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From Focused Thought to reveries: 
a Memory system for a conscious 
robot
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1 Lund University Cognitive Science, Department of Philosophy, Lund University, Lund, Sweden, 2 University of Technology 
Sydney, Ultimo, NSW, Australia

We introduce a memory model for robots that can account for many aspects of an inner 
world, ranging from object permanence, episodic memory, and planning to imagination 
and reveries. It is modeled after neurophysiological data and includes parts of the cere-
bral cortex together with models of arousal systems that are relevant for consciousness. 
The three central components are an identification network, a localization network, and 
a working memory network. Attention serves as the interface between the inner and 
the external world. It directs the flow of information from sensory organs to memory, as 
well as controlling top-down influences on perception. It also compares external sensa-
tions to internal top-down expectations. The model is tested in a number of computer 
simulations that illustrate how it can operate as a component in various cognitive tasks 
including perception, the A-not-B test, delayed matching to sample, episodic recall, and 
vicarious trial and error.
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1. inTrODUcTiOn

1.1. The inner World
Consciousness is not unitary but involves several kinds of components. The most fundamental 
component may be the emotional tone of the current state of the mind (Damasio and Marg, 1995). 
However, in this article, we will not consider emotions but focus on sensations that are the immedi-
ate sensory impressions, perceptions that are interpreted sensory impressions, and imaginations 
(or images) that are not directly governed by sensory impressions (Humphrey, 1992; Gärdenfors, 
2003). After emotions, this is presumably the evolutionary order in which the different functions 
appear. Even for simple organisms, the sensory organs generate sensations. Perceptions require 
more advanced cognitive processing. The main function of perceptions is to provide information 
about the animal’s environment. Imaginations also require that sensations can be suppressed. The 
planning behavior of mammals and birds suggests that they have imaginations that concern entities 
not currently present in the environment.

On the first level, consciousness contains sensations. Our subjective world of experiences is full 
of them: tastes, smells, colors, itches, pains, sensations of cold, sounds, and so on. This is what 
philosophers of mind call qualia.

On the second level, an organism that in addition to bodily sensations is capable of representing 
what is happening at a distance in space or in time will be better prepared to act and thus improve 
its chances of survival. Several processes in the brain add new information to what is given by 
the sensations. This holds especially for the visual modality. For example, an object is perceived to 
have contours, but in the light that is received by the retina, there is nothing corresponding to such 
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structures—this information is constructed by the visual process. 
By filling in extra information, perceptions help us choose more 
accurate actions.

On the third level, that of imaginations, sensory input is not 
used to trigger the filling-in processes, but they are initiated by 
inner mechanisms. An organism with imaginations can generate 
a prediction of the consequences of a particular action. Such 
simulations constitute the core of planning processes. The mecha-
nisms involved in performing an action are the same as those in 
imagining a performance.

Imagining an action presupposes that the current sensations 
can be blocked, lest they conflict with the imagination. Glenberg 
(1997) writes that imaginations put reality in quarantine. The 
blocking is part of the executive functions mediated by the frontal 
lobes of the cortex. Glenberg (1997) distinguishes between “auto-
matic” and “effortful” memory. The automatic memory is used to 
turn sensations into perceptions. For example, finding your way 
at home in the dark involves blending your limited sensations 
with your memories.

The effortful memory is used to create imaginations. What is 
called remembering is a special kind of image that is judged to 
correspond to an actual event. Effortful memory is also necessary 
for fantasies: a sphinx cannot be imagined unless you have previ-
ous memories of lions and humans.

Perceptions and imaginations taken together generate the 
“inner world” of an organism. Such an inner world is valuable 
from an evolutionary perspective. Craik (1967) writes: “If the 
organism carries a ‘small-scale model’ of external reality and 
of its own possible actions within its head, it is able to try out 
various alternatives, conclude which are the best of them, react to 
future situations before they arise, utilize the knowledge of past 
events in dealing with the present and future, and in every way 
to react on a much fuller, safer and more competent manner to 
the emergencies which face it.” For an organism with an inner 
world, actions are generated from a represented goal, rather than 
directly from the sensations (Jeannerod, 1994). This means that 
an organism that has imaginations has large advantages to one 
who must solve a problem by trial and error that can both be 
very inefficient and lead to dangerous situations. The inner world 
makes is possible for the organism to simulate different actions 
and evaluate their effects. Such simulations allow it to select the 
most appropriate action. Early evidence for such a process was 
presented by Tolman (1948), who showed that the searching 
behavior of rats in mazes is best explained by assuming that they 
have a “spatial map” as part of their imaginations.

An inner world is a sine qua non for consciousness. In this 
article, we will use two memory tests from research on infants 
as minimal criteria for deciding whether a system has an inner 
world: (1) exhibiting object permanence and (2) passing the 
“A-not-B” test (Piaget, 1954).

A child who exhibits object permanence understands that 
objects continue to exist even when they are not directly perceived. 
Piaget (1954) studied this by observing infants’ reaction to when 
a favorite object was hidden, say, under a pillow. According to 
him, object permanence develops between 4 and 8 months of age, 
but some researchers claim that it may develop earlier (Bower, 
1974). Without object permanence an infant would not be able 

to identify an object or a person over time. It is considered to be a 
method for evaluating working memory in young infants.

In an A-not-B test, a toy is hidden under box A that is within 
the reach of an infant. The infant searches for the toy under box A 
and finds the toy. The hiding is then repeated several times. Then, 
in the test, the toy is hidden under box B that also is within the 
infant’s reach. Infants between 7 and 10 months typically make a 
perseveration error, looking under box A even though they saw 
the toy being hidden under box B. This behavior indicates that 
the infants have limited object permanence. When infants are 
12 months or older, they normally do not make this error.

In this article, we present a novel memory system that supports 
the minimum operations for a conscious robot with the proper-
ties described earlier. The main function of this memory system is 
to move some cognitive operations into an inner world, and more 
importantly, to allow the inner world of the cognitive system to 
coevolve with the external world in such a way that it can gener-
ate expectations as those involved in object permanence and the 
A-no-B test. These expectations can be used in decision-making, 
to detect changes in the external world, and to direct attention. 
Furthermore, by allowing the inner world to become decoupled 
from external input, it can produce chains of “thoughts” based 
on semantic and episodic relations. Such chains can range from 
replay of previous episodes to novel combinations of previous 
experiences. In machines, an inner world in general and object 
permanence in particular promises to enable more robust goal 
directed action, visual search, and even planning.

We take a developmental robotics approach (Asada et  al., 
2009), and first want to model memory processes of the young 
infant, and later approach more complex abilities. Our goal here is 
to show how the proposed memory model supports many cogni-
tive functions that are central to a conscious intelligent robot and 
to suggest that the model could form an important component 
of a larger cognitive architecture that will be tested in a robot in 
the future.

1.2. Models of Memory
One of the most canonical models of associative memory is the 
Hopfield network (Hopfield, 1982, 1984). The Hopfield network 
consists of a set of nodes connected by associations of varying 
strengths that store a set of patterns. The network operates as 
a content addressable memory where an incomplete activation 
pattern over the nodes will recall a complete stored pattern. An 
interesting aspect of the network is that it is possible to define 
an energy function that described every state of the network. It 
can be shown that the network changes its state in such a way 
that it decreases the energy of the whole system until it ends up 
in a local energy minimum. The minima of the energy function 
correspond to the stored memories. These states are attractors 
for the system in the sense that any initial state will move toward 
one these states. These types of networks lend themselves to 
model both perception and semantic memory but can also be 
extended to handle episodic associations by introducing delays 
on associations (Sompolinsky and Kanter, 1986). These proper-
ties are central to the model that we develop below and are used 
to process both semantic and episodic memories and to form 
associations that binds stimuli to places.
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FigUre 1 | Overview of the memory model. The memory model consist of 
three main parts: the identification network (WHAT), the localization network 
(WHERE), and a prefrontal working memory network (WORKING MEMORY). 
Each network is modeled as a recurrent neuronal network with similar design 
but with slightly different dynamics. In addition to internal recurrent 
connections, there are also temporal associations that can read out 
sequences of states in memory. The identification and localization networks 
also include an attention component that detects novel external stimuli and 
compares expected to actual inputs to potentially generate surprise signals. 
The identification network communicates with value system (VALUE). All 
processing is under the influence of a gain modulation system (GAIN) that 
controls the randomness of the state transitions in memory.
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Cognitive operations also require working memory mecha-
nisms and many computational models have been proposed. 
They emphasize different aspects of the working memory system, 
such as spatial map formation (Blum and Abbott, 1996), serial 
order recall (Page and Norris, 1998; Burgess and Hitch, 1999; 
Botvinick and Plaut, 2006), perseveration and distractibility 
(Kaplan et al., 2006), gating, action selection, and reinforcement 
learning (Ponzi, 2008), or sequence generation (Verduzco-Flores 
et al., 2012). One early computational model of working memory 
was proposed by O’Reilly et  al. (1999). This model includes a 
prefrontal system that maintains contextual information that is 
used to bias different processes in the rest of the model. This is 
combined with a fast learning model of the hippocampus. Similar 
models were also described by Cohen et al. (1990) and Miller and 
Cohen (2001).

Focusing on the control aspect of working memory, Sylvester 
et  al. (2013) describe a working memory system that controls 
the flow of information by opening and closing a network of 
gates. This system was used to do working memory cycling and 
comparison and was structured to adequately respond to n-back 
type tasks. Building on the gate paradigm, Sylvester and Reggia 
(2016) showed how a visual input could be associated with a 
location in the visual field to perform a card matching task. Both 
these systems rely on an instruction sequence memory (ISM) 
that can be programmed with sequences of gate configuration 
so as to respond adequately to the task at hand. The ISM consists 
of a Hopfield network (Hopfield, 1982) that can store attractor 
sequences by a mechanism of Hebbian learning (Hebb, 1949).

Moving away from cognitive and brain inspired models, more 
abstract neural network models have also begun to incorporate 
association mechanisms. For example, there has been a growing 
interest in adding external memory systems to deep-learning 
networks. In conventional deep-learning models, the memory of 
the network is stored implicitly in the entire network, in the form 
of unit weights. Hence, it is hard to store particular associations 
in such structures. This has prompted research into architectures 
that add external memory modules, allowing activation patterns 
to be stored alongside other data, such as labels, words, or sounds.

Most such memory modules, like the neural Turing machine 
(Graves et  al., 2014) and the differentiable neural computer 
(Graves et  al., 2016), evolvable neural Turing machine (Lüders 
et al., 2017; Parisotto and Salakhutdinov, 2017), have a form of 
key—value mechanism where the key is typically the output from 
another network structure like a convolutional or recurrent net. 
Depending on the sophistication, such memory modules can 
update based on evidence, learn ordering patterns, or supply 
answers to queries (Weston et al., 2014; Chen et al., 2015).

The memory system we propose here shares some properties 
with these models but is different in that it explicitly aims at 
roughly reproducing the properties of specific brain regions.

2. The MeMOrY sYsTeM

This section describes the main components of the memory 
system and their functions. The model includes three interact-
ing neural networks that roughly correspond to the ventral, 
dorsal, and prefrontal areas of the cortex (Figure  1). First, an 

identification network transforms sensations into perceptions; 
second, a localization network codes the spatial location of an 
object; and, third, a working memory network retains recently 
activated patterns over time.

2.1. identification network
The first component is the identification network that learns dif-
ferent stimuli as collection of stimulus properties. It corresponds 
to the WHAT system of the ventral cortex as proposed by Mishkin 
et  al. (1983) and Goodale and Milner (1992). The part of this 
system that is included here can be sees as the highest level in a 
sensory processing hierarchy generating perceptions. It operates 
as a content addressable memory and recalls complete patterns 
based on partial inputs. We also assume that it generates top-
down influence on sensory processing and interacts with value 
systems (Balkenius et al., 2009), but we do not model that here.

The identification, or WHAT, system is implemented as a fully 
connected network (see Appendix in Supplementary Material). 
This allows the network to settle into attractors that represent 
different memory states. In addition to the usual dynamics, we 
also include a mode of synaptic depression (Abbott et al., 1997; 
Tsodyks et al., 1998). This leads to a latching dynamics where the 
network can autonomously transition between different attrac-
tors (Lerner et  al., 2010, 2012, 2014; Aguilar et  al., 2017). This 
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can be seen as free associations between the stored memory states 
(Russo et al., 2008; Akrami et al., 2012; Russo and Treves, 2012).

Furthermore, the identification network includes a compara-
tor that compares the sensory input to the corresponding attrac-
tor state (Balkenius and Morén, 2000). Any stimulus or attractor 
component that differs contributes both to a total measure of 
surprise and to a feature-specific surprise that includes the parts 
of the sensory input that does not match the attractor state.

The current memory state is assumed to tune the attention 
system toward stimuli that match the state. For example, a state 
coding for the color red would tune the attention system to look 
for red objects in a way akin to the feature integration theory 
of attention (Treisman and Gelade, 1980). The identification 
network is thus assumed both to influence attention through 
top-down expectations, and to be influenced by bottom-up 
perceptual processes.

2.2. localization network
The second component is the localization network, or WHERE 
system. It parallels the functions of the parietal cortex (Andersen 
et al., 1985) and the hippocampus (Smith and Milner, 1981). Its 
role is to maintain a specific code for each possible location in the 
environment. This code is assumed to be activated when we look 
at a particular location.

It is similar to the identification network except that its activ-
ity is constrained by a winner-take-all-rule that implements the 
constraint that only one place is actively represented at each 
time. Associations between the identification and localization 
components allow the memory system to store bindings between 
places and objects. By associating each perceived object with its 
own individual location, the memory system avoids the binding 
problem where properties of different stimuli are mixed up in the 
network (ref). Another role of the localization network is that 
it increases the storage capacity of the identification component 
and avoids spurious attractors. The reason for this is that the 
localization codes are orthogonal for each location.

Like the identification network, this part of the memory model 
participates in both bottom-up and top-down processing. When 
we attend a particular location, the code for that location is acti-
vated in the localization network. Similarly, when a location code 
is activated by internal processes, it will influence attention and 
make us more likely to look at the coded location.

2.3. Working Memory network
The final component is a “prefrontal” working memory (Fuster, 
2009). The function of this network is to allow memories “stored” 
in working memory to be more easily recalled than other memo-
ries. According to our model, the actual working memories are 
not stored in the prefrontal system. Instead, the working memory 
function is the result of the interaction between prefrontal and 
sensory cortical areas. The working memory activation thus does 
not contain any sensory attributes although it is able to recall such 
attributes in the identification and localization networks (Lara 
and Wallis, 2015).

To allow the limited working memory to store any possible 
object–place binding, the nodes of this network are recruited 
when needed. The process is similar to that of an ART network 

(Grossberg, 1987), but less elaborate. The recruited nodes main-
tain an active state as long as the working memory is active. It is 
well known that prefrontal working memory cells operate in this 
way and allows for persistent activation during a memory period 
(Wang, 2001; Curtis and D’Esposito, 2003).

Each active working memory node can potentially influence 
the states of the identification and localization networks. Which 
node is allowed to do this depends on both the similarity of its 
learned input pattern and the current state of the complete system 
as well as the activity level of the node itself. The result of this 
mechanism is that a partial cue will recall the most recent state 
that is similar to the input.

The influence from the working memory network on the rest 
of the system involves both excitation and inhibition and can be 
likened to the inhibitory control exhibited by the prefrontal cortex 
(Fuster, 2009). Once a working memory node has been selected, 
it will promote the coding of its stored memory and inhibit other 
stimulus components (Desimone and Duncan, 1995). This can be 
seen as a top-down modulation of the states in the identification 
and localization networks (Gazzaley and Nobre, 2012). It can 
also indirectly control spatial attention through the localization 
network (Corbetta and Shulman, 2002).

2.4. Predictive associations
In addition to the associations between the three networks, the 
memory system also contains predictive associations that work 
over time to predict the next state based on the current one. 
When allowed to run freely, these temporal associations will 
make the complete system transition between stable attractors 
over time in a way akin to daydreaming. When there is no input 
to the memory system, it will instead recall and internally play 
previously experienced sequences. As we will show below, this 
mechanism can be put to good use in choosing between different 
actions depending on their expected outcome. The predictive 
associations are learned in the same way as other associations 
except that there needs to be a delay between the activation of 
the two nodes that will be associated together. This will make 
the network to learn an association to the current state from a 
previous state of the network. The delay during learning is mir-
rored in a delay in the association that will be used to read out the 
prediction in the future.

2.5. Modes of Operation and 
Metaparameters
There are several parameters that can influence the operation 
of the memory system. The first is the level of noise. Memory 
transitions are highly dependent on the noise level and with suf-
ficient noise; the state of the memory system will jump randomly 
between the different attractors. A moderate amount of noise 
allows the memory state to take new directions without being 
completely random, and a lower level makes the memory system 
more likely to stay in the same state for a longer time or to follow 
precise episodic memories.

In the brain, the locus coeruleus is believed to adjust the 
sensitivity to noise. This is a general arousal system and the main 
source of noradrenergic input to most of the brain. It has been 
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FigUre 2 | The Kanizsa triangle.

FigUre 3 | Pattern completion in the memory system. The memory has 
learned three patterns, L (red), X (green), and + (yellow). The partial activation 
of the L-pattern will make the memory system recall the complete pattern. 
The graph at the top right shows how the energy of the memory state 
decreases as the pattern in recalled. The graph below shows the memory 
state projected on a two-dimensional space defined by the first two principal 
components (PC1 and PC2) of the stored memory patterns. The graph 
shows the transition between an initial inactive state (white) and the recalled 
state (red). The numbers and arrow indicate the sequence of the different 
transitions.
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suggested that the locus coeruleus, instead of changing the noise 
level, changes the response to noise by modulating the gain of 
cells involved in decision processes (Chance et al., 2002; Aston-
Jones and Cohen, 2005; Donner and Nieuwenhuis, 2013; Eldar 
et al., 2013). Doya (2002) proposed that this should be seen as a 
metaparameter that allows the randomness of the processing to 
be controlled.

The second main parameter is the relative influence of the 
external input and internal expectations in controlling the 
memory state. The system can run in either in bottom-up mode 
where the internal state is controlled by external stimuli or in top-
down mode where the sequence of memory states is internally 
produced. It is also possible to combine bottom-up and top-down 
processing. This allows the internal expectations to be compared 
with external stimuli and to make the system surprised when 
expectations are not met. Such a comparison also has an addi-
tional role. When there is a sufficiently large mismatch between 
the sensory input and the internal state, the memory system will 
be reset to allow the novel stimulus to quickly be coded in the 
different memory networks.

In the following sections, we apply the general memory system 
to a number of tasks and show how it can form the basis for many 
fundamental cognitive tasks. In these simulations below, the 
metaparameters were set heuristically to allow the model to show 
the desired properties in each case. When the memory system is 
used as a part in a complete architecture, these parameters are 
assumed to be learned for each particular task.

3. FrOM sensaTiOn TO PercePTiOn

The role of perception can be seen when considering the well-
known Kanizsa triangle (Kanizsa, 1976) (Figure 2). Our percep-
tions tell us that a white triangle lies on top of three black circles. 
Yet in the figure, there are no lines marking off the sides of the 
triangle from the white surroundings. The lines are a construction 
of our brains. There is a mechanism that simulates the existence 
of lines completing the segments of the circles.

Examples like this show that we have plenty of processes 
that complement the signals provided by the senses. Such com-
plementations create the representations with which memory 
works—the perceptions, since what we remember is not only that 

which is presented by our sensory receptors but also that which 
is recreated, i.e., represented, by the filling-in processes. Here, we 
only consider a network with identical nodes and connections, 
but the reasoning is equally valid for more complex network. 
For example, Månsson (2006) developed a complex network that 
fills in contours in the Kanizsa triangle using a range of neuron 
models with different properties.

In Figure 3, we illustrate how the pattern completion mecha-
nism operates in the memory system. The system has learned 
three patterns, one of which is the letter L. When parts of the L are 
activated, the identification network will fill in the missing parts 
of it. In the figure, there are three stored patterns represented by 
different colors.

4. OBJecT PerManence

A cat chasing a mouse that runs in behind a curtain can predict 
that it will come out the other side. So the cat can draw conclu-
sions about the mouse even when it is receiving no direct signals 
from its senses. Such behavior presumes the cognitive ability 
called object permanence by Piaget (1954). This implies that 
the cat retains some kind of representation of the mouse even 
when its sensory impressions of the mouse are gone. The cat has 
expectations concerning the mouse.

Various studies of animals show that all mammals, birds, and 
octopuses possess object permanence. These organisms thus 
enjoy one more way to build in knowledge about the future in 
their consciousness. Object permanence is not innate, but it must 
be learned.

To test the memory model for its capacity to handle object 
permanence, we simulated two types of memory tasks. In both 
cases, the system is first presented with three objects X, Y, and Z. 
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FigUre 4 | Simulation of place recall. Left: A scene with three objects X, Y, and Z at three places A, B, and C. The memory system was initially trained on these 
three objects. Right: The graph at the top shows the activation of the localization network when each object is used as input. Finally, an input pattern that consists of 
the overlapping parts of X and Y is used as input. This stimulus is equally similar to X and Y and thus ambiguous. The result is that the most recently attended place 
with an object similar to the input is recalled, that is, B. At the same time, the activity pattern in the identification system restores the complete pattern for Y. The 
graph at the bottom left shows transitions through the memory space. The image shows the memory state over time plotted in a two-dimensional space generated 
by the first two principal components (PC1 and PC2) of the attractor states. The circles represent the memories of X, Y, and Z, and the line shows how the memory 
state transitions between the memories as a response to the different input and the numbers show the order of the different transitions. The center of the image 
where all lines meet corresponds to the empty memory state after reset.
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Each at its own location A, B, and C. In the first simulation, we 
tested if the memory system could recall the location of objects 
that it had previously seen (Figure  4). The memory was first 
cued with object X. This makes the memory state transition to 
the attractor for X. At the same time, the localization part of the 
memory system activates the location A that is associated with 
X. The locations are recalled for object Y and Z as well. Finally, 
we tested what is the result if we cue the memory with a stimulus 
that is similar to both X and Y. Here, we used an input pattern 
that contained only components that were shared by both objects. 
As can be seen in Figure 4, the memory state transitions to the 
attractor for object Y. The reason for this is that Y is more strongly 
coded in the working memory since it was seen more recently 
than X. In addition to showing the role of the working memory, 
this is also an example of pattern completion. The initial pattern is 
similar to both X and Y, and the memory state first moves toward 
a place between X and Y, before turning toward Y as more proper-
ties of Y are filled in.

In the second simulation, we tested whether the memory 
system can recall objects by being cued with locations. The 
results of this simulation are shown in Figure 5. When a loca-
tion is cued, the memory state transitions to the attractor for the 
corresponding object illustrating that the memory system has 
formed expectations of which object is where.

The simulations show that the memory system can learn 
what object to expect at a particular location. Together with the 
comparator that compares expected and actual input, this allows 

the system to become surprised if expectations are not met (cf. 
Balkenius and Morén, 2000). It can also recall where it has seen 
an object. Such information can be used to determine where to 
search for an object and to direct the gaze while looking for it. 
The memory system thus has the essential properties needed for 
object permanence.

5. a-nOT-B

Another way to address object permanence is to run the 
A-not-B experiment on the memory model. To test if the 
memory system would make the A-nor-B error, we simulated 
the A-not-B task under two conditions. In the first, the out-
put gain of the working memory system was low to simulate 
a brain at an earlier stage of development. In the second, the 
working memory gain was set at full strength. The system was 
first trained by repeatedly showing object X at location A. In 
the second step, we simulated moving object X to location B. 
This results in two stored memories in long-term memory, a 
stronger one that associates X with location A and a weaker one 
that associates X with location B.

To test the system, we activate the pattern for X in the WHAT 
system and allow the system to activate a location code in 
memory. When the working memory is turned off, the stronger 
association will win, and the system will recall location A 
(Figure 6). However, when the working memory system is turned 
on, the result is different. In this case, the working memory will 
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FigUre 5 | Simulation of the object recall for the scene in Figure 4. The memory system was first shown three combinations of objects and place: AX, BY, and CZ. 
Next it is cued with each of the locations A, B, and C. The graph at the top shows the activation of each place code over time. The graph at the bottom shows the 
path through the memory space as each location is cued. The state is initially wandering, which results in transitions 1 and 2 just before the system is cued with A.

FigUre 6 | Simulation of the A-not-B task. Left—The object X and the two boxes A and B. Right—The graphs show the activation of the place code with low or 
high working memory gain for place A (red) and B (green), respectively, as response to different inputs. X represents the object stimulus, and A and B represent the 
two boxes. The final input X corresponds to the questions “Where is X?” With an undeveloped prefrontal cortex (low working memory gain) the model replies A. With 
a developed prefrontal cortex (high working memory gain), the model replies B.
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remember each perceived stimulus. Every time a new stimulus 
is perceived, a new node in working memory will be activated 
while the activity in the remaining working memory nodes will 
decay slightly. As a consequence, a number of stimuli can be held 
in working memory at the same time. When a pattern is activated 
in the WHAT or WHERE components, the working memory 
cooperates to fill in missing information. Here, the perception of 
the stimulus X will recall the most recent activation containing 
X and read out its location B, thus avoiding the A-not-B error 
(Figure 6).

The performance of the models can be related to the serial 
position effect (Murdock, 1962). The initial error can be seen 
as a primacy effect, where the initial location of the object is 
stronger in memory as a result of multiple presentations. The 
avoidance of the error can be seen as the results of a recency 
effect, where the most recent location is more easily recalled. 
This view is in line with the model by Munakata (1998) that 
suggests that the A-not-B error is a result of competition 
between latent and active memory traces. However, the 
behavior of the model is different from the usual recency effect 
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FigUre 7 | Simulation of delayed matching to sample (DMTS). In the top 
graph, the stimulus X is first shown as a sample stimulus and is subsequently 
followed by X again as comparison stimulus. There is no surprise signal the 
second time X is shown, indicating that the model recalls that it has seen this 
stimulus before. In the bottom graph, the sample stimulus X is followed by 
comparison stimulus Y instead. In this case, there is a surprise signal for the 
non-matching stimulus. The energy function is used to show the timing of the 
stimuli.
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since it depends on a working memory component and not on 
short-term memory.

Our results fit well with findings suggesting that working 
memory is a driving force in cognitive development (Kail, 2007). 
An alternative theory of the A-not-B error is that it depends on 
the strength of the initially reinforced response to search at A 
(Diamond, 1998). We do not exclude that such a factor could also 
be involved, but our simulation shows that a working memory 
explanation may be sufficient. However, the working memory 
here influences the rest of the system by inhibiting the incorrect 
location, and similar mechanisms could presumably be used to 
inhibit an incorrect response in a similar way to an incorrect 
location.

6. DelaYeD MaTching TO saMPle

The delayed matching to sample task (DMTS) is a variant of more 
general delayed response tasks (Rodriguez and Paule, 2009). Such 
tasks involve the presentation of stimuli, followed by a delay where 
no stimuli are given. The original stimulus is then presented along 
with one or several choice options, and the subject is required to 
choose which matches the original.

The task can be varied in difficulty by changing the delay 
time, or by altering the number of options to choose among dur-
ing the response. Distractors may also be introduced to affect 
subjects’ ability to maintain attention and to impair working 
memory capacity (Rodriguez and Paule, 2009). Lesion studies 
in monkeys (Gaffan and Weiskrantz, 1980) indicate that the 
prefrontal and inferior temporal cortices are involved in DMTS 
tasks. Specifically, performance for tasks with visual stimuli is 
impaired after a higher visual area of the inferior temporal cortex 
has been damaged. Lesioning the prefrontal cortex appears to 
reduce the delay after which a correct response can be made but 
does not impair successful completion as such (Mishkin and 
Manning, 1978).

The configuration of the visual stimuli may take differ-
ent forms, depending on which specific aspect of memory is 
under scrutiny. Sawaguchi and Yamane (1999) used a white 
square presented at one of four peripheral positions, placed 
equidistantly about a central focus point to study spatial 
memory. Tanji and Hoshi (2001) used a more complex setup 
with three cues placed in a pyramid pattern, each showing 
either a circular or triangular shape. This was used to study 
behavioral planning based on shape or location matching. 
Other variations of the DMTS task have been used to study 
color matching (Mikami and Kubota, 1980; Giurfa et al., 2001), 
movement matching (Ferrera et  al., 1994), and horizontal 
vs. vertical orientation matching (Giurfa et  al., 2001). The 
simplicity of the task makes it suitable for studying memory 
effects across various species, including humans (see, e.g., 
Daniel et al. (2016) for a review).

Using our memory model, we simulated a delayed matching-
to-sample task (Figure  7). The system is first presented with a 
sample stimulus X that it will store in working memory. After 
a delay period, a comparison stimulus, X or Y, is presented. For 
each stimulus, the working memory network will read out the 
remembered stimulus and compute the match to each of the 

comparison stimuli. We assume that there exists a mechanism 
external to the memory system that selects the stimulus that 
generates the least surprise.

Our simulation shows that the memory system has the 
necessary memory functions for a delayed matching-to-sample 
response.

7. DaYDreaMing anD ePisODic 
recall

Two possible mechanisms are involved in producing transitions 
between attractors. The first is the noise in the system that can 
kick the network out of an attractor if it is strong enough. The 
second mechanism is synaptic depression that weakens synapses 
that are involved in maintaining the current attractor. This has 
the effect of eventually making the state wander away from the 
attractor. A possible interpretation is that this is what occurs 
when the attentional system is not engaged, which makes the 
memory system enter a state of daydreaming where it can wander 
freely. The mind wandering produced by the model does not have 
any function but is instead a natural consequence of the function 
of the memory system. This is in line with the view presented by 
Mason et al. (2007) who suggest that the mind wanders “simply 
because it can.”

Herrmann et  al. (1993) distinguish between semantic and 
episodic transitions in neural networks. Semantic transitions 
occur between states that are semantically related and are caused 
by synaptic depression that moves the state away from one attrac-
tor in favor of another one with overlapping activation pattern. 
Episodic transitions, on the other hand, are caused by predictive 
temporal associations (Sompolinsky and Kanter, 1986).
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FigUre 9 | Simulation of episodic recall. The three graphs show transitions between the attractors of the network. (a) Recall of the episode X, Y, Z cued by an 
input X. (B) Recall of the episode P, Q, R cued by P. (c) A higher noise level produces a novel imagined episode that is a combination of two experienced episodes: 
X, Y, Z, Q, R.

A B C

FigUre 8 | Simulation of mind wandering using semantic associations. (a) With low noise, the system will transition between semantically related states as a result 
of synaptic depression. (B) With a higher noise level, the memory system will transition less regularly and can potentially end up in semantically unrelated states. (c) 
With low synaptic depression, the system will move away from an attractor but return back again most of the time.
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Figure  8 shows a simulation of semantic associations in 
the memory system. The system was first trained with three 
patterns X, Y, and Z where X and Y share some features, Y 
and Z share some other features, but X and Z do not share 
any features. With low noise, the system transitions randomly 
between X and Y, and between Y and Z, but not between X and 
Z. With a higher level of noise, the transitions occur between 
all states. Finally, with no noise, the system returns to the 
same state after synaptic depression. Although we want to 
like this wandering to daydreaming, it is obviously limited 
to combinations of states that the network has previously 
experienced.

Figure 9 shows a simulation of episodic recall in the memory 
system. The system was first trained with two sequences of stim-
uli: X, Y, Z and P, Q, R. When presented with X as an input, the 
memory system will read out the sequence X, Y, Z (Figure 9A). 
Similarly, for an input P, the sequence P, Q, R will be produced. 
When the noise level is increased, the episodic recall will 
sometimes transition from Z to Q, producing a novel sequence 
X, Y, Z, Q, R (Figure 9B). This shows how the memory system 
can combine two episodes into a novel imagined episode. The 
evolutionary value of such reveries is that they allow the memory 
system to generate new combinations of memories that can form 
the kernels for new plans. Some of these plans can be tried out 
at later occasions. Hence, the same mechanism that produces 
daydreaming can be seen as an element in a generate-and-test 
procedure.

8. VicariOUs Trial anD errOr

If an agent has an internal model of the world, it can make 
simulations of the consequences of actions (Craik, 1967). Redish 
(2016) proposes that animals internally simulates the outcomes of 
different choices before making the choice in the external world. 
As noticed by Muenzinger (1938) and Tolman (1939), rats look 
back and forth at different alternatives at a choice point. A rat 
that has to choose whether to go left or right in a maze can use its 
episodic memory to simulate selecting the left or the right path 
(Figure 10). The episodic memory recall described earlier is ide-
ally suited for this process. By cueing the memory system with the 
stimulus A to the right, the sequence of moving through A, B, and 
C will be simulated internally. When looking right to see X, the 
sequence X, Y, Z, G will be produced instead. Since this sequence 
leads to the goal, the rat can now chose to go right.

Figure 10 shows a simulation of vicarious trail-and-error in a 
simple maze. The memory system has first experienced moving 
through the maze along two different routes. The first consists of 
locations A, B, and C which is a dead end, and the other consists 
of the sequence X, Y, Z, which finally leads to the goal G. At 
a choice point in a maze, the robot can look left or right, and 
the memory system is used to imagine the result of select one 
of the two possible paths. Looking at A, which will read out the 
sequence A, B, C that does not lead to a goal, and looking at the 
second alternative X, will read out the sequence X, Y, Z, G, which 
ends with the goal. This mechanism could be used by a decision 
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FigUre 10 | Vicarious trial and error. The memory system is assumed to have learned the sequence of places that are experienced while traveling through the 
maze. At the choice point, the memory system is used replay the result of choosing A or X. When looking left toward A, the memory cued with A and will start to 
replay A, B, C. When looking right, the memory system is cued with X which will replay the sequence X, Y, Z, G, which leads to the goal. The graph in the top right 
shows the activation of the place codes on the localization network. Note that the activation of A and X is slower as they are cued by an external stimulus. The 
graph in the bottom right shows the transitions through the identification network. The state starts at the center as A or X is received and moves through the states 
for the different places in the maze. The arrows show the direction of the memory transitions.
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mechanism that chooses between alternative actions based on 
their expected consequences.

Redish (2016) suggests that this type of mechanism is respon-
sible, not only for spatial navigation but also for deliberative 
processes in general and that the internal schema used to simulate 
the world is what (Tolman, 1948) would call a cognitive map. This 
view of the cognitive map is in line with Tolman’s original view 
where the cognitive map did not have to be spatial but could be 
used for any kind of problem solving. Our proposed memory 
model can thus operate as a cognitive map that supports elemen-
tary planning operations.

9. DiscUssiOn

We have introduced a memory model for robots that can account 
for many aspects of the presence of an inner world, ranging from 
object permanence, episodic memory, and planning to imagina-
tion and reveries. It is modeled after neurophysiological data and 
includes many parts of the cerebral cortex together with a model 
of the arousal system. It consists of three main components, an 
identification network, a localization network, and a working 
memory network. An important aspect of the model is that the 
mechanisms that fill in sensations to generate perceptions can be 
detached from sensory input and run in isolation (Gärdenfors, 
2003). This allows for planning mechanisms and for daydreaming 
that can serve as an investigation of a space of possibilities as a 
preparation for generating plans.

We propose that a robot equipped with this memory system 
together with mechanisms for more advanced sensory process-
ing and action selection would have the required cognitive 
equipment to produce a basic form of consciousness—at least 
to the extent that it can be tested in behavioral experiments. A 
fundamental aspect of this model is that consciousness in not 

something that has to be added to the cognitive system. Instead, 
it is something that occurs naturally once a memory system is able 
to fill in sensory information and produce memory transitions 
over time. This will create an inner world that is used both to 
interpret external input and to support thoughts disconnected 
from the present situation.

The memory system can operate either in bottom-up mode, 
where external input directly controls the internal state, or in 
top-down mode, where previously experienced episodes control 
the progression of internal states. The internal flow of thoughts is 
modeled as transitions between memory states. The randomness 
of these transitions depends on the input from the locus coeruleus. 
In one extreme, the memory state is stuck in the current attractor, 
but when the sensitivity to noise increases, the memory state will 
start to transition to semantically similar states—also supported 
by synaptic depression. At the same time, episodic associations 
between states will make the memory replay sequences of 
states that it has previously experienced. When the randomness 
increases further, the memory state can make transitions between 
increasingly unrelated states. The locus coeruleus input thus acts 
as reins for focusing thought and thus preventing the system from 
ending up in galloping reveries.

It is an open question how the randomness of the memory 
processes should be controlled to optimally utilize the memory 
system for different tasks. Here, we did not include other parts 
of a complete system that could operate on the memory system. 
One interesting addition would be to add a reinforcement 
learning system that could learn to control the level of noise 
in the memory system to control transitions between different 
attractors (Lerner and Shriki, 2014). Such a reinforcement 
learning system could potentially control the various metapa-
rameters to adapt the memory processing to the task at hand 
(Doya, 2002).
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Another addition would be to allow a reinforcement learning 
system to control the different memory operations, in particular 
the storage and read out from working memory. In the current 
model, working memory is not controlled explicitly but stores 
every memory state as it occurs. From a developmental perspec-
tive, this is a reasonable approach before efficient utilization of 
working memory has been learned and constitutes a substrate for 
future learning of internal memory operations.

The memory system presented in this work can be contrasted 
with that described by Sylvester and Reggia (2016). The main 
difference between their work and ours is first the employment 
of gates, and second the inclusion of a discrete control module 
to sequentially set configurations of those gates. There is also 
a difference in the way the systems learn. Sylvester and Reggia 
(2016) explicitly program their system by imposing attractor 
states on a sequence memory part of the control module. By 
contrast, our system learns sequences of states from observation. 
Hence, Sylvester and Reggia (2016) can be likened to a system 
being taught by a teacher, while our system learns by discovery. 
Both systems utilize Hopfield networks for storing attractor states 
and employ forms of working memory. In our case, although the 
working memory does not store visual patterns as such, only 
associations between high-level sensory representations. The 
nature of those representations is arbitrary, but we chose to focus 
on object identity and location for this work. We do, however, 
acknowledge the utility of gating mechanisms for learning action 
sequences and plan to incorporate such mechanisms in future 
models.

Another important next step will be to test the model on a 
humanoid robot. We will use visual input from cameras that will 
be analyzed through a bidirectional deep-learning network before 
reaching the identification network described here. Similarly, the 
localization network will receive input that uses a population code 
for locations in three dimensions in several coordinate systems. 
A robotic implementation already exists with a minimal version 
of each of these components, but further development of the 
sensory processing is needed before the experiments simulated 
here can be tested in a robot in a natural environment.

When the internal processes meet the external input, the 
memory system is used to compare expectations against the 
external world to potentially produce surprise and control 
action selection. We did not include mechanisms for action 
selection here, but the output from the comparator of the atten-
tion system could easily be used for such selections. For exam-
ple, to learn delayed matching or non-matching to sample, an 

action selection system would only have to associate the output 
of the comparator with selecting to refraining from selecting 
a particular stimulus. Similarly, to choose the correct path 
through a maze, the mechanism for vicarious trial and error 
we demonstrated would need to be interfaced with an action 
selection mechanism that learns to evaluate alternatives and 
select the one that leads to the goal. Given that the memory 
system does most of the work, very little remains to be learned 
by an action selection system.

Attention plays a crucial role as the interface between the inner 
and the external world. It directs the flow of information from 
sensory organs to memory and in the other direction it is respon-
sible for the top-down influences on perception. The internal and 
external world can be seen as two dynamical systems that can be 
coupled or decoupled in different ways depending on the state 
of the organism and the task at hand. This allows the proposed 
model to bridge the gap between cognition as internal processing 
and situated cognition. We suggest that during evolution, as well 
as during the development of an organism, one finds a gradual 
change from acting in the external environment to operating in 
an internal world.

When the flow of thought through the inner world is cued by 
the immediate external stimuli, the memory system is used to 
evaluate the consequences of different available options. When 
allowed to flow freely, there need not be any relation between the 
train of thought and the current situation, but by changing the 
balance between bottom-up and top-down processing, the sys-
tem can quickly be dragged back to the present situation. On the 
other hand, when the bottom-up influence is low, the system will 
start to daydream and replay experienced episodes or producing 
novel never experienced episodes by combining memories in 
new ways. The new combinations can then be used as input to 
the planning mechanisms. The same mechanisms are thus used 
both for focused goal-directed thought and for daydreaming and 
reveries.
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