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For the robust optimization problems with probabilistic uncertainties, classical approaches based on Monte Carlo method usually 

require a huge amount of samples for the robustness estimation of the performance. This paper proposes an efficient robust optimizer 

based on univariate dimensional reduction method and evolutionary algorithms. The univariate dimensional reduction method is applied 

for the probabilistic property estimation of the performance functions with significantly reduced sample number. The comparison results 

of the proposed approach and classical approach based on Monte Carlo method for a numerical example illustrate the feasibility of the 

presented approach. 
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I. INTRODUCTION 

n the operation of electromagnetic devices, there are 

various types of unavoidable uncertainties related to material 

properties, manufacturing errors, loads, etc. Robustness 

considering these perturbations means acceptable performance 

fluctuations that do not violate the constraints. In order to 

prevent the low-reliability design, the influence of the 

uncertainties should be modeled in the optimization process. 

For the design problems with probabilistic uncertainties, Monte 

Carlo method [1] is usually applied to assess the robustness of 

the objective or constraint functions by sampling according to 

the known mean and standard deviation of the uncertain 

variables. Solutions should have acceptable fluctuations under 

these perturbations under these fluctuations However, 

thousands of or more function calls are usually required to 

quantify the uncertainty, the calculation burden will be 

extremely large especially for high dimensional problems and 

time-consuming finite element analysis models. Therefore, 

optimizer with an efficient reliability quantification approach is 

usually the research motivation for robust optimization. 

In this work, the univariate dimension-reduction method [2] 

is introduced into the optimization process to approximate the 

mean and variance of the objective and constraints functions 

with effectively reduced sample numbers. A fast robust 

optimizer framed on evolutionary algorithms and the 

dimension-reduction method is proposed. The optimization 

results of a benchmark design problem of brushless DC motor 

illustrate the efficiency of the proposed approach. 

II. ROBUST OPTIMIZATION MODEL WITH UNCERTAINTIES 

A robust design model involving probability uncertainties 

can be expressed as below  
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where X is the vector of uncertain variables, μ and σ are the 

mean and standard deviation respectively, ns is the sigma level, 

Y is the design parameters. 

III. PROBABILITY PROPERTY ESTIMATION WITH UNIVARIATE 

DIMENSIONAL REDUCTION METHOD  

For an objective function f = f (X) with n probability variables, 

the kth origin moment E (f k ) can be expressed as:  
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where p (X1, X2, …, Xn) is the joint probability distribution func-

tion of probability uncertain variables.  

Using the univariate dimension reduction method, the multi-

dimensional problem will be transformed into a series of one-

dimension problem. As a result, the multidimensional Gauss in-

tegral turns to a one-dimension Gauss integral. Then the com-

pliance can be approximated as follows:  
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where ( ) ( )1 1 1
ˆ , , , , , ,j j j j nf f u u X u u− +=      X , ju  is the mean 

value of jX . Then the kth origin moment of compliance is:  
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Based on the binomial theorem, we can obtain:  
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in which 1, ,j n=    ； 1, ,i k=    . i

jS  can be calculated by the 

following recursion formula (7). Then the origin moments of 

the system can be calculated with 3n+1 samples in total from 

the origin moments of subsystems with a single variable. 

Finally, the mean and standard deviation of the objective or 

constraint functions can be calculated as (8). 
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IV. DESIGN OPTIMIZATION FRAMEWORK 

The robust optimization framework can be easily established 

combined with general global optimization algorithm such as 

differential evolution algorithm. To reduce computation burden 

further, the application of the dimension reduction approach is 

conducted after the deterministic constraint value estimation in 

the upper step. For the population which violates the constraints, 

there is no need for the robustness assessment. Then the com-

putation time can be reduced. The flowchart of the framework 

will be illustrated in the full paper. 

V. DESIGN EXAMPLE 

A brushless DC wheel motor benchmark is investigated in 

this work as mono-objective and multi-objective cases [3]. The 

design parameters and their optimization intervals are listed in 

Table I. The mean and standard deviation of the uncertain var-

iables are presented in Table II. The deterministic mono-objec-

tive problem of the benchmark aims to have the best efficiency. 

For the bio-objective case, the efficiency objective is kept while 

reducing the mass respecting the same technical constraints 

which can be written as 
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where η, Mtot, Imax, Dint, Dext, Ta, and discr are the efficiency, 

total mass of the active parts, demagnetization phase current, 

inner and outer diameter, the temperature of the magnets, and 

the determinant used for the calculation of the slot height re-

spectively. Their robust function can be transferred to the for-

mation as expressed in equation (1), in which the sigma level n 

is defined as 6 for the ensuring the robustness. 

TABLE I 

DESIGN PARAMETERS OF THE BRUSHLESS DC 

Par. Description Unit lower upper 

Be 
Maximum magnetic 

induction in the air gap 
T 0.5 0.76 

Bd Average magnetic T 0.9 1.8 

induction in the teeth 

Bcs 
Average magnetic 

induction stator back iron 
T 0.6 1.6 

Ds Stator out diameter mm 150 330 

J Current density A/mm2 2 5 

TABLE II 

UNCERTAIN PARAMETERS OF THE BRUSHLESS DC 

Par. Description Unit μ σ 

α Width of the stator tooth deg 30 0.08 

e Length of air gap mm 0.8 0.02 

Lm Length of the motor mm 45 0.1 

β Width of the intermediate tooth deg 6 0.08 

 
Fig. 1. Comparison of the mono-objective optimization results 

 
Fig. 2. Comparison of the bi-objective optimization results 

For the mono objective case, Fig. 1 illustrates the demagnet-

ization phase current distribution of the deterministic and robust 

solution considering the uncertainties verified by Monte Carlo 

analysis. Fig. 2 illustrates the Pareto results of the deterministic 

and proposed robust approach. Their sigma levels achieved by 

Monte Carlo analysis are also presented in the figure. For both 

mono objective and bi-objective cases, the sigma levels of the 

robust results are no smaller than preset value which proves the 

accuracy of the dimension reduction approach. Meanwhile, 

only 13 samples are required for the sigma level assessment of 

each population which means much higher efficiency than the 

Monte Carlo method. 
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