1	Published in Agricultural and Forest Meteorology 150, 1234 – 1244.
2	
3	Topographical and seasonal trends in transpiration by two co-occurring
4	eucalyptus species over two contrasting years in a low rainfall environment
5	
6	Isa A. M. Yunusa ^{1,5, *} , Colin D. Aumann ^{2,5} , M. A. Rab ^{2,5} , Noel Merrick ³ , Peter D.
7	Fisher ^{2,5} , Phil L. Eberbach ^{4,5} , Derek Eamus ¹
8	
9	¹ Plant Functional Biology & Climate Change Cluster, Department of Environmental
10	Sciences, University of Technology, Sydney, PO Box 123 Broadway, Ultimo, NSW
11	2007
12	² Department of Primary Industries, Tatura, Vic 3616, Australia
13	³ Faculty of Engineering, University of Technology, Sydney, PO Box 123 Broadway,
14	Ultimo, NSW 2007
15	⁴ School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga,
16	NSW 2650, Australia
17	⁵ CRC for Plant-Based Management of Dryland Salinity
18	*Corresponding author: <u>isa.yunusa@uts.edu.au</u> ; phone: +61-2-9514 4086; fax: +61-2-
19	9514 4079
20	
21	
22	
23	
24	
25	

26 Abstract

27 Understanding the strategies that confer resilience on natural woodlands in drought-28 prone environments is important for the conservation of these and similar ecosystems. 29 Our aim in this 2-year study we assessed traits (sapwood area, sapwood density and 30 leaf area index) that control transpiration in *Eucalyptus camaldulensis* and *E*. 31 *microcarpa* in a natural forest in which topographical variation created two topsoils of 32 sandy clay (clay), in the depression that was prone to periodic ponding, and of loamy 33 sand (sand), on the terrace. On the clay, the differences between the two species in 34 their hydraulic attributes were large and rates of water use were widely divergent. E. 35 *camaldulensis* that was dominant on this soil had about half the rates of sapflow, 36 transpiration per land area (E_c) and canopy conductance as those of *E. microcarpa*. 37 This was in marked contrast to the sand where water availability was persistently low 38 and variations in sapwood density, sapwood area and canopy conductance were 39 narrow resulting in almost identical rates of water use for the two species, despite E. 40 *microcarpa* dominating the stand. Contrary to many previous studies, sapwood 41 density was positively correlated with E_c in these eucalyptus species, suggesting that 42 dense sapwood provided a safeguard against possible xylem embolism and to sustain 43 E_c in this low-rainfall environment with prolonged dry seasons. Also, the proportion 44 of trunk area assigned to sapwood was inversely with trunk size. Single functions were developed for predicting E_c by integrating its response to micrometeorological 45 46 and soil-water conditions. We concluded that trait variation is less likely where the 47 trees are under persistent water-stress than where the stress is shorter and less intense. 48

49 Keywords: drought, flooding, sapwood area, sapwood density, soil-water,

50 transpiration

51 Introduction

52

53	Remnants of native woody vegetation are an important resource for understanding
54	pre-existing eco-hydrological processes on highly disturbed landscapes. Such
55	understanding is critical to devising effective management and revegetation strategies.
56	In the semi-arid Australian environments, where European settlement resulted in large
57	scale land clearance, remnants of woody vegetation are a testimony to their capacity
58	to adjust their transpiration in accordance to short- and long-term variability in rainfall
59	and meteorological conditions over the millennia. Adjustment of transpiration
60	involves manipulation of traits at ecological (population density), structural (leaf area
61	index, rooting depth), anatomical (size and density of water conducting tissues,
62	density and location of stoma), physiological (stomatal conductance) and biochemical
63	(osmotic adjustment) levels. These issues have been reviewed in recent years
64	(Wullschleger et al., 1998; Bucci et al., 2004; Meinzer, 2003; Baldocchi and Xu,
65	2007). Disparate species may modify several of these traits to variable degrees to
66	maintain transpiration in a given environment, resulting in functional convergence
67	(Meinzer, 2003), i.e. attainment of similarity in transpiration through different
68	strategies. For instance, the concept of <i>functional convergence</i> was used to explain
69	the similarity between Melaleuca spp and Eucalyptus spp in their transpiration per
70	unit leaf area in a contiguous forest despite an apparent large difference in their leaf
71	area index (LAI); this was because the large LAI in melaleuca was compensated for
72	by a larger sapwood area in the eucalypts (Kelley et al., 2007).
73	

Differences in soil-water availability due to variable soil texture and/or local rainfall
can cause permanent structural and physiological changes in the hydraulic apparatus

76	of woody species (Alder et al., 1996; Hultine et al. 2005; Kelley et al. 2007; Mitchell
77	et al., 2008). Alder et al. (1996) showed that trees on a dry slope experienced reduced
78	canopy conductance stemming from reduced hydraulic conductance in the stem and
79	root due to xylem embolism in their roots and stem in a particularly dry year. Hultine
80	et al. (2005) found increases in the dimensions of conducting tissues, including
81	sapwood density, for the desert mesquite (Prosopsis velutina) growing on fine loamy
82	clay compared with those on a coarser loam due to differing water relations between
83	the two soil types. Amongst stem anatomical changes, those in sapwood density are
84	known to impact on the capacity for water conduction and for withstanding prolonged
85	exposure to limited soil-water supply. For instance, high sapwood density constrains
86	water conductivity, but enhances avoidance of xylem embolism (Koch and Fredeen,
87	2005; Mitchell et al., 2008; Stratton et al., 2000). Thus species with dense sapwood
88	are able to maintain water conduction at much lower leaf water potentials and, hence,
89	lower levels of soil-water availability, than species having low sapwood density.
90	Small variations in sapwood density are known to cause large variations in hydraulic
91	properties, including vulnerability to xylem embolism, and capacity to respond to
92	transient micrometeorological conditions (Bucci et al., 2004; Stratton et al., 2000;
93	Koch and Fredeen, 2005).
94	

95 The wide spectrum of soil-water supply experienced in landscapes subjected to short, 96 but frequent flooding or ponding exposes plants to a large range of soil-water 97 potentials that enhance the capacity for extracting water across an extended range of 98 soil-water availability (Sperry and Hacke, 2002). This is achieved through enhanced 99 osmotic adjustment (Alder et al., 1996) so that plants that experience frequent 100 flooding are able to tolerate quite lower soil-water potential (-3.5 MPa) before wilting,

101	compared with non-flooded plants (-3.1 MPa) (Myers and Neales, 1984). Akeroyd et
102	al. (1998), for instance, found that transpiration in eucalypt trees growing on plains
103	subjected to a high frequency of flooding was more responsive to transient changes in
104	vapour pressure deficit, because they maintained higher water potential, than trees
105	growing on the plains with infrequent flooding. Similar responses have been found in
106	other tree species such as cottonwood (Populus fremontii) in which transpiration by
107	trees that experienced perennial flooding was more sensitive to vapour pressure
108	deficit, despite reduced sapwood area and LAI, relative to those subjected to
109	intermittent flooding (Gazal et al., 2006).
110	
111	Recent studies in the arid environments of Australia, however, found trait variation
112	amongst plant species to be particularly limited under arid conditions (Mitchell et al.,
113	2008; O'Grady et al., 2009). Mitchell et al. (2008) found limited trait variation on soil
114	with prolonged poor water supply, where convergence of water use strategies was
115	more likely, compared with soil having good water storage capacity. Understanding
116	these trade-offs amongst traits that control water use by trees, is important to
117	management of regional water resources, salinity control and environmental health. In
118	this paper, we analyzed transpiration for two co-occurring eucalypt species that
119	dominate a remnant forest in which the terrain caused strong differences in soil
120	texture and hence water supply in southeastern Australia. Our objectives were to (1)
121	quantify transpiration by the trees and characterize its relative sensitivity to
122	micrometeorological and soil water conditions, and (2) identify the dominant traits
123	that control transpiration in the two species under extended drought conditions.
124	

126 Materials and methods

127

128 The site

129	This study was undertaken at the Reef Hills State Park ($36^{\circ} 36' S$, $145^{\circ} 56' E$ or AMG
130	Zone 55, Easting 403442, Northing 594857) located near Benalla in Victoria,
131	Australia. It covers 2032 ha and the vegetation can be generally classified as Heathy
132	Dry Forest (Muir et al., 1995). Annual rainfall for the district is about 670 mm with
133	almost one third of this falling during winter (June –August) when cold westerly
134	winds dominate and mean daily temperature falls below 10 $^{\circ}$ C; occasionally the
135	minimum temperature falls to 0 $^{\circ}$ C and frosts occur especially from mid winter to
136	early spring. Summers are generally warm to hot with daily mean temperature of 20.6
137	°C, and also generally dry except for occasional heavy storms. The park was heavily
138	grazed after the cessation of mining in the early decades of the twentieth century, but
139	there has been no record of heavy grazing or wildfires in recent decades. Declaration
140	of the park as a reserve alleviated grazing and has facilitated recovery of the native
141	vegetation and the dominant tree species are approximately 50 years old and have
142	produced substantial sapling undergrowth (Meers and Adams, 2003). There was
143	limited routine harvesting of wood for fuel and timber up until 1988 when the practice
144	was stopped. The park forms part of Box-Ironbark forests and woodlands of almost
145	three million hectares that covers almost 13% of the state of Victoria in Australia
146	(Parks Victoria, 2007).
147	

148 We chose a single block of approximately one hectare (62 x 160 m) that was

149 dominated by Eucalyptus camaldulensis (Red River Gum) and E. microcarpa (Grey

150 Box) and an understorey dominated by *Acacia pynantha* (Golden Wattle) and *A*.

(1) **(**1)

•.1

·· /D1

151	meamsii (Black wattle) with seasonal groundcover of Joycea pallida (Wallaby Grass)
152	and isolated tussocks of Poa sieberiana (Tussock-grass). The soil had a duplex profile
153	of coarse textured topsoil underlain by heavy textured clayey subsoil. Salinity
154	measured as electrical conductivity increased from an average of 0.15 dS/m in the
155	near-surface layer to 0.7 dS/m at 3 m depth. The bulk density (Mg/m^3) rises from 1.21
156	in the top 0.2 m layer to 1.43 at 0.5 m depth and 1.75 at 1.0 m; the density was >1.5 at
157	depths below 1.0 m. Site elevation was approximately 190 m above sea level with a
158	gentle slope towards the north north-west of about 1:400.
159	

1

1

с **т**

160 The chosen block was split into two distinct zones each of approximately 0.5 ha with 161 contrasting soil textural characteristics (Table 1). The eastern half had a top profile of 162 sandy clay lying in a depression having a gentle slope ($\sim 2\%$) that levels out at about 2.0 m; it is prone to ponding due to runoff from the surrounding area. The western 163 164 half of the block is a terraced alluvium Riverine plain commencing from the edge of 165 the depression and has a topsoil of loamy sand. The surface soil in both cases is underlain with a silty clay middle layer over clay loam profile. Henceforth, the two 166 soils will simply be referred to as clay and sand in this paper. While E. camaldulensis 167 168 accounted for 75% of trees on the clay in the depression, E. microcarpa constituted 169 over 90% of trees on the sand on the terraced plain. E. camaldulensis is the most 170 widely distributed of eucalypts, commonly found along banks of rivers and seasonal 171 inland streams, and is the most popular eucalypt used in plantations world-wide 172 (Brooker, 2002). E. microcarpa tends to be associated with environments that have 173 poor draining clay soil and is considered one of the most high water users (Hookey et 174 al., 1987). Although, the clay was ponded for several months in the winter of 2005

- prior to commencement of this study in 2006, there was no such episode during thestudy being reported here.
- 177
- 178
- 179 Measurements
- 180
- 181 *Tree characteristics*
- 182 A census of all young and mature trees, including the shrubs, and measurement of
- 183 their diameter at breast height (DBH) was undertaken in May 2005. Leaf area index
- 184 (LAI) was made twice in spring (14 September 2006) and summer (20 December
- 185 2007), using the photographic technique reported previously (Fuentes et al., 2008).

- 187 Soil water
- 188 Water stored in the soil profile was measured with a neutron probe (CPN, 503 DR
- 189 HYDROPROBE) using pre-installed aluminum access tubes to six metre depth and
- 190 were spaced at 5 or 10 m intervals across the two soils and were monitored at
- 191 fortnightly intervals throughout the study period. Each soil types had 10 access tubes.
- 192 The probe was calibrated using gravimetric determination of soil-water (A. Rab,
- 193 unpublished data).
- 194
- 195 Transpiration from tree canopy
- 196 We used heat-pulse sensors (SF 300, Greenspan Technology, Australia) to monitor
- 197 sapflow in trees of each species on the clay and the sand. We chose large mature trees,
- and each was supplied with two probe-sets consisting of a heater and a pair of
- 199 thermistors. These were implanted into the trunk to a depth of 25 mm, after removal

200	of the bark. The two probe heads installed on to the opposite sides of the trunks and
201	separated by a vertical distance of at least 1.5 m. Installation and maintenance of the
202	logging units followed standard procedures (Yunusa et al., 2008; Zeppel et al., 2006).
203	Core samples were taken from the trunk to estimate wood density and ratio of
204	wood:water (Yunusa et al., 2000). Additional measurements of sapwood area and
205	thickness of heartwood and bark were made on fallen trees, and were used to develop
206	models for predicting trunk tissue diameters from their circumference. The models
207	were then used to estimate dimensions of bark, heartwood and sapwood for the study
208	trees from their trunk circumference. Mean values for these key parameters for the
209	chosen trees are given in Table 2. Transpiration expressed in depth of water (E_c , mm)
210	for any given period was calculated using equation 1 (Akeroyd et al., 1998):

$$212 \qquad \mathbf{E}_{\mathbf{c}} = \frac{VS_b}{S_t A} \tag{1}$$

213

in which *V* was the mean volume of sapflow (*V*, L/tree) over the time interval, S_t mean sapwood area per tree (m²), S_b sapwood area for all the tress in the whole block, and *A* the block area (m²).

217

The sapflow data were used to estimate canopy conductance (g_c) following Monteith
and Unsworth (1990):

$$221 \qquad g_{\rm c} = \lambda E_{\rm c} \gamma / \rho C_{\rm p} D \tag{2}$$

223 in which λ is latent heat of vaporization that was taken as constant (2.45 MJ kg⁻¹,

224 Monteith and Unsworth, 1990), γ is psychrometric constant (0.066 kPa °C⁻¹), ρ is the 225 density of air, C_p is the specific heat capacity of air (0.001 MJ kg⁻¹ °C⁻¹) and *D* vapour 226 pressure deficit of the air (kPa). The g_c was used to calculate the coupling coefficient

227 (Ω) as given by McNaughton and Jarvis (1983):

228

229
$$\Omega = \left(1 + \frac{\gamma}{(\Delta + \gamma)} \cdot \frac{g_a}{g_c}\right)^{-1}$$
(3)

230

where g_a is aerodynamic conductance (m s⁻¹) calculated from wind data (Monteith and Unsworth, 1990) and Δ is the slope of the curve relating vapour pressure to temperature (kPa °C⁻¹).

234

235 Weather variables

Temperature, humidity, wind speed, solar radiation and rainfall were monitored with an automatic weather station. Potential evapotranspiration (E_{pot}) was calculated using the Priestley-Taylor equation (Priestley and Taylor, 1972). These weather data were also used to calculate equilibrium evapotranspiration (E_{eq}) as a measure of the upper limit for transpiration rate in the absence limited soil water supply and advection (McNaughton and Black, 1973):

242

243
$$\lambda E_{eq} = \frac{\Delta(R_n - G)}{\Delta + \gamma}$$
 (4)

244

in which R_n is net radiation (MJ m⁻²) and G is ground heat flux (MJ m⁻²).

246	Results
247	
248	Tree characteristics
249	
250	The two species differed in their trunk and canopy characteristics (Table 2). On both
251	soils, E. camaldulensis had larger trunks and sapwood area, but lower sapwood
252	density, than E. microcarpa. The wide range in the sapwood area for both species on
253	clay was due to the presence of younger trees; whereas the sand had predominantly
254	mature trees. Mean sapwood area of the instrumented trees was larger on the clay than
255	on sand, more so for <i>E. camaldulensis</i> (47%) than for <i>E. microcarpa</i> (27%). About
256	10% of the trunk cross-sectional area was occupied by sapwood in both species on the
257	clay and increased to 19% for <i>E. camaldulensis</i> and to 12% for <i>E. microcarpa</i> on the
258	sand. Total sapwood area for all the trees and shrubs was 1.79 m^2 on the clay and 1.17
259	m^2 on the sand.
260	
261	There were strong positive linear relationships between the depths of heartwood or
262	sapwood area with trunk circumference for the two species on both soil types.
263	Although the sapwood area was significantly correlated with the trunk circumference
264	in both species, the values for the parameters in their linear regressions were different

for the two species:

266 *E. cam*: sapwood area =
$$(0.014 \text{ x trunk circumference}) + 0.00054$$
; r² = 0.76 (5a)

267 *E. mic*: sapwood area =
$$(0.011 \text{ x trunk circumference}) - 0.0008; r^2 = 0.72$$
 (5b)
268

E. camaldulensis maintained a larger sapwood area at all values of the circumference
than *E. microcarpa*; the intercept in this regression was larger for *E. camaldulensis*

271	due to its thicker bark than for <i>E. microcarpa</i> (see Table 2). There was a significant
272	correlation ($r^2 = 0.59$) between bark thickness and trunk circumference for <i>E</i> .
273	camaldulensis, but not for E. microcarpa (data not presented). Ratio of sapwood
274	area/trunk sectional area declined was inversely correlated with sapwood density (Fig.
275	1).
276	
277	The weather
278	
279	The radiation receipt was largely similar during the two years, except for the months
280	of October to December that received less energy in 2007 than in 2006 (Fig. 2). Daily
281	mean R_s was 248 W m ⁻² for both years. The winter (June – August or days 151–244)
282	was marginally cooler in 2006, when mean temperature was 7.7 $^{\circ}$ C compared with 7.9
283	^o C for the same speriod in 2007. However, the summer (November-February) in both
284	years had similar mean daily temperature of 21.8 $^{\rm o}{\rm C}$ in 2006 and 22.3 $^{\rm o}{\rm C}$ in 2007. The
285	spring to early summer was more humid in 2007 than in 2006, and this was reflected
286	in the lower evaporative demand for this period in 2007. The rainfall in 2006 was
287	particularly low totaling 239 mm or just 36% of the long-term mean. In 2007 monthly
288	rainfall was close to average for the first half of the year and the annual rainfall of 597
289	mm was 89% of the expected, although August to October was dry. This region like
290	many parts of southern Australia has experienced declining rainfall over in the
291	preceding 10 years. However, rainfall in 2005 was 780 mm or about 15% above the
292	long term average, of this 70 mm fell in November and 33 mm in December.
293	
294	

296 Sapflow in individual trees during adequate soil-water availability

297

298	Maximum soil-water content during the 2-year study period was observed in the first
299	90 days of 2006, and in this period sapflow was consistently larger for E. microcarpa
300	than for <i>E. camaldulensis</i> both during the day and night on the clay (Fig. 3). On the
301	sand, the trend in sapflow rates was reversed; being mostly larger for E.
302	camaldulensis than for E. microcarpa. Much of the differences in rates of sapflow
303	between the species on the sand occurred around midday. Daily sapflow on the clay
304	was 2-3 times larger for <i>E. microcrapa</i> than for <i>E. camaldulensis</i> before rainfall on
305	day 57 after which the former had about 42% higher sapflow than E. camaldulensis
306	during the following two days. These differences in sapflow between the species were
307	reversed on the sand, where sapflow for <i>E. microcarpa</i> was only between 40 and 72%
308	of that for <i>E. camaldulensis</i> . Total sapflow over the 6-day period on the sand relative
309	to that on the clay was only 41% for <i>E. camaldulensis</i> and 16% for <i>E. microcarpa</i> .
310	There were indications of sapflow by both species during the night on the two soils.
311	Overall, the mean daily sapflow from either species on the sand was about a third that
312	found on the clay, and was significantly correlated with sapwood area and sapwood
313	density (Table 3).

314

On average, sapflow attained peak rates at 1320 hrs in *E. cameldulensis* compared with 1440 hrs in *E. microcarpa* on the clay, but on the sand the peak rate was attained at about 1130 hrs for both species. Time interval between the bases of the bell curves (Fig. 3) approximated duration of sapflow during the daylight hours, when sapflow was ≥ 1.0 L/hr on the clay, was 800 mins for *E. microcarpa* and 775 mins for *E. camaldulensis*; the corresponding values on the sand for when sapflow ≥ 0.5 L/hr

averaged 670 mins for both species. Also, sapflow in *E. microcarpa* peaked at 1430 h
on the clay and 1130 h on the sand, for *E. camaldulensis* these were at 1320 h and
1150 h, respectively.

324

325 Influence of soil type on daily trends in transpiration during the years

326

327 The clay was consistently wetter than the sand that had 16% lower volumetric water

328 content (θ) than the clay (Fig. 4). This difference in θ translated to differences in

329 water storage of 12 mm in the top 0.3 m depth of the soil and up to 240 mm over the

entire 6 m of the soil profile. Transpiration (E_c) was consistently higher for *E*.

331 *microcarpa* than for *E. camaldulensis* on the clay than on the sand. This was

especially so at the start of 2006 when daily E_c on the clay reached 3.2 mm (68 L/tree)

for *E. camaldulensis* compared with 4.8 mm (100 L/tree) for *E. microcarpa* (Fig. 4a).

These rates declined rapidly to about 0.6 mm (12.8 L/tree) and 1.0 mm (20.9 L/tree)

during the cool winter. The two species mostly had similar E_c on the sand, except

between days 230 and 290 (in late winter/early spring) when E. camaldulensis had as

337 much as 55% higher E_c (0.07 mm versus 0.11 mm d⁻¹) than *E. microcarpa*.

338

Rates of E_c in 2007 (Fig. 4b) were 50% of those observed in 2006 on both soils,

340 especially on the clay at the start of the year. At this time E_c for *E. microcarpa* was

below one-third and about half for *E. camaldulensis* of those rates observed for the

342 same period in 2006. E. camaldulensis was highly responsive to rainfall events on the

343 clay, but E_c for both species rarely exceeded 0.35 mm d⁻¹ on the sand. The subdued E_c

344 on this soil was more severe for *E. microcarpa* especially in late winter/early spring

345 (days 230–290) when this species used 40% less water (0.08 mm d⁻¹ versus 0.13 mm d^{-1}) than *E. camaldulensis*.

347

348 Seasonal influence on diurnal trends in transpiration

349

350	Detailed E_c data for 2-day periods are presented for three contrasting seasons (Fig. 5).
351	On the clay, <i>E. microcarpa</i> had higher E _c than <i>E. camaldulensis</i> throughout the day in
352	summer and winter. E_c peaked earlier and lasted for a shorter period in <i>E</i> .
353	camaldulensis than in E. microcarpa. In autumn, Ec for E. microcarpa occurred
354	essentially in the morning and just before sunset. On the dry sand, E_c was generally
355	higher for E. camaldulesis compared with E. microcarpa throughout the day in the
356	cool seasons, but this trend was reversed in summer. The low θ on the sand coupled
357	with the prevailing cool conditions in autumn reduced peak $E_{\rm c}$ to less than 0.025 mm
358	h^{-1} (Fig. 5e). It is noteworthy that on both soils, E_c for either species did not cease at
359	night especially in summer. Daily totals for E_c was lower by as much as 50% in <i>E</i> .
360	camaldulensis compared with E. microcarpa on the clay, but the difference was
361	reversed by several factors $(2.5 - 7.3)$ on the sand for these selected dates (Table 4).
362	The difference in E _c for <i>E. microcarpa</i> over <i>E. camaldulensis</i> was larger in summer
363	than in the cooler seasons.
364	

365 To further test the sensitivity of transpiration to prevailing weather conditions,

366 correlations between E_c and the micrometeorological variables presented in Figure 5

367 were calculated. Results are presented for the clay (Fig. 6), because the responses

368 were mostly either not well-defined or were weak and positively linear on the sand. In

369 all cases the relationships were best described with a 2-parameter power function,

370	which showed E_c in the two species to be strongly responsive to both temperature and
371	vapour pressure deficit (D), but not to solar radiation (R_s). E_c in both species
372	responded more strongly to R_s in summer than in the cooler seasons, this was
373	especially so for <i>E. canaldulensis</i> . E_c did not increase beyond R_s of 1.8 MJ
374	irrespective of the season. There was a clockwise hysteresis in the E_c response to R_s ,
375	especially in <i>E. microcarpa</i> . The thresholds in temperature and <i>D</i> at which maximum
376	E _c was observed were much higher for <i>E. microcarpa</i> than for <i>E. camaldulensis</i> .
377	These thresholds got progressively lower in autumn and winter especially for <i>E</i> .
378	microcarpa.
379	
380	Influence of soil type on diurnal course in canopy conductance
381	
382	Canopy conductance (g_c) was calculated from the E_c in Figure 5 and the result
383	presented in Figure 7. On the clay g_c attained peak by 1100 hrs in summer. Peak g_c
384	was higher, and its subsequent decline late in the afternoon was more rapid, in E.
385	<i>camaldulensis</i> than in <i>E. microcarpa</i> (Fig. 7). There was often another elevation in g_c
386	just before sunset. On the sand, gc attained peak by 1100 hrs and remained relatively
387	stable until after 1800 hrs in summer. Also on this soil, peak g_c was about twice as
388	large and attained earlier in autumn and winter than in summer. Daily g_c averages on
389	the clay was larger for <i>E. microcarpa</i> by as much as a factor of 3.5 than for <i>E</i> .
390	<i>camaldulensis</i> (Table 5) during the three seasons. On the sand, however, averaged g_c
391	was 6–67 % larger for <i>E. camaldulensis</i> compared with <i>E. microcarpa</i> during autumn
392	and winter. The coupling coefficient (Ω) was generally higher for <i>E. microcarpa</i> than
393	for <i>E. camaldulensis</i> on the clay, but the trend was reversed on the sand (Table 5).
394	

205	Evenessing the deily values of E as fractions of the application even evention (Eq. 4)
395	Expressing the daily values of E_c as fractions of the equilibrium evaporation (Eqn. 4)
396	largely eliminated the influence of micrometeorological conditions allowing the
397	influence of soil water (θ) to be assessed. The relationship between E_c/E_{eq} and θ was
398	best described with exponential curves for both species (Fig. 8), but the intercept was
399	much lower, while exponent was much larger, for <i>E. microcarpa</i> than for <i>E.</i>
400	camaldulensis.
401	
402	Annual transpiration and rainfall
403	
404	Annual E_c was always higher for <i>E. microcarpa</i> than <i>E. camaldulensis</i> on the clay,
405	but there was no difference between the two species on the sand (Table 6). Over the
406	two years, daily E_c averaged 0.90 mm (36 L) for <i>E. microcarpa</i> and 0.33 (21 L/d) for
407	E. camaldulensis on the clay compared with about 0.12 mm for either species, or 5
408	L/d for <i>E. microcarpa</i> and 8 L/d for <i>E. camaldulensis</i> , on the sand. On the clay the
409	annual E_c for <i>E. microcarpa</i> was 23% higher in 2006 than in 2007, but for <i>E</i> .
410	camaldulensis it was 47% higher in 2007 than in 2006. On the sand, the annual $E_{\rm c}$ was
411	similar for the two species in both years. The E_c for the whole year was 114% the
412	annual rainfall on the clay, but 19% on the sand, in 2006; these percentages were 36%
413	and 6% in 2007. Annual E_c as a fraction of E_{eq} averaged 16% on the clay and only 3%
414	on the sand, but was just 20% for the whole block.
415	
416	
417	

Discussion

422 Differences in sapflow among species and sites

424	The trees of <i>E. camuldulensis</i> on the clay had consistently lower rate of sapflow (Fig
425	4a) or transpiration (Figs. 5a, 6) than E. microcarpa. This was contrary to
426	expectations from the sapwood area produced at any given circumference that was
427	larger for <i>E. camaldulensis</i> than for <i>E. microcarpa</i> (Fig 1) in addition to the sapwood
428	density that was smaller for the former than for <i>E. microcarpa</i> (Table 2). A smaller
429	sapwood density is generally correlated with a larger sapwood hydraulic conductivity
430	(Stratton et al., 2000; Koch and Fredeed 2005; O'Grady et al. 2009), from which a
431	larger rate of sapflow is expected when all else is held constant (Barbour et al., 2004;
432	Bucci et al., 2004). Using the relationship between wood density and conductivity
433	given by Stratton et al (2000) we estimate the hydraulic conductivity of <i>E. microcarpa</i>
434	growing on clay to be 4.5 mmol $m^{-1} s^{-1} MPa^{-1}$ and that of <i>E. camaldulensis</i> to be 103
435	mmol m ⁻¹ s ⁻¹ MPa ⁻¹ . A smaller wood density is generally correlated with a reduced
436	resistance to xylem embolism (Stratton et al. 2000; Koch and Fredeen 2005). This
437	made E. camaldulensis to tightly control its transpiration so as to reduce the risk of
438	embolism arising from extremely low leaf, and hence xylem, water potential. This
439	was evident in the consistently lower g_c in <i>E. camaldulensis</i> than in <i>E. macrocarpa</i>
440	throughout the day, especially after midday (Fig 8, Table 5), and also in the more
441	restrained increase in E_c in response to rising D in E. camaldulensis than E.
442	microcarpa (Fig 7c, f).

444	Finally, from the data compiled by Koch and Fredeen (2005) and the wood density in
445	Table 2, it can be estimated that the minimum leaf water potential at the turgor loss
446	point will be higher (- 3.5 MPa) for <i>E. camaldulensis</i> than for <i>E. microcarpa</i> (-5.0
447	MPa). This further suggested that <i>E. camaldulensis</i> controlled its E _c more tightly, to
448	avoid xylem embolism, than E. microcarpa. Therefore, E. camaldulensis maintained a
449	comparatively low sapwood density allowing potential for high E_c , but the
450	requirement to avoid embolism coupled to the higher water potential at which zero
451	turgor is likely to be attained, made this species quite conservative in its water use on
452	the clay. While the high sapwood density for <i>E. microcarpa</i> provided plasticity in its
453	response to variable soil-water supply conditions.
454	
455	How do we reconcile these traits with the generally observed inverse correlation
456	between wood density and stem hydraulic conductivity? The majority of previous
457	studies on this issue were conducted in wetter environments (rainfall > 1000mmm)
458	with shorter dry seasons (Barbour et al 2005, Bucci et al. 2004) than the site of the
459	present study. In contrast to the studies with northern hemisphere species, and
460	consistent with the present study (Table 3), Mitchell et al. (2008) observed a weak
461	positive correlation between stem conductivity and sapwood density in an arid (350
462	mm rainfall) environment of Western Australia. Thus, when evaporative demand is
463	high and water supply is moderate or low and highly variable, as opposed to
464	predictable as in the savannas (Bucci et al., 2004, Eamus and Prior, 2001), a low
465	sapwood density and hence high conductivity can be maintained if water use is tightly
466	constrained by strong stomatal control.

468	The large difference between the two species in their rates of sapflow and E_c observed
469	on the clay was not repeated on the sand (Figs 5a, b, 6). The convergence in rates of
470	water use for the two species on the sand was achieved through convergence in three
471	attributes. First, sapwood density declined in both species on the sand compared to the
472	clay but the decline in E_c for <i>E. macrocarpa</i> was much larger than for <i>E.</i>
473	camaldulensis. Consequently sapwood density converged on this soil. Second,
474	sapwood area per tree declined in both species, but more so in E. camaldulensis, and
475	consequently this trait converged. Finally, canopy conductance declined in both
476	species, but more so in <i>E. microcarpa</i> , leading to a convergence in canopy
477	conductance. Thus E. microcarpa that was the profligate water user on the clay
478	became conservative and closer in its water use to E. camuldulensis through
479	convergence of these three attributes on the sand that had lower water holding
480	capacity and water availability than the clay. This convergence in attributes confirms
481	the observation that species occupying sites that experience repeated and prolonged
482	water deficits tend to exhibit a narrow range in their hydraulic traits (Mitchell et al.
483	2008). Thus, in contrast to the response on the clay, the annual water use on the sand
484	did not differ between species.

The total seasonal E_c (Table 6) for the two species at the two sites further highlights the disparate behaviour of the two species on the two sites. The poor water holding capacity of the sand (run-off), and hence it's lower water availability relative to the clay (run-on) (Fig 5c), was associated with the 10 – 25 % reduction in LAI and an almost 60 % reduction in basal area (Table 2). Similar reductions have been found in a study of two contiguous forests in which one acted as a run-off and the other a runon site (Kelley et al., 2007). Consequently the cumulative water-use on the sand was

493	approximately 22 % of that on the clay (100 mm compared to 450 mm) (Table 6). The
494	Huber value for the whole community (H_{Vc}), i.e. ratio of leaf area to sapwood area
495	(Kelley et al., 2007), was larger on the clay (2.95 x 10^{-4}) than on the sand (2.1 x 10^{-4}).
496	These are close to values derived from branch-and tree-scale measurements cited by
497	Eamus and Prior (2001). High Huber values are generally associated either with
498	increased aridity of a site or increased transpiration (Mencuccini and Grace, 1995),
499	and reflect increased allocation to sapwood or decreased investment in leaf area.
500	Thus, the larger E_c reflected the increased H_{Vc} on the clay that had larger water
501	availability, relative to the sand. The decreased mean sapwood area per tree was
502	compensated for, to some extent, by an increase in the hydraulic conductivity arising
503	from the reduced sapwood density on the sand.
504	
505	Environmental controls of water use
506	
507	The response of water use by the trees on the clay to micrometeorological variables
508	and soil water showed different sensitivities between species. The conservative
509	pattern of water use in E. camaldulensis was reflected in the lower coefficients of the
510	regression of its E_c on R_s , temperature, and D (Fig. 6) and on the regression of E_c/E_{eq}
511	on θ (Figs 9). Thus, for any given increase in any of these environmental parameters,
512	the response of E_c , and hence of the stomata, was smaller in <i>E. camaldulensis</i> than in
513	<i>E. microcarpa</i> . This is well illustrated in the larger coupling coefficient (Ω) for <i>E</i> .
514	microcarpa than for E. camuldulensis. A high Ω is associated with E_c being more
515	sensitive to solar radiation and temperature (Whitehead et al., 1984) than to D , and the

517 temperature. It was not possible to determine the response functions on sand because

518 the relatively low rates of E_c limited the scope for the expression of a response to 519 these abiotic variables.

520

521	For both species, the relationship between E_c and either temperature or D was the
522	same across all seasons of the study (Fig. 6), i.e. there was no seasonal acclimation or
523	adjustment in the responsiveness of E_c to these two variables. This is in contrast to the
524	adjustment observed in the response of E_c to R_s that was different for summer,
525	compared with autumn and winter, for both species. This is because at any given level
526	of R_s , temperature and D , and hence E_c , are smaller in autumn/winter than in summer.
527	In all the three seasons, however, E_c showed no further increase with R_s beyond 1.8
528	MJ m^{-2} (500 W m^{-2}) suggesting that stomates were fully opened at this level of
529	irradiance. In dry environments, the role of R_s is mostly confined to that of controlling
530	the opening and closure of stomates, while rates of $E_{\rm c}$ and stomatal conductance are
531	determined by D (Wullschleger et al., 1998; Lu et al., 2003). The threshold R _s of 500
532	W m ⁻² , attained by 1100 hrs, for these eucalypts was much higher than 200 W m ⁻²
533	found for other tree species in water-limited environments, such as Pinus radiata
534	(Yunusa et al., 2005) or Cryptomeria japonica (Komatsu et al., 2006). The high value
535	for the eucalypts was consistent with their having evolved in environments of high
536	sunlight and temperature (Brooker, 2002).
537	
538	Summary and Conclusions

539

540 Small differences in topography resulted in large differences in the characteristics of

541 the top soil profile. The topographic variation modified distribution of rain water

542 generating *run-off* on the terrace and *run-on* in the depression. This produced apparent

543	differences in LAI, sapwood area and hydraulic characteristics between the two
544	species that were common on both soils. On the sand where water availability was
545	persistently low, trait variation was narrow resulting in almost identical rates of water
546	use by the two species. This was in marked contrast to the clay, where the two species
547	showed marked variation in hydraulic attributes and hence divergent rates of water
548	use. We concluded that trait variation is less likely where the trees are under persistent
549	water-stress than where the stress is shorter and less intense.
550	
551	
552	Acknowledgement
553	
554	We thank Ms Annabelle Simson, Ms Claire Greenwood and Mr Ed Thomas for
555	technical assistance. We appreciate the assistance of Mr Rolf Weber with site
556	selection and taxonomy of the trees, Dr Ian Goodwin with sapflow gauges and
557	weather data, and Parks Victoria and the late Mr Jim Kilpatrick for access to Reef Hill
558	Park. We thank Dr Melanie Zeppel for her useful comments on the manuscript. This
559	project was funded by DPI Victoria, University of Technology, Sydney, under the
560	Research Excellence Grant scheme, and CRC for Plant-Based Management of
561	Dryland Salinity.
562	
563	
564	
565	
566	
567	

568 **References**

570	Akeroyd, M.D., Tyerman, S.D., Walker, G.R., Jolly, I.D., 1998. Impact of flooding
571	on water use of semi-arid riparian eucalypts. J. Hydrol. 206, 104-117.
572	Alder, N.N., Sperry, J.S., Pockman, W.T., 1996. Root and xylem embolism, stomatal
573	conductance, and leaf turgor in Acer grandidentatum populations along a soil
574	moisture gradient. Oecologia 105, 293 –301.
575	Baldocchi, D.D., Xu, L., 2007. What limits evaporation from Mediterranean oak
576	woodlands – The supply of moisture in the soil, physiological control by plants
577	or the demand by the atmosphere? Adv. Water Resour. 30, 2113–2122.
578	Barbour, M.M., Hunt, J.E., Walcroft, A.S., Rogers, G.N.D., McSeveny, T.M.,
579	Whitehead, D., 2004. Components of ecosystem evaporation in a temperate
580	coniferous rainforest, with canopy transpiration scaled using sapwood density.
581	New Phytol. 165, 549 –558.
582	Brooker, I., 2002. Botany of the eucalypts. In Eucalyptus: The Genus Eucalyptus.
583	CRC Press, Australia. (Ed JJ Coppen) pp. 3-35.
584	Bucci, S.J., Goldstein, G., Meinzer, F.C., Scholz, F.G., Franco, A.C., Bustamante, M.,
585	2004. Functional convergence in hydraulic architecture and water relations of
586	tropical savanna trees: from leaf to whole plant. Tree Physiol., 24, 891–899.
587	Eamus, D., Prior, L., 2001. Ecophysiology of trees of seasonally dry tropics:
588	Comparisons among phylogenies. Adv. Ecol. Resear., 32, 113-197.
589	Fuentes, S., Palmer, A.R., Taylor, D., Zeppel, M., Whitley, R., Eamus, D., 2008. An
590	automated procedure for estimating the leaf area index (LAI) of woodland
591	ecosystems using digital imagery, MATLAB programming and its application

- to an examination of the relationship between remotely sensed and field
- 593 measurements of LAI. Funct. Plant Biol., 35, 1070–1079.
- Gazal, R.M., Scott, R.L., Goodrich, D.C., Williams, D.G., 2006. Controls on
 transpiration in a semiarid riparian cotton forest. Agric. For. Meteorol., 137, 56
 -67.
- 597 Hookey, G.R., Loh, I.C., Bartle, J.R., 1987. Water use of eucalypts above saline
- 598 groundwater. Report No. WH 32, Water Authority of Western Australia, Perth.599 39 p.
- 600 Hultine, K.R., Koepke, D.F., Pockman, W.T., Fravolini, A., Sperry, J.S., Williams,
- D.G., 2005. Influence of soil texture on hydraulic properties and water relations
 of a dominant warm-desert phreatophyte. Tree Physiol., 26, 313 323.
- Kelley, G., O'Grady, A.P., Hutley, L.B., Eamus, D., 2007. A comparison of tree
 water use in two contiguous vegetation communities of the seasonally dry
- tropics of northern Australia: the importance of site water budget to tree
 hydraulics. Aust. J. Bot., 55, 700–708.
- 607 Koch, G.W., Fredeen, A.L., 2005. Transport challenges in tall trees. In Vascular
- 608 Transport in Plants. (Eds: Holbrook NA and Zwieniecki MA), Elsevier
- 609 Academic Press, pp 437 456.
- Komatsu, H., Kang, Y., Kume, T., Yoshifu, N., Hotta, N., 2006. Transpiration from
 Cryptomeria japonica plantation, part 1: aerodynamic control of transpiration.
- 612 Hydrol. Proc. 20, 1309 –1320.
- 613 Lu, P., Yunusa, I.A.M., Walker, R.R., Müller, W.J., 2003. Stomatal control of whole-
- 614 vine transpiration and modelling canopy conductance for irrigated grapevines.
- 615 Func. Plant Biol. 30, 689 698.

- 616 McNaughton, K.G., Black. T.A., 1973. A study of evapotranspiration from a Douglas
- 617 fir forest using the energy balance approach. Water Resour. Res. 9, 1579–1590.
- 618 McNaughton, K.G., Jarvis, P.G., 1983. Predicting effects of vegetation changes on
- 619 transpiration and evaporation. *In* Water deficits and plant growth. Volume 7.
- 620 Eds: TT Kozlowski, Academic Press, New York. pp 1—47.
- 621 Meers, T., Adams, R., 2003. The impact of grazing by Eastern Grey Kangaroos
- 622 (*Macropus giganteus*) on vegetation recovery after fire at Reef Hills Regional
 623 Park, Victoria. Ecol. Manage. Restor. 4, 126 –132.
- Meinzer, F.C., 2003. Functional convergence in plant responses to the environment.
 Oecologia 134, 1–11.
- Mencuccini, M., Grace, J., 1995. Climate influences the leaf-area sapwood area ratio
 in scots pine. Tree Physiol. 15, 1–10.
- Mitchell, P.J., Veneklaas, E., Lambers, H., Burgess, S.S.O., 2008. Using multiple trait
 associations to define hydraulic functional types in plant communities of southwestern Australia. Oecologia 158, 385 –397.
- 631 Muir, A.M., Edwards, S.A., Dickins, M.J., 1995. Description and Conservation Status
- of the Vegetation of the Box-Ironbark Ecosystem in Victoria. Department of
- 633 Conservation and Natural Resources: East Melbourne.
- Myers, B.A., Neales T.F., 1984. Seasonal changes in the water relations of *Eucalyptus behriana* F. Muell, and *E. microcarpa* (Maiden) Maiden in the field. Aust. J.
- 636 Bot. 32, 495-510.
- 637 O'Grady, A.P., Cook, P.G., Eamus, D., Duguid, A., Wischusen, J.D.H., Fass, T.,
- 638 Worldege, D., 2009. Convergence of tree water use within an arid-zone
- 639 woodland. Oecologia 160, 643-655.

- 640 Parks Victoria 2007. Reef Hills State Park Management Plan. Parks Victoria,
- Melbourne, Australia. 44pp. <u>www.parksvictoria.vic.gov.au</u> (accessed: 13 Feb
 2008).
- 643 Priestley CHB, Taylor RJ (1972). On the assessment of surface heat flux and
- 644 evaporation using large-scale parameters. *Monthly Weather Review* **100**: 81–92.
- 645 Ryan, M.G., Bond, B.J., Law, B.E., Hubbard, R.M., Woodruff, D., Cienciala, E.,
- Kucera. J., 2000. Transpiration and whole-tree conductance in ponderosa pine
 trees of different height. Oecologia 124, 553 560.
- 648 Sperry, J.S., Hacke, U.G., 2002. Desert shrub water relations with respect to soil
 649 characteristics and plant functional type. Func. Ecol. 16, 367–378.
- 650 Stratton, L., Goldstein, G., Meinzer, F.C., 2000. Stem water storage capacity and
- efficiency of water transport: their functional significance in a Hawaiian dry
 forest. Plant, Cell Environ. 23, 99–106.
- 653 Whitehead, D., Jarvis, P.G., Waring, R.H., 1984. Stomatal conductance, transpiration,
- and resistance to water uptake in *Pinus sylvestris* spacing experiment. Can. J.
- 655 For. Res., 14, 692 –700.
- Wullschleger, S., Meinzer, F.C., Vertessy, R., 1998. A review of whole-plant water
 use studies in plants. Tree Physiol., 18, 499 512.
- 658 Yunusa, I.A.M., Nuberg, I.K., Fuentes, S., Lu, P., Eamus, D., 2008. A simple field
- validation of daily transpiration derived from sapflow using a porometer and
 minimal meteorological data. Plant Soil 305, 15–24.
- 661 Yunusa, I.A.M., Thomson, S.E., Pollock, K.P., Youwei, L., Mead, D.J., 2005. Water
- 662 potential and gas exchange did not reflect performance of *Pinus radiata* D. Don
- 663 in an agroforestry system under conditions of soil-water deficit in a temperate
- 664 environment. Plant Soil 275, 193 204.

665	Yunusa, I.A.M., Walker, R.R., Loveys, B.R., Blackmore, D.H., 2000. Determination
666	of transpiration in irrigated grapevines: comparison of heat-pulse technique with

667 gravimetric and micrometeorological methods. Irrig. Sci.0,1–8.

- 668 Zeppel, M.J.B., Yunusa, I.A.M., Eamus, D., 2006. Daily, seasonal, and annual
- patterns of transpiration from a stand of remnant vegetation dominated by a
- 670 coniferous *Callitris* species and a broad-leaved *Eucalyptus* species. Physiol.
- 671 Plant. 127, 413 422.

672

- 674 Table 1. Textural characteristics and the limits for volumetric water content (θ)
- 675 measured during the study for the two soils during 2006–2007 at Reef Hill, Australia.
- 676

Depth layers	Clay		Sand			
(111)	Sand	Silt	Clay	Sand	Silt	Clay
0.0 - 0.2	49.5	19.4	31.1	74.3	16.6	9.1
0.2 - 1.5	38.0	19.1	62.0	34.3	21.3	65.7
1.5 - 3.0	49.4	15.5	35.2	54.8	15.3	29.9
3.0 - 6.0	28.5	25.1	46.5	64.8	18.8	31.5
$\begin{array}{l} Maximum \ \theta \ (m^{3} \ m^{-} \\ ^{3}) \\ Minimum \ \theta \ (m^{3} \ m^{-} \\ ^{3}) \end{array}$		0.32 ± 0.03 0.24 ± 0.02	34 28	0 0	$.28 \pm 0.022$ $.23 \pm 0.009$	2

677 Table 2. Mean values (± standard errors) for key trunk characteristics for the trees supplied with sapflow sensors, and for the other

678 trees, on the two soils at Reef Hill.

679

Variables ^a	(Clay	Sand		
	E. camaldulensis	E. microcarpa	E. camaldulensis	E. microcarpa	
	Trees	with sapflow gauges			
Mean trunk diameter/tree (m)	0.51 ± 0.15	0.44 ± 0.14	0.34 ± 0.02	0.32 ± 0.15	
Mean sapwood area/tree (m ²)	0.023 ± 0.000	0.014 ± 0.002	0.016 ± 0.000	$0.011{\pm}0.002$	
Sapwood area/trunk cross sectional area	0.12 ± 0.04	0.09 ± 0.03	0.18 ± 0.01	0.14 ± 0.02	
Sapwood density (kg m ⁻³)	0.68 ± 0.16	0.98 ± 0.17	0.58 ± 0.09	0.68 ± 0.05	
Bark thickness (mm)	12.5 ± 0.3	6.7 ± 0.1	8.9 ± 0.1	6.5 ± 0.1	
	Other tree cha	racteristics on the two sol	il types ^a		
Range in tree sapwood area (m ²) ^b	0.001 - 0.034	0.006 - 0.025	0.003 - 0.021	0.003 - 0.019	
Total tree sapwood area $(m^2)^{b}$	1.13	0.55	0.33	0.76	
Number of trees	165	70	3	86	
LAI (September 2006)	1.14 ± 0.15		1.04 ± 0.08		
LAI (December 2007)	1.23 ± 0.32		0.87 ± 0.16		

680 ^a Each soil type occupied 0.5 ha; ^bEstimated from circumference at breast height

- Table 3. Correlation coefficients (r) between mean daily sapflow in Figure 3 and stem
- 682 characteristics for the eight trees.
- 683

Trait ^a	Sapflow	Sapwood	Trunk area	Sapwood
		area		area/stem area
Sapflow	-			
Sapwood area	0.736*	-		
Trunk area	0.717*	0.995**	-	
Sapwood area/stem area	-0.682	-0.695	-0.636	-
Sapwood density	0.739*	0.401	0.357	-0.733*

684 Coefficients were significant at p < 0.05 (*) or p < 0.01 (**)

685 Table 4. Daytime mean values for transpiration (E_c) and for the micrometeorological

686 variables for the 2-day periods presented in Figure 5.

687

Variables	Species		Season ^a	
		Summer	Autumn	Winter
$E_c (mm d^{-1})$				
Clay	E. camaldulensis	3.01	0.70	0.87
	E. microcarpa	4.19	0.95	1.63
Sand	E. camaldulensis	0.69	0.46	0.51
	E. microcarpa	0.26	0.09	0.07
E_c/E_{eq}				
Clay	E. camaldulensis	0.44	0.75	0.61
	E. microcarpa	0.61	0.45	1.13
Sand	E. camaldulensis	0.10	0.21	0.36
	E. microcarpa	0.04	0.04	0.05
θ (m ³ m ⁻³)				
Clay		0.28	0.26	0.27
Sand		0.28	0.24	0.27
$R_{s} (MJ m^{-2})$		18.8	11.8	22.8
Mean temp (°C)		24.1	12.1	7.3
Mean D (kPa)		1.69	0.22	0.12
Mean wind speed (m s ⁻¹))	2.06	0.65	0.88
Mean E_{eq} (mm d ⁻¹)		6.9	2.1	1.43

 a The three seasons were: summer, 17 - 18 January 2006; autumn, 19 - 20 May 2006 and winter,

689 7 – 8 June 2007.

692 Table 5. Mean values for daytime canopy conductance and coupling coefficient (Ω) for

- 693 the two tree species based on the data presented in Figure 7.
- 694

Soil type	Species		Season ^a		
		Summer	Autumn	Winter	
	Canopy cond	luctance (g _c , mm	(s^{-1})		
Clay	E. camaldulensis	2.56	1.07	3.29	
	E. microcarpa	4.46	3.93	5.35	
Sand	E. camaldulensis	0.76	2.49	2.85	
	E. microcarpa	0.80	2.34	1.70	
	Coupl	ing factor ($arOmega$)			
Clay	E. camaldulensis	0.50	0.64	0.63	
	E. microcarpa	0.64	0.78	0.72	
Sand	E. camaldulensis	0.21	0.60	0.60	
	E. microcarpa	0.23	0.48	0.53	

 a The three seasons were: summer, 17 - 18 January 2006; autumn, 19 - 20 May 2006 and winter,

696 7 – 8 June 2007.

697

699	Table 6. Summar	y of water use	variables at Reef	Hills for the two	years of study	
-----	-----------------	----------------	-------------------	-------------------	----------------	--

700

Variables ^a	Species	2006	2007
Potential ET (mm)		1792	1633
E _{eq} (mm)		1425	1296
Rainfall (mm)		239	597
$E_{c} (mm)^{a}$			
Clay	E. camaldulensis	99 ± 17 (31)	146 ± 29 (45)
	E. microcarpa	355 ± 36 (69)	$289 \pm 24 \ (55)$
	Mean	227 ± 22 (83)	217 ± 33 (85)
Sand	E. camaldulensis	44 ± 7 (74)	41 ± 6 (65)
	E. microcarpa	46 ± 6 (26)	34 ± 6 (35)
	Mean	45 ± 8 (17)	38 ± 7 (15)
Site mean		272 ± 23	255 ± 18
Mean E _c /rainfall			
Clay		0.95	0.36
Sand		0.19	0.06
Site mean		1.14	0.43
Mean E _c /E _{eq}			
Clay		0.16	0.17
Sand		0.03	0.03
Site mean		0.19	0.20

701 ^a Numerals in parenthesis represent percentage contribution by the species to the zonal E_c

702 (normal text) or by each soil to E_c from the whole block (*italics*).

707 Fig. 1. Ratio of sapwood area to cross sectional area relative to sapwood density for

- 708 instrumented trees of E. camaldulensis and E. microcarpa on the clay or the sand at Reef
- 709 Hill, Australia.

Fig. 2. Daily average values for selected weather variables at Reef Hill, Australia, in 2006 and 2007: (a) solar radiation, (b) temperature, (c) relative humidity, (d) potential

721 Fig. 3. Diurnal trends in sapflow for *E. camaldulensis* (dashed curves) and *E.*

- 722 micropcarpa (solid curves) on the clay (a) and the sand (b) during a selected 6-day period
- 723 in February 2006 at Reef Hill, Australia. There was an 18 mm rainfall on day 57, daily
- total of sapflow volumes (litres) are also given for the respective species. 724

728 microcarpa on the clay or the sand at Reef Hill, Australia, in (a) 2006 and (b) 2007, and

(c) the mean volumetric water contents for the 6 m profile.

731Time (hrs)Time (hrs)732Time (hrs)Time (hrs)733Fig. 5. Diurnal trends in transpiration (E_c) rates for E. camaldulensis and E. microcarpa

growing on the clay (a - c) and the sand (d - f) over 2-day periods during summer (a, d, d)

- g), autumn (b, e, h) and winter (c. f. i) at Reef Hill, Australia. The corresponding trends in
- vapour pressure deficit (*D*, kPa), solar radiation (R_s , MJ m⁻²) and temperature (x10⁻¹ °C)
- are given (g, h, i). The 2-day periods were 17–18 January 2006, 19–20 May 2006, and 7
- -8 June 2007. The daily averages for the data are given in Table 4.

Fig. 7. Daytime trends in calculated canopy conductance (g_c) for *E. camaldulensis* and *E. microcarpa* growing on the clay (a - c) and the sand (d - f) during summer (a, d), autumn (b, e) and winter (c, f) for the 2-day periods shown in Figure 5. The daily averages for the data are given in Table 5.

Fig. 8. Relationship between relative transpiration (E_c/E_{eq}) and mean volumetric water

768 content (θ) in the 6 m profile of the clay and the sand at Reef Hill, Australia: (a) E.

769 *camaldulensis* and (b) E. *microcarpa*. The curves are fitted lines with their equations

given in graph.