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ABSTRACT Crowd counting and density estimation is an important and challenging problem in the visual
analysis of the crowd. Most of the existing approaches use regression on density maps for the crowd
count from a single image. However, these methods cannot localize individual pedestrian and therefore
cannot estimate the actual distribution of pedestrians in the environment. On the other hand, detection-based
methods detect and localize pedestrians in the scene, but the performance of these methods degrades when
applied in high-density situations. To overcome the limitations of pedestrian detectors, we proposed a
motion-guided filter (MGF) that exploits spatial and temporal information between consecutive frames of the
video to recover missed detections. Our framework is based on the deep convolution neural network (DCNN)
for crowd counting in the low-to-medium density videos. We employ various state-of-the-art network archi-
tectures, namely, Visual Geometry Group (VGG16), Zeiler and Fergus (ZF), and VGGM in the framework
of a region-based DCNN for detecting pedestrians. After pedestrian detection, the proposed motion guided
filter is employed. We evaluate the performance of our approach on three publicly available datasets.
The experimental results demonstrate the effectiveness of our approach, which significantly improves the
performance of the state-of-the-art detectors.

INDEX TERMS Deep convolutional neural networks, crowd counting and density estimation, Motion

Guided Filter, faster R-CNN.

I. INTRODUCTION

Crowd scene understanding is an important and challenging
problem in computer vision. The phenomenon of crowd is
commonly observed in sports, festivals, social, political and
religious gatherings which tends to attract and gather a huge
number of people in a constrained environment. Such mass
gatherings pose serious challenges to crowd safety and raise
security concerns for the participant as well as organizers.
Therefore, crowd analysis is one of most important and chal-
lenging task in video surveillance due to complex behavior of
pedestrians. Crowd analysis can be used for detecting critical
crowd levels, detecting and counting of people and also for
detecting anomalies in crowded scenes. Moreover, it can be
used for tracking individuals or group of people in crowds.
Among these applications, estimating the number of people

from a single image becomes extremely important for crowd
control and crowd safety. In public gatherings, it is important
to know the number of people attending the event which can
provide useful piece of information for future event planning
and public space design.

Traditionally regression-based techniques are extensively
used for crowd counting and density estimation. However,
recent advancement in deep learning has shown outstanding
results in detection using CNN. In a typical CNN based
approach, there is local connectivity of a region in the input
image to the output image as compared to the traditional
feedforward neural network. In a feedforward neural net-
work, every input layer is fully connected with the output
layer. Deep CNN is a compositional model, in which features
are extracted ranging from low-level to high-level along the
pipeline of CNN towards the final layers. The lower layers
represent low-level features such as edges, and the subsequent
layers represent abstract features such as shapes, etc. We have



used Faster R-CNN for the detection of pedestrians in the
low-to-medium density crowd videos. In Faster-RCNN [54],
a small network namely Region Proposal Network (RPN) is
used on top of the feature-map to extract object candidates or
region proposals in contrast to other approaches like Selec-
tive Search [65], CPMC [7], MCG [1], Edge boxes [85],
etc. The advantage of RPN make Faster R-CNN an end-
to-end pipeline for the detection and also does not add to
the computation of the network. To detect the objects at
multiple scales, region proposals at various scale and aspect
ratios are extracted using anchor boxes. The anchor boxes
of different aspect ratios and sizes are considered to capture
scale variation. The center of the anchor box coincides with
the center of the sliding window.

The models mentioned above achieved a considerable
improvement in object detection in particular and pedestrian
detection in general when applied to static images. However,
the performance of a detector on videos is limited due to the
following reasons;

« Pedestrians in videos pass through a wide range of vari-
ations in pose, clothing, lighting and occlusions. This
wide range of intra-class variability has a negative effect
on the detector’s performance. In some cases, the detec-
tor missed detection for a particular person in subsequent
frames of video. In other cases, the detector ends up with
many false positives which results in low recall rates and
high Mean Absolute Error (MAE) of a detector.

« CNN based detectors are designed to learn features from
raw image pixels and cannot leverage the temporal infor-
mation existed across the frames of the video.

In this paper, we propose an approach to estimate crowd count
by improving the detection performance of a generic detector
when applied to videos. Compared with the existing methods,
the main contributions of this paper are as follows:

o We leverage temporal information between the subse-
quent frames of video by proposing Motion Guided
Filter (MGF), which utilizes energy function to estimate
the displacement vector based on brightness, gradient
constancy and spatio-temporal smoothness.

« We utilize MGF and propose a refinement algorithm 1
for low-level tracking that exploits temporal correspon-
dence and suppresses false alarms.

« We recover missed detection by allowing the tracker to
operate in two modes: 1) detection mode, 2) low-level
tracking mode.

e We evaluate our approach on three datasets,
PETS2009 [22], UCSD dataset [12] and Mall
dataset [14]. From experimental results, we observe that
the performance of a generic detector is improved by
incorporating temporal information.

Fig 1 and 3 show the effectiveness of our approach. We first
apply state-of-the-art object detection techniques to detect
people in low-density crowds, and then the performance of
a detector is improved by leveraging the spatio-temporal
information between the frames of video. In general, our
method takes predicted detection of a detector as input and
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FIGURE 1. The performance of a detector is improved by employing our
approach as depicted in the Fig 1. The left image is the input sample
frame. The upper right image shows the pedestrians in red bounding box
are detected by the detector while the pedestrians in green bounding
boxes are the missed detection. The lower right image shows that the
missed pedestrians are recovered by our proposed approach and
highlighted in yellow color. (Best viewed in color).

generates refined detection as an output with higher recall
rate.

The remainder of the paper is organized as follows.
In Section II, a comprehensive overview of literature is dis-
cussed. In Section III, we present the proposed methodology.
The detail analysis of experiment is presented in Section IV
followed by a conclusion in Section V.

Il. RELATED WORK

Estimating crowd density or estimating the number of peo-
ple attending the event can substantially reduce the cost by
deploying an exact number of security personnel required for
public safety and security. Various methods for estimating
the crowd count are proposed in literature. Generally, we can
classify these methods into two major categories, 1) Regres-
sion based methods, 2) Detection based methods.

A. REGRESSION BASED METHODS

These employ machine learning techniques like Support Vec-
tor Regressor [72], Gaussian Process Regression(GPR) [8],
linear regression [17], K-Nearest Neighbor [78], and neural
network [47] are employed to estimate the crowd count by
performing regression between the image features and crowd
size. Regression based crowd counting algorithms can be
further categorized into two groups: Holistic and Local.

In holistic approaches, image features like size, shape,
edges, keypoints, and texture are extracted from the entire
image and regression is then applied to estimate the size of
crowd. In [8], edge and texture features are extracted from the
whole image, and the correspondence between the number
of people and features is learned through Gaussian Process
Regression. Reference [44] extracts shape, color, size, texture
features from the image and self-organizing neural network is
employed for crowd density estimation. The neural network
is employed by [28] to learn the correspondence between
the foreground pixels extracted from the whole image and



number of people. A method is proposed by [74] that trans-
forms an image into multiple scales using wavelet transform
and then the first and second order features are extracted
a as density character vector. A Support Vector Machine
classifier is trained that classify density character into dif-
ferent density levels. In [37], edge and blob size histogram
features are extracted and neural network is trained to find
the relationship between the number of people and extracted
features. Reference [35] proposed crowd flow segmentation
as the first step and then applying counting framework to
count the number of people in each flow segment.

In local approaches, image features are extracted from the
local patches of image and regression is applied locally to
each patch of image and estimate the number of people in
each patch. In this case, crowd count is the direct sum of these
local estimates. The size and shape features are extracted
from the local patches of the image [36] and linear (cylinder
model) is employed to estimate crowd count. Reference [39]
proposed pixel based density function for counting problem.
The density function is a mapping between the feature vector
associated with every single pixel value and its ground-truth
density value. The ground-truth density value of the pixel is
approximated by fitting the normalized Gaussian kernel to the
pixel dotted annotation. The multi-output regression model
is proposed by [14] for crowd counting by extracting size,
shape, edge and texture features from the local regions of the
image. Their proposed regression model is able to estimate
people count in spatially localized regions. Reference [15]
extracts SURF features from the local region of the image
and support vector regression are employed to learn the
correspondence between the features and the count of peo-
ple. Reference [32] proposed a counting framework based
on multi-source multi-scale approach, which used multiple
features extracted from the local regions of an image. These
features are taken from different sources like HOG, Local
Binary Pattern (LBP) and Fourier analysis. These features
are computed at different scales for accurate and reliable
counting. This work is extended by [4] which added more
features like wavelets, SIFT, and GLCM. Reference [45] pro-
posed a local Histogram-of-Orientation Gradient, in contrast
to the standard Histogram-of-Orientation-Gradient, used to
describe the parts of the person independently and therefore
helps in extraction of features even in partial occlusions.

A great deal of work in [2], [9], [12], and [56] for crowd
counting and density estimation has focused on local fea-
tures such as edges and blobs extracted from the foreground.
Typically, regression techniques such as Ridge Regres-
sion (RR) [14], Bayesian Poison Regression (BPR) [12],
Gaussian Process Regression (GPR) [9] are used to learn
the model between the local features and count. However,
a significant amount of information is lost in the calculation
of such features. The accuracy and performance of such
features heavily rely on the segmentation of foreground.
The foreground segmentation is a challenging problem espe-
cially because of varying lighting conditions and shadowing
effect [66]. Reference [57] considered texture features that

are directly related to the crowd density and counting. The
more texture means high crowd density which is not always
true because of the incorrect foreground segmentation. Fore-
ground segmentation of crowd only caters for moving crowd,
but it performs poorly in the case of a static or very slow
moving crowd. Furthermore, these features cannot be used
for contextual crowd scene understanding. Reference [23]
proposed the simplified version of the previous work by
estimating the object density using regression random forest
improving the training accuracy. Similarly, [3] proposed an
interactive and iterative density estimation technique. In this
technique, user annotates the object with the dot for object
and line segment for its diameter to estimate the density. The
low-level features extracted are mapped to the density value.
The learned mapping can be visualized intuitively by the user
for error. The error indicates the need for further annotations
to refine results in the next iteration.

The performance of regression-based methods are
improved further by employing Convolution Neural Net-
works (CNN) [5], [34], [48], [49], [59], [69], [82]. In these
methods, density maps are generated from the image patches,
where count for each patch is obtained by performing the
integration over the density map. Zang et al. [77] proposed a
CNN model which can generate both crowd count and density
maps using switchable alternative learning for counting and
density map. The training and testing require a perspec-
tive map for perspective normalization which might not be
available in practice. A Multi-column Convolutional Neural
Network (MCNN) is proposed in [82], which utilizes three
columns with filter size of a different receptive field is used
to compensate for perspective distortion. MCNN is trained
to estimate crowd density at only three different scales in
extremely crowded still images. Boominathan et al. [5] and
Zhang et al. [82] proposed multicolumn CNN approaches,
in which different columns with different filter sizes are used
to capture multiple scales variation along with perspective.
The final prediction obtained from columns is averaged to
get a density map. Finally, the integral of density map gives
crowd count. Similarly, Switch-CNN [59] proposed switch-
ing architecture which intelligently switches appropriate
regressor for particular crowd patch based on variation in den-
sity within the single image. However, these approaches are
highly scene specific and may perform poorly on cross scene
analysis. Reference [69] used shallow CNN architecture in
the framework of ensemble learning where new models are
added to the ensemble to fix the error from the previous
model. These ensembles were used to estimate the density
map. The density map is then spatially integrated to count.
However, the research did not clearly explain the stopping
criteria for adding new models to the ensemble. Therefore,
ultimately adding new models to the ensemble might end
up in overfitting. Reference [34] used contextual information
such as perspective weights, camera tilt angle and camera
height to estimate crowd density. The contextual information
is an auxiliary input to the Filter Manifold Network (FMN) to
produce filter weights for the convolutional layer according
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FIGURE 2. Proposed framework.

to the scene context. Thus convolutional layer adapts itself
to the context of the scene in contrast to the fine-tuning
and transfer learning. The current datasets do not provide
contextual information, therefore, comparison with current
datasets is not possible. The convolution is made adaptive to
only parameters related to perspective. There might be more
complex parameters related to the scene which are ignored.

Most recently, Shen et al. [61] proposed Adversarial
Cross-Scale Consistency Pursuit (ACSCP) approach using
adversarial loss instead of traditional Euclidean loss to mit-
igate the blurry effect due to /; regularization in the genera-
tion of density maps from crowd patches. Moreover, a new
regularize is proposed to enforce the scale consistency such
that the number of crowd count in the large patch is coherent
with the sum of crowd counts in the corresponding smaller
non-overlapping patches. Similarly, Cao et al. [6] proposed
Scale Aggregation Network (SANet) for accurate and effi-
cient high-resolution of density maps using new training loss
called local pattern loss. Sindagi and Patel [63] proposed
Contextual Pyramid CNN (CP-CNN) in which local and
global contextual information is incorporated with Density
Map Estimator (DME) to generate high-quality density maps.
Finally, all the maps are fused to estimate the crowd count
and density. Crowd counting is formulated as a semantic
scene model [30]. The pedestrian, head, and their context
are three key factors, that are considered as a composite
body-part semantic structure for two types of scene semantic
models. These models are turned into different sub-tasks
to train deep CNN for counting and scene semantic anal-
ysis. Xiong et al. [75] proposed Convolutional LSTM (con-
vLSTM) to exploit temporal correlation along with spatial
dependencies to boost the count accuracy in a complex scene.
However, most of the datasets of the high-density crowd are
still images of the crowd and therefore do not carry temporal
information.

Regression-based methods work well in high-density situ-
ations since they can capture generalized density information
but suffer from following limitations. 1) The performance
of these methods degrades when applied to low-density sit-
uations due to overestimating the count. 2) These methods
cannot localize pedestrian in the scene and thus provide
no information about the distribution of pedestrians in the
environment which is sometimes very crucial for the crowd
managers and security personnel.
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B. DETECTION-BASED METHODS

On the other hand, detection based methods [16], [21], [24],
[38], [68], [83], train object detectors to localize the position
of each person, where crowd count is the number of detec-
tions in the scene. Detection based methods can be further
divided into two categories, 1) hand-crafted feature based
models [16], [19]-[21], [68], [70], [80] and 2) deep features
models [29], [31], [40], [43], [46], [50], [51], [64], [71],
[79], [81]. In the first category, hand-crafted features like
edges [10], [11], texture [10], [60], [74], and shape [10] are
extracted from image to train SVM or boosting classifiers.
After training, learned weights of the classifier are considered
as a template for the entire human body. These hand-crafted
features have low representation of human body and per-
formance of classifier degrades when applied to complex
crowded scenes. In order to model complex poses of pedes-
trians, DPM [21], [41], [84] learn mixture of local templates
for each body part. Although DPM is robust to complex poses
but feature representation and classifier cannot be jointly
optimized to improve performance.

ill. PROPOSED METHODOLOGY

We proposed a framework for crowd counting using state-
of-the-art deep CNN as shown in Fig. 2. According to the
framework, input frames are given to the Region-based CNN.
We have used Faster R-CNN [54] with Caffe [33] for the
detection of pedestrians. The datasets that we have used con-
tain few numbers of frames which are not sufficient enough
for training deep CNN. Therefore, we have used transfer
learning from ImageNet [18] to fine-tune our models. These
fine-tuned models are used in the testing phase to test on
unseen frames. We have used various network architectures
such as ZF [76], VGG16 [62], and VGGM [62] to train the
system and evaluate the performance on the test dataset.
ZF is a 8 layered architecture containing 5 convolutional
layers and 3 fully-connected layers. Similarly, VGG16 is a
16 layered architecture that has 13 convolutional layers and
3 fully connected layers.

In Fast R-CNN [25] the order of the extracting region of
proposals and running the CNN is exchanged as compared
to RCNN [26] architecture. In this architecture whole image
is passed once through the CNN and the regions are now
extracted from convolutional feature map using ROI pooling.



This change in architecture reduces the computation time
by sharing the computation of convolutional feature map
between region proposals. The region proposal is projected
to the corresponding spatial part of convolutional feature vol-
ume. Finally, the fully connected layer expects the fixed-size
feature vector, and therefore the projected region is divided
into a grid and Spatial Pyramid Pooling (SPP) is performed
to get fixed-size vector. SPP deals with the variable window
size of pooling operation and thus end-to-end training of the
network is very hard. The generation of the region proposals
is the bottleneck at the test time. In the above-mentioned
approaches, CNN was used only for regression and classi-
fication. The idea was further extended to use CNN also for
region proposals. The latest offspring from the RCNN family,
the Faster R-CNN [54] proposed the idea of a small CNN net-
work called Region Proposal Network (RPN), build on top of
the convolutional feature map. RPN is two-layered network
which does not add to the computation of overall network.
A sliding window is placed over a feature map in reference
to the original image. The notion of anchor box is used to
capture object at multiple scales. The center of the anchor
box having a different aspect ratio and size coincide with the
center of the sliding window. RPN generates region proposals
of different sizes and aspect ratios at various spatial locations.
Finally, regression provides finer localization with reference
to the sliding window position. The complete architecture is
shown in Fig. 2.

A. MOTION GUIDED FILTER

Convolution neural networks like SSD [42], YOLO [53],
and Squeezedet [73] showed a significant improvement in
domain of real-time object detection using a single image.
However, the performance of these networks can be improved
further by leveraging the temporal information available in
real-time videos. Leveraging temporal information in object
detection is not a trivial problem. Usually, end-to-end learn-
ing is a sophisticated way of solving computer vision prob-
lems, but in the case of videos, this approach cannot be
applied. Feeding multiple frames to the CNN is not possible
due to the limitation of memory. Therefore, as a solution,
we propose a Motion Guided Filter that recovers the missed
detection in the frames by using the flow estimation. It is
observed that pedestrian detected in the first frame travels a
few pixels in the next frame. For estimating the displacement,
we utilize an energy function which is based on three assump-
tions: brightness constancy assumption, gradient constancy,
and spatio-temporal smoothness constraint.

1) BRIGHTNESS CONSTANCY
For estimating the displacement, it is assumed that the gray
value of a pixel does not change [27]

Qx,y,t) =Qx+u,y+v,t+1) €))]

Q: A ¢ R¥ - R denotes bounding box sequence, and
w = (u, v, 1) is the displacement vector between an image
at time ¢ and another image at time ¢ + 1. Here it is to be

noted that bounding box €2 is a 4-D vector. For estimating
the displacement, we use only the spatial coordinates of
pixels while we assume the size of the bounding box (width
and height) is the same. Therefore we omit the size of the
bounding box in the equations.

2) GRADIENT CONSTANCY

It is also assumed that the gray value of the pixel does not
change instantaneously. However, this assumption is weak
since a slight change in the environment or change in illu-
mination may change gray values of the image, therefore,
in this case, we allow some small variations and determine
the displacement vector by a criterion that is invariant to
gray value changes. We, therefore, use the gradient of gray
value instead of considering the gray values directly. We then
assumed that gradient of gray value does not vary due to the
displacement [67] and is given by

VQMXx,y, 1) =VQx+u,y+v,t+ 1) 2)

where V is the gradient. Equation (2) deals with translatory
motion while (1) is best suited for complicated motions.

3) SPATIO-TEMPORAL SMOOTHNESS

Up till now, the model estimates the displacement of one
pixel from one frame to another without taking into account
neighboring pixels. Therefore, the model runs into problems
as soon as the gradient disappears somewhere. Furthermore,
we also expect some outliers in the estimates. Therefore it
is very useful to use smoothness assumption. This constraint
can be either applied only in the spatial domain if we want to
compute flow between two images or to the spatio-temporal
domain, if the displacement in the whole sequence of images
is needed. Here, since we are recovering the bounding box of
the next frame from the current frame, therefore we use only
spatial smoothness constraint.

With this discussion, we now derive an energy function that
will penalize deviations from these aforementioned assump-
tions. Let x := (x,y, t) is the pixel of frame at f and w :=
(u, v, 1) is its displacement vector. Then deviations from the
grey value constancy and gradient constancy are measured by
the following energy function

Ed=/(| Qr+w)— Q) P4y | VQUx +w)—VQ(x) [)dx
a
3

where y is a balancing parameter between brightness and
gradient constancies.

Finally, we write the smoothness term which penalizes the
total variations in the flow field [55] and can be expressed as

E, = / (| Vu |* + | Vv |P)dx 4)
A

The total energy function is the weighted sum of the above
two equations and is given by

E(u,v) =E; + aE; (®)]



with some regularization parameter the value of @ > 0. The
goal is to find displacement vector (i, v) that minimizes the
energy function given by (5)

For every pixel x; € €2; in a frame at ¢, we compute its
corresponding pixel in a frame at # 4 1 by using the following
equation

Xe41 =X +w (6)

4) DETECTION REFINEMENT

After detecting pedestrians in each frame of the analyzed
video sequence, we then leverage temporal information
across the multiple frames to further refine the detection
results. For this purpose, we use (6) for low-level track-
ing to establish temporal correspondence across multiple
frames. Exploiting temporal information can suppress false
alarms generated due to the noise and other random distor-
tions. We integrate temporal information across the frames
to re-score detections and suppress the false positives. Let
Qs = {w1, w2, ..., wy} represents a set of n bounding boxes
(or detections) in a frame at f. We then represent D =
{Q1, @1, ..., Qy} as acontainer of all sets of bounding boxes
for a video sequence containing N number of frames. In order
to refine €2, for the current frame at ¢, we employ a matching
hypothesis based on overlap area between the current bound-
ing box w; € €; and w; € Q1 in the subsequent frame.
We propose a refinement Algorithm 1 which takes €2; as input
and gives the corresponding refined 2z as an output. Given
a set of bounding boxes €2; in the current frame, we define
a temporal window of the size W. For each bounding box
w; € 2 in a frame at ¢, we first predict its location in the
next frame at ¢+ + 1 by computing displacement vector w as
in (6). We then compute A between w; and set of bounding
boxes 2,41 in the next frame at # 4 1 and select the best match
(maximum value of A). We compute A between two detec-
tions w; and w; as Intersection over Union and formulated

@if'% Final confidence score o is computed for each w;

wjUw; P i
by accumulating confidence score over temporal window W,
as in line 8 of the Algorithm 1. We then delete the bounding
box for which confidence score o is less than €. We set
the value of € = 0.5 in all our experiments. We refine the
container D in the same way. Let R = {Ql’, Q. QN’}
is a container of refined sets of bounding boxes for a video
sequence containing N frames. The bounding boxes obtained
after this step are refined and trusted detections.

In some cases, a given set of bounding boxes €2; may
not contain a detection for a particular person due to occlu-
sion, or missed detection, etc. In order to address this issue,
we integrate temporal information by reliably tracking pedes-
trian through time and use it to find the missed detection.
Our tracking approach operates in two modes: 1) detection
mode, 2) Low-level tracking mode. We initialize a tracker
for each detection in a frame at t. Whenever the tracker
finds and matches a detection in the next frame at ¢ + 1,
it follows the detection mode. This mode enables tracking
more robust to variations in scale, appearances and pose.

Algorithm 1 Refinement of Detection Results

Input: Sets of Bounding Boxes €2,

Output: Refined Bounding Boxes Q2z
function Refinement(£2;)

1:

2 T ={Q+1, 212, ..., Qyw}

3 Initialize evidence accumulator o to zero
4 for each bounding box w; in 2, do

5: for each 2; in T do
6
7
8
9

Compute displacement vector w using (5)
Predict next location w;’ as w; + w
0 =0 +argmaxjey Awy', )
: Update w; as w; <— w;’
10 end for

11: if%Z})Vo>ethen
12: Insert w; in tail of Qg
13: end if

14: end for

15: return Qp

16: end function

If for some reasons, tracker cannot find detection in the next
frame, the tracker relies on low-level tracking. In low-level
tracking mode, the tracker estimates the displacement vector
and predicts the next location by using (5) and (6). It is to
be noted that we are not interested in long-range tracking,
instead our goals is to use low-level tracking to fill in the gap
by recovering the missed detection. Let {x;, s;} be the position
and size of a pedestrian being tracked. Let X; and s; are the
observations of x; and s;, with Gaussian noises of co-variance
R, and R;. For each track in a frame at 7, we have predictions
{111=1. 8111} and we search for pedestrian detection around
position x;;—1 and size 5;,—1. For any pedestrian detection
P will be assigned to a track if || X;;—1 —x¢ || < « and
| S1—1 — $¢ || < «, where x; is the position and sy is the
size of P. We set « = 0.3 in our experiments. We adopt
a greedy strategy of data association and score each track
by N4, where N, represents the number of detections it has
matched. During the detection mode, we maintain a pedes-
trian template Pyeppiare = 1(x;, 5;) atlocation x, and of size s;.
We use normalized correlation to search for best match in the
image. In case, a tracker cannot find and match a detection,
then tracker switch to low-level tracking mode and continue
tracking. In this case we update the template linearly as in (7)

Ptemplate =(- IBupdalePtemplate + ,Bupdatel(xta s0) (D

where By pdare 18 set to 0.1 in our experiments. For every track,
we keep track of N; and Ny, where Ny is the number of
step that a track follows the detection mode and Ny is the
number steps in which track follows low-level tracking mode.
We terminate a track if Ny / Ng > 1.5.

IV. EXPERIMENTS
In this section, we discuss the qualitative and quantitative
analysis of the results obtained from the experiments.
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FIGURE 3. (a) Detections in the first frame. (b) Detections in the second frame. (c) Recovered detection missed in second frame.

TABLE 1. Crowd datasets.

Dataset Resolution  Color Location  Test Train Crowd Size
frames frames

PETS2009 [23] 768X576 RGB Outdoor 800 1200 8 t0 26

UCSD [12] 238X158 Grayscale  Outdoor 800 1200 11 to 50

Mall [14] 640X480 RGB Indoor 800 1200 15 to 60

We evaluate our approach using three publicly avail-
able datasets, PETS2009 [22], UCSD dataset [12] and Mall
dataset [14]. These datasets include indoor and outdoor
scenes with varying densities. Traditionally, regression-based
methods are evaluated on these datasets. Therefore the avail-
able annotations are only suitable for regression-based analy-
sis and not for detection base methods. Typically, there is a dot
annotation for every person in the scene. These annotations
also include perspective map used for the normalization of
perspective distortion. Such dot annotations are not suitable
for training a CNN model for pedestrian detection. Therefore,
for the first time, we annotated each pedestrian with a bound-
ing box that covers the whole body of the pedestrian. The
complete details of the datasets are given in the Table. 1. The
sample images along with overlaid ground-truth annotations
from three datasets are shown in the Fig. 7 (d) (e) (f).

After annotating all video sequences, we then trained dif-
ferent models, i.e, ZF [76], VGGM [62] and VGGI16 [62] on
Nvidia Quadro P6000 GPU with a learning rate of 0.0001
and batch size of 64. The RPN batch size is kept constant at
128 for region based proposal networks.

We then evaluate and compare the performance of our
method with other reference methods. For the sake of a com-
prehensive evaluation, we divide the experiment setup into
two phases. In the first phase, we evaluate and compare the
detection/localization performance while in the second phase,
we evaluate and compare the crowd counting performance.

A. LOCALIZATION PERFORMANCE

In this section, we evaluate and compare the localization
performance of different models. The purpose of eval-
uating localization performance is to measure how well

the model localized the pedestrian in the given scene.
Precise localization of pedestrians is very crucial for the
crowd managers and security personnel to effectively respond
to the anomalous situations.

The localization accuracy by which a model can predict
the bounding box of a pedestrian is typically judged by
Intersection over Union (IoU) between predicted and ground-
truth. In most of the cases, IoU is used with fixed threshold
value 0.5 for deciding whether a bounding box is successfully
detected. However, with the fixed threshold value, one cannot
overview the range of performance with varying the thresh-
olds. Therefore, we use mean Average Precision (mAP) as an
evaluation metric that averaged the performance over a wide
range of IoU thresholds.

We evaluate the localization performance of these mod-
els in two ways, i.e., pre-trained and fine-tuning. In the
pre-training phase, these networks are trained from scratch
by using ImageNet dataset and then the learned models are
directly used for detecting pedestrians during the testing
phase. In fine-tuning case, we fine-tuned these pre-trained
models by using the images from PETS2009, UCSD and Mall
datasets.

We analyzed the performance of each network architecture
at a different iteration during the fine-tuning phase. During
training, the snapshot of trained models are saved at the
interval of 10k as shown in the Fig. 4 for Mall dataset [14].
All the network architectures were able to converge after
20k iterations. The best-trained model obtained at iteration
90k of VGG16 having mAP of .701 was used for evalua-
tion on the testing sequence of Mall dataset [14]. Similarly,
trained model based on ZF architecture for USCD [12] with
high mAP of 0.783 is obtained at 80k iteration as shown
in Fig. 6. The reason for high mAP can be attributed to



TABLE 2. Localization performance at different steps.

Methods | Pre-Training \ Fine Tuning \ Proposed
Models | VGG16 | VGGM | ZF | VGG16 | VGGM | ZF | VGG16+MGF | VGGM+MGF | ZF+MGF
UCSD | 045 | 025 | 040 | 067 | 059 073 | 071 | 063
PETS2009 | 040 | 0.5 | 020 | 075 | 069 | 08 | 078 | 075
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FIGURE 4. Performance at different iteration for Mall dataset [14].
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FIGURE 5. Performance at different iteration for PETS dataset [22].

the low-resolution of the dataset as well as the smaller
filter size used in ZF architecture. Thus ZF shows sta-
ble performance throughout all the iterations. Furthermore,
a VGG16 model with high mAP of 0.692 is obtained for
PETS2009 dataset [22] as shown in Fig. 5.

After fine tuning the models, we then employ spatio-
temporal filtering approach discussed in the section, which
further refines the detection by exploiting spatial and tempo-
ral information between the consecutive frames.

Table. 2 shows the performance of these models obtained
during pre-training, fine-tuning and after employing a Motion
Guided Filter. It is obvious from the table that all the base
models show poor performance during the pre-trained phase.
The reason for poor performance is the models were trained
on ImageNet dataset and not on pedestrian datasets. However,
these models are generic enough to be fine-tuned for pedes-
trian detection. We have used 50% samples of pedestrian
datasets during fine-tuning phase. The models fairly learn

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K
ITERATIONS

FIGURE 6. Performance at different iteration for UCSD dataset [12].

the representation of pedestrians and as a result, mAP is
increased up to 72% on average for all the datasets. Among
the fine-tuned CNN models, VGG16 outperforms other meth-
ods. Even after fine-tuning, there is still room for improve-
ment since the information like consistent brightness and
color pattern of pedestrian existed between the subsequent
frames are not exploited. For example, the detector detects
pedestrians in one frame while detector completely missed
that detection in subsequent frames. Therefore, by exploiting
the spatio-temporal relationship and brightness consistency
constraint, our proposed Motion Guided Filter is able to
recover the detection which are missed due to occlusions.
As aresult, our proposed methodology is able to improve the
mAP for all the models.

B. COUNTING PERFORMANCE

In this section, we evaluate the performance of different
crowd counting methods. In addition to CNN based methods,
we used four different regression-based models, i.e Gaussian
Process Regression [8], linear regression [17], K-Nearest
Neighbor [78] (K=4) and neural network [47] with sigmoid
activation function for crowd counting. These regression
models are trained on local features, i.e., size, shape, edge and
keypoints. The features are extracted from the local regions
of image by first dividing the image into patches. We then
apply a regression technique to each patch of an image. The
local features are extracted in the following ways.

Size refers to the area of foreground object. The area of
object is measured as the count of foreground pixels. In order
to compensate for perspective distortions, we assign weight
W(x,y) to each foreground pixel as in [8] based on the



TABLE 3. Evaluation of crowd counting methods.

Methods I Models | UCSD || PETS2009 || Mall
I | MAE MSE || MAE MSE || MAE MSE
GPR[3] || 146 623 || 1.78 1697 || 2.8 8.86
Regression(on hand-crafted features) \[ 1300 (18] || 156 648 || 177 1775 || 258  9.65
KNN[79] || 272 9.63 || 3.00 18.69 || 2.89 9.23
NN[48] || 813  33.08 || 411 3042 || 26.06 163.41
VGG16[63] || 2.89 9.25 || 267 1853 | 352  10.25

CNN
VGGM [63] || 3.92 1047 || 2.63 17.56 || 4.85 13.65
ZF[77] || 355 1126 || 2.64 1628 | 3.65 11.46
VGG16+MGF || 1.27 562 || 121 543 || 1.89 7.29
CNN + MGEF (proposed)

VGGM+MGF || 1.38 629 || 128 566 | 232 8.35
ZF+MGF || 141 635 || 136 648 | 256 8.78

TABLE 4. Comparative analysis with other techniques on UCSD [12]
dataset.

Method MAE Test
Density + MESA [40] 1.7
Crowd CNN Model with global regression [78] 1.6
COUNT forest [53] 1.6
CNN Model with no boosting [70] 1.63
Boosted CNN (1 boost) [70] 1.35
Boosted CNN (2 boost) [70] 1.29
Boosted CNN (3 boost) [70] 1.28
Fine-tuned (2 boost) [70] 2.01
Twice as deep [70] 1.82
Thrice as deep [70] 2.42
Ensemble of 2 CNNs [70] 1.55
Ensemble of 3 CNNs [70] 1.53
Zhang2015 [78] 1.60
MCNN [83] 1.07
Hydra-CNN 1.65
Switching CNN [60] 1.62
ConvLSTM [76] 1.30
BSAD [31] 1.0
ACSCP [62] 1.04
SANet [6] 1.02
Proposed Method (VGG16 + MGF) 1.27

relative size of reference object in the scene. The weighted
area A of blob B is computed as follows

A=) W&y

(x,y)eB

Shape is computed by measuring the orientation of perime-
ter pixels. Perimeter pixels contain important and useful
information about the shape of the object. For computing
shape feature, we generate a histogram of orientations with
four bins. Each bin corresponds to the orientations of pixels.
The four bins correspond to four shape features and denoted
by S(h), where h € [1, 4].

Edge is computed by taking the histogram of edge pixels of
the foreground object. We divide edge orientation histogram
into six bins over the range of [0, 180°]. In this case, for
perspective normalization, each edge pixel assigns a weighted
vote of /W(x,y) to a corresponding histogram bin /4 as
follows.

Ehy= )

(x,y)eK

VW(x,y),

if Op < Qx,y =< 9/’l+1
otherwise

where K is set of edge pixels of a blob of the foreground
object and 6y, is the orientation of edge pixel. Upper
and lower bound of bin % is represented by 6, and 04
respectively.

Interest points refers to keypoints in the scene and provide
useful information about the human crowding. We extract two
types of features, i.e. FAST and SURF from the blob and
denoted as Pr and Pgs respectively and computed as follows.

Pr= Y JWxy

(x,y)eM
Ps= Y W@,y
(x,y)eN

where M represents FAST features extracted from the blob,
and N represents SURF features extracted from foreground
blobs. In this case, we also assign weights W to each interest
point to compensate for perspective distortions.

We train four different regression models using these local
features and the results of regression and CNN based meth-
ods are reported in Table. 3 in terms of Mean Absolute
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Error (MAE) and Mean Square Error (MSE). MAE and
MSE are mostly used evaluation measures for counting and
formulated as

1

MAE = — % (1: = Gy’ ®)
7] teT
1

MSE = — " |, — Gyl ©)
7] teT

where T is the total number of testing frames. While
u: and G; are the predicted and ground-truth count of
pedestrian respectively in a frame at . From the Table. 3,
it is obvious that regression-based methods perform well
than CNN based detection methods. It is attributed to the
fact that in high-density situations, regression models per-
form well in approximating the count by leveraging the
rich context in crowded patches while CNN based detec-
tion models are unable to localize and detect pedestrians



TABLE 5. Comparative analysis with other techniques on Mall [14]
dataset.

Method MAE Test
CA-RR [13] 343
COUNT forsest [53] 2.50

CNN Model with no boosting [70] 9.54

Boosted CNN (1 boost) [70] 2.43
Boosted CNN (2 boost) [70] 2.08
Boosted CNN (3 boost) [70] 2.13
Fine-tuned (2 boost) [70] 2.01
Twice as deep [70] 10.41
Thrice as deep [70] 15.37
Ensemble of 2 CNNs [70] 6.52
Ensemble of 3 CNNs [70] 6.57
ConvLSTM-nt [76] 2.53
ConvLSTM [76] 2.24
Bidirectional LSTM [76] 2.10

Proposed Method (VGG16 + MGF)  1.89

due to the small size of the head, occlusion, and perceptive
distortions. We observed from the experiments that detec-
tion based methods provide a reliable estimation in sparse
crowds where the pedestrians are fully visible. Based on
our experiments and as obvious from the table we find
that detection and regression-based counting methods show
different performances depending on the densities of the
crowd. The regression-based methods provide reliable esti-
mates when applied to congested scenes. However, these
methods cannot provide localization information for per-
sons in the scene and tend to overestimate the count when
applied in low-density situations. The detection based meth-
ods, on the other hand, can localize each person precisely in
low dense situations. However, the performance of detection
based methods improves in all situations after employing our
proposed Motion Guided Filter.

The average time for processing each frame for detection
was 0.044 seconds, 0.130 seconds and 0.048 seconds, for ZF,
VGG16 and VGG M, respectively. On average the frame was
processed in 0.130 sec/frame.

We also compare our method with other crowd counting
methods using UCSD dataset, and the results are reported
in Table. 4. We use MAE metric as an evaluation measure.
From the table, it is obvious that our proposed method out-
performs most of the state-of-the-art methods. Our approach
out-performs most of the state-of-the-art methods in UCSD
data set. However, our approach shows lower performance
in comparison to few state-of-the-art methods. The low per-
formance attributes to the following reasons: (1) UCSD data
set consists of extremely low-resolution videos. Each video
frame has to be re-sized and padded before input to the
network. As a result, frame lost most spatial information and
become too coarse to describe pedestrians. (2) Faster R-CNN
lacks the ability to detect small objects lies in various scales.

TABLE 6. Comparative analysis with other techniques on PETS [22]
dataset.

Method MAE Test

Shape+Edges+Keypoints [59] 1.77

Proposed Method(VGG16 + MGF)  1.21

In the same way, we compare our method with other methods
using Mall and PETS datasets, and the results are reported
in Table. 5 and 6 respectively. In this case, we use VGG16 as
best model for comparison with other methods. As obvious
from tables, our proposed method produced superior results
as compared to the state-of-the-art methods.

V. CONCLUSION

In this work, we proposed a framework for counting of crowd
in a low-to-medium density crowd videos. The framework
use state-of-the-art detector Faster-RCNN to detect pedes-
trian in crowd video. We the used Motion Guided Filter to
recover misdetections and therefore improve mean Average
precision of the overall detections. The improvement in the
accuracy of detection also lead to the improvement in the
counting and density estimation of crowd. The proposed
approach can be used easily incorporated in the real-time
monitoring and surveillance applications and as well as
high-level scene understanding of crowd.
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