Mesenchymal Stem Cell Homing to Advanced and Metastatic Prostate Cancer

Rosaline Habib

February 2018

Primary Supervisor: Dr Catherine Gorrie

Co-supervisors: Dr Eileen McGowan and Dr Jerran Santos.

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, School of Life Sciences at the University of Technology Sydney

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it

been submitted as part of requirements for a degree except as part of the collaborative

doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

Production Note:

Signature of Student: Signature removed prior to publication.

Date: 15/02/2018

Acknowledgments

The long and arduous process that is a PhD has helped me to realise and appreciate all the love and support I have in my life. I am eternally grateful to all these people.

Firstly, I would like to acknowledge my sole supervisor for most of this PhD candidature, Dr Rosetta Martinello-Wilks. Thank you for your invaluable intellectual and resource contributions to this PhD project and for the many late nights spent together helping with experiments. I would like to thank the new supervisory team of Dr Cathy Gorrie, Dr Jerran Santos, and Dr Eileen McGowan, who without much notice took on the responsibility of supervising my PhD. To Cathy for taking charge of my PhD and adopting me into her lab group. To Jerran for his vital knowledge of MSCs and help with experiments. And finally, to Eileen for being there with me from the start even when she was not a supervisor. This included help with experiments and with writing, but also general advice over coffee/hot chocolate. I am also grateful to Professor Mike Ford for helping to resolve some issues with my candidature, including, but not limited to the allocation of funds for the completion of experimental work, Dr Nham Tran for help with PCR and RNA isolation, and to Dr Ann Simpson, who may have not been a supervisor on paper, but who helped me nonetheless to edit my thesis.

To the technical staff at UTS; Mike Johnson and Kun Xiao for their help with flow cytometry, Mercedes for helping me out with sourcing regents and new lab space during what was a difficult final year, and Fiona and Lal from the Ernst facility for helping with animal work.

I would like to acknowledge all my friends for their support. To the uni crew: Pam, Rob, Sam, Pete, Marty, Eunji, Elliot, Dario, Dilan, and Divya, thank you for all help in the lab, and for all

the great times together spent playing games, eating too much food, and talking about the most random and strange things. Special mentions to my closest friends Divya, Eunji and Pam for all the sweet treats (Divya), long chats, advice, and emotional support. Thank you also to my girls from high school, Pam (again), Alvina, Vanessa, Jasmine, and Lorizah, for all your prayers, words of encouragement, and for the fun nights spent together laughing and being silly.

I am so grateful to my family, my siblings Allen, Nicole, and Christina, and in particular my parents, Antoun and Saada, for their unconditional love and unwavering support through times of heightened stress and anxiety. I am also grateful to my other family members, especially my cousin Mary.

Finally, I would like to acknowledge my boyfriend Kyan Woodpower. Thank you for drawing a couple of excellent figures for this thesis and for technical support with putting the final thesis together. But mostly thank you for being there with me to share those devastating lows and wonderful highs.

Table of Contents

Certificate of original authorship	i
Acknowledgments	ii
List of Figures	x
List of Tables	xiii
Abbreviations	xiv
Abstract	xix
1. General introduction	1
1.1 Prostate cancer	1
1.1.1 Diagnosis of PCa	2
1.1.2 Prostate cancer progression and treatment	4
1.1.2.1 Treatment of low risk PCa: PSA of ≤10 ng/mL, Gleason score of ≤6, and sta	_
1.1.2.2 Treatment of intermediate risk PCa: PSA 10-20 ng/mL, Gleason score 7 an T2b-T2c	
1.1.2.3 Treatment of high risk PCa: PSA >20 ng/mL, Gleason score 8–10 and T3–T-tumours	
1.1.2.4 Treatment of advanced and metastatic PCa	6
1.2 Alternative treatment strategies for advanced and metastatic PCa	8
1.2.2 Gene therapy for PCa treatment	8
1.2.2.1 Immunomodulatory approaches	10
1.2.2.2 Tumour suppressor genes	11
1.2.2.3 Gene directed enzyme prodrug therapy (GDEPT)	12
1.2.3 Cell immunotherapy for PCa	14
1.2.3.1 Haematopoietic stem cell transplantations	14
1.2.3.2 Indirect immunotherapy	15
1.2.3.3 Direct immunotherapy	18
1.3 Mesenchymal stem cells in the treatment of PCa	19
1.3.1 Defining mesenchymal stem cells	20
1.3.2 MSCs in gene therapy protocols for cancer	22
1.3.3 Effect of MSCs on tumour growth and development	23
1.3.4 Pre-clinical studies	24
1.3.4.1 Delivery of antitumorigenic cytokines	24
1.3.4.2 Delivery of prodrug-converting enzymes	25
1.3.4.3 Delivery of oncolytic viruses	28

1.4 Homing and the tumour microenvironment	29
1.4.1 Proposed mechanism of homing	29
1.4.1.1 Rolling	30
1.4.1.2 Firm adhesion	31
1.4.1.3 Transmigration	32
1.4.1.4 The role of chemokines and growth factors in homing	38
1.4.2 Inflammation and PCa	40
1.4.2.1 PCa microenvironment	41
1.4.2.1.1 Growth factors	42
1.4.2.1.2 Chemokines	45
1.4.3 Enhancing tumour tropism	47
Osteogenesis imperfecta	49
1.4.4 Importance of understanding the signals required for homing of BMSCs to PCa \dots 50	0
1.4.5 Project significance	51
2. A preclinical model for monitoring therapeutic BMSC tumour migration to lung pseudometastases	52
2.1 Introduction	52
2.1.1 Preliminary data	56
2.1.1.1 BMSCs	56
2.1.1.2 BMSC vector constructs	56
2.1.1.3 Nucleofection of BMSCs	58
2.1.1.4 RM1-tracking cells	59
2.1.1.5 Bioluminescent reporter genes	60
2.1.2 Chapter aims	61
2.2 Methods	63
2.2.1 General cell culture techniques	63
2.2.1.1 Nucleofected BMSC culture	63
2.2.1.2 RM1-tracking culture	64
2.2.1.3 Cell storage	64
2.2.1.4 Cell counts	65
2.2.2 In vitro characterisation of bioluminescent signals	65
2.2.2.1 Timecourse for signal delay	66
2.2.2.2 Correlation of signal strength to cell number	66
2.2.2.3 Cross reactivity of BLI substrates	67

2.2.3 Animal breeding and care	67
2.2.4 Tail vein (IV) injections	68
2.2.5 Detection and quantitation of BMSCs in vivo and ex vivo	69
2.2.6. Detection and quantitation of RM1-tracking cells in vivo and ex vivo	71
2.2.7 Tracking of BMSC-Fcy:Fur to PCa lung pseudometastases (12 days)	74
2.2.8 Persistence of the D-Luc signal in vivo	75
2.2.9 Tracking of BMSC migration to PCa lung pseudometastases (30 hours)	76
2.2.10 Efficacy of BMSC-Fcy:Fur delivered GDEPT on PCa lung pseudometastases .	77
2.2.11 Survival in PCa bearing B6-Albino mice treated with therapeutic BMSC	79
2.12 Statistical analysis	80
2.3 Results.	81
2.3.1 BMSC and RM1 BLI signals decrease over time	81
2.3.2 BMSC and RM1 BLI signals directly correlate to cell number and do not cross	react
2.3.3 BMSC-Fcy:Fur do not persist long-term in tumour bearing mice	87
2.3.4 BMSC bioluminescent signal decays in 2 hours	87
2.3.5 BMSCs show preferential persistence in the lungs of tumour bearing mice over short time frame	
2.3.6 BMSC delivered GDEPT reduces tumour burden in mice with RM1 Lung pseudometastases	95
2.3.7 BMSC delivered GDEPT marginally improves survival of mice with RM1 lung pseudometastases	98
2.4 Discussion	101
3. Isolation and characterisation of bone marrow-derived mesenchymal stem cells	107
3.1 Introduction	107
3.2 Methods	111
3.2.1 Isolation of unsorted bone marrow (BM)-derived cells (UBMC)	111
3.2.1.1 Excision of the hind limb	111
3.2.1.2 Flushing of the BM	111
3.2.1.3 Culturing of UBMC	112
3.2.1.4 Fluorescence activated cell sorting (FACS) of UBMC	112
3.2.2 BMSC culture	114
3.2.3 Cell surface marker characterisation of UBMCs and BMSCs	114
3.2.4 Growth (proliferation) assays	117
3.2.5 Clonogenicity assays	117

	3.2.6 Differentiation assays	118
	3.2.6.1 Chondrogenesis	118
	3.2.6.2 Adipogenesis	118
	3.2.6.3 Osteogenesis assay	120
	3.2.7 In vitro migratory potential of the enriched BMSC population	120
	3.2.7.1 RM1 cell culture	121
	3.2.7.1 Culture of RM1 cells for conditioned medium (CM)	121
	3.2.7.2 Acclimatising BMSCs for Transwell migration assays	121
	3.2.6.3 In vitro Transwell migration assays	121
	3.2.8 Statistical analysis	123
3	.3 Results	124
	3.3.1 FACS sorting of BMSCs from the UBMC population.	124
	3.3.2 Cell surface marker and morphological characterisation of UBMCs and BMSCs . 1	24
	3.3.3 Comparative analysis of BMSC and UBMC proliferation (Trypan blue assay)	128
	3.3.4 Colony forming potential of enriched BMSCs compared to UBMCs	128
	3.3.5 BMSCs exhibit trilineage differentiation	132
	3.3.6 Osteogenic differentiation analysis: comparison of BMSCs and UMSCs	132
	3.3.7 Adipogenic differentiation analysis: comparison of BMSCs and UBMCs	132
	3.3.8 Expression of CD90.2 and CD34 on the surface of BMSCs with increasing pass	age
	3.3.9 In vitro migratory potential of the enriched BMSC population	138
3	.4 Discussion	139
4. lo	dentification of the distinct signals responsible for BMSC migration to PCa	143
4	.1 Introduction	143
4	.2 Methods	145
	4.2.1 Comparison of migration to conditioned medium (CM) and medium only (MO) 14	45
	4.2.2 Optimisation of Transwell migration assays	145
	4.2.2 Effect of CM on proliferation of BMSCs	147
	4.2.3 Effect of proteinase K (PK) treatment on BMSC migration	147
	4.2.3.1 Optimisation of PK concentration	147
	4.2.3.2 Migration towards PK treated CM	148
	4.2.4 Pertussis toxin treatment of BMSC	148
	4.2.5 Profiling of differentially expressed genes in BMSCs exposed to CM	148
	4.2.5.1 Exposing BMSCs to CM	148

	4.2.5.2 RNA extraction from BMSCs	149
	4.2.5.3 Assessment of RNA quality and concentration	150
	4.2.5.5 Microarray gene expression profiling	150
	4.2.5.7 Validation of target genes	151
	4.2.6 Profiling of cytokines secreted by RM1 prostate cancer cells	152
	4.2.6.1 Making MO and CM for cytokine arrays	152
	4.2.6.2 Cytokine array	. 153
	4.2.7 Effect of chemokine receptor inhibitors on BMSC migration	153
	4.2.8 Overexpression of CXCR2 and CCR2 in BMSC-Fcy:Fur	154
	4.2.8.1 Confirmation of vector identity	154
	4.2.8.2 Nucleofection	. 155
	4.2.8.3 Migration of nucleofected BMSC-Fcy:Fur to RM1	155
	4.2.9 Statistical analysis	. 155
	4.3 Results	157
	4.3.1 BMSC migrate more efficiently towards RM1 CM compared to MO	157
	4.3.2 A significant increase in migration to CM and MO is seen at 6-8 hours and this not due to increased proliferation in CM	
	4.3.3. BMSCs migrate to CM in response to soluble proteins	160
	4.3.4 Migration to CM is mediated by chemokines	160
	4.3.5 Profiling of differentially expressed genes in BMSCs exposed to CM	163
	4.3.5.1 Exposure of BMSCs to CM upregulates genes involved in migration	163
	4.3.5.2 Candidate genes were expressed greater than 2-fold in BMSCs exposed t 163	o CM
	4.3.6 RM1 prostate cancer cells secrete an array of growth factors and chemokines 16	58
	4.3.7 Migration to CM is facilitated by specific chemokine receptors	171
	4.3.8 Overexpression of CCR2 an CXCR2 improves BMSC-Fcy:Fur migration to RM1 172	CM
	4.4 Discussion	175
5.	General discussion	182
	5.1 Exploring the therapeutic potential of MSCs for the treatment of cancer	182
	5.1.1 MSCs in clinical trials	. 182
	5.1.2 Weaponised BMSCs as safe cancer therapies	. 184
	5.1.2.1 Enriching for MSCs for Pre-clinical research	184
	5.1.2.2 Dose, delivery, and timing of BMSC delivered GDEPT	184

5.1.2.3 BMSC delivered GDEPT is a safe and effective alternative to current cancer therapeutics	
5.1.2.4 Understanding BMSC homing to improve homing to experimental PCa metastases	186
5.2 Limitations of the study	L87
5.3 Recommendations for future work	188
5.3.1 Pre-clinical model	L88
5.3.1.1 Use of a syngeneic mouse model	188
5.3.1.2 Selection of a source of MSCs	188
5.3.1.3 Enriching for MSCs from mice	188
5.3.1.4 Cancer model 1	189
5.3.2 BMSC homing to PCa	190
5.3.2.1 Exploring mechanisms behind homing further	190
5.3.2.2 Altering BMSCs to target and destroy metastatic PCa	190
5.4 Concluding remarks 1	193
6. Appendix	194
7. References	208

List of Figures

Figure 1.1 3D schematic of prostate gland depicting the structure of the prostate (centra	ıl
zone not shown)	1
Figure 1.2 Gleason's pattern scale	3
27	
Figure 1.3 5-Fluorouracil metabolism	27
Figure 1.4a Proposed mechanism of the mesenchymal stem cell extravasation cascade	34
Figure 1.4b Capture and rolling	35
Figure 1.4c Firm adhesion	36
Figure 1.4d Transmigration	37
Figure 2.1 Gene directed prodrug therapy.	54
Figure 2.2 BMSC vector constructs.	57
Figure 2.3 BMSC nucleofection and creation of BMSC clones	59
60	
Figure 2.4 RM1 vector constructs.	60
Figure 2.5 Chemical reactions catalysed by luciferase enzymes	61
Figure 2.6 Plate set up for timecourse of BLI substrates	66
Figure 2.7 Plate set up for cross reactivity of BLI substrates	67
Figure 2.8 Detection and quantitation of BMSC-Fcy:Fur in vivo	70
Figure 2.9 Detection and quantitation of RM1-tracking cells in vivo and ex vivo	72
Figure 2.10 Diagram showing the methodology to track BMSC-Fcy:Fur to RM1-tracking lu	ıng
pseudometastases in a long-term study	74
Figure 2.11 Diagram showing the methodology to establish the persistence of the D-LUC	
signal <i>in vivo</i>	75
77	
Figure 2.12 Diagram showing the methodology to track BMSC-Fcy:Fur to RM1-tracking lu	ıng
pseudometastases in a short-term study.	77
Figure 2.13 Diagram showing the methodology for efficacy of BMSC delivered GDEPT on	
RM1-tracking lung pseudometastases	79
Figure 2.14 In vitro BMSC-tracking cell fl characteristics and D-LUC substrate signal strenge	gth.
83	
Figure 2.15 In vitro RM1- tracking cell fl characteristics and CLZ substrate signal strength 8-	4
Figure 2.16 In vitro cross-reactivity of D-LLIC in vitro	25

Fig 2.17 In vitro cross-reactivity of CLZ in vitro.	86
Figure 2.18 Preliminary long-term study tracking BMSC-Fcy:Fur to lung pseudometastases. 8	38
Figure 2.19 <i>In vivo</i> D-luciferin time-course.	89
Figure 2.20a Short-term in vivo tracking of BMSC-LacZ to the lungs of B6-Albino mice be	aring
RM1-tracking pseudometastases.	91
Figure 2.20b Quantitation of tumour burden using BLI at experiment endpoint	92
Figure 2.21a Short-term in vivo tracking therapeutic BMSC-Fcy:Fur to the lungs of B6-All	oino
mice bearing RM1-tracking pseudometastases	93
Figure 2.21b Quantitation of tumour burden using BLI at experiment endpoint	94
96	
Figure 2.22 Therapeutic BMSC-Fcy:Fur imaging in the efficacy study	96
Figure 2.23 Impact of BMSC-Fcy:Fur delivered GDEPT on RM1-tracking lung	
pseudometastases.	97
Figure 2.24 Therapeutic BMSC-Fcy:Fur imaging in the survival study	99
2.25 Impact of BMSC delivered GDEPT on mouse survival.	. 100
Figure 3.1. Grading scheme for the semiquantitative analysis of adipogenesis	. 119
Figure 3.2 Transwell migration assay	. 122
Figure 3.3 Fluorescence-activated cell sorting (FACS) isolation of mouse bone marrow-	
derived mesenchymal stem cells (BMSCs).	. 125
Figure 3.4 Phenotypic and morphological analysis of UBMCs and BMSCs with positive ar	ıd
negative BMSC cell surface markers	. 127
130	
Figure 3.5 Comparative analysis of growth (proliferation) curves for BMSC and UBMC by	,
haemocytometer cell counts.	. 130
Figure 3.6 Comparative clonogenicity assay analysis between BMSCs and UBMCs	. 131
Figure 3.7 BMSCs differentiate into adipocytes, chondrocytes, and osteocytes	. 134
Figure 3.8 Osteogenic differentiation of BMSCs and UBMC	. 135
Figure 3.9 Adipogenic differentiation of BMSCs and UBMCs	. 136
Figure 3.10 Analysis of CD34 and CD90.2 expression on mid-passage and late passage	
BMSCs.	137
Figure 3.11 Migration potential of BMSC towards condition media across the different	
passages	138
Figure 4.1 Transwell migration assay	. 146

xii
Figure 4.2 pUNO1-CCR2 and pUNO1-CXCR2 vector constructs showing EcoRI restriction sites
156
158
Figure 4.3 BMSC migration to RM1 prostate cancer CM
Figure 4.4 Optimisation of incubation time for migration assays
Figure 4.5 Effect of proteinase K treatment on BMSC migration to CM
162
Figure 4.6 Effect of pertussis toxin (PTX) treatment on BMSC migration to CM 162
Figure 4.7 Differentially expressed genes in BMSCs exposed for 8 hrs to CM 164
Figure 4.8 Gene ontology analysis of over-expressed genes in BMSCs exposed to CM 165
Figure 4.9 qPCR validation of target genes from the Affymetrix Mouse Gene 1.0 ST
microarrays
Figure 4.10 Change in the expression of chemokine and growth factor receptors in BMSCs
exposed to CM over time
Figure 4.11a Proteome Profiler Mouse XL Cytokine Array
Figure 4.11b Proteome Profiler Mouse XL Cytokine Array of MO and murine RM1 serum free
CM
Figure 4.12 Effect of pertussis toxin (PTX) treatment on BMSC migration to CM
Figure 4.13 Confirmatory restriction digests of pUNO1-CCR2 and pUNO1-CXCR2 173
Figure 4.14 Migration of BMSC-Fcy:Fur/CXCR2 and BMSC-Fcy:Fur/CXCR2 to RM1 CM 174

Figure 4.15 Schematic depicting the proposed mechanism of homing towards PCa 181
Figure 5.1 Schematic overview of proposed strategies to improve homing of mesenchymal

List of Tables

Table 1.1 MSC-based delivery of therapeutic agents in pre-clinical development	29
Table 1.2 Chemoattractants implicated in the migration of MSCs	40
Table 1.3 Engraftment levels of intravenously administered MSCs in tissue injury models	and
therapeutic outcome	49
Table 1.4 Receptors and ligands implicated in the migration of MSCs to tumours	51
Table 2.1 Parental BMSC and stable gene expression clone characteristics	58
Table 2.2 Optimal BLI parameters for BMSC firefly luciferase (fl) and RM1-tracking renilla	
luciferase (rl)	73
Table 2.3 Final RM1-tracking and/or BMSC-Fcy:Fur cell concentration for tracking study	76
Table 2.4 Final RM1-tracking and/or BMSC-Fcy:Fur cell concentration for efficacy study	78
Table 2.5 Final RM1-tracking and/or BMSC-Fcy:Fur cell concentration for survival study	80
Table 3.1 List of BD Pharmingen sourced antibodies used to phenotypically characterize	
BMSCs and UBMCs	116
Table 4.1 Taqman assays for validation of candidate genes	152
Table 4.2 Chemokine receptor inhibitors	154
Table 5.1 Active clinical trials utilising MSCs for the treatment of human disease	183
Table 6.1 Gene therapy strategies in clinical development for prostate cancer	194
Table 6.2 Cellular immunotherapies in clinical development for the treatment of castrate	į.
resistant prostate cancer	196
Table 6.3 Semi-quantitative analysis of cytokines in RM1 CM detected in the Proteome	
Profiler Mouse XL Cytokine Array	200
Table 6.4 Gene list comprising targets with statistically significant fold changes of ± 1.9 from	om
the microarray	204

Abbreviations

AAT Androgen ablation therapy

ADT Androgen deprivation therapy

Adv Adenovirus

AFMS Anterior fibromuscular stroma

α-MEM alpha-Minimum Essential Medium

ANOVA Analysis of variance

APC Antigen presenting cells

AR Androgen receptor

BFGF Basic fibroblast growth factor

bFGF receptor Basic fibroblast growth factor receptor

BM Bone marrow

BMSC Bone marrow-derived mesenchymal stem cells

BPH Benign prostatic hyperplasia

CAR Chimeric antigen receptor

CC C-C motif

CCR C-C motif receptor

CCD Charge-coupled device

CD Cytosine deaminase

CD:UPRT/Fcy:Fur Cytosine deaminase uracil phosphoribosyl transferase

CEA Carcinoembryonic antigen

CLZ Coelenterazine

CM Conditioned medium

CMV Cytomegalovirus

CrAD Conditionally replicating oncolytic Adv

CRPC Castration-resistant PCa

ΧV

CT Threshold cycle

CTL Cytotoxic T-lymphocyte

CXC C-X-C motif

CXCR C-X-C motif receptor

D-Luciferin

DMEM Dulbecco's Modified Eagle's medium

D-PBS Dulbecco's-Phosphate-Buffered Saline

DRE Digital rectal examination

EBRT External beam radiation therapy

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

ELISA Enzyme-Linked Immunosorbent Assay

FACS Fluorescence-activated cell sorting

FAK Focal adhesion kinase

FC Fluorocytosine

FCS Foetal calf serum

FDA Food and Drug Administration

FI Firefly luciferase

FdUDP Fluorodeoxyuridine diphosphate

FdUMP Fluorodeoxyuridine monophosphate

FdUTP Fluorodeoxyuridine triphosphate

FGF Fibroblast growth factor

FU Fluorouracil

FUMP fluorouridine monophosphate

GDEPT Gene directed enzyme prodrug therapy

GFP Green fluorescent protein

GITR Glucocorticoid induced tumour necrosis factor receptor

xvi

GMP Good manufacturing practice

GRO Growth-regulated oncogene

GVHD Graft failure and graft-versus-host disease

GVT Graft-versus-tumour

HBSS Hank's Balanced Salt Solution

HCELL hematopoietic cell E-selectin/L-selectin ligand

HGF Human growth factor

HGPIN High-grade prostatic intraepithelial neoplasia

HLA Human Leukocyte Antigen

HPF High Powered Field of View

HSC Haematopoietic stem cells

HSCT HSC transplantations

HTLV Human T-cell Leukaemia Virus

HUVEC Human umbilical vein endothelial cells

IA Intraarterial

IC Intracorporeal

ICAM-1 Intracellular adhesion molecule-1

IFN Interferon

IGF Interleukin growth factor

IGFR Interleukin growth factor

IL Interleukin

IM Intramyocardial

IP Intraperitoneal

IRES Internal ribosome entry sequence

IRMT Intensity modulated radiotherapy

ISCT International Society for Cellular Therapy

IT Intratumoral

xvii

IV Intravenously

IVC Individual ventilated cage

IVIS In vivo Imaging System

LacZ β-galactosidase

LFA-1 lymphocyte function-associated antigen 1

LPAM-1 Integrin α₄ β₇

MAC-1 Macrophage-1 antigen

MAdCAM-1 Mucosal vascular addressin cell adhesion molecule 1

mCRPC Metastatic castrate-resistant prostate cancer

MHC Major Histocompatibility Complex

MES-SDS 2-[N-morpholino]ethanesulfonic acid-Sodium dodecyl sulfate

polyacrylamide

MO Medium only

MRI Magnetic resonance imaging

MSC Mesenchymal stem cells

N.S Not significant

NCCN National comprehensive cancer network

NDV Newcastle disease virus

NK Natural killer

PAP Prostate acid phosphatase

PBMC Peripheral blood mononuclear cell

PBSC Peripheral blood stem cell

PCa Prostate cancer

PDGF Platelet-derived growth factor

PET Positron emission topography

PIN Prostatic intraepithelial neoplasia

PNP Purine nucleoside phosphorylase

xviii

PSA Prostate specific antigen

P/S, glu Penicillin/streptomycin, glutamine

PSGL1 P-selectin glycoprotein ligand 1

PSMA Prostate specific membrane antigen

PZ Peripheral zone

REIC Reduced expression in immortalized cells

RI Renilla luciferase

ROI Regions of interest

RR Ribonucleotide reductase

RT Room temperature

SC Subcutaneous

SGE Super gene expression

sLex sialyl Lewis X

SPECT Single-photon emission computed tomography

TAA Tumour-associated antigens

TBE Tris/Brate/Ethylenediaminetetraacetic

TCR T cell receptor

TK Thymidine kinase

TRAIL Tumour necrosis factor-related apoptosis-inducing ligand

TZ Transition zone

UBMC Unsorted bone marrow cells

UCMSC Umbilical cord mesenchymal stem cell

VCAM Vascular cell adhesion molecule

VEGF Vascular endothelial growth factor

VLA Very late antigen

Abstract

Prostate cancer (PCa) is the most common cancer affecting men worldwide. Current treatment strategies to combat advanced and metastatic disease are ineffective and this has created a need to explore novel therapies, such as cell and gene therapies. A promising strategy involves capitalising on the innate ability of bone marrow-derived mesenchymal stem cells (BMSCs) to home to sites of cancer and release a genetic payload. BMSCs have the added benefit of being immune evasive, which is a major problem for other cell and gene therapy protocols.

BMSCs used in this study had been previously stably nucleofected to express a cell tracking reporter gene firefly luciferase (fl) and the yeast fusion suicide gene cytosine deaminase and uracil phosphoribosyltransferase (BMSC-Fcy:Fur). RM1 murine PCa cells were gene modified with the cell tracking reporter gene renilla luciferase (rl). An immune intact B6 albino mouse model was developed to investigate BMSC-Fcy:Fur homing to RM1 lung pseudometastases, and therapeutic effect. Using bioluminescence imaging (BLI) it was discovered that BMSC-Fcy:Fur showed greater persistence in the lungs of mice with RM1 tumours at 3 hours post-injection compared to their cancer free counterparts, however the BMSCs did not persist for longer than 24 hours in the lungs likely because of their advanced passage. By delivering prodrug when BMSC-Fcy:Fur were largely present in the lungs, a significant decrease lung RM1 colonies and a 25% improvement in survival was achieved. Importantly, BMSC-Fcy:Fur treatment was associated with no adverse events and did not promote PCa growth, confirming their safety for allogenic use in the treatment of PCa.

Previous findings have led to investigations into why BMSCs are attracted to PCa and how to best capitalise BMSC-PCa tropism for the development of novel therapies for metastatic PCa. It was anticipated that a greater understanding of the molecular events governing BMSC tropism for cancer may permit improved therapeutic BMSC targeting to metastatic PCa. Towards this aim, I isolated and characterised a subpopulation of BMSCs from B6 albino mouse BM. Cells were sorted from early passage following dual colour staining with antibodies against a stem cell antigen-1 (Sca-1) and a haematopoietic marker (CD45). Specifically, when compared to unsorted BM cells (UBMCs), the subpopulation showed: typical BMSC

phenotype: Sca-1⁺, CD44⁺, CD90⁺, CD106⁺, CD31⁻, CD34⁻ and CD45; enhanced adipogenic ability; similar osteogenic ability; and similar colony formation ability. Subsequently, these BMSCs were used to understand the signals mediating migration towards PCa. BMSC migration to RM1 derived conditioned medium (CM) was assessed using Transwell migration assays. These assays revealed that migration was due to soluble chemokines. Cytokine arrays and genome wide microarrays identified candidate chemokine receptors CCR2, CXCR2, CCR1, and CCR5 as potential mediators of BMSC migration towards RM1 CM. Inhibition of individual chemokine receptors led to a reduction in migration of BMSCs to RM1 CM, however not to level observed with pertussis toxin alone suggesting multiple or other chemoattractant receptors (chemokine receptors or growth factor receptors) may be involved in migration. Importantly, it was found that overexpression of CCR2 and CXCR2 on the surface of BMSC-Fcy:Fur significantly improved their migration to RM1 PCa CM.

In this thesis, I have demonstrated that systemic delivery of allogenic BMSCs followed by GDPET activation at a time when BMSCs are most localised to the tumour, is a safe and efficacious method to combat late stage PCa. Moreover, I showed for the first time that BMSCs can be enriched from B6 albino mice using Sca-1 and CD45 cell sorting. Lastly, I showed that BMSCs migration is facilitated by various chemokine receptors and overexpression of CCR2

xxi

and CXCR2 promotes migration to RM1 CM. These findings provide new insights into the signals mediating migration to PCa and may be exploited in future to improve on migration of BMSCs to PCa.