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Abstract 28 

The global challenge of understanding and forecasting ecosystem responses to climate 29 

extremes and climate change is addressed in this review of research enabled through 30 

environmental research infrastructure (RI) provided by Australia's Terrestrial Ecosystem 31 

Research Network (TERN).  Two primary climatic drivers of ecosystem structure and 32 

function in Australia are fire and aridity, to which Australian flora and fauna has shown 33 

marked adaptability.  Australian vegetation shows resilience to climate extremes of flooding 34 

rains, droughts and heatwaves such that variability in primary productivity of Australian 35 

vegetation has a tangible effect on the global carbon cycle.  Nonetheless, Australian flora and 36 

ecosystems could be vulnerable to projected climate change (e.g., to increasing vapour 37 

pressure deficit).  Refugia are also vulnerable to climate change, with conditions in these 38 

areas already near the tipping point for a change in community composition.  Ensuring 39 

genetic diversity during directional change in climate (e.g., increasing aridity) requires 40 

proactive approaches to conservation and restoration projects.  To address these challenges, 41 

TERN provides environmental research infrastructure (RI) at three scales of observation: i) 42 

environmental monitoring using remote sensing techniques at a landscape and continental 43 

scale; ii) a spatially extensive network of ecosystem monitoring plots; and iii) intensely 44 

measured sites collecting detailed data on ecosystem processes.  Through partnerships with 45 

international environmental RIs, TERN enables research that addresses global challenges, on 46 

the first steps toward the forecasting of ecosystem–climate interactions. 47 

Keywords 48 

Environmental research infrastructure, Terrestrial Ecosystem Research Network TERN, 49 

Australia, global challenges, climate extremes, climate change, adaptation, carbon cycle 50 

Page 2 of 41AUTHOR SUBMITTED MANUSCRIPT - ERL-106820.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 3 

Introduction 51 

As global climate change becomes more difficult to ignore, there is an urgent need to 52 

understand how terrestrial ecosystems can be expected to respond to the changes they 53 

experience.  Ecosystem responses to climate change and extremes of variability include 54 

increasing drought-induced tree mortality and associated forest dieback (Allen et al., 2010; 55 

Anderegg et al., 2013; McDowell and Allen, 2015), changing distributions of species and 56 

loss of habitat (McCallum et al., 2014; Prober et al., 2015), rising rates of soil heterotrophic 57 

respiration (Bond-Lamberty et al., 2018), and reductions in primary productivity and soil 58 

organic matter (Ciais et al., 2005; Crowther et al., 2016).  However, our understanding of 59 

ecosystem responses to climate change and variability has lagged far behind our ability to 60 

predict those responses using models.  Environmental research infrastructure (RI) is required 61 

at national, regional, continental and global scales to address important environmental 62 

challenges such as the impacts of climate change, coral bleaching, biodiversity threats, 63 

geohazards and extreme events.  Establishing a coherent RI across a diverse range of 64 

scientific disciplines and contributing networks is a vital challenge to solve, thus creating a 65 

goal for developing cooperation amongst environmental RI organisations, government and 66 

industry for the shared purpose of addressing global challenges. 67 

The Terrestrial Ecosystem Research Network (TERN) is Australia's terrestrial ecosystem 68 

observatory, providing environmental RI at three scales of observation (Table 1 and Fig. 1):  69 

(i) ecosystem surveillance monitoring plots from which spatial changes in biodiversity are 70 

monitored continentally, and temporal changes over long timescales (5–10 years) 71 

(Tokmakoff et al., 2016; Guerin et al., 2017); (ii) ecosystem processes 'SuperSites' equipped 72 

with eddy covariance flux towers and from which temporal changes in ecosystem structure 73 

and function are monitored at a high level of detail in a spatially limited number of locations 74 

(Beringer et al., 2016; Karan et al., 2016; van Gorsel et al., 2018); and (iii) landscapes, 75 
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spatially distributed soil, environmental monitoring and remote sensing products at 76 

continental spatial scales (Grundy et al., 2015; Mahoney et al., 2016).  TERN provides data 77 

infrastructure and analytic services to integrate across the three scales of observation, 78 

delivering open access to data publishing (Bissett et al., 2016; Medeiros and Katz, 2016; 79 

Lowe et al., 2017), virtual computing facilities for data users (Guru et al., 2016) and analysis-80 

code commercialisation (Isaac et al., 2017).  Internationally, environmental RI observatories 81 

like TERN are joined together with international partners (e.g., the Strategic Collaboration 82 

Council, ILTER, OzFlux, NASA, FLUXNET, NEON, CERN, SAEON, ICOS) to enable 83 

research which addresses global challenges like that of ecosystem responses to climate 84 

change and variability. 85 

In this letter, we review research across TERN's scales of observation and through 86 

TERN's international partners for addressing the global challenge of understanding and 87 

Figure 1.  Map of TERN infrastructure including flux towers in New Zealand as part of TERN Oz-
Flux.  © 2019 TERN at the University of Queensland, used by permission.
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 5 

predicting terrestrial ecosystem responses to climate change and extreme variability.  88 

Characteristics of Australia's sclerophyllous flora point to the ancient development of fire in 89 

shaping extensive open ecosystems (> 80 Mya; Carpenter et al., 2015).  Development of fire 90 

has been associated with increasing aridity, for which the earliest evidence of arid-adapted 91 

vegetation appeared more than 30 Mya (Martin, 2006).  Ecosystem responses to fire and 92 

aridity will thus be reviewed first, followed by a review of ecosystem responses to Australia's 93 

highly variable modern climate regime, which was more recently established (during the 94 

early Pleistocene, 2 Mya; Martin, 2006).  Ecosystem responses to climate extremes are 95 

further explored for each extreme, presented in sections focused upon (i) an extremely wet 96 

period which occurred since TERN's establishment in 2009 and (ii) the dry extreme, which is 97 

associated with drought and heatwave.  We will then finish with a section on ecosystem 98 

responses to climate change, the most recent of forces to affect ecosystems in Australia and 99 

globally.  Examples from the literature were obtained upon review of the TERN publications 100 

catalogue (https://www.tern.org.au/Brochures-Publications-pg27411.html#Publications).  101 

Refer to the Supplementary Information for references from the TERN catalogue which were 102 

cited in this letter. 103 

TERN and global cooperation 104 

TERN was established in 2009 by the Australian government through the National 105 

Collaborative Research Infrastructure Strategy (NCRIS) to meet several objectives:  to foster 106 

scientific interactions in the environmental sciences, to establish a national terrestrial site and 107 

observing network, to facilitate access to high-quality environmental data, and to provide a 108 

bridge between environmental science and policy (Thurgate et al., 2017).  TERN was 109 

originally developed as a network of networks, some of which were established wholly 110 

within TERN to fill gaps amongst existing networks (Thurgate et al., 2017).  This combined 111 

approach of joining pre-existing and new networks across the environmental space was 112 
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 6 

particularly effective at avoiding duplication (Thurgate et al., 2017) and thus reducing 113 

establishment costs.  After expending the capital costs of establishing TERN's continental RI, 114 

the first challenge involved reducing the scope of the RI to fit within the given operations 115 

budget whilst retaining a consistent, continental scope.  Integration of TERN RI began by 116 

extensive consultation which resulted in the grouping of observational infrastructure by scale 117 

of measurement, ultimately leading to TERN's current three scales of observation. 118 

Integration across TERN's three scales of observation began in the research community 119 

(Ma et al., 2013; Barraza et al., 2014; Bradford et al., 2014; Joiner et al., 2014; Mitchell et 120 

al., 2014; Barraza et al., 2015; Broich et al., 2015).  Examples of multiscale integration 121 

across TERN RI include:  through remote-sensing calibration/validation activities (e.g., 122 

through NASA SMAP cal/val; Jones et al., 2017), by informing model parameterisation 123 

(Haverd et al., 2013) and for evaluating model predictability (Haughton et al., 2018b).  With 124 

endorsement from the TERN Advisory Board, TERN continues to foster increasingly close 125 

integration across three scales of measurement through regular executive group meetings 126 

Table 1.  List of physical and data research infrastructure (RI) operated by TERN.  P:  Ecosystem 
processes; L:  Landscapes; S:  Ecosystem surveillance; DS:  Data services and analytics. 

RI	
   Scale	
   Reference	
  
Acoustic	
  recorders	
   P	
   Karan	
  et	
  al.	
  (2016)	
  
Airborne	
  and	
  satellite	
  remote	
  sensing	
  products	
   L	
   Held	
  et	
  al.	
  (2015)	
  
Biomassa	
   L,	
  P	
   Karan	
  et	
  al.	
  (2016)	
  
Data	
  products	
  and	
  tools	
   DS	
   	
  
Flux	
  towers	
   P	
   Beringer	
  et	
  al.	
  (2016)	
  
Herbaria	
  specimens	
   S	
   Tokmakoff	
  et	
  al.	
  (2016);	
  

Guerin	
  et	
  al.	
  (2017)	
  
Leaf	
  area	
  index	
   S,	
  P	
   Macfarlane	
  et	
  al.	
  (2007a);	
  

Macfarlane	
  et	
  al.	
  (2007b);	
  
Macfarlane	
  et	
  al.	
  (2014)	
  

Mangrove	
  floristics	
   L	
   	
  
Meteorological	
  and	
  soil	
  sensors	
   P	
   Beringer	
  et	
  al.	
  (2016)	
  
Permanent	
  plots	
   S	
   Tokmakoff	
  et	
  al.	
  (2016);	
  

Guerin	
  et	
  al.	
  (2017)	
  
Phenocams	
   L,	
  P	
   Karan	
  et	
  al.	
  (2016)	
  
Photopoints	
   S,	
  P	
   	
  
Soil	
  and	
  landscape	
  Grid	
  of	
  Australia	
   L	
   Grundy	
  et	
  al.	
  (2015)	
  
Soil,	
  vegetation	
  and	
  eDNA	
  samples	
   S	
   Lemetre	
  et	
  al.	
  (2017)	
  
Technical	
  personnel	
  to	
  operate	
  and	
  maintain	
  RI	
   all	
   	
  

a Allometric scaling from field collections of diameter at breast height, basal area, tree height, tree 
growth via dendrometric records 
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 7 

which include program leaders of RI at each scale of observation and members of TERN's 127 

scientific advisory committee. 128 

As the global research enterprise becomes increasingly interconnected, there is a 129 

growing need for internationalising national, regional and continental RI to serve a wider 130 

range of researchers as they join forces to tackle global challenges such as climate change, 131 

biodiversity loss, food security and infectious diseases.  Growing internationalisation is 132 

facilitated by interactions with TERN's international counterparts, which share common 133 

objectives, structure and functioning (e.g., NEON, CERN, TERENO, CZO USA).  For 134 

example, TERN's flux data are integrated into FLUXNET, a globally distributed 135 

environmental RI (Baldocchi et al., 1996; Gu and Baldocchi, 2002; Baldocchi, 2008; Novick 136 

et al., 2018) which is improving our understanding of ecosystem responses to fluctuations in 137 

environmental conditions (von Buttlar et al., 2018).  In addition, other global initiatives and 138 

policy frameworks have emerged in recent years to provide global access to data products 139 

collected at local or regional scales (e.g., GEOSS, IPBES).  In another example of growing 140 

internationalisation, the Global Environmental Research Infrastructure (GERI) was formed to 141 

foster cooperation amongst RIs by founding members TERN (Australia), SAEON (South 142 

Africa), CERN (China), NEON (USA) and eLTER (Europe).  TERN is part of an 143 

international consortium of environmental RI organisations, with the goal of providing 144 

spatially comprehensive and integrated data streams which are model-ready and publicly 145 

available for global syntheses.  See the supplemental information for further details on 146 

TERN's international outreach activities and TERN's twenty-year vision. 147 
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 8 

Ecosystems and climate: fire and aridity 148 

An understanding of ecosystem–climate 149 

interactions is the foundation of forecasting 150 

ecosystem responses to climate change (Fig. 151 

2; Beringer et al., 2015), assuming that such 152 

predictability is accurate enough to be 153 

feasible (Haughton et al., 2018a).  154 

Environmental RI in the form of ecological 155 

observatories provides a platform for 156 

improved understanding of how ecosystems 157 

respond to climate across a diversity of vegetation types.  In Australia, 32 major vegetation 158 

types have been identified in a national vegetation information system (NVIS; 159 

https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-160 

system), although they can be simplified by combining similar types (e.g., arid and semi-arid 161 

Acacia forests, woodlands, shrublands and savannas are three major vegetation types which 162 

are all defined by a dominant canopy of Mulga Acacia).  By example in a review of key 163 

findings from research using TERN RI at the Alice Mulga SuperSite of the Ti Tree basin, 164 

Eamus et al. (2016) grouped NVIS vegetation types into forest, savanna, Mulga, shrubland, 165 

grassland and agriculture (Fig. 3).  Across these landscapes, fire and aridity are key forces 166 

shaping ecological relationships with climate. 167 

Bushfire is a primary attribute of the tropical wet-seasonal savannas and semi-arid 168 

grasslands of western and northern Australia, where annual fire frequencies are common 169 

across the northern tropical savanna (cf. Figs. 2 and 4).  The concentration of TERN 170 

infrastructure in northern Australia at intermediate longitudes is organised around the North 171 

Australian Tropical Transect (NATT; Fig. 1) to support savanna research across a very large 172 

Figure 2.  The important relationships between 
ecosystem and climate for savannas exposed to 
fire.  From Beringer et al. (2015), CC-BY-NC, used by 
permission.
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 9 

precipitation gradient (320 to >1200 mm annual precipitation; Hutley et al., 2011; Cleverly et 173 

al., 2013; Ma et al., 2013).  Heavy rainfall during the wet season at northernmost locations 174 

along the NATT is associated with a large accumulation of biomass (Hutley et al., 2011), and 175 

this grassy biomass cures over the subsequent dry season that lacks rainfall, leading to the 176 

very high frequency of fire re-occurrence at the northern end of the NATT (ca. 1–2 years; 177 

Fig. 4).  Fire is responsible for the majority of productivity losses in the northern savanna 178 

(63%), whereas large weather events such as cyclones contribute very little to the long-term 179 

net biome carbon budget (Hutley et al., 2013).  Burning is furthermore largely responsible for 180 

greenhouse gas emissions from savannas and consequential greenhouse gas forcing of 181 

climate (Bristow et al., 2016), amongst a cascade of indirect feedbacks between climate and 182 

ecosystems which are mediated through local atmospheric dynamics (Fig. 2; Beringer et al., 183 

Figure 3.  Distribution of major vegetation types in Australia.  Map was generated based on Australia’s 
National Vegetation Information System—Major Vegetation Groups (NVIS-MVGs).  Groups were ob-
tained by reclassifying the original 26 NVIS-MVGs.  From Eamus et al. (2016), CC-BY.
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 10 

2015).  The outcome of this work is that it has 184 

contributed to a better understanding of 185 

tropical savanna functioning globally, where 186 

similarities of savanna structure have been 187 

found to conceal large differences across 188 

continents amongst vegetation, climate and 189 

fire dynamics (Lehmann et al., 2014).  190 

Without studies of savanna function such as 191 

these which were enabled by TERN RI (and 192 

similar RI on other continents), a large gap would exist in the understanding of the 193 

differences in savanna function globally. 194 

Outside of the tropics, bushfire tends to follow two patterns.  In drylands, fires occur as a 195 

result of fuel accumulation directly following the conclusion of very wet periods, whereas in 196 

sclerophyllous eucalypt forests, wildfires occur following drought, once fuel has cured 197 

sufficiently (Griffin et al., 1983; Bradstock, 2010).  At TERN's Calperum Mallee SuperSite 198 

(FLUXNET code AU-Cpr) in a Mediterranean climate, bushfire can have little or no effect 199 

on soil respiration, but net ecosystem productivity (NEP) and thus gross primary production 200 

(GPP) can be reduced following fire (Sun et al., 2015; Sun et al., 2016; Sun et al., 2017b).  201 

Bushfire plays an important role in shaping Australian landscapes, but its observation by 202 

environmental RI is limited in time and space, and each event provides a few more hints 203 

toward a better understanding of ecosystem responses to fire. 204 

Seventy per cent of Australia is arid or semi-arid (Eamus et al., 2006), where aridity is 205 

likely to dominate over warming and low levels of soil phosphorus in determining adaptation 206 

to future climate (Steane et al., 2017).  For example, fauna such as ants, termites and lizards 207 

in the Australian tropical savanna are arid-adapted and are thus likely to be resistant to future 208 

Figure 4.  Frequency of extensive fires (>4 km2) 
across Australia (1997–2013) derived from the 
AVHRR burnt area product.   From Beringer et al. 
(2015), CC-BY-NC, used by permission.
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increases in aridity (Andersen et al., 2015).  By contrast, species in the arid–Mediterranean 209 

ecotone are fully adapted to neither climate and are thus sensitive to variations in climate, 210 

both spatial and those projected for the future (Guerin et al., 2016).  With aridity increasing 211 

globally, international integration of environmental RI organisations create further 212 

opportunities for discovering diversity responses to aridity. 213 

Climate factors associated with aridity include temperature, vapour pressure deficit, solar 214 

radiation, precipitation and water availability.  Aridity is moreover associated with patterns of 215 

water-use efficiency, light-use efficiency, species richness, productivity and adaptability of 216 

leaf traits to native growth conditions (Shi et al., 2014; Gibson et al., 2017; Rumman et al., 217 

2018; Bloomfield et al., 2019).  Grasslands are an important and widespread community 218 

across the drylands of Australia (Fig. 3), where climate dynamics are closely related to leaf 219 

tissue nutrients (Anderson et al., 2018).  To meet the global challenge of understanding 220 

nutrient dynamics in grasslands, TERN is partnered with the Nutrient Network (NutNet) at 221 

the Great Western Woodlands SuperSite of southwestern Australia (FLUXNET code AU-222 

GWW, NutNet site Mt. Caroline) (Seabloom et al., 2015; Firn et al., 2019).  Established to 223 

test competing hypotheses for causal mechanisms of relationships between productivity and 224 

species richness, initial results from NutNet indicate that climate factors related to aridity 225 

such as temperature and the amount and timing of precipitation are positively related to both 226 

richness and productivity (Grace et al., 2016).   227 

Ecosystems and climate: climate variability and extreme events 228 

Australia's climate is highly variable, with the cultural and economic significance of this 229 

highly variable climate illustrated in the well-known common parlance as "a land … of 230 

droughts and flooding rains" (Dorothea Mackellar, 231 

https://www.dorotheamackellar.com.au/archive/mycountry.htm).  A full range of vegetation 232 

and climate conditions are currently under-sampled by environmental RI globally (Jones et 233 
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al., 2017), thus the high temperature anomalies experienced by Australian ecosystems 234 

provides the world with an important end-member for developing an understanding of 235 

ecosystem responses to climate extremes (e.g., heatwaves; De Kauwe et al., 2019). 236 

Australia has recently experienced an increase in the frequency and severity of climate 237 

extremes (e.g., drought, flooding, heatwave; Cleverly et al., 2016a; Ellis and Albrecht, 2017), 238 

and fire has mediated biodiversity responses to this rise in climate extremes in a biome-239 

specific manner (Greenville et al., 2018).  For example, many of the grasslands and savannas 240 

of Australia are pyrophytic or 'fire promoting', generating large conflagrations in response to 241 

a highly variable climate, either seasonally or episodically (Nicholas et al., 2011; Beringer et 242 

al., 2015; Wright, 2018).  By contrast, other vegetation associations like the Mulga (Acacia 243 

spp.) lands (shrublands, woodlands and savannas) which cover one-fifth of the Australian 244 

continent as shown in Figure 3 (Bowman et al., 2008) are sensitive to fire, but they also act as 245 

a fire retardant (Murphy et al., 2010).  Instead of burning, these ecosystems show adaptations 246 

to extreme climate fluctuations with large variations in water-use efficiency, allowing them to 247 

exert control on drainage and recharge which is unaffected by variability in hydroclimate 248 

(Chen et al., 2014; Chen et al., 2016).  Across this myriad of different vegetation types and 249 

responses to extreme climate variability, adaptation to environmental variability in 250 

temperature and water availability in Australia is associated with gene regions (instead of 251 

complete genomes) (Christmas et al., 2016a) and has led to synchronisation of landscape 252 

productivity and greenness with hydroclimatic extremes (Cleverly et al., 2013; Ma et al., 253 

2015; Rammig and Mahecha, 2015).   254 

Ultimately, climate and weather are influenced by ocean–atmosphere interactions within 255 

ocean-basin modes of variability.  For example, El Niño–Southern Oscillation (ENSO) is 256 

driven by a seasonal gradient of sea-surface temperature along the equatorial Pacific Ocean 257 

(Trenberth, 1997), and fluctuations between the warm phase (El Niño) and the cold phase (La 258 
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Niña) generally bring contrasting conditions to Northern and Southern Hemispheres.  El Niño 259 

is associated with maritime wet conditions to the Northern Hemisphere and dry conditions 260 

across the Southern Hemisphere, whereas La Niña is associated with reversed impacts on 261 

precipitation and consequently ecosystems (Holmgren et al., 2001).  Data from TERN RI 262 

have been used to demonstrate that Australia shows continental phenological responses to 263 

ENSO-driven climate variability (Broich et al., 2015) and that litterfall in the tropical 264 

rainforest of northeastern Australia is mainly driven by fluctuations in maximum 265 

temperature, which are related to ENSO (Edwards et al., 2018). 266 

 Although ENSO provides the dominant climate signal for global weather patterns, it is 267 

becoming apparent that ENSO alone cannot fully explain differences in regional climate 268 

variability.  Strong coupling amongst the tropical Pacific, Atlantic and Indian Oceans can 269 

impact the state of the climate, although limitations still exist in our ability to project future 270 

climate without including these teleconnections in climate models (Cai et al., 2019).  In 271 

Australia, extreme climate variability (floods, droughts, heatwaves) and resultant effects on 272 

water resources have been explained by interactions of the three nearest climate modes:  273 

ENSO, the Indian Ocean dipole (IOD) and the Southern annular mode (SAM) in the Southern 274 

Ocean (Ummenhofer et al., 2009; Ummenhofer et al., 2011; Perkins et al., 2015; Cleverly et 275 

al., 2016a; Xie et al., 2016; Rogers and Beringer, 2017). 276 

The relative strength of a particular climate mode depends upon a given continent's 277 

location and the relative importance of direct (i.e., baroclinic) or indirect effects (i.e., Rossby-278 

wave propagation) of the surrounding climate modes (Cai et al., 2011).  For example in the 279 

northern savanna of Australia, TERN RI was used to show that interannual variability in 280 

productivity is associated with climate variability in SOI (Moore et al., 2018).  In southern 281 

and central Australia, ENSO, IOD and SAM each contribute to variability in rainfall (He and 282 

Guan, 2013; He et al., 2014; Cleverly et al., 2016a), and as a result of TERN RI, Australian 283 
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ecosystems have been shown to be very resilient to these high levels of rainfall variability 284 

(Cleverly et al., 2016b; Cleverly et al., 2016c; Ma et al., 2016). 285 

Wet extremes:  flooding rain 286 

The two wettest events on record in Australia occurred in 1973–1976 and 2010–2012, 287 

both bringing widespread flooding nationally (Meyer et al., 2015; Cleverly et al., 2016a; 288 

Cleverly et al., 2016b; Whelan and Frederiksen, 2017).  In this letter, we focus on the more 289 

recent event, which overlapped with the establishment of TERN.  Augmentation of 290 

precipitation in the Southern Hemisphere during this very strong La Niña was so large that 291 

ocean levels reversed their long-term trend and dropped by 5 mm (Boening et al., 2012; 292 

Fasullo et al., 2013).  As a result, much of Australia's dryland flushed with greenness in 293 

satellite retrievals of both the normalised difference vegetation index (NDVI) and the 294 

enhanced vegetation index (EVI) (Wardle et al., 2013; Cleverly et al., 2016a), leading to 295 

several ecological responses.  Plagues of rats emerge during wet extremes which are absent 296 

during dry times (Greenville et al., 2013).  Masting occurred in dryland plants, with 297 

reproductive structures increasing in mass 300–7000% during 2010–2012 (Travers and 298 

Eldridge, 2013).  An ecosystem-wide compositional shift occurred in the Simpson Desert, 299 

with rooting patterns and soil texture explaining phenological timing and distribution of each 300 

plant form (annual grasses and forbs, perennial grasses, shrubs; Nano and Pavey, 2013).  Wet 301 

extremes have the potential to transform the ecology of vast portions of Australia. 302 

Increased water availability resulted in an asymmetrically large increase in CO2 uptake 303 

by semi-arid and temperate regions of Australia, Africa, South America and India (Fig 5; 304 

Haverd et al., 2017), with the majority of this global land C sink anomaly located in Australia 305 

(Poulter et al., 2014).  Carbon fluxes and phenology measured by TERN's RI in semi-arid 306 

and Mediterranean climates of Australia confirmed the continent's role in the 2011 global 307 

land C sink anomaly (Cleverly et al., 2013; Eamus et al., 2013b; Ma et al., 2015; Sun et al., 308 
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2018).  Photosynthesis and respiration are 309 

limited by water availability across much of 310 

Australia, with both responding positively to 311 

extreme precipitation (Cleverly et al., 2013; 312 

Haverd et al., 2016) and thus maintaining 313 

relatively small NEP and reduced carbon-314 

use efficiency (i.e., NEP / GPP) during wet 315 

extremes.  Low carbon-use efficiency during 316 

wet conditions and water limitations on soil 317 

respiration during subsequent dry periods 318 

contribute to minimisation of carbon emissions after the conclusion of the wet extreme, in the 319 

absence of abiotic decomposition (Cleverly et al., 2013; Cleverly et al., 2016c). 320 

Multiple aspects of the climate contributed equally to increased CO2 uptake in Australia 321 

(Trudinger et al., 2016), showing the 2011 global land C sink anomaly to be an integrated 322 

climatological, meteorological and ecosystem event (Cleverly et al., 2016a).  However, there 323 

were two restrictions on Australia's contribution to the land C sink anomaly.  First, the 324 

asymmetric response of photosynthetic productivity to precipitation is dependent upon 325 

antecedent conditions, either amplifying or dampening their relationship (Sun et al., 2017a).  326 

The land C sink anomaly followed the driest and hottest year of the Millennium Drought, 327 

thus antecedent water resources were at a minimum (van Dijk et al., 2013).  Second, energy-328 

limited ecosystems did not show a similar asymmetric response to extrinsic forcing by 329 

precipitation and thus did not respond to climate forcing during the land C sink anomaly in 330 

the same way that semi-arid ecosystems did (Fig. 5; Haverd et al., 2017).  Thus, the 331 

contribution of enhanced productivity in coastal, energy-limited ecosystems was expected to 332 

be small, whereas Australia's vast drylands have a high capacity for enhanced productivity 333 

Figure 5.  Asymmetric response of gross primary 

production (GPP) to precipitation.  GPP of semi-

arid environments are asymmetrically responsive 

to wet conditions, whereas mesic ecosystems 

are asymmetrically responsive to drought.   From 

Haverd et al. (2017), © 2016 John Wiley & Sons 

Ltd., used by permission.
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during wet extremes (Fig. 5).  Even with these limitations, the land C sink provided an 334 

ecosystem service which might have helped to slow the rate of climate change (Keenan and 335 

Williams, 2018). 336 

An inevitable outcome of increased productivity is biomass accumulation, especially 337 

across grasslands globally, where biomass accumulation is related to climate variability 338 

(Morgan et al., 2016).  Reduced diversity can result with the presence of a single species of 339 

invasive grass (e.g., buffel grass, Cenchrus ciliaris), which burns hotter and more completely 340 

than native grasses (Schlesinger et al., 2013).  For hummock grasslands which cover one-341 

quarter of the Australian land area (Bowman et al., 2008), the legacy of biomass accumulated 342 

during the 2011 land C sink anomaly persisted in the absence of burning for years as a strong 343 

carbon source due to photodegradation of the standing leaf litter (Cleverly et al., 2016c).  C 344 

budgets like those of hummock grasslands are very difficult to predict using land surface 345 

models (Haughton et al., 2018a) due to a lack of theoretical foundation for the modelling of 346 

abiotic decomposition.  This is thus an active area of research for which TERN's 347 

environmental RI will play an important role in integrating measurements, monitoring, 348 

modelling and remote sensing of carbon and water balances (Eamus et al., 2016). 349 

Dry extremes:  drought and heatwave 350 

Interannual variability in the global carbon cycle is strongly related to the large 351 

variability of the semi-arid land C sink (Ahlström et al., 2015).  In a single example, the 2011 352 

land C sink in Australia was immediately followed by the return of drought and associated 353 

heat, which shut down the Australian land C sink even whilst total water storage on the 354 

continent had persisted (Fig. 6; Fasullo et al., 2013; Ma et al., 2016).  Thus, photosynthetic 355 

productivity of Australia is sensitive to meteorological drought (i.e., months to years of 356 

below-normal precipitation) and agricultural drought (i.e., yield reduction due to soil drying), 357 

but Australia's hydroclimatic variability can moderate against a more severe hydrological 358 
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drought (i.e., decline of water storage below the long-term mean; Fig. 6; Dai, 2011).  Even 359 

during long-term drought, moderately wetter-than-average years can have a strong positive 360 

effect on total water storage and productivity across Australia (Fig. 6).  The Millennium 361 

Drought of 2001–2009 was the longest meteorological drought on record in Australia, but 362 

antecedent hydrological drought began in 1994 (van Dijk et al., 2013).  During the 363 

Millennium Drought, a worldwide reduction in photosynthetic productivity was attributed to 364 

drying in the Southern Hemisphere (Zhao and Running, 2010).  Despite a widespread and 365 

severe reduction in CO2 uptake during the Millennium Drought, Australian vegetation has 366 

shown resilience to a drought as extreme as even it was (Fig. 6; Campos et al., 2013; Ma et 367 

al., 2013; Ma et al., 2015). 368 

Australia has experienced much dryer, longer droughts during previous glacial maxima 369 

(Martin, 2006), and this long history of drought has conferred a level of adaptation in 370 

Australia's vegetation.  At the mesic end of the aridity gradient, the structure of tropical 371 

Figure 6.  Interannual variation in climate, carbon fluxes and water resources, 2000–2001 through 
2012–2013.  Shown are a drought index (standardised precipitation–evapotranspiration index, SPEI), 
precipitation, air temperature (Tair), enhanced vegetation index (EVI), net ecosystem productivity 
(NEP), satellite solar-induced fluorescence (SIF), GRACE total water storage anomalies and fire CO2 
emissions.  From Ma et al. (2016), CC-BY.
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rainforest trees is adapted to the maximum historical water deficit (Pfeifer et al., 2018).  In 372 

the more arid-adapted Mallee, a multi-stemmed eucalypt which is also fire adapted, survival 373 

of common dry periods is achieved by maintaining conservative (i.e., very small) rates of 374 

transpiration (Meyer et al., 2015).  Two sequential years of much below-average precipitation 375 

in central Australia (mid-2011–2013) resulted in a shift from a strong carbon sink to a carbon 376 

source, whilst showing resilience during the subsequent return of average annual 377 

precipitation amounts (Cleverly et al., 2016b; Cleverly et al., 2016c).  Australian ecosystems 378 

show a diversity of hydraulic traits, the presence of which confers resilience to water stress 379 

(Nolan et al., 2017; Anderegg et al., 2018). 380 

Heatwaves have been increasing in frequency worldwide over the last 20–50 years, and 381 

they have been either combined with drought or have occurred under wet conditions, 382 

although heatwaves are more commonly associated with drought (Ding and Qian, 2011; 383 

Bastos et al., 2014; Teskey et al., 2015; Kang and Eltahir, 2018).  Three characteristics of 384 

heatwaves, their frequency, intensity and duration, are projected to continue increasing 385 

through the end of the 21st century (Perkins-Kirkpatrick et al., 2016).  For example, the 386 

drought and heatwave which struck Europe in 2003 was so severe and so far outside of the 387 

historical record that the return interval estimates are in the range of thousands to millions of 388 

years (Schar et al., 2004), but another similar heatwave is expected to occur within the next 389 

30 years (Russo et al., 2015).  The combination of heatwave and drought, also known as 390 

global change-type drought, can have consequences on ecosystems as severe as tree mortality 391 

and forest dieback (Breshears et al., 2009; Eamus et al., 2013a), and the likelihood of 392 

mortality is expected to increase as the frequency, intensity and duration of heatwaves 393 

increases. 394 

Soil-moisture–temperature and soil-moisture–precipitation feedbacks are important for 395 

development and maintenance of Australian heatwaves, albeit not as important as these 396 
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mechanisms are for European heatwaves (Perkins et al., 2015).  Drier-than-average 397 

conditions in Australia's interior push hot, dry winds into southern Australia from The North 398 

(Griebel et al., 2016).  One Australian example was the 2012/2013 'Angry Summer' 399 

heatwave, which developed as drought across the interior of the continent, and an associated 400 

high-pressure ridge pushed high temperatures into forests and woodlands of southern 401 

Australia (Cleverly et al., 2016c; van Gorsel et al., 2016). 402 

Ecosystem functional responses to both phases of the 'Angry Summer' heatwave (dry 403 

followed by wet) were evaluated using TERN's flux tower infrastructure at seven TERN 404 

ecosystem processes sites across southern Australia (van Gorsel et al., 2016).  NEP and GPP 405 

declined sharply during the heatwave in Mediterranean woodlands and dry sclerophyll 406 

forests, although reductions were smaller during the wet phase than during the preceding dry 407 

phase (Fig. 7).  By contrast, the wet sclerophyll forest at the Tumbarumba SuperSite 408 

maintained NEP and GPP at constant levels as before the heatwave, with evaporative cooling 409 

ameliorating the heatwave and weakening land–atmosphere feedbacks (Fig. 7; van Gorsel et 410 

al., 2016).  However, soil moisture reserves were nearly depleted in the wet sclerophyll forest 411 

during the relatively short 'Angry Summer' heatwave, showing afternoon reductions of NEP 412 

and GPP during the dry portion of the heatwave, which is consistent with a photosynthetic 413 

and stomatal down-regulation due to stress (cf. Fig. 7, Cowan and Farquhar, 1977).  Thus, 414 

this heatwave provided a second example of the associated effects of drought and heatwave 415 

on ecosystem productivity of Australian ecosystems (cf. Figs. 6 and 7) and further 416 

demonstrates that increases in the intensity, frequency or duration of heatwaves in future 417 

might have seriously detrimental consequences for even Australia's wettest forests (van 418 

Gorsel et al., 2016). 419 
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420 
Ecosystems and climate:  climate change 421 

Ecosystems can be vulnerable to climate change due to restricted gene flow, habitat loss 422 

or restricted range (McCallum et al., 2014).  However, cool and mesic locations in the 423 

landscape can often provide refugia where higher resilience is encountered than would be 424 

otherwise predicted (Guerin et al., 2013; Tapper et al., 2014; Christmas et al., 2017).  425 

Refugia on mountains and islands can buffer genetic diversity against a fluctuating climate 426 

(Christmas et al., 2017), although climate change can remain a threat for isolated ecosystems 427 

Figure 7.  Ecosystem productivity responses to the ‘Angry Summer’ heatwave in Australia, summer 
2012–2013.  The initial dry heatwave was broken by a brief wet spell and subsequent wet heatwave.  
Pre-heatwave C fluxes are shown as the grey background curves.  GPP and NEP are shown during 
pre-heatwave (i.e., background; dark grey and light grey, respectively) and during heatwave (dark 
green and light green, respectively) for Mediterranean woodlands (MW), dry sclerophyll woodland 
(temperate woodland, TW) and wet sclerophyll forest (temperate forest, TF).  MW sites are the driest 
(orange), TF sites are the wettest (dark green), and TW are intermediate (light green).  From van 
Gorsel et al. (2016), CC-BY.

Dry Wet
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such as for island cloud forests where decreasing precipitation and cloud cover have been 428 

observed (Auld and Leishman, 2015).  Furthermore, refugia can show a tipping point, 429 

described as a point in a spatial climate gradient at which ecosystem composition turns over 430 

rapidly (Fig. 8; Guerin et al., 2013; Caddy‐Retalic et al., 2017).  Tipping points occur at 431 

locations along an environmental climate gradient where both the species composition of 432 

both generalists and specialists changes (Fig. 8).  Such a transition zone would exist at the 433 

boundary of a climate refugium, where a turnover of multiple species occurs over a short 434 

distance (Fig. 8).  The presence of a tipping point carries a further risk from climate change 435 

as the locations of tipping points contract toward the centre of a species' range.  Long-term 436 

ecological RI from various countries worldwide, including Australia, has been joined into the 437 

International Long Term Ecological Network (ILTER), which addresses the grand challenge 438 

of climate change and the resultant loss of biodiversity which is likely to occur (Mirtl et al., 439 

2018). 440 

 441 

Figure 8.  Conceptual diagram of a tipping point along a climate gradient.  Tipping points occur where 
a clear transition occurs for both generalist and specialist species distributions.  Panel (a) shows no 
tipping point and even transitions of community composition along the gradient. Natural ecosystems 
show a mix of generalists, specialists and intermediate species, with a tipping point (b) or with a tip-
ping point and ecotonal transition zone.   From Caddy-Retalic et al. (2017), CC-BY.
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Thus far, we have discussed how adaptation, such as adaptation to aridity, can play an 442 

important role in protecting biodiversity from climate extremes, but considerations of 443 

adaptation and adaptability are also important for biodiversity conservation in a changing 444 

climate.  Care must be taken, however, to avoid deprioritising refugia which are low in 445 

diversity and thereby less adapted to areas outside of their refugium (Costion et al., 2015).  446 

Otherwise, several conservation approaches are available for promoting diversity and 447 

adaptability to climate change, including 448 

climate-adjusted provenancing (Fig. 9), 449 

assisted migration, biodiversity corridors and 450 

ex situ strategies (Prober et al., 2015; 451 

Christmas et al., 2016b).  In climate-adjusted 452 

provenancing, natural genetic variability is 453 

exploited to enhance climate resilience of 454 

restoration activities over time by predicting 455 

future changes in climate over incremental 456 

time steps (Fig. 9).  This gradual approach 457 

over time allows for the detection of 458 

uncertainties (e.g., mismatch between 459 

predicted and actual climate change 460 

trajectories) before it is too late to correct for 461 

them (Fig. 9).  TERN's plot-based 462 

monitoring infrastructure, especially those 463 

arrayed in transects along climate gradients, 464 

provide a powerful tool for evaluating 465 

community responses to climate change and 466 Figure 9.  Diagram of provenancing strategies for 
revegetation in a changing climate.   From Prober et 
al. (2015), CC-BY.
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for promoting resilience in biodiversity (Caddy‐Retalic et al., 2017). 467 

There are several aspects of projected climate change in relation to ecosystem carbon 468 

cycles, such as changes in precipitation, vapour pressure deficit, temperature and elevated 469 

[CO2].  Changes in precipitation seasonality are projected to reduce carbon stocks in the 470 

northern Australian savannas and rainforests, even with little change to annual total 471 

precipitation (Cook et al., 2015).  Increasing vapour pressure deficit during one key season as 472 

a result of decreasing seasonal precipitation and increasing temperature is expected to carry 473 

detrimental effects upon the carbon cycle of Australian alpine grasslands and tropical 474 

rainforests worldwide (Fu et al., 2018; Marchin et al., 2018).  Photosynthetic production in 475 

tropical rainforests is currently restricted by high vapour pressure deficit, and they are 476 

unlikely to tolerate a much drier atmosphere (Fu et al., 2018).  In alpine grasslands of 477 

Australia, a tipping point has been identified wherein vapour pressure deficits which exceed 478 

this threshold can prevent the typical recovery of vegetational greenness at the end of the 479 

growing season (Marchin et al., 2018).  Increasingly elevated vapour pressure deficit is a 480 

serious risk for tree mortality and ecosystem function worldwide (Allen et al., 2010; 481 

Breshears et al., 2013; Eamus et al., 2013a). 482 

Warming is predicted to have strongly negative effects on Australia's temperate eucalypt 483 

forests, nearly 90% of which exist in temperature regimes above their thermal optimum for 484 

growth (11°C; Bowman et al., 2014).  In the absence of water or substrate limitations, 485 

respiration will increase along with rising temperatures, leading to global observations of 486 

increasing heterotrophic respiration and climate-driven loss of soil carbon (Bond-Lamberty et 487 

al., 2018).  Acting to counter the effects of increasing temperature, elevated [CO2] can 488 

contribute to maintenance of photosynthesis at reduced stomatal conductance, thereby 489 

improving water-use efficiency whilst reducing pressure on limited water resources.  CO2 490 

fertilisation is projected to be the main driver of savanna responses to climate, leading to 491 
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increased carbon sequestration in vegetation, although the magnitude of the fertilisation 492 

effect will depend strongly upon changes in fire return interval and seasonality (Scheiter et 493 

al., 2015).  Increasing aridity and elevated [CO2] are likely to affect vegetation dynamics of 494 

tropical savannas, which will alter fire regimes and provide further carbon feedbacks to 495 

climate (Fig. 2; Beringer et al., 2015). 496 

Final remarks 497 

There is an urgent need for environmental information from RI in remote Australian 498 

landscapes, which would provide important outcomes and impact related to environmental 499 

reporting and fostering research in the framework of global challenges (van Dijk et al., 2014).  500 

The risks of climate change as well as opportunities for conservation are emerging from this 501 

work, although there is still much to discover.  Environmental RIs create the opportunity for 502 

identifying and evaluating the key drivers of ecosystem change by allowing researchers to 503 

observe state-changing events such as heatwaves, floods or droughts in locations which might 504 

be otherwise inaccessible.  These are the first steps toward the development of an 505 

environmental forecasting system which can answer the global challenge of predicting 506 

ecosystem responses to climate change. 507 
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Figure captions 1081 

Figure 1.  Map of TERN infrastructure including flux towers in New Zealand as part of 1082 

TERN OzFlux.  © 2019 TERN at the University of Queensland, used by permission. 1083 

Figure 2.  The important relationships between ecosystem and climate for savannas 1084 

exposed to fire.  From Beringer et al. (2015), CC-BY-NC, used by permission. 1085 

Figure 3.  Distribution of major vegetation types in Australia.  Map was generated based 1086 

on Australia’s National Vegetation Information System—Major Vegetation Groups (NVIS-1087 

MVGs).  Groups were obtained by reclassifying the original 26 NVIS-MVGs.  From Eamus 1088 

et al. (2016), CC-BY. 1089 

Figure 4.  Frequency of extensive fires (>4 km2) across Australia (1997–2013) derived 1090 

from the AVHRR burnt area product.   From Beringer et al. (2015), CC-BY-NC, used by 1091 

permission. 1092 

Figure 5.  Asymmetric response of gross primary production (GPP) to precipitation.  1093 

GPP of semi-arid environments are asymmetrically responsive to wet conditions, whereas 1094 

mesic ecosystems are asymmetrically responsive to drought.   From Haverd et al. (2017), © 1095 

2016 John Wiley & Sons Ltd., used by permission. 1096 

Figure 6.  Interannual variation in climate, carbon fluxes and water resources, 2000–1097 

2001 through 2012–2013.  Shown are a drought index (standardised precipitation–1098 

evapotranspiration index, SPEI), precipitation, air temperature (Tair), enhanced vegetation 1099 

index (EVI), net ecosystem productivity (NEP), satellite solar-induced fluorescence (SIF), 1100 

GRACE total water storage anomalies and fire CO2 emissions.  From Ma et al. (2016), CC-1101 

BY. 1102 

Figure 7.  Ecosystem productivity responses to the ‘Angry Summer’ heatwave in 1103 

Australia, summer 2012–2013.  The initial dry heatwave was broken by a brief wet spell and 1104 

subsequent wet heatwave.  Pre-heatwave C fluxes are shown as the grey background curves.  1105 
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GPP and NEP are shown during pre-heatwave (i.e., background; dark grey and light grey, 1106 

respectively) and during heatwave (dark green and light green, respectively) for 1107 

Mediterranean woodlands (MW), dry sclerophyll woodland (temperate woodland, TW) and 1108 

wet sclerophyll forest (temperate forest, TF).  MW sites are the driest (orange), TF sites are 1109 

the wettest (dark green), and TW are intermediate (light green).  From van Gorsel et al. 1110 

(2016), CC-BY. 1111 

Figure 8.  Conceptual diagram of a tipping point along a climate gradient.  Tipping 1112 

points occur where a clear transition occurs for both generalist and specialist species 1113 

distributions.  Panel (a) shows no tipping point and even transitions of community 1114 

composition along the gradient. Natural ecosystems show a mix of generalists, specialists and 1115 

intermediate species, with a tipping point (b) or with a tipping point and ecotonal transition 1116 

zone.   From Caddy‐Retalic et al. (2017), CC-BY. 1117 

Figure 9.  Diagram of provenancing strategies for revegetation in a changing climate.   1118 

From Prober et al. (2015), CC-BY. 1119 
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