
Precise Static Happens-Before Analysis for
Detecting UAF Order Violations in Android

Abstract—Unlike Java, Android provides a rich set of APIs
to support a hybrid concurrency system, consisting of both Java
threads and an event queue mechanism for dispatching asyn-
chronous events. In this model, concurrency errors often manifest
themselves in the form of order violations. An Android order
violation occurs when two events access the same shared object
in an incorrect order, causing unexpected program behaviors
(e.g., null pointer dereferences).

This paper presents SARD, a static tool for detecting both
intra- and inter-thread use-after-free (UAF) order violations,
when a pointer is dereferenced (used) after it no longer points
to any object (freed), through systematic modeling of Android’s
concurrency mechanism. We propose a new flow- and context-
sensitive static happens-before (HB) analysis to reason about the
interleavings between two events to effectively identify precise
HB relations and eliminate spurious event interleavings. We
have evaluated SARD by comparing against NADROID, a state-
of-the-art static order violation detection tool for Android. SARD
significantly outperforms NADROID in terms of both precision (by
reporting three times fewer false alarms than NADROID given the
same set of apps used by NADROID) and efficiency (by running
two orders of magnitude faster than NADROID).

I. INTRODUCTION

The significant growth of multi-core smart phone devices
provides unprecedented opportunities for mobile apps to per-
form sophisticated tasks that are comparable to softwares
on desktop/laptop computers. In order to explore the full
capability of multi-core mobile phones, Android provides a
rich set of APIs to support a hybrid concurrency system
consisting of both traditional Java threads and an event queue
mechanism for dispatching asynchronous events. However,
such a system introduces both intra-thread concurrency bugs
(caused by asynchronous events) and inter-thread bugs (caused
by both events and Java threads) which are extremely difficult
to detect.

Android execution is driven by asynchronous events in
event queues. An Android event can be posted into an event
queue externally via UI interactions (e.g., click and swipe) and
system notifications (e.g., activity create) or internally via call-
ing event-posting related APIs (e.g., handler.post(...)
and handler.sendMessage(msg)) in application code.
Later, Android’s Looper object constantly fetches an event
from the head of the queue and dispatches the event by
executing its corresponding asynchronous method.

Android Event Queue. An event queue follows the first-in-
first-out (FIFO) principle for dispatching events in a sequential
order. However, due to the event-driven nature of Android,
both posting and dispatching an event in the queue are non-
deterministic driven by user interactions. Worse, apart from
the main UI thread, Android allows Java multithreading and

8 public void onClick(){
9 new Thread().start();
10 }
11 public void onStop(){...}
12 }

waiting for
new events

onClick()

onStop()

onCreate()

return home screen

button clicked
activity create

post

event queue

1 class MyActivity extends Activity {
2 public void onCreate(){
3 Handler handler = new Handler();
4 handler.post(new Runnable(){
5 public void run(){...}
6 });
7 }

.

.

.

run()
.
.
.

…
…

…

state 1 state 2
state 3

state 4

state 5

Fig. 1: Asynchronous event dispatching in Android.

every thread can create and maintain its own event queue (only
one event queue for each thread), allowing events in different
queues to be executed in parallel under an unbounded number
of event interleavings, making it very difficult to reason about
the execution orders of Android events.

Figure 1 demonstrates the non-determinism when dispatch-
ing asynchronous events from the event queue of the UI thread.
The four events and their corresponding code snippets are
depicted using four different colors. The five rectangle boxes
represent the five states of the event queue. An arrow between
two states shows a (possible) state transition.

When an Android activity (e.g., MyActivity in Figure 1)
starts, the onCreate() event is automatically posted into UI
thread’s queue in order to launch the activity. Consequently,
Android’s Looper dispatches this event from the queue and
then executes its corresponding onCreate() method (line
2-6) as highlighted in yellow. At lines 4-5, a new user-
defined event run() of a Runnable class is added into
the queue via handler.post(...) as highlighted in blue.
Since every asynchronous event is dispatched in the FIFO
order and executed atomically, run() is only dispatched
after finishing executing the onCreate() method at line
6. The UI thread’s queue is allowed to receive other events
once after the onCreate() event has been processed. After
dispatching run(), the queue becomes empty and waits
for new events. As highlighted in red and green, the order
of executing events onClick() and onStop() is non-
deterministic. onClick() will be first executed if a user
clicks the corresponding GUI button. onStop() will be
executed first if the ‘home‘ button is pressed to return back to
the home screen.

Order Violations in Android. Unlike the case of the
traditional thread-based concurrency model in Java, Android
concurrency bugs often manifest themselves in the form of
order violations [1, 2]. An Android order violation occurs

1 class MyActivity extends Activity{
2 Field p = new Field();
3 Runnable a = new Runnable(){
4 public void run(){
5 p.use();}};
6 Runnable b = new Runnable(){
7 public void run(){
8 p=null;}};
9 public void onCreate(){
10 Handler handler = new Handler();
11 handler.post(a);
12 handler.post(b);
13 }
14 }

1 class MyActivity extends Activity{
2 Field p = new Field();
3 Runnable a = new Runnable(){
4 public void run(){p.use();}};
5 Runnable c = new Runnable(){
6 public void run(){p=null;}};
7 Runnable b = new Runnable(){
8 public void run(){
9 HandlerThread child =
10 new HandlerThread();
11 child.start();
12 Handler hb=new Handler(child.getLooper());
13 hb.post(c);}};
14 public void onCreate(){
15 Handler handler = new Handler();
16 handler.post(a);
17 handler.post(b);}}

onCreate()

a.run()

b.run()

Happens-Before
Order of UI Thread

false alarm
reported by

nAdroid
start a child thread

with an event queue

false alarm
reported by

nAdroid

onCreate()

a.run()

b.run()

Happens-Before
order of

Child Thread

c.run()

Happens-Before
Order of UI Thread

(a)Intra-thread happens-before relation. (b) Inter-thread happens-before relation.

Fig. 2: Examples of happens-before relation in Android: denotes the event with field use, denotes the event with field
free, and denotes a happens-before relation.

when two events access the same shared object in an incorrect
order, causing unexpected program behaviors (e.g., null pointer
dereferences). For example, given a pair of memory accesses,
e.g., L1 : p = null and L2 : .. = p.use(), where L1 in
an event e1 should always happen after L2 in another event
e2. An use-after-free (UAF) order violation occurs when e1
happens before e2, resulting in a null dereferenced (used) after
p no longer points to any object (freed). UAF order violations
in Android severely affect the user experience of an app,
e.g., unexpectedly terminating an app or being leveraged by
attackers to launch a security attack [3].

Challenges. It is challenging to find order violations in
Android due to its complicated concurrency mechanism in-
volving both Java threads and event queues. Apart from the
normal order violations caused by Java threads, where the
above mentioned two statements L1 and L2 reside in two
Java threads, Android has two unique types of order violations.
Given that L1 in e1 happens before L2 in e2, (1) an intra-
thread violation occurs if e1 and e2 are in the same event
queue, or (2) an inter-thread violation happens if e1 and e2
are in different parallel queues in two threads. Reasoning
about these two types of order violations is challenging, since
Android allows an individual thread to maintain its own event
queue, which can accept asynchronous events posted from
the queues of another thread. Furthermore, threads can also
be created via an asynchronous event, which significantly
complicates the analysis of event interleavings.

Existing Work and Limitations. Most of the existing Java-
based concurrency bug detection tools [4–21] are unaware of
Android events. Simply applying these tools for detecting or-
der violations in Android works poorly due to the complicated
concurrency model for dispatching non-deterministic events.
Existing efforts in detecting UAF order violations mostly focus
on dynamic analysis [22, 23, 1], which first collects execution
traces by exercising an app at runtime through fuzzing [22, 23]
or manual exploration [1]. Then an off-line detection on the
collected traces is performed. Due to the nature of dynamic
analysis, the dynamic race detection approaches face limited
code coverage in the presence of an unbounded number of
event interleavings. In addition, the existing tools usually
require multiple runs to generate more traces for a more

effective detection, resulting in extra runtime overheads.
Static detection of order violations will not suffer from

the above mentioned limitations. However, static techniques
for UAF [2, 24] detection are relatively unexplored due to
the difficulty in modeling abstract asynchronous events under
infinite event interleavings. The static tool SIERRA [24],
includes an event-based race detection, but does not consider
inter-thread order violations. A recent work NADROID [2]
presents a static approach to detecting order violations by
converting asynchronous events into threads and then apply-
ing a traditional data race detection tool for analyzing Java
programs [4]. However, NADROID relies on coarse-grained
flow- and context-insensitive event modeling, which misses
happens-before (HB) relations between (1) events inside one
event queue, and (2) events in different queues residing in
multiple threads, causing a large number of false alarms.

Figure 2(a) gives an intra-thread false alarm reported by
NADROID, which fails to capture the HB relation from
event a.run() (blue) to b.run() (red) due to ignoring
the program control-flows that affect the event dispatching
orders. Lines 11 and 12 in onCreate() post two events
a.run() and b.run() to the event queue with their method
bodies containing a field use p.use() and a field resetting
p = null, respectively. The UAF violation (lines 5 and 8)
reported by NADROID is a false alarm since b.run() is
always dispatched after a.run() due to the control-flow
execution order (lines 13 and 14) inside the atomic method
onCreate() for posting the two events.

Figure 2(b) demonstrates an inter-thread false alarm
reported by NADROID, which ignores calling contexts
when inferring inter-thread HB orders. The HB order of
onCreate(), a.run() and b.run() is the same as that
in Figure 2(a). The only difference is that b.run() posts a
new event c.run() at line 13 to the event queue of a parallel
thread child created at lines 9-11. NADROID conservatively
assumes event c.run() can happen in parallel with event
a.run() without performing any analysis and reports a false
order violation. However, c.run() in the child thread is
posted via the callsite at line 13 in b.run(), which must
be executed after a.run(). On the contrary, SARD is able
to infer this strict inter-thread HB relation from a.run() to

c.run() by analyzing the program control-flow from line
16 to line 17, thereby eliminating the false alarm reported by
NADROID.

Our Solution. To address the aforementioned limitations,
this paper presents SARD, a static approach to detect UAF or-
der violations, the most common type of races in Android [2].
SARD systematically models Android’s asynchronous events
to detect both intra- and inter-thread order violations. A new
flow- and context-sensitive static happens-before analysis is
proposed to reason about the interleavings between events in
a single and/or multiple event queues to identify precise HB
relations and significantly remove spurious event interleavings.
Our static happens-before relations can also be used to acceler-
ate dynamic analysis by avoiding exercising event orders that
are statically proved to be safe.

SARD performs context-sensitive analysis by distinguishing
the calling contexts leading to an API call that creates or dis-
patches an event. Our flow-sensitive analysis precisely reasons
about control-flow execution order inside an atomic method
for determining event-posting orders. In addition, NADROID
assumes that only one event queue for all events across all
threads during their static modeling, i.e., causing unsound
HB relations. SARD’s modeling is more sound to be able to
discover more UAFs than NADROID.

We have evaluated SARD using 27 real-world large An-
droid apps. Experimental results show that SARD significantly
outperforms NADROID, a state-of-the-art static Android order
violation detection tool, in terms of both precision (by report-
ing three times fewer false alarms and 3 more true alarms than
NADROID given the same set of apps used by NADROID) and
efficiency (by running two orders of magnitude faster than
NADROID).

This paper makes the following key contributions:
• We present a new static order violation detection ap-

proach by precisely reasoning about the happens-before
relations between asynchronous events in Android.

• We introduce a new flow- and context-sensitive modeling
of Android events from single and multiple event queues
to reason about event interleavings.

• We evaluate our tool on 27 real-world Android apps.
SARD significantly outperforms NADROID, the state-of-
art static tool, in terms of both efficiency (175 times
faster) and precision (1058 fewer false positives and 3
more true alarms).

II. MOTIVATING EXAMPLE

This section revisits the example in Figure 2(b) to demon-
strate how SARD precisely extracts the intra- and inter-thread
happens-before relations that are missed or incorrectly inferred
by NADROID. As shown in Figure 3(b), SARD can precisely
identify the five HB relations, i.e., onCreate() ≺ a.run(),
onCreate() ≺ b.run(), onCreate() ≺ c.run(), a.run() ≺
b.run(), a.run()≺c.run(), among which a.run()≺b.run(),
a.run() ≺ c.run() are missed by NADROID (yellow) and
b.run()≺c.run() is incorrectly introduced (green).

A. Existing Work

The missing and incorrect HB relations produced by
NADROID are due to (1) imprecise flow- and context-
insensitive modeling event interleavings in an event queue, i.e.,
missing happens-before orders. (2) an unsound assumption that
only one event queue for all events across all threads during
their static modeling, i.e., causing incorrect HB relations.

NADROID first converts all the asynchronous events into
traditional threads in order to leverage CHORD, a traditional
multi-thread race detector for Java [4]. NADROID builds a
harness main method for an Android app and creates artificial
threads to invoke methods of asynchronous events in the
harness main. Since CHORD is not aware of Android events,
NADROID generates conservative happens-before relations of
the converted threads to model Android event execution orders.
NADROID’s modeling is imprecise with conservative assump-
tions that onCreate() happens before all other Android
events (including callbacks and runnable events) of an activity.
onDestroy() is assumed to happen after all other callbacks.
As depicted in Figure 3(b), NADROID conservatively assumes
that onCreate() happens before a.run(), b.run() and
c.run(), while two HB relations (yellow) are missed.

As highlighted in green, NADROID is also unsound by
missing may-happen-in-parallel relations between two events
on different queues in parallel threads, thereby producing
incorrect happens-before orders. NADROID infers an incorrect
happens-before relation between b.run() and c.run(),
since NADROID assumes a single unique event queue. How-
ever, the two events actually reside in parallel event queues in
different threads, i.e., UI and child threads.

B. SARD

SARD performs flow- and context-sensitive analysis that
correctly handles the calling contexts and program control-
flows when analyzing the event-posting and event-dispatching
related Android APIs. SARD precisely models an abstract
event via a calling context under an abstract thread.

SARD first performs a pre-analysis to model the four
abstract events with its corresponding context information
given in Figure 3(c). The context of each abstract event is a
stack represented by a sequence of event-posting invocations.
For example, the context of an abstract event c.run() is
represented as [l17, l13] created via invocations l17 and l13.

SARD provides fine-grained modeling of events by distin-
guishing event queues in different threads. Abstract threads
including the default UI thread and child threads at a thread
creation site (e.g., l9 - l10) are modeled. SARD determines
the thread where an event resides in by analyzing the An-
droid handler object. For example, event c.run() is
in the child thread since c.run() is posted to child
via the handler created at line l12. Figure 3(c) gives the
four abstract events and their corresponding contexts, from
which we can directly obtain their event-post relations. We
use 〈onCreate(), []〉@UI

l16−−→ 〈a.run(), [l16]〉@UI to denote
that onCreate() in the event queue of UI thread posts

events on different threads

l1 class MyActivity extends Activity{
l2 Field p = new Field();
l3 Runnable a = new Runnable(){
l4 public void run(){p.use();}};
l5 Runnable c = new Runnable(){
l6 public void run(){p=null;}};
l7 Runnable b = new Runnable(){
l8 public void run(){
l9 HandlerThread child =
l10 new HandlerThread();
l11 child.start();
l12 Handler hb=new Handler(child.getLooper());
l13 hb.post(c);}};
l14 public void onCreate(){
l15 Handler handler = new Handler();
l16 handler.post(a);
l17 handler.post(b);}}

onCreate() ≺ a . ru n()
onCreate() ≺ b . ru n()
onCreate() ≺ c . ru n()

HB relations detect by both tools

a . ru n() ≺ b . ru n()
a . ru n() ≺ c . ru n()

HB relations missed by nAdroid
but detected by SARD

b . ru n() ≺ c . ru n()
Incorrect false HB relations
detected by nAdroid

ctx: empty
t(thread): UI

onCreate()

(a) Example code (b) HB relations
(c) Abstract event Modeling of SARD

ctx: [l16]
t(thread): UI

a.run()

ctx: [l17]
t(thread): UI

b.run()
ctx: [l17, l13]
t(thread): UI

c.run()

Event-post relation detected:

onCreate()

a.run() b.run()

c.run()

5 6

X

3

1 2

4

(e) All happens-before relations
after analyzed by SARD

(d) Before analyzed by SARD
no happens-before relation

HB relaiton
false HB by nAdroid
missed HB by nAdroid

(f) Process of building HB relations

onCreate()

a.run() b.run()

c.run()
5 = + 43

6 2 3+=

4 = +1 2 +

1 = events on same thread

2 = events on same thread

3 =

⟨o n Create(), []⟩@UI l16 ⟨a . ru n (), [l16]⟩@UI
⟨o n Create(), []⟩@UI l17 ⟨b . ru n (), [l17]⟩@UI
⟨b. ru n (), [l17]⟩@UI l13 ⟨c . ru n (), [l17, l13]⟩@child

l16 dom l17

⟨o n Create(), []⟩@UI l16 ⟨a . ru n (), [l16]⟩@UI

⟨b. ru n (), [l17]⟩@UI l13 ⟨c . ru n (), [l17, l13]⟩@child

⟨o n Create(), []⟩@UI l17 ⟨b . ru n (), [l17]⟩@UI

Fig. 3: An motivating example. 〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty means that event x with context cx in event queue of thread tx

posts event y with context cy to event queue at thread ty with statement s. s dom s′ signifies that s dominate s′ in the
control-flow graph.

a.run() to the UI’s event queue under the invoking state-
ment at line l16. Similarly, the other two event-posting rela-
tions are 〈onCreate(), []〉@UI

l17−−→ 〈b.run(), [l17]〉@UI and
〈b.run(), [l17]〉@UI

l13−−→ 〈c.run(), [l17, l13]〉@child.
Given the abstract event modeling and event-posting rela-

tions, we will start inferring HB relations (Figure 3(f)) for
detecting UAF order violations. Initially, there are no HB
relations for the four events, implying that any two events
may happen in parallel as illustrated in Figure 3(d).

From the first two event-posting relations 1 and 2 in Fig-
ure 3(c), we can infer that 〈onCreate(), []〉 ≺ 〈a.run(), [l16]〉
and 〈onCreate(), []〉 ≺ 〈b.run(), [l17]〉. Because SARD’s
modeling can distinguish the queues of different threads, i.e.,
b.run() and c.run() are running on different threads
UI 6= child as identified by 3 in Figure 3(c), resulting in
a may-happen-in-parallel relation instead of an unsound HB
relation reported by NADROID, which assumes a single event
queue for all threads.

By considering the control-flows, NADROID determines that
a.run() and b.run() are posted in order as denoted by
the dominant relation l16 dom l17. With this flow-sensitive
information together with 1 and 2 , NADROID can easily
infer 4 , i.e., a.run() happens before b.run().

We can obtain 5 , i.e., a.run() happens before c.run()
since 4 indicates that a.run() is executed before
b.run(), which has posted the c.run() for execution (3).

Since onCreate() happens before b.run(), as identi-
fied by 2 , the HB relation 6 holds transitively for any other
events (e.g., c.run()) posted by b.run() (3).

Finally, based on the HB relations in Figure 3(e), SARD can

Abstract Event
Modeling

Static Happens-
Before Analysis

Static Order
Violation
Detection

Reported
Order Violations

SARD

Fig. 4: An overview of SARD.

prove the absence of UAF violations in this example because
the field usage at l4 in a.run() always happens before the
null pointer assignment at l6 in c.run() according to 5 ,
which is missed by NADROID, causing a false alarm.

III. APPROACH

In this section, we introduce the approach used in our
tool SARD. Figure 4 gives an overview of SARD. SARD first
models all the context-sensitive abstract events and identifies
the event-posting relations. Then, SARD performs a flow-
and context-sensitive analysis to infer the happens-before(HB)
relations for all the abstract events. Finally, SARD detects order
violations between two events based on their HB relations
and the field usage in the two events. SARD applies a light-
weight feasible path analysis to further prune out false alarms
by identifying spurious UAF pairs.

A. Abstract Event Modeling

Abstract events are modeled context-sensitively to dis-
tinguish events under different calling contexts. A context-
sensitive abstract event is denoted by 〈e, c〉, where the context
c ∈ C of an event e is a stack represented by a sequence
of call statements leading to the executing method of e. An
abstract thread t is the thread where an abstract event resides

1 Runnable a = new Runnable(){
2 public void run(){...}};
3 public void foo(){
4 activity.runOnUiThread(a);}

e: a.run()
c: [line 4]
t: UI thread(null)
⟨a . ru n (), [l4]⟩@UI

activity-based

1 Runnable a = new Runnable(){
2 public void run(){...}};
3 public void foo(){
4 Thread child = new Thread(a);
5 child.start();}

thread-based

Three Event-Creation APIs Abstract Event⟨e, c⟩@t

1 Runnable a = new Runnable(){
2 public void run(){...}};
3 HandlerThread child =
 new HandlerThread();
4 child.start();
5 Handler handler =
 new Handler(child.getLooper());
6 handler.post(a);
7 handler = new Handler();
8 handler.post(a);

handler-based

e: a.run()
c: [line 8]
t: UI thread(null)

⟨a . ru n (), [l8]⟩@UI

e: a.run()
c: [line 6]
t: child(line 3)
⟨a . ru n (), [l6]⟩@child

(a) handler-based API example

(b) activity-based API example

(c) thread-based API example

e: a.run()
c: [line 5]
t: child(line 4)
⟨a . ru n (), [l5]⟩@child

Fig. 5: Examples of modeling abstract events based on API
calls.

in. In SARD, we use the allocation sites of thread objects to
represent abstract threads. If an event runs in the UI thread
that does not have allocation sites in application code, we use
UI to represent its abstract thread. We use 〈e, c〉@t to denote
that a context-sensitive event e runs in an abstract thread t
under context c.

Each abstract event is modeled based on a sequence
of event-creation API calls s ∈ I. We systematically
models 22 APIs which are classified into three categories
(1) handler-based, (2) activity-based and (3)
thread-based. In Figure 5, the left column gives the code
examples for the three categories of event-creation APIs.

The API methods in the first category are the methods of
class Handler, an internal class in Android. Figure 5(a)
gives an example to demonstrate that two abstract events
created under different contexts running on their correspond-
ing threads via the handler-based API. At lines 6 and
8, handler.post(a) uses a handler object to post the
runnable event (a.run()) to the event queues of the UI and
child threads, respectively.

The second category creates an event via the API
runOnUiThread(runnable) provided by Android’s
Activity class. All events created via Activity are
posted only to the queue of UI thread. For example, at line 4
in Figure 5(b), activity.runOnUiThread(runnable)
posts a runnable object to UI’s event queue.

The last thread-based category contains the API meth-
ods that fork a traditional Java thread. For the statement at
line 5 in Figure 5(c), it is treated as posting an asynchronous

m: the containing method of a call statement s

e is callback method

〈〈e, ∅〉@UI
[C-CALLBACK]

s : handler-based API call e = getTgt(s)
〈m, c〉 c′ = c.append(s) t = getThread(handler)

〈e, c′〉@t
[C-POST]

s : activity-based API call e = getTgt(s)
〈m, c〉 c′ = c.append(s)

〈e, c′〉@UI
[C-UI]

s : thread-based API call e = getTgt(s)
〈m, c〉 c′ = c.append(s) t = getAllocSite(thread)

〈e, c′〉@t
[C-THREAD]

s /∈ I 〈m, c〉 c′ = c.append(s)

〈m′, c′〉
[C-CONTEXT]

Fig. 6: Rules for abstract event modeling.

event to a special thread child whose queue only contains
this event.

Figure 6 gives the rules to model context-sensitive abstract
events by handling the three above mentioned types of API
calls. Rule [C-CALLBACK] builds an abstract event for every
Android callback method, which runs in the UI thread. For
every callback event e, its context is c = ∅, since it is created
in the Android framework but not through the event-creation
APIs in the application code.

If a call statement s invokes a handler-based API, we
apply [C-POST] to model the corresponding abstract event.
getTgt(s) returns the corresponding event posted by s. For
example, if s is handler.post(runnable), getTgt(s) returns
run() of the runnable object. getThread(handler) is used
to get the abstract thread based on the object handler
used in s. With event e, context c′ and abstract thread t,
we create a context-sensitive event 〈e, c′〉@t. Figure 5(a)
gives two context-sensitive events created by this rule, i.e.,
〈a.run, [l6]〉@child and 〈a.run, [l8]〉@UI .

For a call s (e.g., activity.runOnUiThread(a) in
Figure 5(b)) that invokes an activity-based API method,
we only create an event running in the UI thread with its cor-
responding context following [C-UI]. Figure 5(b) shows an ex-
ample for creating a context-sensitive event 〈a.run, [l4]〉@UI .

Rule [C-THREAD] is applied to build an abstract event if
s is a thread-based API call (e.g., child.start()
in Figure 5(c)). The abstract thread t is modeled by
getAllocSite(thread), which finds the thread allocation
site, where the thread object is created. By applying this rule,
we extract a context-sensitive event 〈a.run, [l6]〉@child as
illustrated in Figure 5(c).

For a call statement s that does not invoke any event-posting
API denoted by s /∈ I, we apply [C-CONTEXT] to build new
contexts on method m′ invoked by s. Based on the context c
of the method m, which is the containing method of s, a new
context c′ is created by appending s to c.

Once the abstract events are modeled, we construct an
event-posting relation between different events. For an in-
voking statement s of event method e′, if its containing

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty tx = ty

〈ex, cx〉 ≺ 〈ey, cy〉
[INTRA-POST]

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty

〈ex, cx〉@tx
s′−→ 〈ez, cz〉@tz

ty = tz s dom s′

〈ey, cy〉 ≺ 〈ez, cz〉
[INTRA-SAME]

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty

〈ez, cz〉@tz
s′−→ 〈ew, cw〉@tw

〈ex, cx〉 ≺ 〈ez, cz〉 tx = tz

〈ey, cy〉 ≺ 〈ew, cw〉
[INTRA-DIFFERENT]

ex, ez are callback events

〈ex, cx〉@tx
s−→ 〈ey, cy〉@ty

tx = ty 〈ex, cx〉 ≺ 〈ez, cz〉
〈ey, cy〉 ≺ 〈ez, cz〉

[INTRA-INFER]

〈ey, cy〉@ty
s−→ 〈ez, cz〉@tz

〈ex, cx〉 ≺ 〈ey, cy〉
〈ex, cx〉 ≺ 〈ez, cz〉

[COMBO]

Fig. 7: Rules for detecting happens-before relations.

method could be reached in the call graph from event method
e without passing through other event methods, we build
〈e, c〉@t

s−→ 〈e′, c′〉@t′ to denote that event e in abstract thread
t under context c posts e′ to the queue of thread t′ under
context c′ using statement s.

B. Static Happens-Before Analysis

Given the abstract events, SARD builds the Happens-Before
(HB) relations between two events to identify every safe use-
free pair 〈suse, sfree〉. This ensures that a field use statement
s use in one event always happens before the free statement
s free in another event.

An abstract event can be an Android callback event or
a normal event (built via the three types of API calls in
the application code). We first build the HB relations be-
tween Android’s callback events running on the UI thread.
When creating an Android Activity or a Service compo-
nent, event onCreate() is firstly invoked before any other
callback events. Therefore, we create the HB relations from
onCreate() to every other callback event. Similarly, all
other callback events happen before onDestroy() since it
is the last to be invoked when exiting an Android component.

Next, SARD performs a flow- and context-sensitive analysis
to build the HB relations (1) between two normal events or
(2) between a callback event and a normal event following
the rules in Figure 7. We use 〈ex, cx〉 ≺ 〈ey, cy〉 to denote an
HB relation from 〈ex, cx〉 to 〈ey, cy〉, where event ex under
context cx always happens before ey under context cy .

[INTRA-POST] extracts the happens-before relations be-
tween two events that have event-posting relations. For an
event 〈ey, cy〉 posted by event 〈ex, cx〉, if they are in the
same thread tx = ty , we build 〈ex, cx〉 ≺ 〈ey, cy〉. Let us
revisit the example in Figure 3, onCreate() happens before
both a.run() and b.run() based on this rule. Because of
our precise model, we know that b.run() does not happen
before c.run(), because these two events will be running
on different threads.

[INTRA-SAME] defines the HB relations between two events
posted by the same event 〈ex, cx〉 by considering the control
flow information between the two events. In this rule, 〈ey, cy〉
and 〈ez, cz〉 are both posted by 〈ex, cx〉 using statements s
and s′. We use s dom s′ to signify that s dominates s′ in
the control-flow graph, i.e., every path from the method entry
of event 〈ex, cx〉 to s′ must go through s. Based on this
information and the FIFO policy for an event queue, we know
that 〈ey, cy〉 is posted before 〈ez, cz〉. If 〈ey, cy〉 and 〈ez, cz〉
are in the same thread, we know that 〈ey, cy〉 must happen
before 〈ez, cz〉. In Figure 3, we find that a.run() happens
before b.run() by applying this rule.

[INTRA-DIFFERENT] builds the HB relations for two events
〈ey, cy〉 and 〈ew, cw〉, which are posted by two different events
〈ex, cx〉 and 〈ez, cz〉, respectively. We can obtain that 〈ey, cy〉
happens before 〈ew, cw〉 if (1) 〈ey, cy〉 and 〈ew, cw〉 are in the
same abstract thread, and (2) 〈ex, cx〉 happens before 〈ez, cz〉.

[INTRA-INFER] is used to model the HB relations between
a callback event and a normal event posted by a callback
event. We build this rule based on the Android event-driven
mechanism by which the UI thread can only execute one event
at a time and no other callback events (e.g., onClick())
can be posted to UI thread’s event queue if an existing
event on the UI is executing. In this rule, we can infer
〈ey, cy〉 ≺ 〈ez, cz〉 if there exists a callback event 〈ex, cx〉
such that (1) 〈ex, cx〉 ≺ 〈ez, cz〉 holds, i.e., the callback event
〈ez, cz〉 can only be posted into UI’s queue after executing
〈ex, cx〉 and (2) 〈ex, cx〉 has already posted 〈ey, cy〉 into UI’s
queue. Therefore, 〈ey, cy〉 always happens before 〈ez, cz〉.

Given an HB relation 〈ex, cx〉 ≺ 〈ey, cy〉, we can easily
build 〈ex, cx〉 ≺ 〈ez, cz〉 if 〈ez, cz〉 is posted by 〈ey, cy〉.
Rule [COMBO] can establish intra-thread or inter-thread HB
relations where 〈ex, cx〉 and 〈ez, cz〉 can be either in the same
or different threads. In Figure 3, onCreate() and a.run()
both happen before c.run() are inferred based on this rule.

C. Static Order Violation Detection

After building the HB relations for all the abstract events,
we detect UAF order violations. For every event, we collect its
field usage operations, i.e., field use and object free statements.
SARD regards each statement that dereferences a field as a field
use suse and the statement that sets a field to null as a field
free sfree. We use the alias analysis in [25] to collect every
candidate pair 〈suse, sfree〉, where two operations that access
the same object and the two field usage statements suse and
sfree are from different events. The set P represents all the
UAF pairs detected by SARD, where suse || sfree denotes that

P = {〈suse, sfree〉 ∈ P | suse || sfree sfree ⇒ suse}

suse and sfree from two happen-in-parallel events, i.e., no HB
relation between these two statements can be obtained from
our static HB analysis. sfree ⇒ suse denotes a UAF-feasible
path satisfying that (1) the path is a control-flow feasible from
sfree to suse, and (2) there is no assignment to initialize the
field object between sfree to suse along this path.

SARD performs a light-weight path-sensitive analysis by
analyzing the immediate branch conditions of two statements
suse and sfree, where the two events suse and sfree run on
the same thread.

1 public void onCreate(){
2 field = null;
3 finish();}

1 public void onCreate(){
2 field = null;
3 field = new Field();}

1 public void onCreate(){
2 field = getField();
3 field.use();}

1 public void onCreate(){
2 field = new Field();
3 field.use();}

1 public void onCreate(){
2 if(field != null)
3 field.use();}

(a)

(c)

(f)

(d)

1 public void onCreate(){
2 field = null;
3 field = getField();

(b)

(e)

Fig. 8: Infeasible path examples.

Figure 8 gives six typical examples of infeasible paths.
Figure 8(a) demonstrates the situations when a null check
happens before a field use statement. With such a check,
the use statement will never be executed after a field free
statement.

Figure 8(b) and (c) show the scenarios when a field as-
signment statement is executed before field use statements.
In SARD, an assignment statement can be either a statement
directly assigning a new value to the field or indirectly via An-
droid’s system methods (e.g., activity.getIntent()).
We assume that assigning a value to a field by invoking any
system method will initialize the field. Figure 8(d) and (e)
depict the assignment statements after the free statements. All
these four examples illustrate infeasible paths that can never
trigger any UAF order violation due to the fact that the field
object is initialized before any use.

In Android, finish() can be invoked to terminate an
Android component. Figure 8(f) shows that if there is an in-
vocation activity.finish() after a field free statement,
no other events in this component can be executed, resulting
in an infeasible path from sfree to suse.

IV. EVALUATION

The objective of our evaluation is to demonstrate that SARD
can effectively detect both intra- and inter-thread UAF order
violations with low false alarms and high efficiency in real-
world Android apps. For the same set of apps, SARD sig-
nificantly outperforms NADROID [2], a state-of-the-art static

analysis tool, in terms of both efficiency (by running 175 times
faster than NADROID) and precision (by reporting three times
fewer false alarms and identifying 3 more true alarms than
NADROID). In addition, SARD also achieves a false negative
rate that is two times lower than NADROID on the apps with
the ground truth UAF order violations.

A. Implementation

SARD is built upon FLOWDROID [26], a static taint analysis
for Android apps. We use FLOWDROID to decompile an
Android application and then obtain all callback methods of
the application. FLOWDROID uses the SPARK [27] pointer
analysis in SOOT [25] framework to construct a call graph.
SARD uses the call graph and the alias information provided
by FLOWDROID and SPARK for our field usage analysis to
support our static happens-before inference.

B. Experimental Setup and Methodology

In order to fairly compare SARD against NADROID, we use
all the 27 real-world Android apps also used in NADROID.
These applications exhibit a wide range of event usages
through a wide variety of event creation APIs. Since our
approach adopts a more precise flow- and context-sensitive
modeling of Android concurrency system, SARD can suc-
cessfully identify happens-before relations that are missed
by NADROID, thereby eliminating spurious UAF violation
pairs (Section III-B). SARD also applies a light-weight path-
sensitive analysis to discover UAF infeasible paths to further
remove more false alarms (Section III-C).

To further validate the effectiveness of SARD, we use 8
Android apps that has been manually injected with real UAF
order violations to demonstrate that SARD can find UAF order
violations in a low false negative rate.

Our experiments are conducted on a quad-core i5-6500
3.2GHz machine with 16GB RAM running Ubuntu 16.04 LTS.
The analysis time of every app is the average of three runs. Our
evaluation answers the following research questions (RQs):
• RQ1. Can SARD effectively and efficiently detect UAF

order violations in real-world Android apps?
• RQ2. Does SARD perform better than NADROID a stat-

of-the-art static tool in detecting UAF order violations?
• RQ3. Can SARD recall more manually injected UAF

order violations than NADROID?

C. RQ1: Effectiveness and Efficiency of SARD

In this section, we evaluate the overall performance and the
effectiveness of SARD in removing false alarms.

Table I illustrates the effectiveness of SARD in analyzing
27 large real-world Android apps, consisting of 537K lines
of Java code in total. This table is partitioned into five parts
(separated by “||”). The first part gives the information of the
apps used in our evaluation, including the names of the apps
and their lines of code (LOC).

The second part of Table I gives the number of raw potential
order violations generated by SARD, which will gradually
scrutinized by our precise HB analysis. A candidate violation

TABLE I: The effectiveness and efficiency of SARD in analyzing 27 real-world Android apps.

App Name LOC #Potential
Violations

#Feasible
Violations

#False Positives Eliminated by SARD #Violations
Reported Time (secs)[CALLBACK

RELATION] [INTRA-POST] [INTRA-SAME] [INTRA-DIFFERENT] [INTRA-INFER] [COMBO] Total

SoundRecorder 1194 9 9 9 0 0 0 0 0 9 0 0.96
Swiftnotes 1571 0 0 0 0 0 0 0 0 0 0 1.02
Photoaffix 1924 379 66 38 14 0 0 1 8 61 5 17.50
MLManager 2073 64 0 0 0 0 0 0 0 0 0 11.79
InstaMaterial 2248 102 3 0 0 0 3 0 0 3 0 2.46
Tomdroid 2372 0 0 0 0 0 0 0 0 0 0 1.66
ToDoList 2637 44 10 10 0 0 0 0 0 10 0 4.47
SGT puzzle 2944 585 7 0 7 0 0 0 0 7 0 1.14
Aard 3684 718 121 0 28 0 18 0 15 61 60 (8) 15.44
Clipstack 3948 0 0 0 0 0 0 0 0 0 0 1.99
KissLauncher 5210 0 0 0 0 0 0 0 0 0 0 1.42
Zxing 6453 113 15 4 1 0 0 5 5 15 0 9.34
DashClock 10147 25 9 0 2 1 2 0 4 9 0 2.49
Dns66 10423 11 7 7 0 0 0 0 0 7 0 12.60
Music 10518 22633 3545 388 379 0 610 1159 955 3491 54 28.02
CleanMaster 11014 19 17 0 0 0 7 0 0 7 10 15.98
Omninotes 13720 2395 116 0 44 12 6 0 54 116 0 30.29
Solitair 15478 18 0 0 0 0 0 0 0 0 0 7.82
MyTracks 1 27080 2458 467 65 8 0 0 2 0 75 392 (45) 12.07
Mms 27578 2657 1066 63 4 0 0 4 78 149 917 20.91
Browser 30675 10647 788 271 84 3 118 158 147 781 7 76.26
ConnectBot 32645 150 44 30 0 0 0 0 1 31 13 (13) 80.47
MyTracks 2 37031 10894 938 55 203 152 4 3 0 417 521 (52) 62.56
MiMangaNu 37827 6 0 0 0 0 0 0 0 0 0 5.21
QKSms 56082 493 45 0 0 0 0 0 1 1 44 (28) 20.90
K9-Mail 78437 2413 255 116 41 0 0 0 20 177 78 63.81
Firefox 102658 20721 1134 6 385 7 8 0 48 454 680 (1) 66.63
Total 537571 77554 8662 1062 1200 175 776 1332 1336 5881 2781 (147) 575.19

pair generated by SARD has two parts: (1) a pair of conflict
operations (i.e., a free statement in event ex and a use
statement in event ey) on the same field object, and (2) the
corresponding contexts of the two events 〈ex, cx〉 and 〈ey, cy〉.

The third column of Table I gives the afore-mentioned
potential order violations in each app without applying any
refinement. The fourth column gives the remaining number of
violation pairs after we have applied our feasible path analysis
as discussed in Section III-C.

The third part in Table I ranges from Column 5 to Column
11. The first six columns, respectively, illustrate the capa-
bilities of each rule of our model (Figure 7) in eliminating
false positives by working together to extract the HB rela-
tions in an app. Furthermore, the last column gives the total
number of false positives removed by SARD’s precise HB
relations. For all the apps, the HB relations between only
Android callback events help us eliminate a total of 1062
false pairs. Furthermore, SARD’s HB relation rules [INTRA-
POST], [INTRA-SAME], [INTRA-DIFFERENT], [INTRA-INFER]
and [COMBO] are effective in removing 1200, 175, 776, 1332
and 1336 false pairs, respectively. In total, 5881 false alarms
have been removed from the original 8662 feasible violations.

Finally, the fourth part gives the number of UAF order
violations reported by SARD for each app, where the number
in brackets is the true violations checked manually. In total,
2781 violations are reported by SARD and 147 of them are
true UAF order violations based on our manual inspection.

Figure 9 visualizes the data in Table I. The deep blue slice
in Figure 9(a) represents 75% of false positives removed by
SARD HB relation rules. This part is further decomposed into
six slices in the pie chart given in Figure 9(b) with each slice
representing the percentage of false positives removed by each
rule of our HB analysis.

Remaining

32%(2781)

Filtered Out

68%(5881)

[CALLBACK RELATION] 18.06%

[INTRA-POST] 20.40%

[INTRA-DIFFERENT] 13.20%

[INTRA-SAME] 2.98%

[COMBO] 22.72%

[INTRA-INFER] 22.65%

(a) (b)

Fig. 9: Pie charts for visualizing the data in Table I.

Table I illustrates the analysis time (including call graph
construction, our abstract event modeling, static HB analysis
and static order violation detection) spent on each app in the
last column. For the 27 Android apps, SARD spends only 21.3
seconds for each app on average and 575.19 seconds in total.
This confirms that SARD is efficient in analyzing the real-
world Android apps.

D. RQ2: Comparing SARD with NADROID in Effectiveness
and Efficiency

In this section, we compare SARD with NADROID in finding
UAF order violations in real-world Android apps. Since both
SARD and NADROID do not find any violations in 11 apps
listed in Table I, the remaining 16 apps are used in this
experiment. As the order violations reported by NADROID
are not differentiated by the contexts of events that have field
usage operations, we merge the contexts of events among our
reported violation pairs and then compare with NADROID.
For effectiveness, we compare the order violations that are
detected as potential violations by both tools. For efficiency,
we measure the analysis time of SARD and NADROID.

TABLE II: Comparing SARD with NADROID in effectiveness and efficiency. SARD ∩ NADROID indicates the number of
UAF order violations that are both reported by SARD and NADROID. SARD \ NADROID represents the number of UAF
order violations reported by SARD alone and NADROID \ SARD represents the number of UAF order violations reported by
NADROID alone.

App Name #Violations Reported SARD \ NADROID NADROID \ SARD Time (secs)
NADROID SARD NADROID ∩ SARD #True Positives #False Positives Total #True Positives #False Positives Total SARD NADROID

PhotoAffix 4 5 0 0 5 5 0 4 4 17.50 502.22
Aard 48 13 13 0 0 0 0 35 35 15.44 4367.66
KissLauncher 36 0 0 0 0 0 0 36 36 1.42 586.93
Zxing 2 0 0 0 0 0 0 2 2 9.34 3828.89
Dns66 13 0 0 0 0 0 0 13 13 12.60 703.58
Music 207 48 38 0 10 10 0 169 169 28.02 664.09
CleanMaster 0 6 0 0 6 6 0 0 0 15.98 8496.46
Solitaire 1 0 0 0 0 0 0 1 1 7.82 388.68
MyTracks 1 80 52 48 2 2 4 0 32 32 12.07 2708.79
Mms 312 182 120 0 62 62 0 192 192 20.91 1119.86
Browser 0 7 0 0 7 7 0 0 0 76.26 3338.98
ConnectBot 13 13 13 0 0 0 0 0 0 80.47 1265.98
MyTracks 2 71 74 56 1 17 18 0 15 15 62.56 14983.00
QKSMS 19 11 11 0 0 0 0 8 8 20.90 12603.63
K-9 Mail 336 76 20 0 56 20 0 316 316 63.81 25477.80
FireFox 468 68 31 0 37 57 0 437 437 66.63 11095.86
Total 1610 555 350 3 202 205 0 1260 1260 502.37 88303.51

Table II compares SARD and NADROID in more detail. Its
second and third columns show the number of order violations
reported by NADROID and SARD, respectively. For the 16
apps, SARD reports 555 violation pairs while NADROID re-
ports 1610 ones. Among the violations detected by these tools,
350 of them are reported by both tools and these violations
contain all the 88 true violations mentioned in NADROID [2].
Note that each tool reports some UAF order violations that
are missed by its counterpart. We break down the 205 (1260)
violations reported by SARD (NADROID) alone and manually
check them to see whether they are false positives or not to
illustrate the precision of SARD and NADROID.

SARD reports fewer false alarms than NADROID with a
good precision. The fifth to the seventh columns of Table II
illustrate the number of true positives and false positives that
are reported by SARD alone in the 16 apps. After manual
inspection, we found that SARD detects 202 false and 3 true
violations, including 2 in MyTracks 1 and 1 in MyTracks 2.
All the three true UAFs are missed by NADROID.

We give an example in MyTrack 2 in Figure 10 to illustrate
a typical true UAF case missed by NADROID. NADROID fails
to detect that the event run() executes in a different thread,
since NADROID relies on some filters to remove excessive
false alarms heuristically. It missed the violation pair between
line 11 and line 14 due to its aggressive null check filter at
line 10. However, this check does not guarantee the safety of
field use at line 11.

Meanwhile, we have also checked the 1260 violation pairs
that are detected by NADROID only, which are shown in the
eighth to tenth columns of Table II. We found that all the 1260
ones are false alarms.

In total, SARD reports 555 violations with 464 false alarms
(and 91 true errors) and NADROID reports 1610 violations with
1522 false alarms (and 88 true errors). We have found 3 more
true pairs by issuing three times fewer false positives.

1 DataSourceManager dataSourceManager;
2 Handler handler;
3 public void onStart(){
4 dataSourceManager = new DataSourceManager();
5 HandlerThread ht = new HandlerThread();
6 ht.start();
7 handler = new Handler(myThread.getLooper());
8 handler.post(new Runnable(){
9 public void run(){
10 if(dataSourceManager!=null){
11 dataSourceManager.update();}
12 }});}
13 public void onStop(){
14 dataSourceManager = null;}

Fig. 10: True order violation example in MyTracks 2.

SARD is much more efficient than NADROID, the analysis
times of SARD and NADROID for analyzing each app are
shown in the last two columns of Table II. For the 16 apps
used, NADROID takes 88303.51 seconds while SARD is 175
times faster using only 502.37 seconds to finish the analysis.
The longer analysis time of NADROID is due to that it converts
all Android’s asynchronous events into native Java threads,
and then applies a heavyweight race detector (e.g., CHORD)
to detect potential UAF order violations in a large number of
converted threads which takes a significantly long time.

E. RQ3: Comparing SARD with NADROID in False Negatives

In this section, we compare the false negative rate of SARD
with NADROID in finding UAF order violations of Android
apps. We use eight Android apps also used by NADROID,
These apps were manually injected 28 UAF order violations,
which can be seen as the ground truth of this experiment.
Table III illustrates the number of violations that are recalled
by SARD and NADROID.

TABLE III: Comparing SARD with NADROID in false neg-
atives with regard to the manually injected 28 UAF order
violations used in [2]. The numbers in bold indicate that SARD
recalls more real violations than NADROID does.

App Name #Manually Injected
Ordering Violations

#Ordering Violations
Detected by NADROID

#Ordering Violations
Detected SARD

Aard 1 1 1
Browser 3 1 3
K9 Mail 1 1 1
Mms 6 4 5
Music 6 5 5
MyTracks 2 1 1 1
SGT Puzzles 9 8 9
Tomdroid 1 0 0
Total 28 21 25

For the eight apps, SARD recalls 25 real UAF order viola-
tions in total while NADROID recalls only 21 violations. For
the app Browser, SARD finds two more order violations. For
Mms and SGT Puzzles, SARD finds one more violation in each
app. In total we recall 4 more order violations than NADROID,
which shows that SARD has a low false negative rate (10.7%)
than NADROID (25.0%) in finding UAF order violations for
Android apps. We have manually checked the app code to
see why SARD outperforms NADROID. For Mms, NADROID
miss 1 more order violation than SARD because the containing
method of field access statements is not reachable in its call
graph. The other 3 order violations missed by NADROID in
Browser and SGT Puzzles are due to that NADROID incorrectly
filters them out by its unsound filters ([2], §6.2).

F. Discussion

Despite that a majority of false positives have been removed,
the precision of SARD depends on its underlying pointer
analysis and the feasible control-flow paths between a UAF
pair.

Pointer Analysis. SARD leverages the pointer analysis
SPARK [27] in the SOOT [25] framework. SPARK could only
perform a conservative flow- and context-insensitive may-alias
analysis, which can affect the precision of both our field usage
analysis (two fields aliased in a UAF pair reported by SPARK
are actually not aliased) and the interprocedural call graph (a
use which is reachable from a free determined by the imprecise
call graph).

Implicit Control-Flow Path. Another cause of imprecision
is the implicit UAF-infeasible paths between two field usage
statements. Although our light-weight path-sensitive analysis
successfully prunes out a lot of false alarms by analyzing
their immediate contradict branch conditions, there are still
situations that SARD is not able the detect. For example, a
branch condition has complicated data flow dependence to
perform the null check before a field usage statement.

V. RELATED WORK

Detecting use-after-free races in Android is a new research
area relative to traditional Java race detection. There are both
static and dynamic approaches proposed.

Static Analysis for Android. The work most related to
our static tool is NADROID [2]. It converts asynchronous

events into native Java threads and leverages the Java race
detector CHORD [4] to perform race detection. Section IV
shows that SARD outperforms NADROID in both effectiveness
and efficiency.

Recently, a static tool, SIERRA [24], has been introduced for
detecting event-based races in Android applications. SIERRA
applies an action-sensitive pointer analysis and builds happens-
before relations between asynchronous events for event-based
race detection. However, unlike SARD, SIERRA only includes
the situation that event-base races happen within the same
thread and SIERRA also ignores the contexts of events, which
will induce different running threads and HB relations with
others. Currently, the source code of SIERRA is not available
yet, so we are not able to compare our tool with it.

Some other static tools also have been proposed to detect
races in Android. ASYNCHRONIZER [28] is a static refactoring
tool to extract long-running operations in AsyncTask (an
encapsulated thread class). However, this tool focuses on
AsyncTask only and is not able to detect the races caused
by asynchronous events. DEVA [29] is another static tool that
detects races in Android. This work is also limited for only
detecting races between two callbacks without modeling of
their HB relations. The limitation makes the tool suffer from
significant false positives and false negatives.

Dynamic Analysis for Android. Dynamic tools [1, 23] are
developed to detect races in Android at runtime. Their ap-
proaches first collect execution traces, which are generated by
running Android applications on devices with their customized
ROM. They then perform an off-line HB relations analysis to
detect races on the collected traces. EventRacer [22] uses a
novel off-line analysis algorithm to improve the scalability and
precision of the previous approaches. There is also an approach
ERVA [30] that is only used to verify the results of dynamic
tools. Recently, the authors of [31, 32] also introduce new
approaches to build the HB relations for Android apps based
on execution traces. The results of the tools developed can
also be leveraged to detect races. While reporting fewer false
positives, dynamic tools suffers from limited code coverage
and extra runtime overheads.

Race Detection for Java. There are quite a few existing
approaches that can detect data races in traditional Java
programs. There are static tools, based on, for example,
locksets [4–7], type systems [8–10] and model checking [11].
There are also dynamic analysis tools [12–21]. These tools
are not aware of Android’s asynchronous events, making them
ineffective in detecting UAF races in Android.

VI. CONCLUSION

In this paper, we have presented a new static tool, SARD,
for detecting UAF order violations in Android apps. In SARD,
we have systematically modeled the asynchronous events in
Android and introduced a flow- and context-sensitive analysis
to build precise happens-before relations between two events.
According to our evaluation, SARD outperforms NADROID
by removing its false alarms substantially and discovering its
missed true violations with significantly less analysis times.

REFERENCES

[1] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L.
Pereira, G. A. Pokam, P. M. Chen, and J. Flinn, “Race
Detection for Event-driven Mobile Applications,” in Pro-
ceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2014.

[2] X. Fu, D. Lee, and C. Jung, “nAdroid: Statically De-
tecting Ordering Violations in Android Applications,” in
Proceedings of the 2018 International Symposium on
Code Generation and Optimization, 2018.

[3] CVE-2017-0780, https://www.cvedetails.com/cve/CVE-
2017-0780/.

[4] M. Naik, A. Aiken, and J. Whaley, “Effective Static
Race Detection for Java,” in Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2006.

[5] D. Engler and K. Ashcraft, “RacerX: Effective, Static
Detection of Race Conditions and Deadlocks,” SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, 2003.

[6] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH:
Context-sensitive Correlation Analysis for Race Detec-
tion,” in Proceedings of the 27th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, 2006.

[7] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static
Race Detection on Millions of Lines of Code,” in Pro-
ceedings of the the 6th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software
Engineering, 2007.

[8] C. Flanagan and S. N. Freund, “Type-based Race De-
tection for Java,” in Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and
Implementation, 2000.

[9] C. Boyapati, R. Lee, and M. Rinard, “Ownership Types
for Safe Programming: Preventing Data Races and Dead-
locks,” in Proceedings of the 17th ACM SIGPLAN
Conference on Object-oriented Programming, Systems,
Languages, and Applications, 2002.

[10] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH:
Practical Static Race Detection for C,” ACM Trans.
Program. Lang. Syst., vol. 33, no. 1, pp. 1–55, 2011.

[11] S. Qadeer and D. Wu, “KISS: Keep It Simple and
Sequential,” in Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Im-
plementation, 2004.

[12] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt,
W. Chen, and W. Zheng, “RACEZ: A Lightweight and
Non-invasive Race Detection Tool for Production Ap-
plications,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011.

[13] X. Xie and J. Xue, “Acculock: Accurate and Efficient
Detection of Data Races,” in Proceedings of the 9th
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, 2011.

[14] C. Flanagan and S. N. Freund, “FastTrack: Efficient and
Precise Dynamic Race Detection,” in Proceedings of
the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[15] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, “Eraser: A Dynamic Data Race Detector
for Multithreaded Programs,” ACM Trans. Comput. Syst.,
vol. 15, no. 4, pp. 391–411, 1997.

[16] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack: Efficient
Detection of Data Race Conditions via Adaptive Track-
ing,” in Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, 2005.

[17] T. Zhang, C. Jung, and D. Lee, “ProRace: Practical
Data Race Detection for Production Use,” in Proceed-
ings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, 2017.

[18] T. Zhang, D. Lee, and C. Jung, “TxRace: Efficient Data
Race Detection Using Commodity Hardware Transac-
tional Memory,” SIGOPS Oper. Syst. Rev., vol. 50, no. 2,
pp. 159–173, 2016.

[19] B. Lucia and L. Ceze, “Cooperative Empirical Failure
Avoidance for Multithreaded Programs,” in Proceedings
of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, 2013.

[20] J. Erickson, M. Musuvathi, S. Burckhardt, and
K. Olynyk, “Effective Data-race Detection for the Ker-
nel,” in Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, 2010.

[21] K. Veeraraghavan, P. M. Chen, J. Flinn, and
S. Narayanasamy, “Detecting and Surviving Data Races
Using Complementary Schedules,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, 2011.

[22] P. Bielik, V. Raychev, and M. Vechev, “Scalable Race
Detection for Android Applications,” in Proceedings of
the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, 2015.

[23] P. Maiya, A. Kanade, and R. Majumdar, “Race Detection
for Android Applications,” in Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2014.

[24] Y. Hu and I. Neamtiu, “Static detection of event-based
races in android apps,” in Proceedings of the Twenty-
Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS ’18, 2018, pp. 257–270.

[25] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam,
and V. Sundaresan, “Soot - a Java Bytecode Optimization
Framework,” in Proceedings of the conference of the
Centre for Advanced Studies on Collaborative research,
1999.

[26] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel,

“FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android
Apps,” in Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, 2014.

[27] O. Lhoták and L. Hendren, “Scaling Java Points-to Anal-
ysis Using SPARK,” in Proceedings of the International
Conference on Compiler Construction, 2003.

[28] Y. Lin, C. Radoi, and D. Dig, “Retrofitting Concur-
rency for Android Applications Through Refactoring,” in
Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2014.

[29] G. Safi, A. Shahbazian, W. G. J. Halfond, and N. Med-
vidovic, “Detecting Event Anomalies in Event-based
Systems,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015.

[30] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verify-
ing and reproducing event-based races in android apps,”
in Proceedings of the 25th International Symposium on
Software Testing and Analysis, ser. ISSTA 2016, 2016,
pp. 377–388.

[31] P. Maiya and A. Kanade, “Efficient computation of
happens-before relation for event-driven programs,” in
Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA
2017, 2017, pp. 102–112.

[32] C.-H. Hsiao, S. Narayanasamy, E. M. I. Khan, C. L.
Pereira, and G. A. Pokam, “Asyncclock: Scalable in-
ference of asynchronous event causality,” in Proceed-
ings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’17, 2017, pp. 193–
205.

