computes posterior distributions of the formgiven as (25) by
evaluating the likelihood at each ofmany different particles, each of which represents a particular hypothesis
about the truemodel vector q and an associatedweight. Expectation values over the posterior can then be
replaced byfinite sums over the particles in the SMCapproximation.

Wewill use the implementation provided by theQInfer package for Python [39]. In the following section, we
detail and present results obtained fromaQInfermodel for hyperparameterized spectral density estimation, and
compare these results to those obtained from theGaussian process regressionmethod of section 4.OurQInfer
model will depend on the specification of a set of test frequenciesW={ω1, ...,ωM} and a spectralmodel

Figure 9.An illustrative example. The difference in af1 functionswhen evaluated at the estimated a a=ˆ [ ] and the Bayes estimate
of the spectrum  a=ˆ [ ( )]S S . This illustrates that itmatters quite a bit where themean in a ‘mean estimate’ is taken. In this example,
the hyperparameters are chosen according to (26).
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function qw( )S ; , whereM specifies the resolution of test frequencies. The inner products w q wá ñ( ) ( )S F; , k will
then be approximated by numerically evaluating the integral (4) in terms of the trapezoidal rule (18) applied to
the integrand {S(ωi; θ) Fk(ωi) :ωiäW}. This design allows for ourmodel to be very general with respect to the
particular choice of qw( )S ; .

In this paper, wewill workwith one such description bywriting the af1 model as a hierarchal model in
which r is a random variable that is defined by its distribution conditioned on our newhyperparameters q. In
particular, the conditional distribution of r is given by10

a ~
+ c a-⎛

⎝⎜
⎞
⎠⎟∣ ( )

( )
r A c, , Bernoulli

1 e

2
, 26

A c, ,k

with our prior on the hyperparameters q a= ( )A c, , given by

~ ( ) ( )A aNormal 10, 0.025 , 27

a ~ ([ ]) ( )bUniform 0.5, 1 , 27

~ ( ) ( )c cand Exponential 0.1, 3 . 27

Formore details, please see the complete source code provided in the supplementalmaterial.

6.Numerical experiments

Wehave already demonstrated some comparisons between the different approaches in the previous sections.
The purpose of this section is to consolidate and expand on those illustrative comparisons. Namely, wewill
compare the performance of the naive, GP and hyperparameter estimator overmany randomly chosen spectra.
The comparison is facilitated by themean-squared errormetric. Let Ŝ be an estimate of the true spectrum S.
Then, the error—or loss—is defined as

ò w w w= -
W

( ˆ) ∣ ( ) ˆ ( )∣ ( )L S S S S, d . 28
0

2

To compare different estimators, we select a true spectrum randomly from the prior, simulate experiments,
calculate the estimators, record the loss of each, and repeat. Thenwe plot a histogramof the achieved accuracy.

We start with the true spectrum randomly selected by sampling aGaussian Process, as exemplified in
figure 5. In this case, the hyperparameterized estimator is not useful11, sowe only compare theGP estimator
with the naive estimator. As a point of reference, we can also treat the priormean function as an estimator and
calculate its loss. This is equivalent to the earlier comparison infigure 7, butwe average the results ofmany trials.
The result of 400 trials is shown infigure 10. As expected, the posterior loss is lower than the prior loss, indicating
that the algorithm is learning. The naive loss does a respectable job as well, but is convincingly beaten by theGP

Figure 10.The performance of theGaussian process estimator and naive estimator in relation to the prior loss. Plotted is a normalized
histogramof the log-loss over 400 trials. The simulated experiment is that ofN=100 (Left) andN=1000 (Right) single-shot
repetitions of each of the 25 control sequences described in the text. Both themedian loss (solid line) and themean loss/Bayes risk
(dashed line) are shown to guide the eye. The prior for theGaussian process estimator is taken to be that shown in figure 5, and the true
spectra are sampled from the prior.

10
An exponentially distributed randomvariable is denoted x∼Exponential(xl,λ) and has a probability density function

l l= - -( ) ( ( ))f x x xexp l for x>xl.
11

The hyperparameters are either not defined or have equivalent dimension to theGP estimator, inwhich case theywould serve only to
approximate something that can be analytically calculated.
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estimator—especially given the fact thatGP estimator comeswith all the added benefits of the Bayesian
methodology discussed above.

In the case of the 1/f αmodel we compare all estimators. The results are presented infigure 11 using another
400 trials. Again, we see that each estimator demonstrate genuine learning by reducing the loss over the prior.
TheGP still outperforms the naive estimator, but here the hyperparameterized estimator shines, demonstrating
that knowledge of the additional structure is immensely beneficial for learning.We also plot the bias of each
estimator infigure 12. The hyperparameterized estimator is extremely robust, reducing both the variance and
bias over its competitors. By contrast, theGP estimator and naive estimator are reliably biased, and in opposite
directions.We do not yet have a strong theoretical explanation for this behaviour.

When performing parametric estimation, as is implied by our hyperparameterized estimator, it ismore
common to define loss functions on the parameters themselves. The standard loss function is the squared error:

q q q q= - ( ˆ ) ˆ ( )L , . 292

As this loss function is not defined for the naive orGP estimator, we only report the results for the
hyperparameterized estimator. This appears infigure 13. Sincewe are only considering a single parametric
estimator, infigure 13we plot the ratio of the posterior loss to the prior loss of the hyperparameterized estimator.
This demonstrates that the parameter of interest,α, can be learned to two orders ofmagnitude better accuracy
than the prior with nomore than 2500 single-shotmeasurements.

Figure 11.The performance of the hyperparameterized estimator, Gaussian Process estimator and naive estimator in relation to the
prior loss. Plotted is a normalized histogramof the log-loss over 400 trials. The simulated experiment is that ofN=100 (Left) and
N=1000 (Right) single-shot repetitions of each of the 25 control sequences described in the text. Both themedian loss (solid line)
and themean loss/Bayes risk (dashed line) are shown to guide the eye. For the prior on the hyperparemterizedmodel, we use the
hierarchalmodel (26). For theGaussian process estimator, we take the prior to have amean function given by the

m w w= +a
a( ) [ ( )]A cA c, , , where the expectation is over the prior for the hyperparameterizedmodel. The covariance of the

Gaussian processmean is taken to be the same kernel as that infigure 5. Finally, the true spectra are drawn from the
hyperparameterized prior.

Figure 12.Themean bias of the hyperparameterized estimator, Gaussian Process estimator and naive estimator as a function ofω. The
simulated experiment is that of 100 single-shot repetitions of each of the 25 control sequences described in the text. The solid lines are
themean performance over 400 trials while the shaded area indicates the range from the 25% to the 75%quantile.
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7.Discussion

In this work, we formulated the noise spectroscopy problem in the language of statistical estimation theory. This
allows us to provide a robust and principled solution to the problemusing Bayesian analysis. Considering
figure 1 again, we have demonstrated two separate numerical solutions suited to two different regimes in the
continuumof possibilities: the big data limit and the low-data/low-dimension limit.

In the large data limit, we can linearize the data into a ‘signal plus noise’model and use a non-parametric
approach to capture a broad class of spectra. The resultant spectra are not by eye different from anaive data
fitting procedure inmany cases. However, for aminimal amount of added computation, our approach gives a
statistically rigorous accounting of the error bars in the reported spectra.

In the low-data limit we use the exact statisticalmodel. In this case, estimation—or, learning—is aided by use
of prior knowledge on themodel which reduces its dimension. The SMCmethod is then applied to the resultant
parameter estimation problem,which allows accurate inference even for highly nonlinearmodels in the low-
data setting.While herewe estimated parameters describing the functional formof S(ω), it is also possible to use
the hyperparametersmethod to estimate physical quantities of interest when further assumptions about the
physics of bath are in place. For example, if the bath is compromised of a collection of harmonic oscillators in a
thermal bath and the system couples to the bath in a linear fashion, then there isfixed relation between S(ω) and
the temperatureβ of the thermal state. As discussed in [12], this relation can be leveraged to estimateβ.With the
methods described herewe can go further, by settingβ as the hyperparameter to be determinedwe can use
Bayesian assisted thermometry on the quantumbath requiring a reduced number ofmeasurements.

In sum,we have treatedwhatwe consider the core inference problem in noise spectroscopy in order to
provide the cleanest demonstration of our algorithms.Within our approach, however, there is no limit to the
model complexity that can be treated—requiring onlymore computational resources.We comment briefly on
some generalization that straightforwardly build on thesemethods. For instance, if one expects the power
spectrum to have delta-like peaks—as would be the case if the probewas coupled to afinite number of harmonic
oscillators, for example—it is possible to use the position and height of the peaks as hyperparameters in our
routines. In an analogousway, ourmethods can be used formodel selection—that is, to discriminate between
various proposedmodels for our environment. For instance,making contact with our previous example, one
can determine howmany oscillators are coupled to our probe.More importantly, the statisticalmethods
developed here are not constrained to the spectroscopy scenariowe considered: Gaussian, zeromean noise.
More general spectroscopy protocols are based on invertingmultidimensional integrals of the form

ò w w w w w w  ( ) ( )( ) ( )F T Sd d , , , , , ,m
m

m
m

m1 1 1

where S(m)(ω1,L,ωm) is themth order polyspectra and F(m)(ω1,L,ωm,T) anmth generalized filter function
[12, 33], essentially anmth dimensional time ordered Fourier transformof the product y(t1)L y(tm). Estimating

Figure 13.The performance of the hyperparameterized estimator, evaluated in terms of the hyperparameterα. Plotted is a histogram
of the hyperparameter loss a a a a-a ( ˆ ) ≔ ( ˆ )L , 2 over 400 trials, normalized by the loss of the initial prior. The simulated experiment
is that of 100 single-shot repetitions of each of the 25 control sequences described in the text. Both themedian (solid line) andmean
(dashed line) are shown to guide the eye.
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S(m)(ω1,L,ωm) given our ability tomanipulate F(m)(ω1,L,ωm,T) is then a generalization of our current
methods to higher dimensional integrals.

Finally, we note that our inferential algorithm can easily be embedded into control software for online (real-
time) estimation and,more interestingly, closed-loop adaptive control. These are exciting possibilities not
currently offeredwithout significantmodification by traditional approaches.
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