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ABSTRACT

The current popular method for approximate simulation from the posterior distribution of the linear Bayesian
LASSO is a Gibbs sampler. It is well-known that the output analysis of an MCMC sampler is difficult due
to the complex dependence amongst the states of the underlying Markov chain. Practitioners can usually
only assess the convergence of MCMC samplers using heuristics. In this paper we construct a method that
yields an independent and identically distributed (iid) draws from the LASSO posterior. The advantage of
such exact sampling over the MCMC sampling is that there are no difficulties with the output analysis of
the exact sampler, because all the simulated states are independent. The proposed sampler works well when
the dimension of the parameter space is not too large, and when it is too large to permit exact sampling,
the proposed method can still be used to construct an approximate MCMC sampler.

1 INTRODUCTION

Suppose that we are given a data matrix X ∈ Rn×p of p predictors and a response vector y ∈ Rn. Then,
the Bayesian LASSO inference for a linear model with unknown parameters β ∈ Rp and σ > 0 requires
simulation from the posterior pdf:

π(β, σ
∣∣y, λ) ∝

1

(2πσ2)n/2
exp

(
−‖y −Xβ‖22

2σ2

)
︸ ︷︷ ︸

likelihood of β
∣∣ (σ,y)

λp

(2σ)p
exp

(
−λ‖β‖1

σ

)
︸ ︷︷ ︸

prior of β
∣∣ (σ,λ)

prior of σ︷︸︸︷
σ−2 , (1)

where ‖ · ‖p is the Lp-norm, and λ ≥ 0 is the LASSO parameter which controls the level of shrinkage
in the estimator. With no shrinkage, that is λ = 0, the mode of the posterior occurs at the ordinary least
squares estimator β̂ = argminβ ‖y−Xβ‖2 and σ̂ = s/

√
n, where s2 := ‖y−Xβ̂‖22 is the sum of squared

residuals.
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Currently, the available methods for simulation from (1) are the Gibbs samplers from Park and Casella
(2008) and from Polson et al. (2014). These methods provide only an approximate draw from the posterior,
with an accuracy that is notoriously difficult to quantify rigorously. Park and Casella (2008) and Polson
et al. (2014) address this issue with (heuristic) graphical convergence diagnostics.

In this paper, we show that when p < 100 (that is, not too large), it is sometimes possible to construct a
rejection sampler for exact simulation from (1). A key advantage of exact simulation over the approximate
Gibbs sampler is that the difficult issues of bias and dependence in the output analysis disappear. This is
the raison d’étre for the field of perfect sampling (Propp and Wilson 1996).

Our rejection algorithm for simulation from the target pdf (1) uses as proposal a sequential importance
sampling density, which relies on computing the QL decomposition of the matrix X. This sequential
importance density depends on a number of parameters, which have to be well-tuned to achieve a good
acceptance rate. We show how this tuning can be accomplished by solving a convex optimization program
with a unique global solution.

The numerical results suggest that exact sampling is possible for roughly p < 100 (it becomes less
efficient as p increases). Ultimately, for very large parameter spaces (large p), the only available option for
simulation from (1) remains MCMC sampling. We argue that even in this situation our sequential sampling
proposal is valuable, because it can be used as a proposal in an independence random-walk MCMC sampler.

The rest of the paper is structured as follows. Section 2 describes our acceptance-rejection approach
to simulating from the Bayesian posterior. We briefly explain how the sequential importance sampling
density can be deployed as a proposal density in an MCMC sampler. Then, in section 3 we provide two
numerical examples based on widely-used datasets (Efron et al. 2004), and finally we draw conclusions
and suggest future directions for research.

2 EXACT SIMULATION FROM THE POSTERIOR DISTRIBUTION

Before presenting the sequential sampling algorithm in detail, we first explain how one may go about
constructing a simple rejection sampler (Kroese et al. 2011, Chapter 3) for the target (1).

2.1 Naive Rejection Sampler

Using the Pythagorean identity ‖y −Xβ‖22 = s2 + ‖X(β − β̂)‖22, the posterior (1) is proportional to:

π̃(β, σ) =
√

2
s g(n+1)/2

(
σ
√

2
s

)
× 1

(2πσ2)p/2
exp

(
−‖X(β−β̂)‖22

2σ2

)
× λp

2p exp
(
−λ
σ‖β‖1

)
,

where gα(σ) is the density
gα(σ) := σ−2α−1

Γ(α) exp
(
− 1
σ2

)
with α = (n + 1)/2 degrees of freedom. Note that if X is Gamma distributed with shape parameter α
and scale unity, then 1/

√
X has density gα(x). When X is full rank, a natural proposal is to simulate

σ from the density
√

2
s g(n+1)/2

(
σ
√

2
s

)
. Then, given σ, we simulate β from the multivariate Gaussian

density φΣ(β − β̂) with mean β̂ and covariance matrix Σ = σ2(X>X)−1. With such simulated (β, σ),
the (likelihood) ratio of π̃(β, σ) to the joint density

√
2
s g(n+1)/2

(
σ
√

2
s

)
×φΣ(β− β̂)× λp

2p exp
(
−λ
σ‖β‖1

)
yields

λp

2p exp
(
−λ
σ‖β‖1

)
,

which is bounded from above by λp

2p =: c. Hence, we immediately have the following rejection algorithm.
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Algorithm 1 : Naive rejection sampler for π(β, σ
∣∣y, λ).

Require: λ; least squares estimate β̂; sum of squared residuals s2

repeat
Simulate U ∼ U(0, 1) and σ ∼ Gamma(α, 1), independently.
σ ← s/

√
2σ

β ∼ Normal(β̂;σ2(X>X)−1)
until U ≤ exp

(
−λ
σ‖β‖1

)
return (β, σ), a draw from the posterior.

This rejection algorithm will only be useful if the probability of acceptance

P
[
U ≤ exp

(
−λ
σ‖β‖1

) ]
= 1

c

∫∫
π̃(β, σ)dβdσ (2)

is high. Unfortunately, in practice the marginal likelihood
∫∫

π̃(β, σ)dβdσ is much smaller than the
enveloping constant c and as a result the probability of acceptance is too low to make the naive rejection
Algorithm 1 practicable. For example, for the diabetes example in the numerical Section 3, the acceptance
probability is less than 10−7. Since Algorithm 1 is too simplistic to be efficient, we next propose an
alternative with higher acceptance probability. The proposal has the additional advantage that it does not
require a full rank data matrix X.

2.2 Sequential Monte Carlo Sampler

Before giving the details of the much more elaborate sequential sampling, we need to introduce the following
notation. Let

Lapµ(z) =
1

2
exp

(
−|z|+ µz + ln(1− µ2)

)
, |µ| < 1

be the exponentially tilted version of the Laplace density on R with tilting parameter µ. Appendix 5.1
gives a simple algorithm for simulating from Lapµ. Further, let chiν be the density of the χν distribution:

chiν(r) =
exp(− r2

2 + (ν − 1) ln r)

2ν/2−1Γ(ν/2)
, r > 0

Note that if X ∼ χν , then
√
X ∼ χ2

ν (the chi-squared distribution). Lastly, if φ is the pdf of the standard
normal and Φ is its complementary cdf, we define the normal-Laplace density as

nl(z;λ, α) = φ(z) exp
(
− λ|z − α| − ξ(λ, α)

)
,

where we have the normalizing constant:

ξ(λ, α) = −α
2 + ln(2π)

2
+ ln

[Φ(λ+ α)

φ(λ+ α)
+

Φ(λ− α)

φ(λ− α)

]
Fast simulation from this density is feasible and described in Appendix 5.2.

Recall that the QL decomposition of a matrix X ∈ Rn × Rp is X = QL, where Q ∈ Rn × Rp is a
matrix of n orthonormal (column) vectors and L ∈ Rp × Rp is a lower triangular matrix with elements
{lij}, whose rank equals the column rank of X. The QL factorization is just another version of the more
common QR matrix factorization (Golub and Van Loan 2012).

Since the naive rejection sampler in the previous section is not practicable, we now describe a more
complex rejection sampler to simulate from π, which can be written as:

π(β, σ
∣∣y, λ) ∝ φσ2I(y −Xβ)λd exp (−(2 + d) lnσ − λ‖β‖1/σ) (3)
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Given the QL decomposition of the data matrix X, we make the change of variables from (β, σ) to (z, r):

r = s/σ, z = β/σ

Setting γ := Lβ̂/s, this change of variables in (3) yields the joint density in (z, r):

π(z, r
∣∣y, λ) ∝ f(z, r) := λdchin+1(r) exp

(
−1

2

∑
i

(
liizi − rγi +

∑
j<i lijzj

)2
− λ

∑
j |zj |

)
(4)

The idea now is to exploit the lower triangular structure ofL in order to sample the vector (Z, R) sequentially
as follows:

R −→ (Z1

∣∣R) −→ (Z2

∣∣R,Z1) −→ (Z3

∣∣R,Z1, Z2) −→ · · ·
To proceed with this idea, set

αj(r, z1, . . . , zj−1) := −rγj +
∑
k<j

ljkzk,

and J := {j : ljj 6= 0}, so that simplification of the right hand side of (4) yields:

f(z, r) = λdchin+1(r) exp

(
−
∑

j 6∈J

α2
j

2 −
∑

j∈J
(ljjzj+αj)

2

2 − λ
∑

j |zj |
)

Observe that, given fixed z1, . . . , zj−1, the function

exp
(
− α2

j

2 −
(ljjzj+αj)

2

2

)
depends only on the variable zj . This key observation suggests a proposal density g(z, r), which simulates
(Z, R) sequentially.

Algorithm 2 : Sampling from proposal density g(z, r;µ, η).
Require: tuning parameters η and µ

Compute QL decomposition X = QL; β̂ ← argminβ ‖y −Xβ‖2 ; s2 ← ‖Xβ̂ − y‖22; γ ← Lβ̂/s
R ∼ chin+1(r)
for j = 1, . . . , p do

if j 6∈J then
Zj ∼ Lapµj (λzj)

else
αj ← −Rγj +

∑
k<j ljkZk

Zj ∼ nl(ljjzj + αj − µj ;λ/|ljj |, αj − µj)
return A draw (Z, R) from the proposal density.

Note that the algorithm requires as input the tuning parameters µ and η, which will be specified below.
If we use g as a proposal density to simulate from a density proportional to f , then the likelihood ratio is
f(z, r)/g(z, r;µ, η). Therefore, the log-likelihood, ln(f(z, r)/g(z, r;µ, η)), is given by:

ψ(z, r;µ, η) =
∑
j∈J

(
µ2
j

2
− µj(ljjzj + αj)

)
− λ

∑
i 6∈J

µjzj −
∑
j 6=J

α2
j

2

+
η2

2
− rη + n ln r + ln Φ(−η) + const.+ d lnλ

+
∑
j∈J

ξ(λ/ljj , αj − µj)−
∑
j 6∈J

ln(1− µ2
j )
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To apply the rejection method we need to compute the supremum of the (log-)likelihood ratio (we did the
same for the naive rejection Algorithm 1 and obtained supβ

λp

2p exp
(
−λ
σ‖β‖1

)
= λp

2p = c). In other words,
we need to compute

sup
z,r

ψ(z, r;µ, η)

Then, similar to the acceptance rate (2) for the naive rejection Algorithm 1, the acceptance rate of a rejection
algorithm with proposal g(z, r;µ, η) is:

c(µ, η) :=

∫∫
f(z, r)dzdr

supz,r exp(ψ(z, r;µ, η))
(5)

Notice that this acceptance probability depends on the tuning parameters µ and η. In particular, we can
maximize the acceptance probability by minimizing the (log-)likelihood ratio with respect to the tuning
parameters. In other words, we can find the best possible tuning parameters by solving the saddle-point
(or minimax) program:

(µ∗, η∗) := argmin
µ,η

sup
z,r

ψ(z, r;µ, η)

Fortunately, this saddle-point problem is tractable due to the fact that ψ is a convex-concave function of
its arguments.
Theorem 1 (Log-likelihood properties) The saddle-point optimization problem with optimal value

ψ∗ = inf
µ,η

sup
z,r

ψ(z, r;µ, η)

has a unique solution, (x∗, r∗,µ∗, η∗), which coincides with that of the nonlinear system ∇ψ = 0, where
the gradient is with respect to the vector (z, r,µ, η).

The details of the proof are given in Appendix 5.3. A consequence of this theorem is that we can
compute the optimal tilting parameters by solving the nonlinear system ∇ψ = 0 using, for example,
any built-in routine for solving a system of nonlinear equations (in our implementation we use Matlab’s
fsolve.m to compute the solution). The closed-form formulas for the components of the gradient ∇ψ
are quite messy, see Appendix 5.4, but pose no difficulties with their computer implementation. Note that
∇ψ = 0 needs to be solved only once, regardless of how many draws one simulates from the posterior.
In summary, the rejection scheme for simulating one draw from the posterior (3) reads as follows.

Algorithm 3 : Simulating from posterior π(β, σ
∣∣y, λ).

Require: shrinkage parameter λ > 0
Solve the nonlinear system ∇ψ = 0 to obtain the solution (z∗, r∗;µ∗, η∗)
ψ∗ ← ψ(z∗, r∗;µ∗, η∗)
repeat

E ∼ Exp(1), that is, E is an exponential r.v. with rate unity
(Z, R) ∼ g(z, r;µ∗, η∗) using Algorithm 2

until E > ψ∗ − ψ(Z, R;µ∗, η∗)
σ ← s/R
β ← σZ
return A draw (β, σ) from the posterior density (3).

2.3 Independence Metropolis Sampler

When the dimension p is too large, the curse of dimensionality makes it very difficult to construct a
proposal whose acceptance probability is not too small. In such cases, MCMC sampling remains the only



Botev, Chen, L’Ecuyer, MacNamara, Kroese

viable option that we know for (approximate) simulation. Even in this situation, the sequential sampling
proposal in Algorithm 2 is useful, because it can serve as a proposal in an independence Metropolis
simulation framework (Kroese et al. 2011, Chapter 6). In particular, given the Markov chain is in the state
(Z ′, R′) = (z′, r′), we accept the proposal move (Z, R) ∼ g(z, r;µ∗, η∗) with probability

α(Z, R
∣∣ z′, r′) := 1 ∧ exp(ψ(Z, R;µ∗, η∗)− ψ(z′, r′;µ∗, η∗))

This yields the following MCMC algorithm for approximate simulation from (3).

Algorithm 4 : Approximate simulation from posterior (3).
Require: an initial state (Z0, R0); length of chain m

Solve the nonlinear system ∇ψ = 0 to obtain the solution (z∗, r∗;µ∗, η∗).
for t = 1, . . . ,m do

Simulate (Z, R) ∼ g(z, r;µ∗, η∗) using Algorithm 2
Simulate U ∼ U(0, 1), independently
if U < α(Z, R

∣∣Zt−1, Rt−1) then
(Zt, Rt)← (Z, R)

else
(Zt, Rt)← (Zt−1, Rt−1)

σt ← s/Rt
βt ← σtZt

return (β1, σ1), . . . , (βm, σm)

Interestingly, maximization (with respect to the tuning parameters µ, η) of the acceptance probability
(5) for Algorithm 3 also maximizes an upper bound on the mixing rate of the Markov chain in Algorithm 4.
To see this, let κt(·

∣∣β, σ) be the t-step transition kernel of the Markov chain in Algorithm 4, and define
the total variation distance:

Dt := sup
β,σ

sup
A

∣∣κt(A ∣∣β, σ)− π(A
∣∣y, λ)

∣∣ .
Then, the MCMC sampler in Algorithm 4 satisfies (Mengersen and Tweedie 1996, Theorem 2.1) :

Dt ≤ 2
(

1− 1
supµ,η c(µ,η)

)t
.

That is, a good approximation to the posterior (3) is not only useful for exact simulation via rejection
sampling, but also for approximate MCMC sampling via the independence Metropolis sampling.

3 NUMERICAL EXAMPLES

In this section we consider two numerical examples with datasets that have been widely used in the literature
as benchmarks for small-scale (as opposed to “big data”) statistical inference. Thus, these are examples
for which exact simulation is feasible via Algorithm 3.

3.1 Diabetes Dataset

We take the “diabetes dataset” on n = 442 patients from Efron et al. (2004). For each patient, we have
a record of p = 10 predictor variables (age, sex, body mass index, blood pressure, and six blood serum
measurements), and a response variable, which measures the severity of nascent diabetes. We then wish
to determine which of the predictors are most relevant to the response variable using the LASSO model
(1), where y ∈ Rn is the vector of centralized response variables, and X is the standardized matrix of
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predictors. The LASSO parameter λ is chosen to be λ = 0.24, which is the value that maximizes the
marginal likelihood; see Park and Casella (2008).

The results of simulating from the posterior are given in the last two columns of Table 1, which also
shows the ordinary least squares estimate. Figure 1 shows the estimated marginal distributions of each
of the ten predictors with the ordinary least squares point-estimate superimposed as a (blue) dot on the
boxplots.

Age Sex BMI BP tc ldl hdl tch ltg glu
-2000

-1500

-1000

-500

0

500

1000

1500

Figure 1: Marginal distributions of each predictor coefficient (as boxplots). The statistically significant
predictors appear to be sex, body mass index (BMI), blood pressure (BP), and lgt.

Table 1: Simulation results from the posterior density (diabetes dataset) using 105 iid draws.

Estimated 95%
Ord. least sq. Posterior Median credible interval

age of patient (age) -10 -3.1 (-110,102)
Gender of patient (sex) -239 -212 (-332,-91)
body mass index (BMI) 519 524 (394,655)

blood pressure (BP) 324 307 ( 179,435)
tc -792 -161 (-807,232)
ldl 476 2.7 (-327,491)
hdl 101 -160 (-454,153 )
tch 177 82 ( -186, 374)
ltg 751 523 (309,791)
glu 67 61 (-53,188)
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The acceptance rate of the sequential sampling Algorithm 3 was estimated to be approximately 0.39.
In contrast, the naive rejection Algorithm 2 has an acceptance probability smaller than 10−7 (making the
event of drawing from the posterior a rare event, and the probability of acceptance a rare-event probability).

3.2 Boston Housing Dataset

As another example, we consider the Boston housing dataset from Harrison Jr and Rubinfeld (1978), which
attempts to explain housing prices in the Boston area from the p = 13 predictors given in Table 2 and
n = 506 observations. The table confirms that Algorithm 3 simulates from the posterior accurately, because
the MCMC simulations in Polson et al. (2014) suggest the same list of statistically relevant predictors
(crime levels, proximity to waterfront, number of rooms, distance to employment centers, etc) using the
shrinkage value of λ = 5.71. For this example, the acceptance rate of the sequential rejection sampler was
estimated to be approximately 0.67.

Table 2: Posterior estimates for the Boston Housing dataset using 105 iid draws.

Estimated 95%
Ord. least sq. Posterior Median credible interval

per capita crime rate by town (crim) -0.10 -0.098 (-0.16, -0.032)
proportion of zoned land (zn) 0.047 0.048 ( 0.021,0.076 )

proportion of non-retail business (indus) 0.011 -0.034 (-0.15, 0.084)
Charles River exposure (chas) 2.75 1.75 ( 0.14, 3.47)

nitric oxide pollution (nox) -12.0 -1.49 ( -6.41 , 0.70 )
number of rooms (rm) 4.61 4.079 ( 3.54, 4.62)

proportion built before 1940 (age) -0.0023 -0.010 (-0.035 , 0.015 )
distance to CBD (dis) -1.28 -1.17 (-1.54, -0.80)
highway access (rad) 0.25 0.25 ( 0.13, 0.38)
property tax rate (tax) -0.011 -0.013 (-0.020, -0.0059 )

quality of schools (ptratio) -0.73 -0.72 (-0.93, -0.51)
proportion of ethnic diversity (b) 0.011 0.010 (0.0056, 0.015)

economic status of residents (lstat) -0.48 -0.53 (-0.63,-0.44 )

4 CONCLUSIONS

Bayesian posterior simulation requires approximate MCMC simulation of random vectors in a high-
dimensional space. When the Bayesian model is simple enough and the dimension of the space is not
too large, one can often do better than approximate MCMC simulation. In this paper we showed that the
Bayesian LASSO linear model is simple enough to permit exact simulation from the posterior density. This
was achieved by exploiting the lower triangular structure of the L matrix in the QL factorization of the
regression matrix X. The lower triangular structure suggested a natural sequential simulation algorithm
that helps draw random vectors from the posterior.

Whenever it is feasible, exact simulation has the advantage that all draws from the posterior are
independent and identically distributed, thus simplifying all output analysis. In contrast, the analysis of the
MCMC output is much more difficult and subjective — it requires that we estimate a Markov chain burn-in
period and examine auto-correlation plots to decide whether the Markov chain converges fast enough to
the target density.

The proposed sampler assumes that the shrinkage parameter λ is given to us. As for future work,
one may assign a prior distribution on λ and then determine its value by making it part of the posterior
simulation output. Similar to our treatment of σ and β, the major difficulty will be in selecting a prior for
λ that will yield a posterior pdf, which is concave in λ and convex in its tuning parameters.
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5 APPENDIX

5.1 Simulating from an Exponentially Tilted Laplace Distribution

Algorithm 5 : Simulating an Exponentially twisted Laplace variable
Require: twisting parameter µ such that |µ| < 1
U, V ∼ U(0, 1), independently
if U < (1 + µ)/2 then

X ← − ln(V )
1−µ

else
X ← ln(V )

1+µ
return X distributed from the pdf Lapµ(x)

Note that when µ = 0, we revert to simulating from the untilted Laplace density: exp(−|x|)/2.

5.2 Normal-Laplace density

The normal-Laplace density, nl(z;λ, α) ∝ φ(z) exp(−λ|z − α|), has a mixture form:

w1
φ(z + λ)I{z > α}

Φ(λ+ α)
+ w2

φ(z − λ)I{z < α}
Φ(λ− α)

with weights w1,2 ∝ Φ(λ± α)/φ(λ± α). Hence, we have the following simulation algorithm.

Algorithm 6 : Simulating an normal-Laplace variable
Require: parameters λ > 0 and α ∈ R
U ∼ U(0, 1)
w1 ← Φ(λ+ α)/φ(λ+ α)
w2 ← Φ(λ− α)/φ(λ− α)
if U < w2/(w1 + w2) then

Simulate Z ∼ Normal(λ, 1), conditional on Z < α
else

Simulate Z ∼ Normal(−λ, 1), conditional on Z > α
return Z as distributed from the pdf nl(z;λ, α)

Simulating a truncated normal random variable is best accomplished using the algorithms described by
Botev and L’Ecuyer (2017). These algorithm are robust even deep into the tail of the normal distribution,
where naive approaches exhibit numerical instability and underflow errors.

5.3 Proof of Theorem

We note that the idea of solving a minimax program was used in previous works (Botev 2017; Botev
and L’Ecuyer 2015) to design efficient algorithms for simulation from the truncated student and normal

https://acems.org.au/
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distributions. The proof of this theorem is thus similar in spirit to the proofs given in those previous works.
In particular, the proof relies on the following facts (Prékopa 1973):

1. A log-concave measure P satisfies

P[X ∈
∑

iwiAi] ≥
∏
i(P[X ∈ Ai])wi

for some probability vector w. Here
∑

iwiAi is to be understood as a Minkowski sum, namely,

w1A1 + w2A2 = {w1x1 + w2x2 : x1 ∈ A1,x2 ∈ A2}.

2. If f : Rd1 × Rd2 → R is a log-concave function, then the marginal

g(x) =

∫
Rd2

f(x,y)dy

is a log-concave function as well.
3. The indicator function I[x ∈ C] of a convex setC (for example, the sub-level set of convex function)

is a log-concave function;
4. The product of log-concave functions is again log-concave.

Now consider the normalizing constant, ξ(λ, α), of the normal-Laplace density. We will show that it is
log-concave in the second argument. If E ∼ Exp(1) is an exponential r.v., then ξ can be written as

ξ(λ, α) = lnP[E > λ|Z − α|] = lnP[{λZ − λα− E < 0} ∩ {−λZ + λα+ E < 0}]

Now the sets C1 = {z−α− e/λ < 0} and C2 = {−z+α+ e/λ < 0} are convex in (z, e, α). Hence, the
intersection is also convex and the indicator function of C1∩C2 is a log-concave function of (z, e, α). Now
the joint density, φ(z) exp(−e), of the Gaussian and exponential variables, (Z,E), is also log-concave in
(z, e). Therefore, by the marginalization property above, the integral with respect to (z, e) will yield a
log-concave function in the third argument of (z, e, α). In other words, ξ(·, α) is log-concave in the second
argument. We can now address each of the following properties of the log-likelihood ψ.

Concavity in z. Inspection of ψ shows that, ignoring linear terms in z and all other variables kept
as constants, ψ is a sum of ξ(·, αj(z) − µj) terms. Using the facts: 1) αj is a linear function of z; 2) ξ
is log-concave in its second argument; 3) the (product) sum of (log-) concave functions is (log-) concave;
we conclude that ψ is concave in z.

Concavity in r. The dependence of ψ on r is given by −rη+ n ln r, which is clearly concave in r.
Convexity in η. The dependence of ψ on η is given by the expression η2/2− rη+ ln Φ(−η). Since

the linear term does not affect the convexity, we need to show that ln Φ(η) + η2/2 is convex. That this is
the case follows from the fact that

ln Φ(η) +
η2

2
= ln

∫ ∞
0

φ(x) exp(ηx)dx+ const.

is the cumulant generating function of the truncated normal distribution (truncated to (0,∞)).
Convexity inµ. ψ depends onµ through a weighted linear combination of the terms µj ,− ln(1−µ2

j ),
and µ2

j/2 + ξ(·, αj − µj). Thus, if these terms are convex, then the convexity in µ follows from the fact
that the sum of convex functions is convex.

It is clear that − ln(1−µ2) is convex, because its second derivative is 2(µ2 + 1)/(1−µ2)2 > 0. What
is less obvious is that µ22 + ξ(λ, µ) is convex in µ, because we showed above that ξ is concave in its
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second argument. To see the convexity, consider

µ2

2
+ ξ(λ, µ) =

µ2

2
+ ln

∫ ∞
−∞

φ(z) exp(−λ|z − µ|)dz

= ln

∫ ∞
−∞

φ(y) exp(−λ|y|) exp(yµ)dy

= ξ(λ, 0) + ln

∫ ∞
−∞

φ(y) exp(−λ|y|)∫
R φ(z) exp(−λ|z|)dz

exp(yµ)dy

The last expression is the constant ξ(λ, 0) plus the cumulant generating function (a function of µ) of the
density proportional to φ(y) exp(−λ|y|). Since the Laplace transform (or moment generating) function of
a density is log-convex, the cumulant generating function is convex.

Putting all results together. Finally, from all of the above we can conclude that ψ(z, r;µ, η) is a
concave-convex function that satisfies the saddle-point condition

inf
µ,η

sup
z,r

ψ(z, r;µ, η) = sup
z,r

inf
µ,η

ψ(z, r;µ, η)

Using the fact that, if f(x,y) is a convex function for each fixed y, then the pointwise supremum with
respect to y is also convex, we conclude that supz,r ψ(z, r;µ, η) is convex in (µ, η). Hence, to find the
minimum we set the gradient of ψ (with respect to (µ, η)) to zero. In other words, infµ,η supz,r ψ(z, r;µ, η)
has the same value as the concave optimization supz,r ψ(z, r;µ, η), subject to ∇µ,ηψ = 0. Therefore, this
last constrained concave optimization can be solved by setting ∇ψ = 0.

5.4 Computing the gradient ∇ψ in closed form.

Let w1,2 ∝ Φ(λ± α)/φ(λ± α) be normalized weights. Then, we can write

∂ξ/∂α = λ(2w1 − 1) =: ξ2(λ, α)

∂ξ/∂λ = λ+ α(2w1 − 1)− 2 exp(−ξ(λ, α)− α2/2) =: ξ1(λ, α)

Setting L̃ = L − diag(L) (that is, same as L, but with zeros down the main diagonal) and ξ2j :=
ξ2(λ/ljj , αj − µj), we can write the gradient ∇ψ as:

∂ψ/∂zi = −µi(liiI{i∈J } + I{i 6∈J }) +
∑

j∈J l̃jiξ2j −
∑

j 6∈J µj l̃ji

∂ψ/∂r = −η + (ν − 1)/r −
∑

j∈J γjξ2j +
∑

j 6∈J µjγj

∂ψ/∂µi = (µi − (liizi + αi)− ξ2j)I{i∈J } − (zi − 2µi/(λ
2 − µ2

i ))I{i 6∈J }

∂ψ/∂η = η − r + φ(η)/Φ(η)
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