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Multiclass Support Matrix Machines by Maximizing
the Inter-class Margin for Single Trial EEG

Classification
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Abstract—Accurate classification of Electroencephalogram
(EEG) signals, plays an important role in diagnoses of different
type of mental activities. One of the most important challenges,
associated with classification of EEG signals is how to design
an efficient classifier consisting of strong generalization capa-
bility. Aiming to improve the classification performance, in this
paper, we propose a novel multiclass Support Matrix Machine
(M-SMM) from the perspective of maximizing the inter-class
margins. The objective function is a combination of binary hinge
loss that works on C matrices and spectral elastic net penalty as
regularization term. This regularization term is a combination of
Frobenius and nuclear norm, which promotes structural sparsity
and shares similar sparsity patterns across multiple predictors.
It also maximizes the inter-class margins that helps deal with
complex high dimensional noisy data. The extensive experiment
results supported by theoretical analysis and statistical tests show
the effectiveness of the M-SMM for solving the problem of
classifying EEG signals associated with motor imagery in Brain-
computer Interface (BCI) applications.

Index Terms—SVM, Matrix classification, multiclass support
matrix machines, SMM, M-SMM, nuclear norm.

I. INTRODUCTION

Brain-Computer Interface (BCI) is an advanced approach to
establish the direct communication between a human brain and
machine [1], [2], [3]. Electroencephalogram (EEG) has been
used by clinicians as a standard neuroimaging tool to study
the neuronal dynamics within the human brain. EEG data
reflect the process of an individual’s information processing
[4] and is widely used for the diagnosis of neurological
disorders such as epilepsy, sleep apnoea [5]. EEG signals offer
an inexpensive and relatively easy way of reading the brain
activity as compared to other neuroimaging methods such as
Magnetoencephalography (MEG), Functional Magnetic Res-
onance Imaging (fMRI) and Electrocorticography (ECoG).
Setting up an experiment with EEG can also be done without
too much hassle, it is sometimes easy as placing a headset
on and checking the data quality. These reasons make the
EEG a popular and an important resource for identification
and classification the brain activity.

Recent technological advancement in EEG data acquisition
by using dense groups of electrodes attached to the cranium
have increased the scope of EEG recording abilities. Visual
inspection of such massive data sets is cumbersome and
prone to error. In the field of machine learning and statistics,
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classification is an important research task, aiming to identify
to which set of categories a new observation belongs to. This
classification of unseen data is made from information learnt
from a training set containing known observations. To classify
EEG data efficiently, not only optimized set of features but also
classifier optimization is essential. Approaches that perform
little optimization of features or classifier are guaranteed to
provide badly over-fitted and useless models when applied to
complex data, posing great difficulties for further data analysis
tasks. In addition to this, selection of discriminant features,
maximizing the hyper-plane and training point margins is the
key to success of support vector machines. This helps to select
patterns important for classification and also overcome the
computational complexity.

Generally, the high-dimensional EEG data poses several
serious challenges, especially due to its limited size. One of the
most important issues for the classification of EEG signals is
how to design a powerful classifier with strong generalization
capability?. For certain classification tasks, the data has to
be reshaped into vectors for dimensionality reduction and
classification which could destroy the structural information
embedded within. An ad hoc solution for this issue is to
concatenate the matrix into vectors, however, this results in an
increase in dimensionality leading to model over-fitting. For
example BCI IIIa dataset has small sample size (288 samples
with 750 × 22 temporal spatial matrix) that results in high
dimensional features (750×22=16,500). Nevertheless, repre-
sentation of such data in the form of matrices can preserve
its structural information i.e. EEG signal which consists of
voltage fluctuations at several electrodes during a time period,
has a strong correlation between certain frequency band and
channels. Furthermore, reshaping of high dimensional data to
vectors could result in increase of dimensionality [6] [7].

Recently, several efforts have been made to classify di-
rectly from matrix without converting it into vectors, which
exploits the correlation between the columns or rows of
matrix. Although, these methods takes full advantage of low
rank assumption to exploit the strong correlation between
columns and rows of each matrix and able to extract useful
features, however, all these matrix classifiers expect MSMM
are originally built for binary classication problems. Although,
they could be used for multiclass classification by breaking
multiclass problem into series of binary class classification
problem such as one-vs-rest (OvR) or one-vs-one (OvO)
strategies (e.g. In OvsR, the mutli-class problem is solved
by splitting it into n binary class classification problems,
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whereas OvsO approach splits the problem into c(c−1)
2 binary

classification problems. ) but are computationally expensive
and may results in unbalanced distribution of input samples.
Thus, there is need to train multiple binary classifier or
multiclass classifier into single optimization.

Aiming to address the multiclass classification for matrix
data, in this paper, we present a novel multiclass Support
Matrix Machine (M-SMM) approach by utilizing the maxi-
mization of the inter-class margins (i.e. margins between pairs
of classes). The proposed model is a combination of binary
hinge loss for models fitting, and elastic net penalty as a reg-
ularization on regression matrix. The binary hinge loss uses C
matrices to simulate one-vs-one classifier of all classes rather
than c(c−1)

2 models. The regularization term which promotes
the structural sparsity and shares similar sparsity patterns
across multiple predictors, is a combination of Frobenius and
nuclear norm. Thus, the proposed objective function not only
maximizes the inter-class margins but is a spectral extension
of conventional elastic net that combines the property of low
rank and joint sparsity together, to deal with complex high
dimensional noisy data. We can describe the theoretical and
empirical key contributions of this work as follows: A novel
classifier M-SMM which works by effectively combining
the binary hinge loss function (to maximize the inter-class
hyper plane margin for model fitting) and elastic net penalty
(to promote low-rank plus sparsity), as a regularization on
regression matrix. Unlike one vs one classification strategy,
we have used C matrices to simulate the binary classification
that not only helps to overcome the complexity issue but also
maximizes the inter class margin. Since the optimization is
convex and one of the major challenges is how to efficiently
solve non smooth optimization?, thus, we devised an efficient
algorithm for solving the proposed objective functions.

II. RECENT ADVANCEMENT ON EEG CLASSIFICATION

EEG measures the electrical activity of the brain via elec-
trodes placed on the scalp. It provide the information from the
surface measurements, how active the brain is and can be used
to measure the abnormal activity, such as with epilepsy. EEG
classification is challenging task due complex nature of the
data such as the low signal-to-noise ratio, the non-stationary
of signals and the presence of noises etc. An ad hoc approach
for EEG classification is to measure the different between
left and right electrodes, however, it provides poor accuracy.
Several research efforts has been performed to improve the
EEG classification accuracy. To classify EEG data efficiently,
not only optimized feature extraction of relevant EEG data
but also optimization of classifier is essential to improve the
quality of cognitive performance evaluations. With respect to
the data, EEG classification approaches are divided into two
categories such as vector based methods (requires data to be
in the form of vectors) and matrix based methods (works on
matrix data without reshaping the data into vectors).

Vector based methods such as linear discriminant analysis
(LDA) [8], [9], [10], support vector machines (SVM) [11],
[12], [13], K nearest neighbor (KNN) [14], [15] and neural
network [16], [17], [18], [16], [19] have been successively

applied for EEG classification. In most cases, the data has
to be reshaped into vectors for further classification which
could in-turn destroy the structural information embedded in it.
Recently, some efforts have been made to suppress the matrix
into vectors using common spatial patterns [20], [21], [22],
[23], [24], [25]. However, these methods ignore the topological
structure embedded in the matrix data, whereas considering
structural information is of great interest and helps to improve
the classification.

To utilize the information properly that were lost due
to reshaping of matrix into vector, recently, matrix based
classifier are extensively being used for classification of EEG
task [3], [26], [11], [27]. Wolf et al. used rank- k SVM
by regularizing the regression matrix as the sum of k rank-
one orthogonal matrices to capture the global structure of
matrix data [28]. Pirsiavash et.al. [29] and Dyrholm et al. [30]
presented a bi-linear classifier by applying the hinge loss for
model, fitting through factorization of regression matrix into
low rank matrix. Zhang et. al. devised low rank linearization
to transform the non-linear SVM to linear one through kernel
map computed from low rank approximation of matrices [31].
However, these methods are not able to exploit the correlation
between rows and columns within each single trial EEG data.

For classification of high dimensional data, not only di-
mensional reduction or feature selection, it is also important
to find salient features that belong to specific part of image
as projection procedure involves all the original features and
it may have redundant or irrelevant features. To select such
salient patterns, projection matrix should consist of sparse
element with respect to such features. Recently, Luo et al
present support matrix machines by using hinge loss, nuclear
norm and Frobenius norm [27]. SMM is not only able to
select features but also leverage the structural information
by learning the low rank regularization from the noisy EEG
features. Zheng et al. extended this work and presented sparse
support matrix machines (SSMM) by combining the `1-norm,
nuclear norm and hinge loss [3]. SSMM is robust against
noisy data due to `1 robustness against outliers. The above
methods take full advantage of the low-rank assumptions to
exploit the correlation between rows and columns within each
single trial EEG data and able to extract important features by
discarding irrelevant and redundant features, however, works
only for binary classication problems.

Recently, Zheng et. al. extended the problem into multiclass
EEG classification problem and presented a mulitcalss support
matrix machines that is a combination of hinge loss, nuclear
and Frobenius norm [26]. However, it is computationally
complex and is sensitive to noisy data. To overcome afore-
mentioned issues in earlier works, in this paper, we presented
a novel multiclass EEG classification approach that maximizes
the inter-class margins to deal with complex high dimensional
noisy data.

III. NOTATIONS AND PRELIMINARIES

We started by establishing the notation and preliminaries
used throughout this paper. Scalar, vector and matrix are
represented by lowercase letter (e.g. x), lowercase bold letter
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(e.g. x ) and uppercase letter (e.g. X) respectively. We let Ip
denoted by p× p matrix. For a matrix X ∈ Rp×q , its singular
value decomposition is denoted as X = UΣV T , where U is
the unitary matrix, Σ = diag(σ1, σ2...σr) is the rectangular
diagonal matrix and V T is the conjugate transpose of the
unitary matrix. The Frobenius norm of a matrix X is denoted
as ||X|| =

√∑p
i=1

∑q
j=1 x

2
pq . The nuclear norm of a matrix

X is ||X||∗ =
∑r
i=1 σi.

As we know, the nuclear norm ||X||∗ =
∑r
i=1 σi of a

matrix X as a function from Rp,q to R can not differentiated.
Alternatively, we have to consider the sub-differential of X∗
that is denoted by ∂||A||∗. It is a set of sub-gradients. For a
matrix X of dimension p× q of rank r,

∂||A||∗ =
{
UXV

T
X + Z : Z ∈ Rp×q,

UTXZ = 0, ZVX = 0, ||Z||2 ≤ 1 (1)

For any τ ≥ 0, the singular value thresholding operator
(SVT) is defined as

Dτ (X) = UΣτV
T

where Στ = diag([σi(X)− τ)]+, .....[σr(X)− τ)]+)

IV. THE PROBLEM FORMULATION

In this section, we provide the motivation, brief description,
and formalization of matrix classification problem. Practically,
it has been noticed that the selection of features and suitable
model design is far more important than the choice of classifier
itself [32]. Hence, in this paper, we are focusing on selection
of useful features and making the classifier robust.

We are given a set of training samples T = {Xi, yi}ni=1,
where Xi ∈ Rp×q is the ith input sample matrix and
yi ∈ {1,−1} is its corresponding class label. Gener-
ally, the data needs to be transformed/stacked into vec-
tors in order to fit a classifier. Let xi = vec(XT

i ) =
([Xi]11, [Xi]12, ...[Xi]1q, [Xi]21, [Xi]22, ...[Xi]pq)

T ∈ Rpq .
We have n number of training samples and c number of
classes. Thus, we are required to build c number of binary
SVM classifiers.

The classical multiclass soft margin SVM is defined as

arg min
wj ,bj

1

2
tr(wTj wj) + C

n∑
i=1

ξji (2)

such that

wTj xi + b ≥ 1− ξji , if yi = j

wTj xi + b ≤ −1 + ξji , if yi 6= j

ξji ≥ 0

Where ξji = 1− yi[tr(WTXi) + b]+ is the hinge loss,
W ∈ Rpq is the vector of regression coefficients, b ∈ Rpq
is an offset term and C is a regularization parameter. This
problem is considered unbalanced even though the number
of training samples in class are balanced due to one-vs-all
strategy. This property affects the classification performance,

and was resolved through one-vs-one classification strategy.
To classify unseen data, voting strategy is used and the class
with maximum votes is considered as output. In result, it is
required to build c(c−1)

2 number of classification models in
total and can be defined as follow

arg min
wjk,bjk

1

2
tr(wTjkwjk) + C

n∑
i=1

ξjki (3)

such that

wTjkxi + bjk ≥ 1− ξjki , if yi = j

wTjkxi + bjk ≤ −1 + ξjki , if yi 6= k

ξjki ≥ 0

Later on, Guermeur formulated a theoretical SVM frame-
work for multiclass classification [33] which can be written
as

arg min
wd×c,bc

1

2

c−1∑
j=1

c∑
k=j+1

||wj − wk||22 +

c∑
j=1

||w||22+

C

n∑
i=1

∑
j 6=yi

ξjki (4)

such that

wTyixi + byi ≥ wTj xi + bj + 1− ξij
ξij ≥ 0, ∀i ∈ 1, ...ci

Xu et.al. extended the above Eq. 4 to multiclass binary
SVM and proposed c vectors to simulate one-vs-one binary
classifiers [34]

arg min
wd×c,bc

1

2

c−1∑
j=1

c∑
k=j+1

||wj − wk||22 +

c∑
j=1

||w||22+

1

2

c∑
j=1

b2j + C

c∑
j=1

c∑
k=j+1

∑
yi∈j,k

ξjki (5)

such that

yjki fjk(xi) ≥ 1− ξjki , ∀yi ∈ j, k
ξjki ≥ 0

Here, it is required to reshape the date into vectors which
results in losing losing the correlation among columns or rows
in the matrix. To be benefited from rich structural information
hidden in the data, recently support matrix machine has been
proposed. By directly transforming the Eq. 2 for matrix, we
get

argmin
1

2
tr(WTW ) + C

∑
1− yi[tr(WTXi) + b]+ (6)

It is an established fact that tr(WWT ) = vec(W )vec(WT )
and tr(WTXi) = vec(W )T vec(Xi), thus the above objective
function can not capture the intrinsic structure of each input
matrix efficiently due to the loss of structural information
during the process of matrix reshaping into vectors. To take
the advantage of intrinsic structural information within each
matrix, one intuitive way is to capture the correlation within
each matrix through low rank constraints on the regression
parameters. Results showed that exploiting the correlation
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information improved the classification performance. The Eq.
2 can be rewritten for matrix classification as

argmin
1

2
tr(WTW ) + C

∑
1− yi[tr(WTXi) + b]+ (7)

Motivated by this, Luo et. al. presented sparse matrix machine
shown in Eq. 8 [27]. The objective function in Eq. 8 consists
of hinge loss plus nuclear norm and Frobenius norm as
reguarlizer.

argmin
1

2
tr(WTW )+τ ||W ||∗+C

∑
1− yi[tr(WTXi) + b]+

(8)
The spectral elastic net regularization 1

2 tr(W
TW )+τ ||W ||∗

captures the correlation with in each matrix individually.
Furthermore, the nuclear norm in reguarlizer is used to control
the rank of W (NP-hard problem) and provides the best
approximation of rank of matrix W . The objective function
shown in Eq. 8 is capable of capturing the latent structure
within each matrix and perform the classification based on
all entities of each matrix, which effects the classification
performance and makes the model complicated. Although,
these methods for matrix data take full advantage of low rank
assumption to exploit the strong correlation between columns
and rows with in each matrix and are able to extract useful
features, however, there is still need to train multiple binary
classifier or multiclass classifier into single optimization.

V. MAXIMIZING INTER-CLASS MARGINS FOR SMM

In this section, we introduce the proposed approach for
maximizing the inter-class margin for support matrix machine.
Figure 2 illustrate the proposed mulitclass support matrix ma-
chines for classification of EEG signals. It is in principal novel
classifier being able to, maximize the inter-class margins,
select the discriminant patterns by removing the redundant
information, and to consider the strong correlation of rows and
columns in the matrix. Figure 1 shows the motivation of M-
SMM. The objective function in Eq. 9 is combination of sparse
and low rank properties aiming at efficient capture of the
correlations with each input matrix and further maximization
of the inter-class hyperplane margin for better multiclass
classification.

A. Objective Function

Given a c-class (c ≥ 2) matrix form training data
{Xi, yi}ni=1 ∈ {X,Y }, where Xi ∈ Rpq is the ith feature
matrix and yi ∈ {1, 2, 3....c} is the corresponding class label.
The support matrix classifier (argmin 1

2 ||W ||
2
F + C

∑n
i=1 ξ)

focuses on binary classification and hence incapable of deal-
ing with multiclass problems. We devised a novel objective
function that maximizes the margin between inter-class.

To maximize the inter class margin,

arg min
wd×c,bc

1

2

c−1∑
j=1

c∑
k=j+1

||Wj−Wk||2F + τ

c∑
j=1

||Wj−Wk||∗

C

c∑
j=1

c∑
k=j+1

∑
yi∈j,k

ξjki (9)

Fig. 1. Illustration of multiclass support matrix machine: For four classes,
we need three parameters W1,W2, W3, and W4 to maximize the inter-class
margins

such that

yjki fjk(Xi) ≥ 1− ξjki , ∀yi ∈ j, k
ξjki ≥ 0

Where W ∈ Rpq denotes the regression parameter in the
form of tensor and ||X||F is the Frobenius norm of W .
The objective function in Eq. 9 resulted in multiple optimal
solutions. In order to reach the objective function which
provides single global optima, we further added constraints
in the objective function as follow

arg min
Wd×c,bc

1

2

c−1∑
j=1

c∑
k=j+1

||Wj−Wk||2F +τ

c∑
j=1

||Wj−Wk||∗

+
1

2

c∑
j=1

b2j + C

c∑
j=1

c∑
k=j+1

∑
yi∈j,k

ξjki (10)

such that

yjki fjk(xi) ≥ 1− ξjki , ∀yi ∈ j, k
ξjki ≥ 0

Whereas as fjkxi = (Wj − Wk)Txi + bj − bk and yjki ={
1,−1

}
.

For classification of unseen data object, we follow the same
voting strategy as in one-vs-one multiclass classification and
simulated using C matrices. Thus, M-SMM does not require
to compute c(c−1)

2 decision function, it only needs to compute
the decision function c times and decided based on the largest
value. Surprisingly, the problem could be solved using a simple
yet efficient algorithm as shown in table 1.

B. Learning Algorithm

The objective function in Eq.10 consists of four terms
and all of them are convex i.e. the Nuclear and Frobenius
norm, that satisfies the triangle and homogeneity properties.
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Fig. 2. Illustration of proposed framework equipped with M-SSM for EEG signal classification

The other two terms are linear functions, hence, they are
also convex. In conclusion, the objective function in Eq.10
is convex but non-differentiable and non-smooth. In convex
optimization setting, sub-gradient of the nuclear norm function
cannot be used in standard descent approaches, as a result
solving it directly is difficult. Thus alternative approach is
required to update W . As we know, the dependency of matrix
W can be revealed by its rank(W ), so we can impose rank
on W . To conclude, rank matrix minimization is non-convex
and NP-hard and can be solved as

arg min
Wd×c,bc

1

2

c−1∑
j=1

c∑
k=j+1

||Wj−Wk||2F +τ

c∑
j=1

||Wj−Wk||∗

+
1

2

c∑
j=1

b2j + C

c∑
j=1

c∑
k=j+1

∑
yi∈j,k

[1− ȳjki fjk(xi)]+ (11)

whereas as W ∈ Rd×c , b ∈ Rc and decision function
fjk(xi) = (Wj − Wk)Txi + (bj − bk).yjkn is the resultant
class that is classified for unlabeled data.

We select the training sample randomly in each iteration.
The objective function in Eq. 11 can be rewritten as

arg min
Wd×c,bc

1

2

c−1∑
j=1

c∑
k=j+1

||Wj−Wk||2F +τ

c∑
j=1

||Wj−Wk||∗

+
1

2

c∑
j=1

b2j + C

(
c∑

j=ȳi+1

[1− ȳjki fȳij(xi)]++

ȳi−1∑
j=1

[1 + ȳjki fjȳi(xi)]+

)
(12)

As all the terms in objective function in Eq. 12 are non-
smooth and non-differential, thus, stochastic gradient descent
and Nesterov methods can not be applied. Since the objective
function is convex in all four terms, we have employed widely
used framework ADMM for convex optimization problem,
by breaking the objective function into sub-problems that are
easier to optimize.

The problem in Eq.12 can be equivalently written as,

argmin
W,b

P (W ) +Q(S)

TABLE I
ALGORITHMIC PROCEDURE OF SPARSE SUPPORT MATRIX MACHINE

Input: : Labeled Training dataset: [Xi, yi] where Xj ∈ Rm×n

for j = 1, ..., N , Lagrangian multiplierL, learning rate η ∈
{0, 1}, p > 0,t = 1, C, τ
Output: Matrix W

Step-I: Initialize the W,S,L = 0

While not converge do
Step-II Minimize S with respect to W

min
S
LS = G(S) + 〈L, S〉+

p

2
||W − S||2F

Step-III Minimize W with respect to S

min
S
LW = H(W )+ + 〈−L,W 〉+

p

2
||S −W ||2F

for i = 1 to c do
Step-IV: if 1− fjk(xi) ≤ 0

∇W =
1

p+ 1

(
Λ + pS − Cxi)

Step-V: if 1− fjk(xi) ≤ 0

∇W =
1

p+ 1

(
Λ + pS + Cxi)

end for
for i = 1 to n do

Pick it ∈ 1, 2, ...n randomly and update parameter
for i = 1 to c do

W = W − η∇W

S =
1

p
Dτ (pW − Λ)

L = Lt + p(St+1 −W t+1)

pt+1 = βpt

end while

s.t S −W = 0
Where S ∈ RP×Q×k is an additional decision variable to split
the primal problem into two sub problems.
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P (W, b) =
1

2

c−1∑
j=1

c∑
k=j+1

||Wj −Wk||2F +
1

2

c∑
j=1

b2j

+C

(
c∑

j=ȳi+1

[1−ȳjki fȳij(xi)]++

ȳi−1∑
j=1

[1+ȳjki fjȳi(xi)]+

)
(13)

and
Q(S) = ||Wj −Wk||∗ (14)

where P (W ) is the hinge loss function obtained from
negative likelihood, Q(S) is an additional penalty function
defined on singular value of matrix. For simplicity, we used
term W instead of Wj−Wk and Wi. To solve the Eq. 12, we
applied augmented Lagrangian method and obtained

L(W, b, S, ) = P (W )+G(S)+
p

2
||S−W ||2F+〈L, (S−W )〉

(15)

where p > 0 is the hyperparameter and L is the Lagrange
multiplier.

We have divided the optimization problem in Eq. 12 into
two sub-problems W and S. Solving it iteratively, we first
needed to minimize S and W followed by updating the
Lagrangian multiplier accordingly as,

St+1 = argmin
S
L(S,W t,Lt) (16)

W t+1 = argmin
S
L(St+1,W,Lt) (17)

L = Lt + p(St+1 −W t+1) (18)

Where t and t+1 are the tth and (t + 1)th iterations
respectively.

Minimizing the objective function in Eq. 16 with respect to
S by fixing W , is to minimize the sum of all terms S term.
Assuming W is fixed, we get

min
S
LS = G(S) + 〈L, S〉+

p

2
||W − S||2F (19)

To update S, Eq. 19 can be solved by minimizing Ls. As
Ls is non-differential but convex, the sub-gradient of Ls is
computed as (see the proof in theorem 1)

St+1 1

p
Dτ (pW − L) =

1

p
U0(Σ0 − τI)V T0 (20)

Where D is the singular value threshold operator.

Theorem 1. For τ ≥ 0, one optimal solution for the
following problem

min
S
LS = G(S) + 〈L, S〉+

p

2
||W − S||2F

is

St+1
c =

i

1 + p
Dτ (pWc − Vc)

Where Dτ is the singular value thresholding operator
(defined in section III).

Similarly, fixing S and minimizing the objective function
with respect to W

min
S
LW = H(W )+ + 〈−L,W 〉+

p

2
||S −W ||2F (21)

The Eq. 21 is the non-negative convex sum of term H(W )
(combination of hinge loss, Frobenius norm and penalty term)
and linear and square functions.

Here, we have two different cases i.e. j = yi and j 6= yi.
Considering j = yi first, we have

W t+1 =
1

p+ 1

(
L+ pS +

{
−Cxi if 1− fjk(xi) > 0

0 if 1− fjk(xi) ≤ 0
(22)

Similarly, when j = yi, W is updated as

W t+1 =
1

p+ 1

(
L+ pS +

{
Cxi if 1− fjk(xi) > 0

0 if 1− fjk(xi) ≤ 0
(23)

Finally the Lagrangian multiplier can be updated as

L = Lt + p(St+1 −W t+1) (24)

pt+1 = βpt (25)

Theorem 2. Optimal solution of St+1 such that

min
S
LS = G(S) + 〈L, S〉+

p

2
||W − S||2F

satisfies 0 = ∂Ls(S
t+1
c ), now we are required to find one

Sc subject to

0 ∈ Sc + τ∂||Sc||∗ + L+ p(Sc −Wc)

Let UcΣcV
T
C denotes the singular decomposition of an

arbitrary matrix Sc.

Sub gradient of nuclear norm (defined in section III)
∂||Sc||∗ is

∂||SC ||∗ = UCV
T
c + Z : Z ∈ Rl1×l2 , UTc

The above equation can be rewritten as

∂||SC ||∗ = 0, Vc

Which can be simplified as

∂||SC ||∗ = 0, ||Z||F < 1

Let Y denotes PWc − Lc and decompose it as
Y = U1Σ1V

T
1 + U2Σ2V

T
2 where U and V are the

singular vectors associated with singular values greater than
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τ (smaller than or equal).

If Sc =
U1(Σ1−τI)V T

1

1+p ; according to 0 ∈ Sc + τ∂||Sc||∗ +
L+ p(Sc −Wc), we have the following relation

∂||Sc||∗ =
1

τ
[Y − (1 + p)Sc]

The above Eq. can be simplified as

∂||Sc||∗ = U1V
T
1 +

1

τ
U2Σ2V2

Consider Z = U2Σ2V2, Uc = U1 and Vc = V1, we have
0 ∈ ∂Ls when S∗c = Sc

C. Theoretical Justification

In this section, we theoretically analyze and illustrate how
M-SMM possesses some elegant features as compared to
conventional SVM, conventional elastic net SMM [27] and
MSMM [26]. As discussed earlier, data is unbiased in real
world, thus one versus rest class problem will not work
and will affect the performance. Similarly, one versus one
strategy has high space and time complexity, especially in
case of matrix data, since it requires training of c(c−1)

2 SVM
classifiers. M-SMM works same as one vs one fashion and
does not to use voting strategy and compute decision function
for each class. We build a classifier for every two classes,
however, different from one versus one strategy, it use C
matrices to simulate all these binary classifiers, thus it does
not need to use vote strategy c(c1)/ 2 times. It just need to
compute decision function c times . This results in reduction
of space complexity to same level as one-vs-rest strategy and
find the largest value.

We now show that S-SMM is the generalization of multi-
class SMM. Considering the hinge loss of proposed objective
function as shown in Eq.10.

C

c−1∑
j=1

c∑
k=j+1

∑
yi∈j,k

ξjki

The above equation can be written as

C

c−1∑
j=1

c∑
k=j+1

∑
yi∈j,k

[1− ȳjki fjk(Xi)]+

= C

c−1∑
j=1

c∑
k=j+1

(∑
yi∈j

[1− fjk(xi)]+ +
∑
yi∈k

[1− fkj(Xi)]+]

)

= C

c−1∑
j=1

∑
yi∈j

c∑
k=j+1

[1− ((Wj −Wk)TXi + (bj − bk)))]+

= C

n∑
i=1

∑
k 6=yi

[1− ((Wyi −Wk)TXi + (byi − bk)))]+

The objective function in Eq. 12 can be written as below,
which is MSMM [26].

arg min
Wd×c,bc

1

2

c−1∑
j=1

c∑
k=j+1

||Wj −Wk||2F +

c∑
j=1

||Wj −Wk||∗

+
1

2

c∑
j=1

b2j + C

c∑
j=1

n∑
i=1

[1− ȳjki fjk(Xi)]+ (26)

The proposed objective function degenerate to SMM.

VI. EXPERIMENTAL EVALUATION

In this section, we described the experimental setup and
evaluation of the proposed approach. To validate the effec-
tiveness of proposed classifier, we extensively evaluated the
proposed M-SMM and compared it with MSMM [26], SMM
[27], BSMM [35], MSVM [36], KNN [37] and SCSSP[25]
as well as winners of BCI competitions on benchmark EEG
datasets (IIIa and IIa) using four different evaluation metrics
(recall, prevision, F-measure and kappa coefficient).

A. Dataset

In this experiment, we have used two publicly available
benchmark data-sets namely IIIa (BCI competition III)1 and
IIa2 (BCI competition IV). IIIa consisted of 60 channel single
trial EEG signal obtained from three subjects(k3b, k6b and
l1b) while performing four classes of motor imagery (left-
hand, right-hand, foot and tongue labeled as class 1, 2, 3 and
4 respectively). IIIa consisted of 45, 30, 30 trials per class
for subject k3b, k6b and l1b respectively. Similarly, IIa data-
set collected in two sessions from nine subjects performing
four classes of motor imagery (left-hand, right-hand, foot and
tongue ). IIIa consisted of 288 in total (72 trails per motor
imagery). It consisted of 22 EEG channels and 3 monopoloar
EOG channels. IIIa and IIa are sampled with 250 Hz and band-
pass filtered between 0.5 Hz and 100 Hz. In this experiment,
we have considered two subjects (k6b and l1b) for IIIa data-set
and EEG channel for IIa data-set.

We have conducted k-fold (k = 5) cross validation to
analyze the generalization of the results to an independent
dataset. The reason behind k-fold cross validation is that, it
guarantees that each sample eventually become the part of
training as well as testing sets. For this purpose, we have
divide the trials of each subjects into 5 sets. We have repeated
the experiments five times and each time different test set
is selected while others four sets are considered as training
dataset.

B. Evaluation Metrics

In order to evaluate the performance of proposed classi-
fier, we employed different evaluation metrics such as kappa
coefficient, precision, recall and F-measure. Furthermore, we
have also compared the training time with state of the art
approaches. Kappa measure provide evaluation comparison as

1http://www.bbci.de/competition/iii/download
2http://www.bbci.de/competition/iv/dataset2a
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TABLE II
KAPPA/ERROR RATE %: CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON DATA-SET IIIA

Subject BCI Com. KNN MSVM SCSSP SMM BSMM MSMM M-SMM
k3b 0.83/18.6 0.81/14 0.89/8.3 0.71/22.3 0.852/11.1 0.94/4.4 0.948/3.9 0.961/3.6
l1b 0.74/22.1 0.49/38 0.68/24.2 0.69/36.2 0.71/21.7 0.8/15 0.811/14.2 0.85/13.2
Avg 0.78/19.8 0.65/26 0.78/16.3 0.64/23.6 0.78/16.4 0.87/9.7 0.88/9.0 0.89/9.2

TABLE III
KAPPA/ERROR RATE%: CLASSIFICATION PERFORMANCE OF DIFFERENT ALGORITHMS ON DATASET IIA

Sub BCI Comp. KNN MSVM SCSSP BSMM SMM MSMM M-SMM
S1 0.68/24 0.71/22 0.72/21 0.62/26 0.73/21 0.69/0.23 0.73/20 0.76/18
S2 0.42/44 0.4/45 0.37/47 0.28/54 0.4/45 0.23/0.58 0.43/43 0.44/39
S3 0.75/19 0.77/17 0.76/17 0.6/26 0.75/19 0.69/0.24 0.84/11 0 0.84/8.4
S4 0.48/39 0.45/41 0.36/48 0.33/51 0.51/37 0.54/0.35 0.59/31 0.64/28
S5 0.4/45 0.38/47 0.42/43 0.15/64 0.39/46 0.32/0.51 0.5/38 0.55/41
S6 0.27/55 0.24/57 0.19/61 0.25/56 0.32/51 0.15/0.63 0.41/44 0.45/39
S7 0.77/17 0.69/23 0.66/25 0.41/44 0.81/14 0.72/0.21 0.85/12 0.88/11
S8 0.76/18 0.62/29 0.45/41 0.6/31 0.71/22 0.71/0.22 0.77/17 0.81/13.7
S9 0.61//26 0.48//39 0.56/33 0.66/25 0.62/29 0.63/0.27 0.72/21 0.77/14
avg 0.57/32 0.53/36 0.5/37 0.44/42 0.58/31 0.52/0.36 0.65/26 0.74/16

it consider the accuracy occurring by chance better. Higher the
value of k means gain is classification performance and k > 0
shows the gain is better than random guess. It is defined as
k = accuracy−po

1−po . Here, po is the random guess i.e. for a
k-class dataset with balanced sample sizes among different
classes, we have po = 1

k . The other evaluation measures we
have used are precision, recall and F measure. Precision also
referred as positive predictive value (PPV) is the true positive
relevant measure and is calculated as P = tp

tp+fp . Recall is
referred to as the true positive rate or sensitivity, is the ratio of
correctly predicted positive observations to the all observations
in actual class. Recall is calculated as R =

tp
tp+fn

. F1 score
takes both false positives and false negatives into account, is
the weighted average of precision and recall. It is needed when
we are seeking a balance between precision and recall. It is
calculated as F1 = 2R×PR+P .

C. EEG Preprocessing and Feature Extraction

Motor imagery-based BCI, which translates the mental
imagination of movement to commands, is the huge inter-
subject variability with respect to the characteristics of the
brain signals [38]. Furthermore, poor characteristics of EEG
data such as measurement artifacts, outliers and non-standard
noises make it challenging task. In order to reduce the varia-
tions, spatial filtering has prevent itself as an effective method
for extraction of features has been used as a preprocessing
technique to explore the discriminative spatial patterns and
eliminate uncorrelated information. In this paper, we have
used Filter Bank Common Spatial Pattern (FBCSP) algorithm
[38] to filter out the artifacts and unrelated sensorimotor
rhythms by performing autonomous selection of discriminative
subject-specific frequency range for band-pass filtering of the
EEG measurements. To select dominant channels for each
motor imagery task, we have applied CSP [20] followed by
Time domain parameters for feature selection [39] due to
its robust performance [3], [26], [40]. We have fed the time

domain parameters to mulit-class support matrix machines for
classifications.

D. Results

The main goal of this work is to elucidate the best compa-
rable performance as compared to state of the art approaches
followed by computational complexity. In this experiment,
we have used four evaluation measures to compare the per-
formance of proposed approach with seven state of the art
approaches on two publicly EEG data-sets. As our contribution
is on classification of matrix data, thus, to compare the
proposed classifier for fair comparison, we employed the same
preprocessing and feature extraction approach for other ap-
proaches. The evaluation results on data-set IIIa shown in table
II and IV obtained highest score in the validation procedure.
We have transformed the matrix into vectors followed by
PCA for dimensioanlity reduction for vector based methods
such as BCI competition winner, MSVM, KNN, and SCSSP.
To compare the performance on multiclass problem, we have
extended the approaches using OvR strategy except MSMM.

We have also computed the error rate in Kappa measure
for better comparison. The evaluation results on data-set IIa
are shown in table III, and V. From results of both data-sets,
we observed that classifier based on maximizing the inter-
class hyperplane margin for matrix data provided better results
as compared to those methods based on vectors. It further
validated that leveraging the structural information of data
is greatly beneficial to the improvement of the classification
performance.

Notice that, the objective function consist of τ
∑c
j=1 ||Wj−

Wk||∗. Here τ manages the penalty by controlling the number
of low rank of the regression parameter. It determine the
structural information. Large value of τ impose heavy penalty
that set most of the singular values in the regression parameter
to zero which results in losing most structural information
embedded in data. Figure 3 shows the convergence process
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of M-SMM on subjects k3b and l1b of IIIa dataset. We have
used ADMM for convex optimization problem, by breaking
the objective function into sub-problems that are easier to op-
timize. Notice that M-SMM converges to the global optimum
in only few iterations. Similar trends also occur IIa dataset.

Fig. 3. Convergence process of M-SMM on subject k3b and l1b of IIIa dataset

E. Parameter Setting

The objective function that is combination of Frobenius
norm, nuclear norm and hinge loss function, thus there are
several parameters τ , p, learning rate η, t and C, are required
to be adjusted, in order to compute the objective function.
τ is a penalty added on the nuclear norm that captures the
correlation of data matrix. Thus, it determine how much
structural information is involved in the classication. We notice
that magnitude of τ manages the penalty on nuclear norm
by controlling the number of singular value (rank) of the
regression parameter. Large value of τ results powerful penalty
on the structure information as a results most of the singular
values in the regression parameter are set to zero which
results in losing most structural information embedded in data.
We observe that the the proposed model degenerates to the
problem [34] for vector data, when τ = 0. Figure 4 validate
the aforementioned claim. Notice that results are same as of
MSMM when τ = 0, similarly, the results starts to degrade
when τ is larger. Thus, we concluded that the proposed model
is a generalization of SVM and possess sparse and low-
rank properties. As a result, it considers correlation among
matrices and performs feature selection simultaneously. In this
experiment, we have set the learning rate η = 0.21, τ = 2.6
and p = 3 for IIIa dataset and learning rate η = 0.23, τ = 3
and p = 3 for IIa dataset.

F. Computational Complexity

One of the major objectives of proposed approach was
computational efficiency. As discussed in earlier sections, the
existing methods required c(c−1)

2 support matrix machines,
that is computational complex In this work, we have used

Fig. 4. Behaviour of τ on on the classication performance for IIa and IIIa
datasets

TABLE IV
COMPARATIVE EVALUATION OF CLASSIFICATION PERFORMANCE OF

DIFFERENT ALGORITHMS ON IIIA DATA-SET

Method Kappa Precision Recall F1 Score
KNN 0.732 0.768 0.799 0.804
MSVM 0.784 0.85 0.838 0.844
BSMM 0.871 0.91 0.903 0.906
SMM 0.782 0.847 0.836 0.841
MSMM 0.880 0.916 0.91 0.913
M-SMM 0.916 0.927 0.918 0.922

same strategy as of OvsO, however rather than computation
of c(c−1)

2 support matrix machine, we simulated the OvsO
strategy using using c support vectors. To investigate the
computational efficiency studies of the classification model.
We have compared the run time of the algorithms based on
matrix data. The experiments was conducted on Intel Xeon
E5-1620,3.7GHz, 16GB RAM, Window 7. We compared the
average training and testing time on both data-sets between
different methods. We have only selected classifiers (i.e. SMM,
BSMM and MSMM ) based on matrix data. The average
training and testing time on both data-sets are shown in
table VI. It can be depicted that M-SMM training time is
comparable with other approaches however, in comparison of
the testing time, it is much faster. The reason behind more
training time and better testing time is that we have more

TABLE V
COMPARATIVE EVALUATION OF CLASSIFICATION PERFORMANCE OF

DIFFERENT ALGORITHMS ON IIA DATA-SET

Method Kappa Precision Recall F 1 Score
KNN 0.527 0.684 0.645 0.663
MSVM 0.499 0.689 0.624 0.653
BSMM 0.581 0.715 0.686 0.7
SMM 0.519 0.674 0.64 0.656
MSMM 0.648 0.751 0.736 0.744
M-SMM 0.671 0.793 0.766 0.761
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TABLE VI
COMPARISON OF AVERAGE TRAINING AND TESTING TIME (IN SECONDS)

ON IIIA AND IIA DATA-SETS

Classifier IIIa IIa
Training Testing Training Testing

SMM 18.995 0.0594 47.198 0.243
BSMM 20.381 0.0636 47.198 0.243
MSMM 22.257 0.0541 65.528 0.230
M-SMM 24.366 0.0414 67.261 0.161

number of parameters in training whereas we require C vector
for testing respectively.

G. Discussion

In this section, we provide the comprehensive analysis of the
proposed approach. Notice that, the M-SMM achieved better
performance as compared to the state of the art methods.
Results shows that proposed approach is able to finds the
representative features from high-dimensional space that are
used for classification. Nuclear norm promotes the structural
sparsity and shares similar sparsity patterns across multiple
predictors. τ determines the level of structural information in-
volved in the classication by controlling the number of singular
value (rank) of the regression parameter. This means greater
the value of τ could account more structural information
encoded in the matrix results in improving the classication
accuracy. M-SMM reveals the geometric structure embedded
in the data due to the fact that it select the features by
maintaining the spatial structural information of the matrix.

Comparing with aforementioned experimental evaluation,
we have the following interesting observations

(I) M-SMM degenerates to the problem [34] for vector
data, when τ = 0. Thus, it is a generalization of
SVM and possess sparse and low-rank properties.

(II) Larger value of τ results powerful penalty on the
structure information. However, too large value of τ
results in decreasing the performance due to the fact
that high value of τ results in setting the singular val-
ues in the regression parameter to zero which discard
the structural information embedded in matrix.

In this work, we have presented a multiclass support matrix
machines with the perspective of maximizing the intra-class
margins. As a case study, we solved one of the important
problem of EEG classification to show the performance of
the proposed approach. Results showing considerable improve-
ment in accuracy as well as the computational complexity is
also attractive. Although in this experiment, we have applied
EEG dataset for validation, however proposed approach is
general machine learning classifier and could be applied to
any high dimensional data involving multiclass problem.

VII. CONCLUSION

In this work, we presented an novel classifier name Multi-
class Support Matrix Machine (M-SMM) from the perspective
of maximizing the intra-class margins (maximizing the dis-
tance between training point and hyper-plane) for multiclass

classification of high dimensional data such as EEG classifica-
tion. We combined the hinge loss, nuclear and Frobenius norm
and followed the idea of maximizing the margin between two-
class problem and use c support matrices to simulate all binary
classifier rather than computing support vector between every
two classes. The objective function not only maximized the
inter-class margins but was spectral extension of conventional
elastic net that combines the property of low rank and joint
sparsity together to deal with complex high dimensional noisy
data. Hence resulted in an improved classification performance
supported by the experimental evaluation. The M-SMM has
achieved 0.916 k value for IIIa in comparison to 0.88 and
0.782 for MSMM and SSM respectively. Similarly, 0.671 k
value for IIa in comparison to 0.648 and 0.519 for MSMM
and SSM respectively. In conclusion, the numerical results
suggest that our method is superior to previous approaches
and demonstrates the promise of M-SMM for real-world
applications.
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