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Abstract—Recognizing human actions from the video streams
has become one of the very popular research areas in computer
vision and deep learning in the recent years. Action recogni-
tion is wildly used in different scenarios in real life, such as
surveillance, robotics, healthcare, video indexing and human-
computer interaction. The challenges and complexity involved in
developing a video-based human action recognition system are
manifold. In particular, recognizing actions with similar gestures
and describing complex actions is a very challenging problem.
To address these issues, we study the problem of classifying
human actions using Convolutional Neural Networks (CNN) and
develop a hierarchical 3DCNN architecture for similar gesture
recognition. The proposed model firstly combines similar gesture
pairs into one class, and classify them along with all other
class, as a stage-1 classification. In stage-2, similar gesture pairs
are classified individually, which reduces the problem to binary
classification. We apply and evaluate the developed models to
recognize the similar human actions on the HMDB51 dataset.
The result shows that the proposed model can achieve high
performance in comparison to the state-of-the-art methods.

Index Terms—Action Recognition, Neural Networks, Deep
Learning, Computer Vision

I. INTRODUCTION

Human action recognition is one of the most popular

research area in computer vision. Diverse applications are

designed based on the human action recognition technology

such as, surveillance, video indexing, human-computer in-

teraction, customer behaviour monitoring and analysis, etc

across multiple domains. However, recognizing human actions

accurately from video stream is a challenging task due to

occlusion, low resolution, cluttered backgrounds and view-

point variations, etc. [1] [2] [3]. Unlike action recognition

from still images, videos include temporal information and

genetic data augmentation which is essential to the classify

actions/gestures more accurately. In early stages, researchers

made assumptions on certain scale or fixed viewpoint when

the video was captured. However, those assumptions doesn’t

reflect the real-world environment. Besides, early research also

followed the two-steps approach to design the system. First,

the hand-craft features are extracted from the video frames,

followed by the design of classifiers based on the extracted

features. Thus, most of the early research works calculate the

motion and texture descriptors using spatio-temporal interest

points which are built manually. In the real-world scenario,

the performance of these hand-crafted features is low as

(a) Golf and Pick

(b) Swing and Throw

(c) Chew and Laugh

(d) Turn and Walk

Fig. 1. Different classes of human activities with similar gestures [4]

they are highly problem-depended and lacks generalisization.

Especially, for human action recognition, different actions may

correspond to totally different patterns due to the environment

changes and motion patterns.

Deep learning models [5] [6] [7] have become a priority

choice to deal with the computer vision problems due their im-

pressive performance in various computer vision related tasks.

These models have the advantage of learning features from
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hierarchical neural network layers and automatically build the

high-level representation from the raw video inputs. Hence,

unlike the traditional hand crafted feature extraction methods,

the CNN based feature extraction and classification process is

embedded in an end-to-end pipeline. In short, a deep learning

model applies multiple techniques such as local perception,

weight sharing, multi-convolution kernel, down-pooling, etc.

to study the features from the image or frames. The classifiers

can be trained by either supervised or unsupervised methods,

and the final result can be generated by the ensembling the

results of multiple network layers. Deep learning techniques

are widely used in visual object detection and tracking [8],

handwriting and signature recognition [9], natural language

processing [10], human action recognition [11], and image

segmentation [12], etc. Convolutional Neural Network (CNN)

is one of the popular deep learning models in computer vision

research area. Convolutional neural networks are a type of

deep models which include an input layer and an output

layer. Between the two layers, there are multiple convolutional

layers, pooling or sub-sampling layers, fully connected layers

and normalization layers, which can be termed as hidden

layers. Many research works have been done and showed

that, with a well trained CNN model [13], the classifier could

achieve high performance on object detection and recognition.



CNN has been wildly used for processing still images,

because of its ability on feature construction through the

different deep layer models. In this paper, we discover the use

of the CNN models on video-based human action recognition.

A simple way to apply the CNN on videos will be in the

following steps. First, extract the frames from a video. Then,

treat each frame as individual images and apply CNN models

to recognize human actions at the image level. Thus, the

approaches with the above strategy have been used in the

early research works to analyze the human actions in videos

[14]. However, the early works have the drawbacks such as

they did not consider the temporal and motion information

in the video frames. To adequately address this problem, A

3DCNN architecture [15] has been proposed by Ji et al. In the

proposed method, the video will be analyzed by the multiple

convolutional layers with 3D convolution and both the spatial

and the temporal features are captured from three adjacent

frames. Therefore, the motion and temporal information can

be analyzed simultaneously.

Indeed, the 3DCNN approaches improved the performance

of the action recognition. However, human actions in videos

are not as simple as static objects. With the different actions,

the body parts will follow different sequence of gestures listed

Figure 1. The gestures will be very similar in the most of

videos frames when the people perform certain actions. For

instance, playing golf is very similar as picking up something,

because in the most frames people are supposed to bend their

back which is very similar as in the Figure 1 (a). Similar

situations will happen incase of ”Swing and Throw”(Figure

1(b)), ”Chew and Laugh” (Figure 1(c)) and ”Turn and Walk”

(Figure 1(d)). Hence, the drawback of CNN in videos are

obvious, as CNN will generate almost the similar features on

some of the actions with the similar gestures.

Thus, the performance of the classifier will be decreased

by the mis-classified classes. To analyze the similar actions

effectively and accurately, we propose a hierarchical classifica-

tion model, in which the first layer classifies multiple classes,

whereas, the second layer focus on classifying similar gestures.

Specifically, in the first layer, confusing/similar gesture pairs

are merged to form single classes. Hence, the problem space

for first level of classification is reduced to less number of

classes and higher accuracy can be achieved. In the second

level of classification, the merged pair of classes are handled

explicitly. In the second level of the classification the problem

space is reduced to two classes. A binary classifier is applied

to the respective merged pair of classes in order to resolve the

confusion. The overall performance is measured by combining

the first and second layer results.

We applied the proposed method on the HMDB51 dataset,

which consist of 51 different actions recorded by Serre Lab

from Brown University. We ensemble the actions contains the

similar gestures (i.e., Turn and Walk, etc.) into single ac-

tions/classes as the input. The proposed system achieved high

performance compared with the baseline CNN models. Our

experiment also shows that the developed hierarchical model

outperforms other baseline models on the similar actions.

TABLE I
MERGING THE SIMILAR GESTURE CLASSES

Classes Accuracy reported
in [16]

Merged Classes

Jump 0.38(low)
New Class 1

Catch 1.00

Kick Ball 0.31(low)
New Class 2

Punch 0.51

Laugh 0.41
New Class 3

Chew 0.47

Pick 0.27(low)
New Class 4

Golf 1.00

Sit 0.39(low)
New Class 5

Stand 0.27(low)

Throw 0.16(low)
New Class 6

Swing Baseball 0.16(low)

Turn 0.222(low)
New Class 7

Walk 0.38(low)

Wave 0.14(low)
New Class 8

Shake Hands 0.82

Sword 0.13(low)
New Class 9

Sword Exercise 0.42

The major contributions of this work can be summarised as

follows:

• We concentrate on mis-classification problem on similar

gestures, instead of focusing on the whole dataset to

improve the classification performance.

• We propose to ensemble the results from a hierarchi-

cal 3DCNN architecture (H3DCNN) to boost the per-

formance of the final output. The performance of the

classifier on similar actions will increase the combined

global results and binary classifier results.

• We evaluate the hierarchical models on the HMDB51

dataset in comparison to the baseline CNN methods.

Experimental results show that the proposed method

outperforms other baseline methods on similar gesture

actions, and also on the overall accuracy.

The rest of this paper is organized as follows: We introduce

some related work for action recognition in Section II. The

dataset preparation and hierarchical 3DCNN architecture will

be discussed in Section III. The experiment result has been

reported in Section IV. The discussion and conclusion are in

the Section V and VI respectively.

II. RELATED WORK

In this section, we will briefly review the recent works

related to our proposed model including 3DCNN methods and

motion-related methods.

The basic idea of the 3DCNN is to perform the 3D con-

volution on videos which was proposed by Ji et al. [15]. The

3DCNN architecture generates the features of grey, gradient

and optical flow by the hardwired layer from adjacent frames

as different channels. Then, it applies convolution and sub-

sampling on multiple channels. The final feature representation

will be combined from all the channels. Based on the 3DCNN

architecture, Tran et al. [17] proposed an optimized temporal

kernel length for 3DCNN with a small 3 × 3 × 3 kernel

and built a new 3DCNN network with VGG-style. The new



3DCNN network named as C3D, contains eights convolutional

layers, five pooling layers, and two fully connected layers,

which could generate generic, efficient and compact features.

The approaches mentioned above were trying to obtain tempo-

ral information from 3 to 16 video clips, respectively. To get

a stabilized temporal information, Varol et al. [18] introduce

a long-term temporal convolution (LTC) networks. Unlike

3DCNN, the LTC require more extended video clips with the

length of 60 to 100 frames, which could demonstrate high-

quality optical flow as the input.

Compared to the CNN based approaches; many works ap-

plied the motion related information as an input to CNN, such

as, optical flow and motion vectors to incorporate temporal

information. The two-stream model became a popular and

important method for action recognition. Simonyan et al. [19]

proposed an architecture to apply the optical flow as the input

to obtain the motion information. The temporal and spatial

information was processed in parallel, and fused with the

softmax scores from the two streams. Feichtenhofer et al.

[20] considered both spatial fusion and temporal fusion and

proposed an improved two-stream model with bilinear fusion

and 3D pooling. Adel et al. [16] aggregated the temporal

coherent descriptors such as Histogram of oriented gradients

(HOG), histogram of optical flow (HOF), motion boundary

histogram (MBH) and fisher vectors (FVs) into a multiple

kernel learning (MKL) algorithm which performs the optimal

kernel and parameters from a large set of kernels to reduce

the bias. In this paper, we use the joint sequence to represent

high-level motion information which is more unique to specific

actions than the optical flow. Also, we propose to fuse the two

streams with a long-term convolutional network to achieve

high accuracy on similar actions.

III. METHODOLOGY

This section describes the proposed architecture used to

perform the task of action recognition on similar gestures.

This section details about the dataset preparation method and

presents the proposed hierarchical classification architecture.

A. Data preparation

Experiments are conducted on HMDB51 dataset, which

is a state-of-art dataset to evaluate the proposed architecture

(Figure 2). HMDB51 is a large and generic available public

dataset for real-world actions collected by SERRE LAB from

Brown University and firstly released on ICCV 2011 [4]. The

videos of this dataset were collected from the Youtube and

some movies which include a variety of actions with different

human gestures including human body movements, body and

objects interactions and some facial actions. It contains 7000

video clips distributed across 51 action classes, in which each

class has around 100 video clips. It is a challenging dataset

because the video clips of each class has different person

performing the same gesture. Each subject performing the

same action on different gestures and viewpoints have been

recorded into 4 to 6 video clips. The proposed architecture

is capable of handling the mis-classified actions which have

similar gestures.

The most important process is how the similar gesture

classes are merged to form a single class. To determine which

classes to merge, we define two rules:

• Rule 1: Choose the classes with highest mis-classification

rate, and

• Rule 2: Choose two classes which have similar gestures

and have maximum confusion.

In order to identify the similar and confusing gesture

classes, the overall performance of the state-of-the-art method

[16] reported recently, was considered. Table I provides details

about the performance of the similar and most confusing

gestures, and also provides the information about the gesture

pairs merged together to form single class. Similar gesture

actions such as, ”Jump & Catch”, ”Pick & Golf”, ”Laugh &

Chew” and ”Sit & Stand” etc. are chosen and merged into one

class as shown in Figure 3. After the merging the classes, the

number classes in the complete dataset (HMDB51) will reduce

from 51 classes to 42 classes. Moreover, the size/number

of samples in the complete dataset remains the same. This

process will decrease the mis-classification rate and improve

the overall accuracy of the dataset, as the dataset now has

unique gestures.

B. Architecture Description

Figure 2 presents the proposed action recognition architec-

ture. The hierarchical structure have two stages. The proposed

architecture doesn’t depend on any particular dataset and is

generic. It can be applied to model real-world scenarios for

gesture recognition. For the current work, HMDB51 dataset

was considered for experiments and validating the proposed hi-

erarchical architecture. The input data from HMDB51 dataset

has 51 classes initially. After merging the similar gesture class

pairs based on the rules defined in the previous section, 42

classes were formed.

The first stage of the proposed hierarchical classifica-

tion model focuses on classifying the generic classes (com-

plete dataset), whereas, the second stage resolves the simi-

lar/confusing gestures. Once an input video is classified to

one of the similar/confusing gesture class by the first stage, the

sample is passed to the second stage for further classification.

The second stage comprises of a different binary classifiers,

one for each of the confusing gesture pairs. The target binary

classifier as selected automatically based on the first stage

classification results. Additionally, in the first stage if a sample

video is not classified as one of the similar gesture class,

the sample video is not passed to the second stage and the

predicted result is considered as the final result.

The final results are calculated by combining the global clas-

sification result from Stage 1 and similar gesture classification

result from Stage 2. To obtain the final result of the original

dataset, we will remove the result of the similar gesture classes

in Stage 1 and consider the result from the binary classification

in Stage 2.
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Fig. 4. Architecture of 3DCNN

C. Experiments setup

We use the Tensorflow [21] and Keras [22] frameworks to

construct and train the neural networks. These frameworks are

able to assist us to design the neural network architectures

and algorithms for executing on GPUs. In our setup, we

use NVIDIA P6000 and CUDA 8 platform to complete the

experiments. We also applied a two level 3DCNN neural

network with same kernel size 3× 3 in Tensorflow and Keras

for both global classification and similar gesture classification

as shown in Figure 4. During the experiment, 60% and 30%

of the whole dataset will be set as training and testing set

respectively, and the rest of 10% will be set as validation set.

We use the original RGB frames as the input and the result

will be the benchmark to compare the performance between

the system include and exclude the proposed hierarchical

architecture.

IV. EVALUATION

In this section, our proposed methodology is evaluated on

the HMDB51 dataset. The accuracy (ACC) is used as an

evaluation metric. The proposed 3DCNN architecture achieved

the accuracy of 0.46 as reported in Table II. The resultant low

accuracy classes is grouped into the pair of new classes based

on the similar gestures. The total classes number of classes

after grouping reduced from 51 to 42. It is demonstrated that

classification accuracy increased to 0.52 globally after new

classes. However, the reported increased classification result

does not represent the performance on the whole dataset.

Therefore, to assess the performance on the whole dataset,

binary classification is applied to the new pair of classes

and finally extending it to the classification result for all the

classes in the dataset. The inclusion of binary classifiers in

the hierarchical architecture further boost the performance to

0.632 accuracy.

The average accuracy for the newly paired classes is re-

ported in Table III. After the low accuracy performance of

18 classes, the classes have been merged into 9 classes.

The results show that the average accuracy of each pair

is overwhelming the result [16]. A significant increase in

accuracy can be seen in the classes (Jump & Catch) from

TABLE II
RECOGNITION ACCURACY ON THE HMDB51 DATASET

Method Accuracy

3DCNN on original dataset 0.46
H3DCNN on merged dataset 0.52
H3DCNN with binary classification 0.632

0.69 to 0.82. It is also demonstrated that huge improvement

of 0.16 to 0.82 can be seen for the classes Throw & Swing

Baseball.

The binary classification result for a new pair of classes

is reported in Table IV. In comparison with [16], improved

accuracy of sit action from 0.39 to 0.49, and the pick action

have been improved from 0.27 to 0.94. Similar improvement

in accuracy is noted for the classes (Wave, Throw, and Jump).

The losses in Figure 5 shows that for the most confused

pairs (Throw & Swing Baseball) and (Turn & Walk), the

loss dramatically declined after 100 epochs. Although the

performance of some of the actions may have a slight decrease

in accuracy, with our proposed hierarchical approach, the

global performance is increased.

Table V shows the comparison between the proposed

method and some of the state-of-the-art methods. In the

HMDB51 dataset, we achieved an accuracy of 0.632. Thus our

proposed architecture with two-stages can effectively classify

actions on a global level, and similar gestures on the local level

in the hierarchy thus outperforming the state-of-art methods

[16].

V. DISCUSSION

Our results show that the H3DCNN architecture indeed

improves the performance of the classifiers. Although some

of the unconfused classes can achieve a high classification

accuracy around 90%, on average, we take an improvement on

both globe accuracy and accuracy on similar gesture actions.

We combine the convolutional and binary classification to

achieve this improvement. This combination obtained better

globe results and boost the results on similar classes compare

with the state-of-arts works. Using 3DCNN combine with

other methods such as LSTM does not achieve as same as



TABLE III
COMPARISON OF AVERAGE ACCURACY ON PAIRED CLASSES

Similar Gesture Pair Accuracy reported in [16] Proposed Method

Jump & Catch 0.69 0.82

Kick Ball & Punch 0.41 0.95

Laugh & Chew 0.44 0.86
Pick & Golf 0.64 0.95

Sit & Stand 0.33 0.76

Throw & Swing Baseball 0.16 0.82

Turn & Walk 0.3 0.72
Wave & Shake Hands 0.48 0.8

Sword & Sword Exercise 0.28 0.84

Throw Swing Baseball

(a) Throw and Swing Baseball

Turn Walk

(b) Turn and Walk

Fig. 5. The training loss and validation loss for the binary classification with
the most confusing gestures

TABLE IV
COMPARISON OF ACCURACY FOR EACH CLASS IN PAIRS AFTER BINARY

CLASSIFICATION

Classes Accuracy reported
in [16]

Proposed Method

Jump 0.38 0.95
Catch 1.00 0.77
Kick Ball 0.31 0.83

Punch 0.51 1.00

Laugh 0.41 0.93
Chew 0.47 0.44
Pick 0.27 0.94

Golf 1.00 0.94
Sit 0.39 0.49

Stand 0.27 0.66

Throw 0.16 0.7

Swing Baseball 0.16 0.93
Turn 0.222 0.57

Walk 0.38 0.81

Wave 0.14 0.55
Shake Hands 0.82 0.88

Sword 0.13 0.83

Sword Exercise 0.42 0.83

TABLE V
COMPARISON OF RECOGNITION ACCURACY ON THE HMDB51 DATASET

WITH STATE-OF-ART METHODS

Method Accuracy

LSTM mode [23] 0.44
Two-stream CNN [19] 0.594
Learning to rank [24] 0.618
Coherence learning to rank with MKL [16] 0.62
Proposed Method 0.632

performance with our architecture, which can be explained

with the advantage of binary classification.

Dynamic analysis and evaluation are also critical, in this

work we only use 3DCNN as both globe classifier and binary

classifier. There could be other classifiers can achieve a better

result, which we will explore it in the future work. By joining

other classifiers or methods, we could test different parameters

which may improve the result as well. Also, we only test the

result on the single HMDB51 dataset, which we obtain high

performance. However, there are still many datasets contains

actions with similar gestures. Future work will be dedicated

into two parts. The first part is to test different methods or

algorithms on multiple datasets, in which select and build the

dataset with similar gestures will be considerable work. And

the second part will design a system which can automatically



pair the misclassified classes in the pre-processing stage.

The future work will be applying the proposed approach

on the multiple datasets such as UCF101 and Youtube Action

datasets. By evaluating the results, we will redesign the CNN

network model in stage 2 and also design the end-to-end

approach to make the system efficiency.

VI. CONCLUSION

In this paper, we design a new approach to handle the

actions with similar gestures to improve the overall accuracy

of a gesture recognition system. Analysis showed that a major

reason for low performance is due to the confusion among the

similar gestures. Hence, we focus on resolving the confusion

among the class with similar gestures, in the current work.

A generic hierarchical classification model is proposed in

this work, which can be applied to any datasets/real-world

application involving gesture recognition. The first stage clas-

sifies the individual class as well as the new class formed

by merging the similar gestures. In the second stage, binary

classification is used to resolve the confusion among the

similar gesture classes. Experimental results indicate that the

proposed approach outperforms not only other neural network

architectures but also the methods which uses 3DCNN. Over-

all, our method achieves better performance on HMDB51

dataset, compared to the state-of-the-art action recognition

approaches.
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