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Abstract 20 

Microcystin-LR (MC-LR) is a potent cyanobacterial toxin responsible for animal and human 21 

poisonings worldwide. MC-LR is found in organisms throughout the foodweb, however there 22 

is conjecture regarding whether it biomagnifies. Few studies have investigated how MC-LR 23 

interacts with lipid membranes, a determinant of biomagnification potential. We tested whether 24 

1 µM MC-LR irreversibly associates with lipid bilayers or causes the creation of pore defects 25 

upon short and long-term exposure. Using tethered bilayer lipid membranes (tBLMs), we 26 

observed an increase in membrane conduction in tBLMs, representing an interaction of 27 

microcystin-LR with the lipid bilayer and a change in membrane packing properties. However, 28 

there were minimal changes in membrane capacitance upon short and long-term exposure, and 29 

MC-LR exhibited a rapid off-rate. Upon 24 h exposure to the toxin, no lipophilic multimeric 30 

complexes were detected capable of altering the toxin’s off-rate. There was no evidence of the 31 

creation of new pores. This study demonstrates that MC-LR does not irreversibly imbed itself 32 

into lipids membranes after short or long-term exposure and suggests MC-LR does not 33 

biomagnify through the food web via lipid storage. 34 
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1. Introduction 43 

Cyanobacteria blooms are increasing in prevalence and severity, threatening both ecological 44 

and anthropogenic water requirements (Paerl & Fulton, 2006; Paerl et al., 2011; Drobac et al., 45 

2013). Many bloom-forming cyanobacteria produce toxic secondary metabolites and 46 

cyanotoxins that have been implicated in fish kills, deaths of waterbirds and other wildlife, 47 

livestock poisonings and human fatalities (Azevedo et al., 1996; Carmichael, 2001; Ibelings et 48 

al., 2005; White et al., 2005; Boopathi & Ki, 2014). Of all cyanotoxins, the hepatotoxic 49 

microcystins (MC) are the most widespread and problematic (Quiblier et al., 2013; Mowe et 50 

al., 2015). 51 

MCs are a structurally diverse group of cyclic heptapeptides, with 90+ isomers (Boopathi & 52 

Ki, 2014). They contain three D-amino acids (glutamic acid, erythro-β-methyl-aspartic acid 53 

and alanine), two variable L-amino acids, and two unique residues (Mdha and Adda) 54 

(Vesterkvist & Meriluoto, 2003). The toxicity of MC variants differs according to the 55 

combination of variable amino acids in the peptide ring (de Figueiredo et al., 2004; Schmidt et 56 

al., 2014). Microcystin-LR, a microcystin congener with a leucine and an arginine group, is 57 

among the most toxic and common (Carmichael, 1997; de Figueiredo et al., 2004). 58 

MC is frequently found in a variety of organisms, for example, aquatic plants (Mitrovic et al., 59 

2005), cladocerans (Ibelings et al., 2005), mussels (Barda et al., 2015), gastropods (Lance et 60 

al., 2008; Barda et al., 2015), fish (Ibelings et al., 2005; Papadimitriou et al., 2012; Vasconcelos 61 

et al., 2013) and mammals (Miller et al., 2010, van der Merwe et al., 2012). In higher 62 

organisms, MCs are actively and preferentially accumulated in the liver through organic anion 63 

transporting polypeptides (specifically, OATP1B1, OATP1B2, OATP1B3 and OATP1A2) 64 

involved in bile-acid transport in hepatocytes (Chorus & Bartram, 1999; Ito et al., 2008; 65 

McLellen & Manderville, 2017). They inhibit catalytic subunits of protein phosphatases-1 and 66 

-2A, cause acute hepatotoxicosis and may promote cancer (Bagu et al., 1997; Carmichael, 67 
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2001; de Figeuiredo et al., 2004). Small but notable concentrations of MC are found in various 68 

other tissues of rats and fish – for example the kidneys, heart, intestine, spleen, brain, gill, 69 

muscle, gonad and stomach (Ito et al., 2000; Lei et al., 2008; Wang et al., 2008). The 70 

identification of MCs in such varied organisms and tissues indicates a broad mechanism of 71 

toxicity and accumulation beyond the well-known bile-acid transporters in hepatocytes. Petrov 72 

et al. (1991) suggested that emplacement of MC’s Adda residue in lipid bilayers may occur 73 

due to its lipophilic and flexible tail that extends from the rigid cyclic backbone. This 74 

potentially creates pores and compromises cell membrane integrity.  75 

Lipophilic compounds, those that are soluble in lipids or oils, can impair the organisation of 76 

lipids in a membrane and disrupt the functioning of the cell (Vesterkvist & Meriluoto, 2003). 77 

Further, the capacity of a toxin to bioaccumulate and biomagnify can be influenced by 78 

lipophilicity as lipophilic chemicals tend to accumulate in the lipids of organisms where they 79 

are retained for extended periods and more readily transfer up trophic levels (Petersen & 80 

Kristensen, 1998; Ibelings et al., 2005; Amiard & Amiard-Triquet, 2015). The water-octanol 81 

partition coefficient (log Kow) of MC-LR is -1 at pH 7 (Ibelings et al., 2005), suggesting that 82 

the compound is relatively hydrophilic and may not strongly interact with lipids. However, 83 

microcystins are amphipathic, containing both lipophilic and hydrophilic regions (Figure 1) 84 

(Vesterkvist & Meriluoto, 2003). The lipophilic Adda residue and the variable amino acids in 85 

the peptide ring of MCs may impair lipid membrane structure or facilitate MC-LR 86 

accumulation within an organism (Orr & Jones, 1998; Zurawell et al., 2005; Schmidt et al., 87 

2014).  88 
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 89 

Figure 1. Chemical structure of microcystin-LR. (1) is D-alanine; (2) is the lipophilic 90 

variable amino acid L-Leucine; (3) is D-erythro-β-methylaspartic acid; (4) is the 91 

variable amino acid L-Arginine; (5) is the lipophilic residue Adda; (6) is D-glutamic 92 

acid; and (7) is N-methyldehydroalanine.  93 

Given that MC is regularly found in organisms across all trophic levels (Xie et al., 2005; Tokodi 94 

et al., 2018), there are also concerns regarding whether MC can biomagnify to affect upper 95 

trophic level organisms through the food web, such as fish, water birds, sea otters and humans 96 

(Xie et al., 2005; Miller et al., 2010).  Lipid membrane interactions are a common mechanism 97 

of assimilation, accumulation and biomagnification of toxins; however this has not yet been 98 

demonstrated with MC-LR (Ibelings et al., 2005; Kozlowsky-Suzuki et al., 2012; Schmidt et 99 

al., 2014). 100 

Despite the relatively low log Kow of MC-LR, the lipophilic Adda and variable amino acid 101 

regions of the compound, combined with suggestions of bioaccumulation and biomagnification 102 
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of MC-LR in the literature, may indicate some interaction between the cyanotoxin and lipid 103 

membranes. To determine whether MC-LR irreversibly associates with lipid bilayers, we 104 

investigated the interactions of the toxin with tethered bilayer lipid membranes (tBLMs), which 105 

provide a model for natural biological membranes (Cranfield et al., 2014; Cranfield et al., 106 

2015a) 107 

 108 

2. Materials and Methods 109 

2.1  Mass Spectroscopy 110 

Commercially available microcystin-LR was obtained and its purity tested prior to use using 111 

mass spectroscopy. Matrix Assisted Laser Desorption Ionisation MassSpectrometry (MALDI-112 

MS) using a 5800 MALDI TOF/TOF (AB Sciex, Framingham USA) in positive ion reflector 113 

mode was used. Its operation utilized a laser set to 4700, mass range set to 400-3000 Da with 114 

focal mass of 995 Da. 500 spectra were accumulated on a spot containing 1 ng of microcystin-115 

LR standard (Abraxis) co-crystallised with  α-Cyano-4-hydroxycinnamic acid (Sigma, USA) 116 

to assist in ionization. The concentration of microcystin used for tBLM experiments was 1 µM 117 

dissolved in phosphate buffered saline (PBS). This concentration was selected as it is on the 118 

upper end of those found in natural systems, so is representative of a toxic bloom scenario 119 

(Chorus, 2001). 120 

2.2 Tethered Bilayer Lipid Membranes (tBLMs) 121 

Lipid bilayers were anchored to a pure gold substrate using a combination of 10% tethering 122 

lipids and 90% spacer lipids as described previously (Figure 2A) (Cranfield et al., 2015b). In 123 

brief, pure 5N5 gold electrodes of 2.1 mm2 were pre-prepared with a coating of tethered benzyl-124 

disulfide (tetra-ethyleneglycol)n=2 C20-phytanyl tethers (DLP) and benzyl-disulfide-tetra-125 

ethyleneglycol-OH spacers (TEGOH) in the ratio of 1:9 (SDx Tethered Membranes Pty Ltd, 126 
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Australia). To these tethering chemistries were added 8 μL of a 3 mM solution of a mobile 127 

lipid phase dissolved in ethanol. After a 2 min incubation, the mobile phase lipids were washed 128 

three times with 3  400 μL of phosphate buffered saline (PBS). The lipids added consisted of 129 

70% zwitterionic C20 Diphytanyl-Glycero-Phosphatidylcholine lipid and 30% C20 130 

Diphytanyl-diglyceride-OH ether. To determine if the microcystin-LR might have an affinity 131 

for other membrane components, the membranes were supplemented with either 20% 132 

(mol/mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE, Avanti Lipids, 133 

USA) or 20% (mol/mol) cholesterol.  134 

2.3  AC electrical impedance spectroscopy (EIS) 135 

Phase and impedance measures were performed using an SDx tethaPod™ operated with SDx 136 

tethaQuick™ software (SDx Tethered Membranes Pty Ltd). Using a 50 mV peak-to-peak AC 137 

excitation at frequencies between 0.1 and 10,000 Hz with four steps per decade. Swept 138 

frequency EIS was employed to determine the change in membrane conduction (Gm) and 139 

changes in membrane capacitance (Cm). The data were fitted to an equivalent circuit 140 

comprising a Constant Phase Element (CPE) to represent the reservoir region (Krishna et al., 141 

2003) in series with a Resistor/Capacitor that described the tethered lipid bilayer (Figure 2B). 142 
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 143 

Figure 2. A. Cartoon of a tethered lipid bilayer membrane (tBLM) with an 144 

intrinsic membrane pore defect. Benzyl-disulfide (tetra-ethyleneglycol)n=2 C20-145 

phytanyl tethers anchor a lipid bilayer to an underlying gold electrode. B. The 146 

equivalent circuit for modelling AC electrical impedance data. In this circuit, Rs 147 

represents the resistance of the electrolyte solution (PBS), Gm represents the 148 

conduction of the membrane, which is primarily determined by membrane pore 149 

defects, Cm is the membrane capacitance and CPE is a constant phase element 150 

used to model the tethering gold electrode and its surface chemistries. 151 

 152 

3. Results and Discussion 153 

The microcystin-LR used in the experiment was determined to be of high purity with minimal 154 

degradation by use of MALDI-MS, the highest abundant ions present in the sample being the 155 

expected mass of the intact microcystin (Figure 3). Microcystin-LR was tested on tBLMs 156 

containing Dyphytanyl PC lipids or mixtures of Diphytanyl lipids with 20% POPE or 20% 157 

cholesterol. POPE and cholesterol are membrane constituents necessary for the interactions of 158 
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numerous other toxins and peptides with lipid bilayers (Palmer, 2001; Henriques et al., 2011; 159 

Al Khamici et al., 2016; Cranfield et al., 2017). For each of the different membranes used there 160 

was a consistent increase in membrane conduction due to the presence of 1 µM microcystin-161 

LR (Figure 4A, C and E).  This response is consistent with a change in membrane packing 162 

brought about by the interaction of the microcystin-LR with the lipid bilayer. According to a 163 

membrane packing model, this alteration of the membrane packing arrangement causes an 164 

increase in the diameter of intrinsic toroidal pores within the membrane and is unlikely to be 165 

due to the formation of new pores (Cranfield et al., 2016; Cranfield et al., 2017; Kuppusamy et 166 

al., 2018). This data is supported by the fact that there is little change in membrane capacitance 167 

as a result of adding 1 µM microcystin-LR (Figure 4B, D and F). Membrane capacitance is 168 

directly influenced by membrane thickness and/or the water content at the bilayer. As a positive 169 

control, a pore-inducing cathelicidin peptide, LL-37, was later added (Turner et al., 1998; 170 

Nizalapur et al., 2016). This addition of LL-37 induced a definite change in membrane 171 

conduction and membrane capacitance. 172 

    173 

Figure 3. A, Mass-spectra of microcystin LR sample. The peak at 995.48 m/z 174 

corresponds with microcystin LR at 97% total ion intensity, 859.40 m/z corresponds to 175 

a fragmentation of the toxin releasing 136 Da corresponding to (2-176 

methoxyethyl)benzene. B, spectra zoomed to display the carbon isotope distribution of 177 

the molecule.  178 

A B 
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 179 

Following a PBS wash step microcystin-LR exhibited a rapid off-rate, which had little impact 180 

on the capacitance of the membranes. This indicates that despite its amphipathic properties, its 181 

lipophilicity is minimal as it can readily be removed by aqueous buffers. However, this does 182 

not preclude the possibility microcystin-LR might form oligomers that are more lipophilic in 183 

nature. To test this, we incubated tBLMs with microcystin-LR overnight before washing with 184 

PBS. Figure 5A-D are these membrane conduction and membrane capacitance traces for 185 

tBLMs exposed to 1 µM microcystin-LR in the presence of 20% POPE or 20% cholesterol 186 

lipids, respectively. It is evident that the tBLMs exhibit an increase in membrane conduction, 187 

with minimal changes in membrane capacitance. MC-LR is then readily washed out after the 188 

allotted time-period. This suggests that no lipophilic multimeric complexes are being formed 189 

by the toxin in membranes or in aqueous buffer. 190 

 191 
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 192 

Figure 4. A Membrane conduction changes over time as result of adding 1 µM 193 

microcystin-LR to tBLMs made of Diphytanyl PC with 30% diphytanyl-194 

diglyceride-OH lipids. A small increase in membrane conduction can be seen, 195 
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which is readily washed from the membrane subsequently by PBS buffer. LL-196 

37 peptide is added finally as a positive control. B, Capacitance measured over 197 

the same period indicating minimal changes to membrane thickness and/or water 198 

content as a result of the addition of microcystin-LR, which can be compared to 199 

the significant capacitance change due to LL-37 peptide. C, similar conduction 200 

responses, and D, capacitance responses, in membranes that include 20% 201 

mol/mol POPE lipids. E, similar conduction responses, and F, capacitance 202 

responses, in membranes that include 20% cholesterol mol/mol. All samples are 203 

n=3. 204 

 205 
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 206 

Figure 5. A, membrane conduction changes over a period of nearly 24 hours as 207 

result of adding 1 µM microcystin-LR to tBLMs containing 20% POPE lipids. 208 

A small increase in membrane conduction can be seen which is maintained a 209 

relatively steady level until the microcystin-LR is subsequently washed from the 210 

tBLM by PBS buffer. B, capacitance measures of the same period. C and D, are 211 

similar conduction and capacitance measures, respectively, in tBLMs containing 212 

20% cholesterol. All samples are n=3. 213 

The minimal effect of MC-LR on membrane capacitance after short and long-term exposure, 214 

and the rapid off-rate following the PBS wash, indicates that the toxin has minimal potential to 215 

imbed itself in or disrupt biological membranes. Therefore, the creation of pores, and/or the 216 

deterioration of membrane integrity, as was suggested by Petrov et al. (1991), is unlikely to be 217 

a contributing factor to MC-LR’s toxicity. Biomagnification of MC-LR is unlikely to occur 218 

due to the low residence time in lipids, and biodilution is likely to be the prevailing process 219 

(Ibelings, 2005; Kozlowsky-Suzuki, 2012). This is supported by Dyble et al. (2011) who found 220 

that orally administered MC-LR was eliminated rapidly (within 24 h) from the tissue of 221 

juvenile yellow perch.  222 

The present study showed some minor, temporary interaction of MC-LR with lipid membranes, 223 

most likely caused by the insertion of the lipophilic Adda residue. This interaction may explain 224 

the detection of the toxin in low quantities in a diverse range of species and tissue types (Ito et 225 

al., 2000; Wang et al., 2008; Lei et al., 2008). The introduction of cholesterol and POPE lipid 226 

to membranes indicated that the presence of lipid micro-domains has little influence on the 227 

toxin’s membrane insertion and retention time. Localised accumulation of MC-LR in 228 
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hepatocytes through the OATP transporters remains the likely route of exposure to toxic levels 229 

of MC-LR (Chorus & Bartram, 1999). 230 

While this study suggests that MC-LR does not biomagnify through the food web through lipid 231 

storage, this does not discount the possibility of other MC variants doing so. MC-LR is 232 

frequently cited as the most toxic and widespread of the microcystin family (Schmidt et al., 233 

2014; Rastogi et al., 2015), and many water quality guidelines often focus solely on MC-LR, 234 

such as those by the World Health Organisation (WHO) (Guidelines for drinking-water quality: 235 

fourth edition incorporating the first addendum, 2017). It should also be noted that the majority 236 

of cyanotoxin research focuses on MC-LR (de Figueiredo et al., 2004). Some microcystin 237 

isomers, such as MC-LF and MC-LW, are more lipophilic than the MC-LR variant (Vesterkvist 238 

et al., 2012) and Xie et al. (2004) noted that depuration of MC-RR in silver carp occurs far 239 

more slowly than MC-LR. These microcystins may represent a greater biomagnification 240 

potential than MC-LR. Further research should seek to clarify the differences in 241 

biomagnification potential between the microcystin congeners and establish water quality 242 

guidelines that incorporate other MC congeners that may threaten higher trophic level 243 

organisms.   244 

 245 

4. Conclusion 246 

Using tethered bilayer lipid membranes, we demonstrated that MC-LR does not irreversibly 247 

imbed itself into lipid membranes after short or long-term exposure. We observed an increase 248 

in membrane conduction in tBLMs, most likely caused by insertion of the lipophilic Adda 249 

residue, altering the overall membrane packing properties. However, there was minimal 250 

changes in membrane capacitance and MC-LR exhibited a rapid off-rate. When left to incubate 251 

with the membrane over 24 hours, the data suggests that no lipophilic multimeric complexes 252 
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were formed capable of altering the toxin’s off-rate, and no new pores were created. The 253 

temporary insertion of the Adda residue may explain the identification of the toxin in low 254 

quantities in a diverse range of species and tissue types (Ito et al., 2000; Wang et al., 2008; Lei 255 

et al., 2008), however MC-LR appears incapable of accumulating to high levels as a result of 256 

lipid insertion in these tissues. These findings indicate that biodilution, as opposed to 257 

biomagnification, is the prevailing process when MC-LR enters the foodweb.  258 

 259 
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