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Abstract—Disconnecting impaired or suspicious nodes and
rewiring to those reliable, adaptive networks have the potential
to inhibit cascading failures, such as DDoS attack and computer
virus. The weights of disconnected links, indicating the workload
of the links, can be transferred or redistributed to newly
connected links to maintain network operations. Distinctively
different from existing studies focused on adaptive unweighted
networks, this paper presents a new mean-field model to analyze
the reliability of adaptive weighted networks against cascading
failures. By taking mean-field approximation, we develop a
new continuous-time Markov model to capture the propagations
of cascading failures, and the rewiring actions that individual
nodes can take to bypass failed neighbors. We analyze the
stability of the model to identify the critical conditions, under
which the cascading failures can be eventually inhibited or
would proliferate. The conditions are evaluated under different
link weight distributions and rewiring strategies. Our model
reveals that preferentially disconnecting suspicious peers with
high weights can effectively inhibit virus and failures.

Index Terms—Adaptive weighted network, rewiring strategy,
reliability.

I. INTRODUCTION

ALLOWING nodes to adaptively connect to reliable neigh-
bors and disconnect those unreliable, a self-healing

adaptive network is able to operate based on the credibility
and reliability of individual nodes, and inhibit virus spread
and cascading failures. Adaptive (weighted) networks have
become increasingly important, as a result of the proliferation
of the cloud computing [1–3], vehicular ad-hoc networks
(VANETs) [4], and social networks [5–7]. Adaptive (weighted)
networks are of particular interest in practice, where attacks
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are often strategic and responsive to defenders’ actions. The
networks can combat strategic attacks [8], by rewiring to
bypass attacked nodes [5–7, 9, 10]. As a result, the topology
of the network keeps changing in response to the attacks,
confusing the attackers, counteracting strategic attacks (e.g.,
to strategically critical nodes with high degrees in static
networks), and transferring the strategic attacks to exhibit
stationarity.

An example of adaptive weighted networks is network
function virtualization (NFV) on cloud computing platforms,
where a large number of virtual machines (VMs) are installed,
running virtual network functions (VNFs) [11–13]. The VMs
are connected through virtual links. Network services need
to be processed at different VMs running different VNFs in
correct orders. The VMs and virtual links can be configured
in response to requests of network services, and the weight
of a virtual link can indicate the workload of services that
a VM partially completes and forwards to another VM for
further processing. In the case where some VMs are congested
due to distributed denial-of-service (DDoS) attacks or infected
due to computer viruses, new virtual links can be established
to bypass these VMs. The weights (or in other words, the
workloads) of the disconnected virtual links can be transferred
to the new links. The VMs that are neither attacked or infected
can check their routing tables, decide to rewire their virtual
links. The number of the new connections can be set to be
equal to the number of links disconnected, so as to maintain
the consistency of workload execution and the controllability
of NFV.

Studies have been carried out to design rewiring protocols
and analyze rewiring effects, typically in adaptive unweighted
networks [6, 7, 9, 14], where rewiring is random and inde-
pendent of the logical or geographical closeness between a
specific pair of nodes. In practice, there are great potentials for
a healthy node to disconnects suspicious neighbors based on
the frequency of communication occurrences. A healthy node
may preferentially disconnect a frequently communicated,
suspicious neighbor, so as to prevent cascading failures, such
as DDoS attacks and virus infection, in NFV. Alternatively, a
healthy node may choose to disconnect infrequently communi-
cated, suspicious neighbors, so as to maintain the functionality
of the network for intensive urgent tasks at the cost of network
failures in the long term.

The conditions inhibiting and facilitating virus spread or
cascading failures are important to the analysis of network
reliability. Extensive studies have been carried out on the con-
ditions in conventional networks without rewiring or weighting
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of network links, by using the susceptible-infected-susceptible
(SIS) models [15–17]. To the best of our knowledge, however,
there has been no rigorous analytical study on the emerging
adaptive weighted networks [18, 19]. A key challenge is
that not only can the nodes change states (as modeled in
typical SIS models [16]), but the links connecting the nodes
can also rewire and change over time (as opposed to the
typical SIS models). Another critical challenge is that the
links can be differently weighted. These challenges cannot
be straightforwardly addressed by existing SIS models. Non-
trivial extensions of the models are required.

This paper presents a new mean-field model to analyze the
resistance of adaptive weighted networks against cascading
failures, such as DDoS attack and computer virus. As a con-
sequence of the new challenges, new derivations are necessary
to extend the SIS model and evaluate the impact of rewiring
and of weighted network links on the reliability of the adaptive
weighted networks:

1) A new set of differential equations are formulated to
model the continuous-time Markov chain process of
the rewiring of weighted links in adaptive weighted
networks. The differential equations are linearized. The
largest eigenvalue of the Jacobian matrix of the lineariza-
tion is the key to the study of the network reliability, but
is not readily achievable.

2) We judiciously decompose the Jacobian matrix, evaluate
the eigenvalues of the different parts by using determi-
nant transformations and spectral analysis, and finally
unveil the range of the largest eigenvalue of the Jaco-
bian matrix. The upper and lower bounds of the range
provide the sufficient conditions for the inhibition and
proliferation of virus or cascading failures in adaptive
weighted networks.

3) Two case studies verify the conditions, with exponen-
tially and log-normally distributed link weights. By
exploiting Order Statistics and Taylor expansion, we
reveal that the condition of proliferation of virus or
cascading failures is inversely proportional to both the
network degree and average link weight.

Extensive simulations confirm the validity of the identified
conditions, as well as the effectiveness of adaptive weight-
ed networks in terms of suppressing cascading failures. An
important finding is that the distributions of the link weights
can have a strong impact on network reliability against virus
spread or cascading failures in adaptive weighted networks.
This is distinctively different from the existing conclusions on
current static weighted networks [17]. We also find that the
higher upper bound the rewiring rates of the weighted network
links have, the more robust the adaptive weighted networks
are against outbreaks of virus or failures. In the case of non-
uniform rewiring rates, the distributions of the rewiring rates
can also have a marked impact on the network reliability.

The rest of this paper is organized as follows. In Section II,
the related works are reviewed. In Section III, the structure of
adaptive weighted network is described. The proposed mean-
field model of adaptive weighted network is presented in
Section IV, followed by the stability analysis of the adaptive

weighted networks. Two rewiring strategies are discussed
and evaluated in Section VI. In Section VII, numerical and
simulation results are provided, followed by conclusions in
Section VIII.

II. RELATED WORK

In [9], an adaptive unweighted network was first proposed to
describe interactions between a time-varying network topolo-
gy, as well as the dynamics of the nodes that emerges when an
infectious disease spreads on a social network. An SIS epidem-
ic model was developed, where a susceptible node could break
its links with its infected neighbors with a fixed probability
and reconnect to other randomly selected susceptible nodes. It
was found that this rewiring process can significantly increase
the threshold for the epidemic breakout. Later, the interaction
between epidemic processes and the network topology has
been extensively studied under the assumption of unweighted
links [7, 10, 14]. Particularly, Song et al. [20] proposed a
new preferentially reconnecting edge strategy depending on
spatial distance (PR-SD), where a new link is established at
random with probability p and in the shortest distance with
the probability (1− p).

By using Cellular Automata [21], an epidemic model was
designed for unweighted adaptive networks, and the effective-
ness of the model was demonstrated by numerical simulations.
Yang et al. [14] found that a strong community structure could
result from rewiring at the early stage of epidemic spread,
based on the adaptive SIS model of [9]. Two community-based
rewiring control strategies were proposed with a counter-
intuitive conclusion discovered: even the implementation of
control measures unnecessarily result in the prevention of
epidemic proliferation. Ilker et al. [22] proposed that healthy
individuals choose to deactivate their contacts with infected
neighbors, and only reactivate after the neighbors recover. A
mean-field description of this system was developed with two
distinct regimes identified: (a) slow network dynamics, where
the effective number of contacts per individual is reduced;
and (b) fast network dynamics, where the spread of disease
is prevented by targeting suspicious connections. Demirel et
al. [23] studied the dynamics of epidemic diseases in an
adaptive unweighted network where nodes can be removed
due to disease-induced mortality. Leonhard et al. [24] studied
structural changes of adaptive unweighted networks and ana-
lyzed the interplay between topology and node-state dynamics
near criticality. Zhu et al. [25] studied the epidemic spread
process inside an adaptive unweighted network by taking into
account that subjects could take preventive measure: cutting
off connections with potential infection sources. Sherborne et
al. [26] proposed a simple SIS epidemic model to study the
time-delay rewiring in an unweighted network.

On the other hand, existing research has increasingly shown
that the links between nodes are weighted, e.g., in traf-
fic network, computer network and social network, and the
distribution of link weights has a strong impact on epi-
demic behavior (even in static networks). Wang et al. [27]
developed an edge-weight-based compartmental approach to
study epidemic spread on networks with general degree and
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weight distributions, and drew the conclusion that the in-
creasing heterogeneity of link weights can help suppress the
epidemic spread. Zha et. al [4] employed probabilistic key
predistribution to speed up message authentications, reduce
communication costs, and support opportunistic routing under
fast-changing topologies of distributed mobile networks. By
using 3D Markov models, link-level analysis was carried
out to evaluate the interaction between authentication success
and radio success rate. Yan et al. [28] investigated epidemic
spread in scale-free networks [29] with link weights indicating
familiarity or closeness between two individuals. Numerical
studies showed that large dispersions of the link weights can
slow down the epidemic spread.

Taking into account the fact that the contact strengths among
individuals are diverse, adaptive weighted networks have been
increasingly interesting [18, 19, 30, 31]. Zhou et al. [18]
numerically simulated the adaptive weighted networks and
found that the weight adaption process could aggravate the
prevalence of an epidemic, and become detrimental. Feng et
al. [31] considered epidemic spread over an adaptive weighted
network, in which the network topology varies according
to the global and local infective information of individuals.
Interacting strength is defined to evaluate the level of how
individuals infective information takes effect on their connec-
tions. Discrete-time Monte-Carlo simulations were conducted
with an initial BA scale-free network. It was found that greater
interacting strengths lead to higher epidemic thresholds, lower
average disease densities of steady-state and shorter epidemic
prevalent decay durations. Sun et al. [32] studied the spread of
epidemic diseases in adaptively weighted scale-free networks.
Hu et al. [33] changed the weights of links in an adaptive
weighted network to balance the trade-off between the overall
infection level and individual weight adaptation cost. Individ-
uals could adapt their contact strengths to inhibit epidemic
spread. No rewiring was considered in these works except [19]
where only a numerical study was carried out.

Despite the adaptive weighted networks have been increas-
ingly studied in different contexts of epidemics [19, 32], social
network [31, 33], and computer network [18], a rigorous
analysis of reliability of the networks capable of rewiring is
yet to be delivered in the literature. The impact of rewiring
weighted links on the reliability of the networks has not been
understood. To the best of our knowledge, the only existing
attempt to model the adaptive weighted networks capable of
rewiring is in [19], where numerical simulations were heavily
relied on to evaluate the network reliability. In contrast to the
existing studies, this paper models analytically the rewiring of
weighted links, and derives critical conditions of the rewiring
rate under which virus or cascading failures can be inhibited
or become insuppressible.

III. ADAPTIVE WEIGHTED NETWORK STRUCTURE

Consider a generic network of N nodes connected by L
weighted bidirectional links. The weights of the links are col-
lected in W = {w1, w2, · · · , wM}, wi > 0, i = 1, 2, · · · ,M ,
where M is the number of different weights, measuring the
closeness between two connected nodes (e.g., in terms of

distance or communication frequency). The higher a weight
is, the closer two connected nodes are. The probability distri-
bution of wi is denoted by g(wi).

With reference to the SIS epidemic models [34], each node
of the network can be in either a healthy/susceptible (S) or
unhealthy/infected (I) state, indicating the node is reliable or
not, respectively. We assume stationary random infections or
failures which are reasonable in adaptive weighted networks,
as discussed in Section I. Moreover, the assumption of sta-
tionary random infections has been extensively assumed in
the existing SIS models, even in the case where the networks
are static and could be vulnerable to strategic attacks, such
as [5, 7, 10, 16, 17]. At any instant, for a w-weighted link
connecting an unreliable node and a reliable node (SI/IS
link), the reliable node can become unreliable with the rate
βw = τw [17]. τ is a coefficient known in prior. The unreliable
node can recover with rate γ as the result of patching or anti-
virus software updating.

We consider that the reliable nodes can protect themselves
by disconnecting from unreliable neighbors and reconnecting
to other reliable nodes, thereby preserving network reliability.
With probability rw for an SI link weighted w, the reliable
node breaks the link to the unreliable one and forms a new link
to another randomly selected reliable node. The rewiring rate
rw is a random variable in general cases. The weights of the
disconnected links can be transferred to the new links, while
the weights of other links remain unchanged. rw can depend
on w, e.g., the closeness of the nodes. In the case of NFV, the
weight of a virtual link can indicate the workload from one
VM to another, as described in Section I. The virtual links
to the congested/failed VMs can be rewired to other VMs,
and the weights (or workloads) of the links can be transferred
to the new links. We assume that the number of links is
fixed, as predominantly assumed in the literature on adaptive
(un)weighted networks, e.g., [5–7, 9, 10]. In many cases,
the assumption is reasonable and practical to maintain the
connectivity and controllability of the networks. In a special
case where the entire network becomes alert to threats (e.g.,
known virus or failures), the rewiring rate can be independent
of the link weight, i.e., rw = r, ∀w [16].

Fig. 1 presents the operations of a node in an adaptive
weighted network, where DDoS attacks or computer viruses
can propagate to explore vulnerabilities in the network [7]. The
weight of the link between a pair of nodes can account for the
frequency the nodes interact; or in other words, the workload
the nodes send to each other. A susceptible (or healthy)
node is more likely to be infected by an infected neighbor
it interacts frequently, than by one it interacts infrequently.
Once one of its neighbors is infected or fails, the node can
observe the misbehaviors of the neighbor and rewire its link to
bypass the infected neighbor, thereby preventing propagation
of the attacks or failures [5–7]. As a result, the topology
of the network keeps changing in response to attacks or
failures, quarantining infected individuals and counteracting
the vulnerability explorations.

Other notations are defined as follows: [A] (A ∈ {S, I}) de-
notes the number of nodes in state A, and [S]+[I] = N . [AB]w
denotes the number of edges weighted w, connecting two
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Fig. 1. The flowchart of a node in regards of a w-weighted link. The
model is continuous-time and therefore the flowchart runs continuously. The
detection of misbehaved neighbors can be done by using anti-virus features
and techniques, e.g., [35], which are beyond the scope of this paper.

nodes in states A and B, and 2[SI]w+[SS]w+[II]w = kNg(w).
k is the average degree of the network, and 2[SI]w = [SI]w +
[IS]w. k[A] = [AA] + [AB] =

∑M
i=1[AA]wi +

∑M
i=1[AB]wi .

[ABC]ww′ denotes the number of triplets A-B-C, with edge
AB weighted w and edge BC weighted w′.

IV. PROPOSED MEAN-FIELD MODEL OF ADAPTIVE
WEIGHTED NETWORK

The research approach we take is to first model a new
continuous-time Markov chain process to capture the rewiring
and weighting of network links in adaptive weighted net-
works, and then analyze the conditions of the equilibriums
of the model. The equilibriums considered in this paper
are: (1) a disease-free equilibrium in which virus infections
or cascading failures are completely eliminated; and (2) an
outbreak equilibrium in which the infections or failures are
insuppressible. In other words, the whole adaptive weighted
network stabilize, either free of infections/failures, or with
insuppressible infections/failures. By applying the Hartman-
Grobman theorem [36], the conditions of the equilibriums are
analyzed by linearizing the model and evaluating the largest
eigenvalue of the Jacobian matrix of the linearization. With
mathematical manipulation, we derive the upper and lower
bounds of the largest eigenvalue, which provide the sufficient
conditions respectively for the proliferation and inhibition of
virus or cascading failures in adaptive weighted networks.

Mean-field approximations are taken to improve the
tractability of the continuous-time Markov Chain process.
Mean-field theory studies the behavior of large and complex

stochastic models where a large number of small individual
components can interact with each other [15]. The mean-field
approximations use a single average effect to approximate the
effect of all the other individuals on any given individual. As a
result, the interactions between individuals can be decoupled
for analytical tractability, and the populations of individuals
with different characteristics can be studied. The mean-field
approximation is suitable for large-scale networks [37].

The time-varying populations of the nodes and the links are
captured by a set of differential equations, as given by (1).

d[S]
dt

= γ
∑
i

[Ii]−
∑
i

∑
w

βw[SiI]w; (1a)

d[I]
dt

= −γ
∑
i

[Ii] +
∑
i

∑
w

βw[SiI]w; (1b)

d[SS]w
dt

= γ
∑
i

∑
j

([SiIj ]w + [IiSj ]w)

+ rw
∑
i

∑
j

([SiIj ]w + [IiSj ]w)

−
∑
w′

βw′

∑
i

∑
j

([SiSjI]ww′ + [ISiSj ]w′w); (1c)

d[II]w
dt

= −2γ
∑
i

∑
j

[IiIj ]w + βw

∑
i

∑
j

([SiIj ]w + [IiSj ]w)

+
∑
w′

βw′

∑
i

∑
j

([IiSjI]ww′ + [ISiIj ]w′w); (1d)

d[SI]w
dt

= −γ
∑
i

∑
j

([SiIj ]w − [IiIj ]w)− βw

∑
i

∑
j

[SiIj ]w

+
∑
w′

βw′

∑
i

∑
j

([SiSjI]ww′ − [ISiIj ]w′w)

− rw
∑
i

∑
j

[SiIj ]w; (1e)

d[IS]w
dt

= −γ
∑
i

∑
j

([IiSj ]w − [IiIj ]w)− βw

∑
i

∑
j

[IiSj ]w

+
∑
w′

βw′

∑
i

∑
j

([ISiSj ]w′w − [IiSjI]ww′)

− rw
∑
i

∑
j

[IiSj ]w, (1f)

where [Ai] represents the probability that the node i’s state
is A, [AiBj ] represents the probability that a link connecting
a pair of nodes in states A and B, ∀A,B ∈ {S, I}. Here,
(1a) captures the time-changing population of nodes in the
healthy (or susceptible) state. The first term on the right-hand
side (RHS) of (1a) corresponds to the part of the population
recovering from the infected state with the probability of γ.
The second term corresponds to the part of the population
infected by their infected neighbors with the probability βw.
Likewise, (1b) captures the time-changing population of nodes
in the infected state.

Eqs. (1c) and (1d) characterize the time-varying numbers
of links weighted by different weights and connecting nodes
in different states. For instance, (1c) captures the changing
number of the w-weighted links connecting two healthy nodes.
The first term on the RHS of (1c) is the increased part of
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the link number, resulting from the recovery of the infected
ends of the links with the probability of γ. The second term
is another increased part of the link number, resulting from
rewiring to bypass an infected node with the probability of
rw. The third term is the number of the previous w-weighted
SS links which become SI links due to the infection at one end
of the links through a w′-weighted link with the probability
of βw′ . Likewise, (1d) captures the time-changing number of
w-weighted II links connecting a pair of infected nodes, (1e)
and (1f) capture the time-changing number of w-weighted SI
and IS links, respectively.

By taking the mean-field approximation, the expectation of
infected nodes in the network can be written as the sum of
the probability that each node in the network is infected, i.e.,
[I] =

∑
i[Ii] = N [Ii]. Similarly, the expectation of w-weighted

SI links can be written as [SI]w =
∑

i

∑
j [SiIj ]w, by assuming

all the w-weighted edges exhibit the same state. The temporal
changes in the population of healthy nodes and infected nodes
can be written as

d[S]
dt

= γ[I]−
∑
w

βw[SI]w; (2a)

d[I]
dt

= −γ[I] +
∑
w

βw[SI]w, (2b)

where (2a) captures the time-changing population of nodes in
the healthy (or susceptible) state. The first term on the RHS
of (2a) corresponds to the part of the population recovering
from the infected state with the probability of γ. The second
term corresponds to the part of the population infected by their
infected neighbors with the probability of βw. Likewise, (2b)
captures the time-changing population of nodes in the infected
state.

The temporal change of a link depends on its weight and
the states of the nodes at both ends of the link. By taking the
mean-field approximation, the expectation of the w-weighted
AB links in the network can be written as the sum of the
probability that each link connecting a pair of A node and
B node, i.e., [AB]w =

∑
i

∑
j [AiBj ]w, ∀A,B ∈ {S, I}. The

temporal changes in the numbers of links of different types
can be written as

d[SS]w
dt

= γ([SI]w + [IS]w) + rw([SI]w + [IS]w)

−
∑
w′

βw′([SSI]ww′ + [ISS]w′w); (3a)

d[II]w
dt

= −2γ[II]w + βw([SI]w + [IS]w)

+
∑
w′

βw′([ISI]ww′ + [ISI]w′w); (3b)

d[SI]w
dt

= −γ[SI]w + γ[II]w − βw[SI]w

+
∑
w′

βw′([SSI]ww′ − [ISI]w′w)− rw[SI]w; (3c)

d[IS]w
dt

= −γ[IS]w + γ[II]w − βw[IS]w

+
∑
w′

βw′([ISS]w′w − [ISI]ww′)− rw[IS]w. (3d)

Eqs. (3a) and (3b) characterize the time-varying numbers of
links weighted by different weights and connecting nodes in
different states. For instance, (3a) captures the time-changing
number of the w-weighted links connecting two healthy nodes.
The first term on the RHS of (3a) results from the recovery
of the infected ends of the links with the probability of γ.
The second term on the RHS of (3a) results from rewiring
to bypass an infected node with the probability of rw. The
third term is the number of previous w-weighted SS links
which become SI links due to the infection at one end of
the links through a w′-weighted link with the probability of
βw′ . Likewise, (3b) captures the time-changing number of w-
weighted II links connecting a pair of infected nodes; and (3c)
and (3d) capture the time-changing number of w-weighted SI
and IS links, respectively.

We assume that the weight of a link is symmetry, i.e.,
w(i, j) = w(j, i), ∀i ̸= j. Then [SI]w = [IS]w. (2) and (3)
can be rewritten as

d[S]
dt

= γ[I]−
∑
w

βw[SI]w; (4a)

d[I]
dt

= −γ[I] +
∑
w

βw[SI]w; (4b)

d[SS]w
dt

= 2γ[SI]w − 2
∑
w′

βw′ [SSI]ww′ + 2rw[SI]w; (4c)

d[II]w
dt

= −2γ[II]w + 2βw[SI]w + 2
∑
w′

βw′ [ISI]ww′ ; (4d)

d[SI]w
dt

= −γ[SI]w + γ[II]w − βw[SI]w

+
∑
w′

βw′([SSI]ww′ − [ISI]w′w)− rw[SI]w, (4e)

which is the mean-field approximation of the continuous-time
Markov chain model for the adaptive weighted networks. The
time-varying states of both the nodes and links are captured.

We note that the linear expressions in (4) are due to the
fact that the system of interest is continuous-time. At every
time instant ∆t → 0, the probability of a healthy node being
infected by more than one infected neighbor approaches zero.

We can apply the moment closure approximation [17] to
evaluate [A] and [AB]w, and the number of triplets [ABC]ww′

can be written as [38]:

[ABC]ww′ = ξ
[AB]w[BC]w′

[B]
, (5)

where ξ =
k − 1

k
. Based on (5), we can have

[SSI]ww′ = ξ
[SS]w[SI]w′

[S]
, (6)

[ISI]ww′ = ξ
[SI]w[SI]w′

[S]
. (7)

By substituting (6) and (7) into (4), we can rewrite (4) as

d[S]
dt

=γ[I]−
∑
w

βw[SI]w; (8a)
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d[I]
dt

=− γ[I] +
∑
w

βw[SI]w; (8b)

d[SS]w
dt

=2(γ + rw)[SI]w − 2ξ
[SS]w
[S]

∑
w′

βw′ [SI]w′ ; (8c)

d[II]w
dt

=− 2(γ[II]w − βw[SI]w − ξ
[SI]w
[S]

∑
w′

βw′ [SI]w′);

(8d)
d[SI]w
dt

=− (γ + βw + rw)[SI]w + γ[II]w

+ ξ
[SS]w − [SI]w

[S]

∑
w′

βw′ [SI]w′ . (8e)

For the purpose of cross-validation of the proposed model,
we consider a special case where the rewiring rate rw = r is a
constant. When rw = 0, i.e., the network is static, and (8) can
be rewritten in the exactly same way as [16, eq.6] describing
static weighted networks. In other words, (8) is cross-validated
by the special case.

V. STABILITY ANALYSIS OF ADAPTIVE WEIGHTED
NETWORK

We proceed to derive the reliability threshold of τ , denoted
by τ∗ based on (8). τ∗ is the evaluation of the reliability of
the adaptive weighted networks against cascading failures. If
τ < τ∗, the adaptive weighted network can eventually become
reliable, i.e., all nodes eventually become reliable. Otherwise,
the network is unreliable, i.e., the unreliability proliferates. The
larger τ∗ is, the more resilient the network is, e.g., against virus
spread and cascading failures. To derive τ∗, we analyze the
stability of the equilibrium of the adaptive weighted networks.

As stated in the Lyapunov’s first method [39], the behavior
of a dynamical system in a domain near an equilibrium point
is qualitatively the same as the behavior of its linearization
near this equilibrium point. If and only if the Jacobian matrix
of the linearization has all negative eigenvalues, a nonlinear
dynamical system is stable at the equilibrium. The equilibrium
point of interest, also known as the disease-free equilibrium
point, is (d[II]wdt , d[SI]w

dt ) = (0, 0), at which all nodes are
reliable [40]. By exploiting the Lyapunov’s first method, we
linearize (8) in the vicinity of the equilibrium, evaluate the
eigenvalues of the linearization at the equilibrium, and study
the condition under which the Jacobian matrix of the linear
system has all negative eigenvalues [41]. As a result, we are
able to establish the thresholds to preserve stability or undergo
instability at the equilibrium.

Based on the aforementioned condition [S] + [I] = N ,
2[SI]w + [SS]w + [II]w = kNg(w) and k[I] = [SI] + [II], (8d)
and (8e) can be respectively rewritten as

d[II]w
dt

= −2γ[II]w + 2βw[SI]w

+
2(k − 1)[SI]w
kN − [SI]− [II]

∑
w′

βw′ [SI]w′ ; (9a)

d[SI]w
dt

= (k − 1)
kNg(w)− 3[SI]w − [II]w

kN − [SI]− [II]

∑
w′

βw′ [SI]w′

− (γ + βw + rw)[SI]w + γ[II]w. (9b)

By suppressing all higher order terms of [II]w and [SI]w, (9)
can be linearized, as given by

d[II]w
dt

≈ −2γ[II]w + 2βw[SI]w; (10a)

d[SI]w
dt

≈ −(γ + βw + rw)[SI]w + γ[II]w

+ (k − 1)g(w)
∑
w′

βw′ [SI]w′ . (10b)

The linear stability analysis of (10) is carried out in the
vicinity of the equilibrium. By the Hartman-Grobman theo-
rem [36], the behavior of the system around an equilibrium
point can be evaluated through the eigenvalues of the Jacobian
matrix of (10). Let J = [Jij ] denote the Jacobian matrix of
(10) at the equilibrium, as given by [16]

J =

(
J11 J12

J21 J22

)
, (11)

where

J11 = diag[−2γ,−2γ, · · · ,−2γ];

J12 = diag[2βw1 , 2βw2 , · · · , 2βwM
];

J21 = diag[γ, γ, · · · , γ];

J22
ij =

{
(k − 1)g(wi)βwj

, if i ̸= j;
−(γ + βwi + rwi) + (k − 1)g(wi)βwi , if i = j.

Note that the matrix block J11 is an M -by-M diagonal
matrix. By block matrix multiplication, we can get(

J11 J12

J21 J22

)(
IM −J11−1

J12

0 IM

)
=

(
J11 0
J21 H

)
, (12)

where IM is the identity matrix, and H = J22−J21J11−1

J12.
Let row vector µ be the spectrum of the square matrix J,

i.e., collects all eigenvalues of J, and µi ∈ µ be the i-th
(largest) eigenvalue of J, i = 1, 2, · · · , 2M . The characteristic
polynomial of J can be written as

det [J− µiI2M ] = det
[(

J11 0
J21 H

)
− µiI2M

]
= det

[
J11 − λiIM 0

J21 H− ηiIM

]
,

(13)

where λi and ηi are the i-th eigenvalues of λ and η, i.e., the
spectra of the square matrices J11 and H, respectively.

Then we have det [J− µiI2M ] = 0, so that

det
[
J11 − λiIM

]
= 0; det [H− ηiIM ] = 0;

in other words, [λ,η] is also the spectrum of J from (13).
In [41], the linear state model (10) is stable at the equi-

librium, if and only if the real parts of all the eigenvalues
of J are negative. Since J11 is an M -by-M diagonal matrix
with all the main diagonal entries equal to −2γ, all of the M
eigenvalues of J11 are −2γ < 0. To this end, we can have
max {µ} < 0, if and only if the maximum eigenvalue of H,
denoted by ηmax(H) < 0. Let H = [Hij ], we have

Hij =

{
(k − 1)g(wi)βwj , if i ̸= j;
−(γ + rwi) + (k − 1)g(wi)βwi , if i = j.
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To evaluate ηmax(H), we decouple H as H = H(1)+H(2),
and rewrite H(1) =

[
H

(1)
ij

]
and H(2) =

[
H

(2)
ij

]
. Then,

Hij = H
(1)
ij +H

(2)
ij , (14)

where,

H
(1)
ij =

{
(k − 1)g(wi)βwj , if i ̸= j;
−γ + (k − 1)g(wi)βwi , if i = j, (15)

and

H
(2)
ij =

{
0, if i ̸= j;
−rwi , if i = j. (16)

By substituting (15), we can write det
[
H(1)

]
, as given by

det
[
H(1)

]
=

(k − 1)M

(
M∏
i=1

g(wi)βwi

)∣∣∣∣∣∣∣∣∣
1 + x1 · · · 1

1 · · · 1
...

. . .
...

1 · · · 1 + xM

∣∣∣∣∣∣∣∣∣ ,
(17)

where for notational simplicity, we define

xi = − γ

(k − 1)g(wi)βwi

, i = 1, 2, · · · ,M.

According to basic determinant transformations, we can have∣∣∣∣∣∣∣∣∣
1 + x1 1 · · · 1

1 1 + x2 · · · 1
...

...
. . .

...
1 1 · · · 1 + xM

∣∣∣∣∣∣∣∣∣
(a)
=

∣∣∣∣∣∣∣∣∣
1 + x1 1 · · · 1
−x1 x2 · · · 0

...
...

. . .
...

−x1 0 · · · xM

∣∣∣∣∣∣∣∣∣
=

M∏
i=1

xi

∣∣∣∣∣∣∣∣∣
1 + 1

x1

1
x2

· · · 1
xM

−1 1 · · · 0
...

...
. . .

...
−1 0 · · · 1

∣∣∣∣∣∣∣∣∣
(b)
=

M∏
i=1

xi

∣∣∣∣∣∣∣∣∣
1 +

∑M
i=1

1
xi

1
x2

· · · 1
xM

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

∣∣∣∣∣∣∣∣∣
(c)
=

(
M∏
i=1

xi

)(
1 +

M∑
i=1

1

xi

)
,

(18)

where (a) is achieved by subtracting the first row from all the
rest of rows; (b) is achieved by adding all the other columns to
the first column; (c) is obtained by multiplying the elements
of the first column to their respective minors.

As a result, (17) can be rewritten as

det[H(1)]

= (k − 1)M

(
M∏
i=1

g(wi)

)(
M∏
i=1

βwi

)(
M∏
i=1

xi

)(
1 +

M∑
i=1

1

xi

)
= (−γ)M−1

(
− γ + (k − 1)⟨βw⟩

)
,

(19)

where ⟨βw⟩ =
∑M

n=1 g(wn)βwn takes the expectation of βw.
The spectrum of H(1), denoted accordingly by η(1), satisfies

det[H(1) − η
(1)
i I] = 0.

According to (19), we have

(−γ − η
(1)
i )M−1

(
− γ + (k − 1)⟨βw⟩ − η(1)max

)
= 0. (20)

By solving (20), one can obtain

η
(1)
i = −γ, i = 2, · · · ,M ;

η
(1)
1 = η(1)max = (k − 1)⟨βw⟩ − γ,

where η
(1)
max is the largest eigenvalue of H(1) and η

(1)
i is any

other eigenvalue.
Let ζ = γ + max

i
{rwi} + 1, then H + ζI > 0, where all

the entries are positive. Since H = H(1) +H(2) and H(2) is
a diagonal matrix, we can get

0 < H(1) + η
(2)
minI+ ζI ≤ H+ ζI ≤ H(1) + η(2)maxI+ ζI,

where η
(2)
min = min

i
{−rwi} and η

(2)
max = max

i
{−rwi}. Ma-

trices P ≤ Q stands for that entry of P is no less than the
corresponding entry of Q.

By Perron-Frobenius theorem [42], for any matrices A and
B with 0 ≤ A ≤ B, the spectral radii of A and B satisfy
ρ(A) ≤ ρ(B). For A = [aij ] with aij > 0, ∀i, j, the spectral
radius ρ(A) is equal to the largest eigenvalue. Therefore,
ηmax(H) satisfies

η
(1)
1 + η

(2)
min + ζ ≤ ηmax(H) + ζ ≤ η

(1)
1 + η(2)max + ζ,

i.e.,
η
(1)
1 + η

(2)
min ≤ ηmax(H) ≤ η

(1)
1 + η(2)max. (21)

From [41], the equilibrium is stable, if ηmax(H) ≤ η
(1)
1 +

η
(2)
max < 0; and the equilibrium can be unstable, if ηmax(H) ≥
η
(1)
1 + η

(2)
min > 0. Since βw = τw, ⟨βw⟩ = τ⟨w⟩, we have

η
(1)
1 + η(2)max = (k − 1)τ⟨w⟩ − γ + η(2)max,

η
(1)
1 + η

(2)
min = (k − 1)τ⟨w⟩ − γ + η

(2)
min.

The network is reliable if

τ < τ∗l =
γ +min

i
{rwi}

(k − 1)⟨w⟩
, (22)

where τ∗l gives the lower bound of τ in reliable states.
The network is unreliable if ηmax(H) ≥ η

(1)
1 + η

(2)
min > 0,

then we have

τ > τ∗u =
γ +max

i
{rwi}

(k − 1)⟨w⟩
, (23)

where τ∗u gives the upper bound of τ in unreliable states.
In the special case where rwi = r, we have min

i
{rwi} =

max
i

{rwi
} = r. Then, ηmax(H) = (k − 1)⟨βw⟩ − γ − r, and

τ∗ can be written explicitly in a closed-form, as given by

τ∗ =
γ + r

(k − 1)⟨w⟩
. (24)
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We can see in (24) that τ∗ increases with the growth of the
rewiring rate r, and decreases with the growth of the average
link weights ⟨w⟩ in the case of uniform rewiring rates. It is
also shown that the distribution of weight wi has little impact
on τ∗ when rwi = r. Moreover, we can see in (23) that,
with non-uniform rewiring rates, the bounds of τ∗ depend on
rwi which, in turn, depends on wi. As the network becomes
unreliable when τ > τ∗, we conclude that the higher the upper
bound of rwi is, the more resistant the network is against the
outbreak. To this end, in the case of non-uniform rewiring
rates rwi , the distribution of wi can have a strong impact on
the upper bound of rwi and thus the resistance of the network.

We note that our analysis is distinctively different from the
existing studies. As discussed in Section II, the existing study
of adaptive weighted networks, i.e., [19], is based on numerical
evaluations and provides no analysis of the reliability of the
networks. In different yet relevant contexts of (static) weighted
networks and adaptive unweighted networks, analyses do avail,
e.g., in [16] and [23], and may also evaluate the reliability
by assessing the eigenvalues of the Jacobian. However, the
analysis of weighted networks, e.g., [16], does not capture the
rewiring rate rw which is key to the reliability threshold of
adaptive weighted networks τ∗; see (22) and (23). The analysis
of adaptive unweighted networks, e.g., [23], cannot account for
the non-uniform weights and the subsequent infection rates of
adaptive weighted networks, which require new mathematic
manipulations and lead to the new bounds of τ∗. In contrast,
we consider a new adaptive weighted network, where links
can be rewired on-the-fly and the weights of disconnected
links can be transferred to the new links. We develop a new
continuous-time Markov model to characterize the changing
states of the links, capturing the real-time rewiring process
of the networks. With the non-trivial analysis of the Jacobian
of the linearization of the model, the largest eigenvalue of the
Jacobian is analyzed to specify the respective thresholds under
which cascading failures can be inhibited or proliferate.

We also note that the link weights may not be symmetric
in the presence of DDoS attacks. Our model can be readily
applied to asymmetric link weights. As a matter of fact, (3)
divides all the w-weighted links into four different types: SSw,
IIw, SIw and ISw, and provides the temporal changes in the
numbers of links of the different types. [IS]w does not have to
be equal to [SI]w; or in other words, the link weights can be
asymmetric. The above analysis, involving the linearization
of differential equations, the derivation of the Jacobian of
the linearized, and the evaluation of the eigenvalues of the
Jacobian, can be readily based on (3).

VI. REWIRING STRATEGIES AND NETWORK STABILITY

As discussed in Section V, the rewiring rate rwi can be
designed in different ways which can have a strong impact
on the bounds of τ∗. This section studies the impact by
taking two different but simple linear designs of rwi under
two classical distributions of wi for example. Let w(i) denote
the i-th smallest of W ∈ RM×1. Thus, w(1) = min

i
{wi} and

w(M) = max
i

{wi}.

The first design (Design 1) specifies the positive correlation
between the rewiring rate and wi, i.e., rwi = α1wi, α1 ≥ 0.
This is the case where a reliable node preferentially breaks
its heavily loaded links with frequently interacted neighbors,
especially in the case of cascading failures. The second design
(Design 2) specifies the negative correlation between the
rewiring rate and wi, i.e., rwi = α2(1 − wi

max{wi} ), α2 ≥ 0.
This is the case where a reliable node preferentially breaks
its infrequently used (or lightly loaded) links, especially for
the purpose of alleviating interruptions to ongoing network
operations.

The two example distributions of W are: (a) exponential
distribution (ED), and (b) log-normal distribution (LD). Both
distributions are non-negative and suitable to describe the non-
negative link weights of adaptive weighted networks. For the
purpose of fair comparisons between the strategies, the mean
of the exponential distribution is set to be equal to that of the
log-normal distribution. Given the same mean, denoted by ⟨w⟩,
the two distributions have different dispersions, and so are the
expectations of w(1) and w(M) under different distributions.
Order statistics are exploited to evaluate w(1) and w(M), and
in turn the lower bounds of τ∗ in (23). This helps provide
insight on the importance of dispersion on the reliability of
the adaptive networks.

A. Exponential Distribution

The probability density distribution (PDF) and cumulative
distribution function (CDF) of wi ∀i are f(wi) = λe−λwi and
F (wi) = 1−e−λwi , respectively. By exploring order statistics,
the PDFs of w(1) and w(M) can be written as

f1(w(1)) = λMe−λMw(1) ,

fM (w(M)) = λM [1− e−λw(M) ]M−1e−λw(M) .

We can find that w(1) has an exponential distribution with
parameter λM . As a result,

E
[
w(1)

]
=

1

λM
. (25)

The PDF of w(M) can be rewritten as

fM (w(M)) = λM [1− e−λw(M) ]M−1e−λw(M)

= λMe−λw−(M)
M−1∑
i=0

(
M − 1

i

)
(−e−λw(M))i

=
M−1∑
i=0

(−1)iM

(
M − 1

i

)
λe−(i+1)λw(M) ,

(26)

By exploiting order statistics, the expectation of max
i

{wi},
is given by

E
[
max

i
{wi}

]
= E

[
w(M)

]
=

1

λ

M∑
i=1

1

i
. (27)

For Design 1 where rwi ∝ wi, E
[
max

i
{rwi}

]
∝

E [max {wi}] = 1
λ

∑M
i=1

1
i , the network is unreliable if

τ > τ∗ ∝
γ + 1

λ

∑M
i=1

1
i

(k − 1)⟨w⟩
.
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For Design 2 where rwi ∝ θ − wi, E
[
max

i
{rwi}

]
∝ θ −

E [max {wi}] = θ − 1
λ

∑M
i=1

1
i , the network is unreliable if

τ > τ∗ ∝
γ + θ − 1

λ

∑M
i=1

1
i

(k − 1)⟨w⟩
.

B. Log-normal Distribution

Let f(wi) and F (wi) be the PDF and CDF of wi. Then we
have

f(wi) =
1

wiσ
√
2π

e−
(lnwi−µ)2

2σ2 =
ϕ(logwi)

wi
,

and

F (w) = Φ(logwi),

where µ and σ are the mean and the standard deviation,
respectively, and ϕ(·) and Φ(·) denote the PDF and CDF of the
normal distribution respectively. The mean m and the variance
v are functions of µ and σ, as given by

m = eµ+
σ2

2 ,

v = e(2µ+σ2)(eσ
2

− 1).
(28)

By exploring order statistics, the PDF of w(M) can be
written as

fM (w(M)) = M [F (w(M))]
M−1f(w(M))

= M [Φ(logw(M))]
M−1ϕ(logw(M))

w(M)
.

(29)

The expectation of w(k) is

E
[
w(k)

]
=

∫ +∞

0

w(k)fk(w(k))dw(k), (30)

for k = 1, 2, · · · ,M .
By submitting (29) to (30), we have E

[
w(M)

]
E
[
w(M)

]
= M

∫ +∞

−∞
ey[Φ(y)]M−1ϕ(y)dy, (31)

where y = log(w(M)).
By exploiting order statistics, the expectation of w(M) is

given by

E
[
w(M)

]
=

M√
π
(
1

2
)M−1

M−1∑
i=0

(
M − 1

i

)
I(z|µ, σ), (32)

where
z =

y − µ√
2σ

,

I(z|µ,σ) =

(
2√
π
)i

(
+∞∑

M1,··· ,Mi=0

(−1)
∑i

l=1 Ml∏i
l=1(2Ml + 1)

∏i
l=1 Ml!

)i

×

∫ +∞

−∞
ez

2+
√
2σz+µz2

∑i
l=1 Ml+idz.

For Design 1 where rwi ∝ wi,

E
[
max

i
{rwi}

]
∝ M√

π
(
1

2
)M−1

M−1∑
i=0

(
M − 1

i

)
I(z|µ, σ),

the network is unreliable if

τ > τ∗ ∝
γ + M√

π
( 12 )

M−1
∑M−1

i=0

(
M − 1

i

)
I(z|µ, σ)

(k − 1)⟨w⟩
.

For Design 2 where rwi ∝ θ − wi, E
[
max

i
{rwi}

]
∝ θ −

E [max {wi}]

= θ − M√
π
(
1

2
)M−1

M−1∑
i=0

(
M − 1

i

)
I(z|µ, σ),

the network is unreliable if

τ > τ∗ ∝
γ + θ − M√

π
( 12 )

M−1
∑M−1

i=0

(
M − 1

i

)
I(z|µ, σ)

(k − 1)⟨w⟩
.
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(b) E[w(M)] of the log-normal distributions.

Fig. 2. The PDF and E
[
w(M)

]
of the log-normal distribution, where the

mean of the distribution is m = 1.5, and v is the variance of the distribution.
We plot v = 0.125, 0.25, 0.5, 1 and 2.25 for the log-normal distribution to
show the impact of the variance on the E

[
w(M)

]
.

We note that E
[
w(M)

]
varies with different weight distribu-

tions. Fig. 2(a) plots the PDFs of the log-normal distributions
under different variances v. Given the same mean, m, we
can see that the log-normal distribution becomes increasingly
dispersive, as v increases. According to (27) and (30), Fig. 2(b)
plots E

[
w(M)

]
for the log-normal distribution with the growth

of M . We see that, as the dispersion of the distribution in-
creases, E

[
w(M)

]
increases accordingly. Considering Design



SUBMITTED TO IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY ON 25TH MAY 2019 10

1 and 2, we can conclude that: (1) for Design 1, as E
[
w(M)

]
gets larger, max{rwi} becomes larger and the threshold of
τ that inhibits outbreaks becomes larger. Therefore, the more
dispersive the distribution is, the more resistent the network
is against outbreaks in Design 1; and (2) for Design 2,
as E

[
w(M)

]
gets larger, max {rwi} becomes smaller and

the threshold of τ that inhibits outbreaks occur decreases.
Therefore, the more dispersive the distribution is, the less
resistent the network is against outbreaks in Design 2.

In addition to the reliability threshold τ∗, another evalua-
tion of the reliability of adaptive weighted networks against
cascading failures is the steady-state density of unreliable
nodes and the spreading speed of the infection/failures at an
outbreak equilibrium of the adaptive weighted network. At
a disease-free equilibrium point, (d[II]wdt , d[SI]w

dt ) = (0, 0), and
[I] = 0, and the cascading failure is inhibited. The population
of infected nodes becomes zero. The entire population of
nodes is healthy.

At an outbreak equilibrium, the average populations of
susceptible (or healthy) and infected nodes stop changing over
time, i.e., d[I]

dt = 0, d[S]
dt = 0, and [I] > 0. As a result, the

average number of links connecting different types of nodes,
i.e., infected and susceptible nodes, stabilizes. d[II]w

dt = 0,
d[SI]w
dt = 0, and d[SS]w

dt = 0. The populations of infected and
healthy nodes are non-zero. By substituting these steady-state
conditions into (8), we have

γ[I]−
∑
w

βw[SI]w = 0; (33a)

− γ[I] +
∑
w

βw[SI]w = 0; (33b)

(γ + rw)[SI]w − ξ
[SS]w
[S]

∑
w′

βw′ [SI]w′ = 0; (33c)

γ[II]w − βw[SI]w − ξ
[SI]w
[S]

∑
w′

βw′ [SI]w′ = 0; (33d)

− (γ + βw + rw)[SI]w + γ[II]w

+ ξ
[SS]w − [SI]w

[S]

∑
w′

βw′ [SI]w′ = 0. (33e)

By rewriting (33a) as
∑

w βw[SI]w = γ[I] and then substi-
tuting into (33c) and (33d), we obtain

(γ + rw)[SI]w − ξ
[SS]w
[S]

γ[I] = 0; (34a)

γ[II]w − βw[SI]w − ξ
[SI]w
[S]

γ[I] = 0. (34b)

Since [AB] =
∑

w[AB]w, ∀A,B ∈ {S, I}, we can rewrite
(34) as

γ[SI] +
∑
w

rw[SI]w − ξ
[SS]
[S]

γ[I] = 0; (35a)

γ[II]−
∑
w

βw[SI]w − ξ
[SI]
[S]

γ[I] = 0. (35b)

By substituting βw = τw, rw = α2(1 − w
max{w} ) (under

Design 2), and
∑

w βw[SI]w = γ[I] into (35), we can obtain

γ[SI] + α2[SI]− γα2

max{w}τ
[I]− ξ

[SS]
[S]

γ[I] = 0; (36a)

γ[II]− γ[I]− ξ
[SI]
[S]

γ[I] = 0, (36b)

which can be rearranged to provide the steady-state degrees
of infected and healthy nodes, as given by

[SS] =
(α2 + γ)[SI]− α2γ

max{w}τ [I]

γ([II]− [I])
[SI]; (37a)

[II] = [I] + ξ
[SI]
[S]

[I]. (37b)

By substituting (37) and [I]+[S] = N into 2[SI]+[SS]+[II] =
kN , we can obtain

2[SI]+
(α2 + γ)[SI]− α2γ

max{w}τ [I]

γ([II]− [I])
[SI]+ [I]+ ξ

[SI][I]
N − [I]

= kN.

(38)
By substituting (37b), then (38) can be rewritten as

2[SI]+
(α2 + γ)[SI]− α2γ

max{w}τ [I]

γξ[I]
(N−[I])+[I]+

ξ[SI][I]
N − [I]

= kN.

(39)
Together with constraints [I] < N and [SI] + [II] ≤ kN ,
(39) provides the sufficient condition of the mass of infection-
s/failures at an outbreak equilibrium of the networks. [SI]+[II]

[I]
can be accordingly evaluated from (39) to show the degree
of infected/failed nodes at the equilibrium, indicating changes
in the topology of adaptive weighted networks in response to
virus spread and cascading failures, as well as the effect of
rewiring of weighted links.
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Fig. 3. The relations between [I] and [SI] (and [II]). Plotted are the numbers
of [SI] (red) and [II] (blue) with respect to [I], under different values of α2.
N = 1000, k = 6, τ = 0.1, γ = 0.5, and max{w} = 10.

Fig. 3 plots [SI] and [II] with the growth of [I], where
different values are tested for α2. We can see that [SI] exhibits
concavity with regards to [I], while [II] exhibits convexity.
In other words, the adaptive rewiring can increasingly iso-
late infected/failed nodes by breaking the links which can
potentially infect healthy nodes. As a result, infections/failures
become increasingly concentrated within the small set of
infected/failed nodes. We also see that the average degree
of infected/failed nodes remains consistent, as the growth of
[I] in an outbreak equilibrium, but the average degree does
decrease with the growth of α2. Moreover, the average degree
of infected/failed nodes is lower than the average degree of all
nodes, indicating the infected/failed nodes are less connected
and are prone to be separated from other nodes.
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VII. NUMERICAL AND SIMULATION RESULT

In this section, numerical and simulation results are pro-
vided to validate our proposed model and stability analysis.
Figures are plotted based on discrete-time Monte-Carlo sim-
ulations of 100 iterations. Therefore, each data point in the
figures is the average result of 100 independent runs. For each
of the runs, a single infected node is randomly chosen at t = 0,
as the initial point of infection.

As discussed in Section VI, the rewiring process is inti-
mately associated with the closeness between nodes. Here we
analyze two different linear designs of rwi : namely Design 1
with rwi = α1wi; and Design 2 with rwi = α2(1− wi

max{wi} ).
In the simulations, only one of the designs is taken across
the network. Two distributions of the link weights wi are
compared: the exponential distribution and the log-normal
distribution. For comparison fairness, the means of the ex-
ponential and the log-normal distributions are both set to be
1/λ = m = 1.5 (so that the average value of rwi is identical
in both designs), and their variances are both set to be 2.25
(by configuring m = eµ+σ2/2 and v = e2µ+σ2

(eσ
2 − 1)

for the log-normal distribution; see (28) in Section VI). α1

and α2 are preconfigurable coefficients. We set α1 = 0.2 and
α2 = 0.3326 to ensure the average value of rwi is identical in
both designs. In addition, we also plot the curves where the
variance of the log-normal distribution is v = 0.125, 0.25, 0.5
and 1 to show the impact of the variance on the propagation of
cascading failure or virus spread. The simulations are carried
out in an ER random network [43] of 1000 nodes connected
by randomly generated 1997 links, where the weights of the
links follow the exponential or log-normal distributions, ED
and LD, as discussed in Section VI, respectively. For fair
comparison, the distributions of W have identical mean ⟨w⟩.
Other properties of the random network are summarized in
TABLE I.

TABLE I
BASIC PROPERTIES OF THE RANDOM NETWORK WITH TWO EXEMPLARY

DISTRIBUTIONS OF LINK WEIGHTS.

Distribution v k ⟨w⟩ wmin wmax

0.125 3.994 1.5 0.6757 3.0985
Log-normal (LD) 0.25 3.994 1.5 0.4082 4.4738

0.5 3.994 1.5 0.2035 7.6161
1 3.994 1.5 0.1579 10.2048

2.25 3.994 1.5 0.0626 15.0701
Exponential (ED) 2.25 3.994 1.5 0.00085 15.296

Fig. 4 plots the percentile of unreliable nodes I with the
growth of τ in the steady-state network, where both the two
rewiring strategies are presented. We can see that τ∗ increases
in Design 1 as the dispersion of the link weights increases; see
Fig. 4(a), and in Design 2, τ∗ increases as the dispersion of
the weights decreases; see Fig. 4(b). Moreover, the simulation
results are consistent with the analysis in Section VI. Our
analysis is validated with accuracy. As the weight distribution
becomes more dispersive, the maximum value of the link
weights in the network becomes increasingly larger, and the
minimum value of the weights becomes smaller. To this end,
the preferential disconnections of the links with frequently
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Fig. 4. The steady-state density of unreliable nodes I as a function of τ
under non-uniform rewiring rate, where (a) rwi = α1wi, (b) rwi = α2(1−

wi
max{wi}

) with α1 = 0.2 and α2 = 0.3326.

communicated neighbors are likely to take place on the SI
links with large weights, with the growth of the diversity of
the weights. This can defer the outbreak of cascading failures
or virus spread as the diversity of the weights grows in Design
1. On the contrary, in Design 2, the preferential disconnections
of links with infrequently communicated neighbors are likely
to take place on links with small weights, with the growth
of the diversity of the weights. This can defer the outbreak
of cascading failures or virus spread as the diversity of the
weights decreases in Design 2. Furthermore, based on (22),
the network can eventually become reliable if τ < 0.223 in
Designs 1 and 2, consistent with the analytical results of the
lower bound as shown in Fig. 4. Based on (23), the outbreaks
occur if τ > 0.445 in Design 1 and τ > 0.297 in Design 2,
consistent with our analytical results of the upper bound as
shown in Fig. 4. In both designs, the network is reliable if τ
is smaller than the analytical lower bound, and the network is
unreliable if τ is larger than the analytical upper bound.

We note that our reliability analysis provides an upper bound
for τ in reliable states (denoted by τ∗u) and a lower bound
in unreliable states (denoted by τ∗l ). Under the condition of
τ < τ∗u , the cascading failures can be eventually inhibited and
the network is reliable; and under the condition of τ > τ∗l , the
cascading failures would proliferate and the network is deemed
to be unreliable. These conditions are the sufficient conditions
of the network reliability and unreliability, and may not be the
necessary conditions. Confirmed by extensive simulations, we
demonstrate that these sufficient conditions are effective, even
though they can be loose in some circumstances, as shown for
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Design 1. In other circumstances, the sufficient conditions can
be very tight, as shown for Design 2.

An interesting finding is that our designs can have a strong
impact on the steady-state density of unreliable nodes in the
network. In Fig 4(a), we see that the steady-state density
of unreliable nodes decreases, as the dispersion of the link
weights increases. In the case that the SI links with large
weights are disconnected preferentially, only the SI links with
small weights are left intact, leading to the reduction of the
average transmission rate of the network. As a result, the
steady-state density of unreliable nodes declines in Design 1.
In contrast, in the case that the SI links with small weights
are disconnected preferentially, the SI links with large weights
are left intact and this can increase the rate of turning reliable
nodes to be unreliable. In other words, the steady-state density
of unreliable nodes increases, as the dispersion of the weights
grows. Finally, by assessing Fig. 4, we can notice that, given
the same mean and variance, an exponential distribution of the
links weights is preferred over the log-normal distribution in
regards of network reliability under Design 1; and the other
way around under Design 2.
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Fig. 5. The spreading velocity of infection v(t) at each time slot t under
the two rewiring designs, where (a) Design 1: rwi = α1wi, (b) Design 2:
rwi = α2(1− wi

max{wi}
), with α1 = 0.2, α2 = 0.3326 and τ = 0.5.

The spreading velocity of the virus or failure is an important
measure of the designs. We define the spreading velocity as
the difference of infection density between consecutive time
slots, denoted by v(t) = i(t) − i(t − 1). Fig. 5 plots the

spreading velocity under two designs, as the time elapses.
We can see that in both designs, the more dispersive the
distribution of the link weights is, the lower the velocity peak
is. This indicates larger dispersion of the link weights can
result in slower spreading. In Design 1, the disconnections of
SI links with large weights remove the fast propagation paths
of virus or failures, hence slowing down the propagation of
virus or failures. And in Design 2, although the SI links with
small weights are disconnected preferentially, the density of
those links decreases as the dispersion of the link weights
grows. As a result, large dispersion of the weights can also
reduce the spreading velocity of virus or failures in Design 2.

In the special case where rwi
= r, we can calculate

the accurate value of τ by using (24). Fig. 6 shows the
impact of the rewiring process and the weight distribution
on the reliability threshold τ∗ in the special case. The figure
confirms the validity of the analytic results of τ∗ from (24) by
comparing with Monte-Carlo simulations. With the identical
value of ⟨w⟩, we can see that the distribution of the weight wi

has little impact on τ∗, and hence validates our analysis. We
also see that τ∗ increases with the growth of the rewiring
rate r. That is because, as the rewiring rate r grows, the
SI links can be increasingly likely to be disconnected. This
leads to the reduction of the transmission paths. Therefore, the
interruption of infection by the rewiring process can make the
transmission increasingly difficult; or in other words, inhibits
the transmission.
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(a) The steady-state density of infected nodes I as a
function of τ in random networks, where r = 0.2, γ = 1.
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Fig. 6. The special case of uniform rewiring rate, where the theoretical results
of reliability threshold τ∗ are given by (24).

In practice, networks can display a small-world effect [44]
and a scale-free property [29]. These networks are particularly
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relevant to NFV. As a matter of fact, these networks have
been widely used to portray actual virtual network character-
istics [45–48]. It has also been proposed to construct virtual
networks to comply with scale-free or small-world models,
in attempts to reduce network average path length and to
simplify NFV [46, 47]. In this sense, our simulation settings
align with the virtual network characteristics. We proceed
to carry out Monte-Carlo simulations on weighted networks
with small-world effect and scale-free property, respectively.
The properties of the two types of networks with 500 nodes
connected by 1500 links are summarized in TABLE II. Fig. 7
shows the density of infected nodes i(t) under the types of two
sets of networks. It is clear that, in both WS small-world and
BA scale-free networks [29], [44], increasing the dispersion of
the link weights can lead to a decline of the infected population
in the steady-state network in Design 1, while decreasing the
dispersion can do so in Design 2.

TABLE II
BASIC PROPERTIES OF WS NETWORK AND BA NETWORK

Network Distribution v k ⟨w⟩ wmax wmin

0.125 6 1.5 3.067 0.6365
Log-normal 0.25 6 1.5 3.4048 0.4512

WS 0.5 6 1.5 6.5457 0.2993
Network 1 6 1.5 8.4185 0.1915

2.25 6 1.5 17.1523 0.0863
Exponential 2.25 6 1.5 10.5253 0.00081

0.125 6 1.5 3.1527 0.7015
Log-normal 0.25 6 1.5 4.4506 0.5291

BA 0.5 6 1.5 6.4403 0.2548
Network 1 6 1.5 8.4293 0.1284

2.25 6 1.5 15.2284 0.0694
Exponential 2.25 6 1.5 11.2972 0.00050

In general, our simulation results show that the reliability
threshold τ∗ depends on the distribution of the link weights
and the specific rewiring strategy in the adaptive weight-
ed networks. Preferentially disconnecting links to unreliable
neighbors can effectively inhibit the spread of virus or failures,
e.g., by increasing the reliability threshold, and reducing the
steady-state population of unreliable nodes, and the spreading
velocity of instability. The conclusion drawn is that the larger
the dispersion of the link weights is, the more effectively
the instability can be prevented from proliferation. On the
other hand, preferential disconnections of the links with small
weights can inhibit the spread as the dispersion of the weights
decreases, e.g., increasing the reliability threshold and reduc-
ing the steady-state population of unreliable nodes. Unexpect-
edly, the dispersion of the link weights slows down the spread
velocity as the links with small weights are preferentially
disconnected.

VIII. CONCLUSION

In this paper, we proposed a mean-field approximated
dynamic system to model the time-varying populations of
failed nodes and risky links in adaptive weighted networks.
A linear stability analysis was conducted upon the dynamic
system, and the threshold was identified for the network to
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Fig. 7. The spread of virus or cascading failures in adaptive weighted
networks with different rewiring designs, τ = 0.3, γ = 1. The initial networks
are WS networks and BA networks.

inhibit failures and remain reliable in the steady state. Vali-
dated by simulations, our analysis revealed that the threshold
depends on both the distribution of the link weights and the
adopted rewiring strategy. It is also shown that preferentially
disconnecting frequently communicated, suspicious peers can
effectively inhibit failures and virus spread. As cascading
failures, DDoS [49], computer virus [49] and malware [50],
can be potentially analyzed by using our analysis which is
generic with an emphasis on theoretical insights and under-
standing. The presented analysis is not closely coupled with
real behaviors of specific vulnerability exploration of particular
attacks and viruses though. In the future, we will take the
anatomy of different attacks into account and evaluate network
reliability under specific types of attacks.
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