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ABSTRACT

The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role 

in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic 

medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We 

previously reported that genetic deletion or pharmacological blockade of D3R increases 

GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-

dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by 

influencing the inhibitory transmission of MSNs. 

We performed in vivo and ex vivo experiments in D3 knockout (D3R -/-) mice and wild type 

littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 

activity.

At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R−/−; 

other relevant GABAA subunits were not changed. In situ hybridization and qPCR 

confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark 

paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but 

increased it in D3R−/−; this was confirmed by intra-NAc administration of Ro 15-4513 and 

furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak 

amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons 

higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of 

D3R-/-, but not in D3R+/+.

We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits 

voluntary alcohol intake by increasing GABA inhibition in the NAc.

Key words: dopamine D3 receptor; GABAA receptor; alpha6 subunit; ethanol; nucleus 

accumbens; Ro 15-4513



Chemical compounds studied in this article Ro 15-4513 (PubChem CID: 5081); SB 
277011A (PubChem CID: 75358288); Furosemide (PubChem CID: 3440)

Abbreviations: DID, drinking in the dark paradigm; DR, dopamine receptor; D1-5R, 

dopamine D1-5 receptor; GABA, gamma-aminobutyric acid; GABAARs, GABAA receptors; 

ISH, in situ hybridization; mIPSCs,  miniature inhibitory postsynaptic currents; MSN, 

medium spiny neuron; NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral 

tegmental area.



1. Introduction

Alcohol is the most widely used and abused of all psychoactive drugs. Despite its 

mechanism of action being still elusive, general consensus recognizes its major impact on 

the brain reward system. Repeated intake of ethanol induces alterations in the nucleus 

accumbens (NAc), a main component of the mesolimbic reward circuit [1], as several other 

drugs of abuse [2]. In this brain region more than 95% of the cells are GABAergic Medium 

Spiny Neurons (MSNs), whose activity is regulated by dopaminergic and glutamatergic 

inputs [3]. MSNs comprise three distinct cell subpopulations; one expressing dopamine 

D1-like receptors (D1R and D5R), a second one expressing dopamine D2-like receptors 

(D2R, D3R, D4R), and a small third one expressing both D1-like and D2-like receptors [4, 5]. 

GABAA receptors (GABAARs) in the NAc have been considered as a primary target for 

alcohol, and may be involved in voluntary alcohol consumption [6]; moreover, chronic 

alcohol intake alters GABAergic function in the NAc, which sustains behavioral addictive 

patterns [1, 6]. GABAAR is an heteromeric pentamer chloride channel assembled from a 

variety of subunits from the 19 known up to now, α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3 [7]. This 

lead to the formation of multiple isoforms that are likely to differ in their alcohol sensitivity 

[8]. This ionotropic receptor represents a major pharmacological target for many drugs, 

including benzodiazepines, barbiturates and ethanol. While GABA binds to an orthosteric 

site, these exogenous compounds (and some endogenous modulators) bind to allosteric 

sites, affecting the gating of the channel and/or the response to GABA [7]. Previous 

findings reported that GABAAR containing α6 subunit is particularly sensitive to alcohol; 

indeed, rats expressing the naturally occurring R100Q allelic variation of α6 exhibit a 

higher sensitivity to motor incoordination induced by moderate doses of ethanol [9] and 

avoid alcohol consumption [10]. This mutation was originally found in a selectively bred, 

alcohol-sensitive rat line [11], which also shows reduced voluntary acceptance of alcohol 



solutions [12]. Furthermore, the hypersensitivity to ethanol was also seen in tonic inhibitory 

currents mediated by the α6βδ-type GABAARs in cerebellar slices [13]. GABAergic MSNs 

receive dopaminergic inputs from the ventral tegmental area (VTA) [14]; activation of this 

circuitry, the dopaminergic mesolimbic pathway, is classically considered as responsible 

for the reward response to physiological (e.g. food intake, sexual activity) or pathological 

(drug of abuse) stimuli. Activation of D3R, highly expressed in the NAc, is involved in the 

control of alcohol consumption [15-17]. Indeed, either D3R gene deletion or D3R 

pharmacological blockade inhibit alcohol intake [15]. Because DRs and GABAARs are co-

localized in MSNs, both contributing to the control of NAc output [18], we hypothesized 

that some cross-talk may exist between D3R and GABAARs in the regulation of reward 

system. In this respect, we have already shown that genetic deletion or pharmacological 

blockade of D3R, by using the selective D3R antagonist SB 277011A, increases GABAA α6 

subunit expression in the ventral striatum [19]. Thus, this behavioral effect on alcohol 

intake might be linked with changed GABAA α6 subunit expression levels in the NAc, due 

to the D3R gene deletion or D3R pharmacological blockade by SB 277011A. Here, we 

tested the hypothesis that D3R-dependent changes in GABAA α6 subunit expression in the 

NAc affect the alcohol intake behavior, and, at the cell level, the electrical activity of MSNs, 

thereby influencing the inhibitory synaptic transmission in the NAc. To do so, we attempted 

to directly reveal GABAA α6 activity, by using Ro 15-4513, an imidazobenzodiazepine 

GABAA ligand exerting differential effects depending on the α subunit present in the 

GABAAR isoform, showing negative allosteric agonism with α1,2,3 and 5, but positive 

agonism with α4 and α6 [20, 21]. Interestingly, based on molecular docking analysis and 

ligand binding interactions, Ro 15-4513 has been proposed to compete with ethanol within 

a binding pocket involving α6 [22, 23]. More importantly, Ro 15-4513 has shown efficacy in 

reducing alcohol drinking in rodents [24, 25], but the detailed mechanisms of action have 

remained unknown. However, Ro 15-4513 may be considered a high affinity α6-GABAAR 



ligand, since its binding is obvious in a α6 rich brain structure, such as the cerebellum, 

while it is hardly detectable in the very same structure in α6 null mice [26]. 



2. Materials and methods

2.1. Animals

Mice D3R-/-, D3R+/- and D3R+/+ littermates (males, 8–12 weeks old) were individually 

housed, with free access to chow and water (except in the ethanol drinking procedures), in 

an air-conditioned room, with a 12-h light–dark cycle. Mice D3R-/- and D3R+/- were congenic 

after 10th–12th generation of back crossing into C57BL/6J mouse line [27]. All 

experiments were carried out according to the Directive 2010/63/EU and to the Institutional 

Animal Care and Use Committee of the University of Catania. 

2.2. Analysis of mRNA expression by real-time quantitative RT-PCR

NAc was freshly dissected out for real-time quantitative RT-PCR by using punches 

(bilateral) of 14-gauge on ice, held in ice-cold PBS solution and frozen on dry ice 

according to Koo et al. [18]. Total RNA was isolated by TRIzol (Invitrogen, Carlsbad, CA) 

from the brain tissues. Single-stranded cDNA was synthesized with Super-Script III 

(Invitrogen), by random priming. Aliquots of cDNA were amplified in parallel reactions with 

external standards at known amounts, using specific primer pairs for α6-GABAA subunit, 

D3R and GAPDH (reference gene). GAPDH levels did not differ among different groups 

and were not changed by alcohol exposure in the DID paradigm. Each PCR reaction (20 μl 

final volume), contained 0.5 mM primers, 1.6 mM Mg2+, and 1 X Light Cycler-Fast Start 

DNA Master SYBR Green I (Roche Diagnostics, IN). Amplifications were carried out in a 

Light Cycler 1.5 instrument (Roche Diagnostics). Quantification was obtained by the ΔCt 

comparative method. 



2.3. Drinking in the dark paradigm (DID)

The 4-hour version of the behavioral paradigm was used, as described by Rhodes et al. 

[28]. The procedure started 3h after lights off in the animal room; water bottles were 

replaced with graduated tubes with stainless steel drinking spouts containing 20% (v/v) 

ethanol (Sigma, St Louis, MO)  in tap water; this was done in home cages where animals 

were singly housed [28]; the ethanol tubes remained in place for 2 h. After the 2-h period, 

intakes were recorded, and the ethanol tubes were replaced with water tubes. This 

procedure was repeated on days 2 and 3. On day 4, the procedure was again repeated 

except that the ethanol tubes were left in place for 4 h, and intakes were recorded after 4 

h. 

2.4. In situ hybridization and [3H]Ro 15-4513 autoradiography 

The in situ hybridization (ISH) and [3H]Ro 15-4513 autoradiography were carried out as 

described earlier [29, 30]. The detailed protocols are reported in Supplemental Information 

section. 

2.5. Systemic administrations

Ro 15-4513 and SB 277011A hydrochloride were from Tocris (Ellisville, MO). Drugs were 

intraperitoneally (i.p.) injected. Ro 15-4513 (5 mg/kg) [31] was dissolved in 10% dimethyl 

sulfoxide whereas SB 277011A hydrochloride (10 mg/kg) [15, 19] was dissolved in saline. 

All drugs and their respective vehicles were injected in a volume of 10 ml/kg. In the DID 

paradigm, we first tested D3R+/+, D3R+/- and D3R -/- naïve (n = 8/10 per group). For 

pharmacological experiments with Ro 15-4513, we allocated D3R+/+ and D3R -/- mice to 4 



experimental groups: D3R+/+ treated with vehicle, D3R+/+ treated with Ro 15-4513, D3R-/-  

treated with vehicle and D3R-/- treated with Ro 15-4513 (n = 8/10 per group).

In another set of experiments, D3R+/+ and D3R-/- were randomly allocated to 3 experimental 

groups (n= 8/13 per group): D3R+/+ treated with SB277011A for 7 days before SB 277011A 

plus Ro 15-4513 during the DID procedure; D3R+/+ treated with Vehicle for 7 days before 

Vehicle plus Ro 15-4513 during the DID procedure and D3R+/+ treated with Vehicle for 7 

days before Vehicle plus Vehicle during the DID procedure. SB 277011A and Ro 15-4513 

were i.p. injected, respectively 1h and 15 minutes before DID. On day 4, animals were 

sacrificed 1 h after ethanol-drinking procedure and the brain tissues were taken. 

2.6. Intra-accumbens administrations

Ro 15-4513 and furosemide (Tocris) were dissolved in 10% dimethyl sulfoxide and 90% 

synthetic cerebrospinal fluid (CSF) [15, 19]. Cannulas were implanted as previously 

described (11). After anesthesia with tiletamine + zolazepam (60 mg/kg) and 

medetomidine (40 μg/kg), mice were implanted with a 26-gauge guide cannula into the 

NAc (coordinates from Bregma: anterior-posterior = + 1.42 mm, latero-lateral ± 0.75 mm to 

a depth of 4.1 mm). The cannulas were fixed to the skull with acrylic dental cement 

(RelyX™ Unicem). After 6–8 days recovery, drugs (10 nmol/mouse ) were bilaterally 

injected in a final volume of 1 μl over 1 min through infusion cannulas connected to a 

Hamilton microsyringe by a polyethylene tube. Ro 15-4513 was injected 15 minutes before 

the DID, whereas furosemide was injected 5 min before Ro 15-4513. Animals were 

handled gently to minimize stress during infusion. After the infusion procedure, the needle 

was left in place for another minute to allow diffusion. In the DID paradigm, mice were 

allocated to three experimental groups (n = 8/10 per group): D3R-/- / vehicle, D3R-/- / Ro 15-



4513, D3R-/- / furosemide + Ro 15-4513. After behavioral testing, a solution of 4% 

methylene blue was infused for histological localization of infusion cannulas.

2.7. Electrophysiology

For the preparation of brain slices, we followed the protocol described by Scala et al. [32], 

with minor modifications. The detailed protocol is reported in Supplemental Information 

section. The electrophysiological recordings were analyzed using the Clampfit 10.7 

software (Molecular Devices). A template was constructed using the “Event 

detection/create template” function, as described in [33], then, miniature inhibitory 

postsynaptic currents (mIPSCs) were detected using the “Event detection/template 

search” function. All the waveforms detected during a single recording using template 

analysis were averaged and amplitude, rise time and decay time calculated. 

2.8. Statistical analysis

Data are expressed as means ± standard deviation (SD). Statistical significance was 

assessed with the Student’s t test (when used, paired-t test has been indicated in the text), 

one- or two-way analysis of variance (ANOVA) and post hoc Newman-Keuls. The level of 

significance was set at 0.05. 



3. Results

3.1. Alcohol intake and GABAA α6 subunit expression

We previously reported that D3R-/- mice have low ethanol intake [15] and exhibit higher 

basal expression of GABAA α6 in the ventral striatum [19]. Here, we assessed whether a 

link exists between alcohol consumption and GABAA α6 subunit expression in the NAc. 

D3R-/- exhibited about 5-fold higher basal mRNA expression of α6 subunit as compared 

with D3R+/+in the NAc [main effect of genotype F (2, 14) = 9.447, P<0.01; post hoc: 

P<0.01], but not in the prefrontal cortex (PFC), while other relevant GABAA subunits were 

not changed (Fig.1 A-B). Based on these data, we compared D3R+/+, heterozygous D3R+/- 

and homozygous D3R-/- in the drinking-in-the-dark (DID) paradigm. As shown in Fig. 1C, 

D3R+/+exhibited obvious ethanol preference in DID paradigm on day 1, 2 and 3, whereas 

D3R-/- had significantly lower ethanol intake [main effect of day: F (3, 60) = 40.58, P<0.01; 

main effect of genotype F (2, 20) = 7.812, P<0.01; post hoc: P<0.01 and P<0.05]. D3R+/- 

showed alcohol intake similar to D3R+/+and, consistently, a low α6 expression in the NAc 

(Fig. 1D).  The lack of difference in ethanol intake on day 4 might be linked to the 4h-time 

window used instead of a 2h-time window (see Methods). Overall, these data suggest that 

there is a link between α6 mRNA expression and alcohol intake such that the high level of 

GABAA α6 subunit expression in the NAc is associated to reduced alcohol consumption. 

To precisely assess the spatial expression of α6 subunit in the brain of D3R+/+and D3R-/-, 

we carried out in situ hybridization (ISH) experiments and analyzed the results in a blinded 

manner. These experiments confirmed that, while heavily enriched in the cerebellar 

granule cell layer, significant α6 expression in the forebrain of D3R-/- occurred specifically in 

the NAc [P<0.05], being very low in the other examined brain areas (Fig. 2 A-D, Tab. S1-

S2). Furthermore, the expression of other relevant GABAA subunits was not changed in 



D3R-/- (Tab. S1-S2). Data obtained by ISH confirmed the qPCR data (Fig. 1 A-B). 

Autoradiography following incubation with a high 15 nM concentration of [3H]Ro15-4513 

showed a statistically significant increase of [3H]Ro15-4513 binding in the NAc [P<0.05] 

(Fig. 2 E-F). Ro 15-4513 binds at α6/4β3δ-type GABAA receptors with high affinity (KD ≈ 10 

nM) [21, 34], consistent with an increased expression of α6/4β3δ-type GABAA receptors in 

the NAc.

3.2. Alcohol antagonist Ro 15-4513 increased ethanol consumption in mice expressing 

GABAA α6 in NAc

Ro15-4513 was earlier named “alcohol antagonist” [35], because, in some studies, it 

inhibited alcohol intoxication, preference and self-administration in wild type rodents [31, 

36]. Therefore, based on ISH and [3H]Ro15-4513 binding data, we tested the hypothesis 

that Ro 15-4513 differently affects ethanol intake in mice expressing different levels of α6 

in the NAc. As shown in Fig. 3 A, systemic administration of Ro 15-4513 decreased 

voluntary ethanol intake in D3R+/+ [main effect of day F (3, 63) = 55.62, P<0.01; main effect 

of treatment F (1, 21) = 7.198, P<0.05; post hoc: P<0.05], but increased voluntary ethanol 

intake in D3R-/- (Fig. 3 B) [main effect of day F (3, 39) = 34.87, P<0.01; main effect of 

treatment F (1, 13) = 9.384, P<0.01; post hoc: P<0.05]. Worthy of note, D3R-/-, which 

normally show low preference for alcohol [15], following Ro 15-4513–treatment reached a 

level of ethanol consumption similar to that of D3R+/+. To gain stronger evidence of the 

specific role of D3R-dependent expression of α6 GABAA subunit in the NAc, we tested 

D3R-/- mice in the DID after intra-NAc administration of Ro 15-4513, with or without 

furosemide, an α6-GABAA receptor antagonist [37]. As shown in Fig. 3 C, intra-NAc 

administration of Ro 15-4513 increased voluntary ethanol intake in D3R-/- [main effect of 

treatment F (2, 13) = 22.31, P<0.001; main effect of days X treatment interaction F (6, 39) 



= 3.297 P<0.05, post hoc: P<0.05, P<0.01 and  P<0.001 vs vehicle]; the effect of Ro 15-

4513 injected in this brain area was blocked by pretreatment with furosemide [main effect 

of treatment F (2, 13) = 22.31, P<0.001; main effect of days X treatment interaction F (6, 

39) = 3.297, post hoc: P<0.001 vs furosemide+Ro 15-4513] (Fig. 3D). This result confirms 

that the increased expression of α6-GABAAR in the NAc has a key role in modulating the 

paradoxical effect of Ro 15-4513 in D3R-/- mice, ruling out potential off target and/or non-

specific effects of Ro 15-4513 (on other brain areas, because of intraNAc injection, and on 

other GABAA receptor isoforms, because of furosemide antagonism). Thus, the 

paradoxical response to Ro 15-4513 seen in D3R-/- is related to increased expression of -

GABAAR in the NAc, which also accounts for the low ethanol consumption observed in 

these mice, as mentioned above.  

Changes of GABAAR function induced by alterations in dopaminergic transmission may 

have clinical relevance, because a number of DR ligands are currently used to treat 

different neuropsychiatric disorders [38]. In this respect, consistent with data obtained in 

D3R-/- mice, we previously reported that chronic treatment with the selective D3R 

antagonist SB 277011A increases α6 expression in the ventral striatum and accelerates 

the appearance of tolerance to the anxiolytic effect of diazepam [19]. Here, to assess the 

functional relevance of the D3R/α6-GABAAR cross-talk, we treated D3R+/+with SB 277011A 

for 7 days, (10 mg/kg i.p. as done in [19]) before testing in the DID paradigm. As shown in 

Fig. 3D, pretreatment of D3R+/+ with SB 277011A for 7 days, which increased the 

expression of α6-GABAAR in the NAc (Figure S1), induced a paradoxical effect of Ro 15-

4513 on alcohol intake, similar to D3R-/- [main effect of days F (3, 108) = 31.59, P<0.001; 

main effect of treatment F (2, 36) = 19.34, post hoc: P<0.05, P<0.001 vs vehicle]. These 

data indicate that treatment with a D3R antagonist, sufficient to change the expression of 

α6-GABAAR in the NAc, determines changes in ethanol intake. 



3.3. D3R-/- mice exhibited Ro 15-4513-driven decrease of mIPSC amplitude in Medium 

Spiny Neurons 

To test the hypothesis that α6 subunit expression in the NAc shell, as seen in D3R-/- mice, 

modifies inhibitory transmission, we performed whole-cell patch-clamp recordings on 

GABAergic MSNs, which represent >95% of the cell population in this brain region, and 

recorded miniature inhibitory postsynaptic currents (mIPSCs). Analysis of the peak 

amplitudes of mIPSCs revealed a significant increase in D3R-/- compared to D3R+/+(Fig. 4; 

A-D; 38.58 ± 3.35 pA, n = 19 versus 29.51 ± 2.96 pA, n = 16; P<0.05). In contrast, there 

was no significant difference in mIPSC frequency (D3R-/-: 1.98 ± 0.30 Hz, D3R+/+: 1.77 ± 

0.26 ms) and mIPSC kinetics (Fig. 4 G, H; rise time, D3R-/-: 0.72 ± 0.06 ms; D3R+/+: 0.72 ± 

0.06 ms; decay time, D3R-/-: 16.96 ± 1.10 ms; D3R+/+: 16.14 ± 1.31 ms). Next, we tested 

the effects of Ro 15-4513 on mIPSCs in MSNs from D3R+/+and D3R-/-. Based on ISH and 

qPCR data, indicating that α6-GABAARs in the NAc are scarce in naïve D3R+/+mice and 

given the opposite effect of Ro 15-4513 treatment on ethanol intake observed in D3R-/- 

mice, we expected that Ro 15-4513 would have differential effects on mIPSCs. For this in 

vitro experiment we selected the 0.3 μM Ro 15-4513 concentration, because it completely 

antagonizes ethanol enhancement of α4β3δ-type GABAAR current [21]. As shown in Fig. 

4, bath application of 0.3 μM Ro 15-4513 did not significantly alter the frequency, rise time, 

decay time and amplitude of mIPSCs in D3R+/+ (n = 16; paired t test), but induced a 

significant reduction of amplitude in the NAc of D3R-/- (Figure 3; B-F; 38.58 ± 3.35 pA, 

versus 31.93± 3.03 pA, n = 19 P<0.05; paired t test) while frequency, rise time and decay 

time were not affected. These results suggest that the activity of α6-GABAAR in D3R-/- 

influences inhibitory synaptic transmission of MSN within NAc shell, possibly because α6 

expression, higher than in D3R+/+, is sufficient to generate a population of heteromeric 

GABAARs containing α1 and α6 [39]. 



4. Discussion

We found that increased expression of α6 GABAA subunit, induced by D3R deletion or 

pharmacological blockade, is associated to reduced alcohol intake and increased GABA 

inhibition in the NAc. We revealed GABAA α6 activity by using Ro 15-4513, both in terms 

of behavior (ethanol intake) as well as of neuronal excitability (electrophysiology) a GABAA 

ligand that exerts α6-dependent effects. Ro 15-4513 is considered a high affinity α6-

GABAAR ligand, since its binding is obvious in a α6 rich brain structure, such as the 

cerebellum, while it is hardly detectable in the very same structure in α6 null mice [26]. 

We previously reported that alcohol sensitization is linked to increased D3R expression 

induced by ethanol intake and is associated with the activation of RACK1/BDNF pathway. 

In fact, selective blockade of the TrkB, the receptor for BDNF, reverses stable intake of 

ethanol in WT mice and decreases D3R expression levels in their striatum, while it results 

ineffective in D3R-/- mice [15]. 

The α6 subunit came to the attention of the alcohol addiction studies following the 

identification of the R100Q mutation in the Sardinian non-ethanol-preferring rat line, 

suggesting a possible involvement of the GABAAR containing α6 subunit in the genetic 

predisposition to alcohol preference [10]. This mutation is associated with hypersensitivity 

to motor-impairing effects of ethanol and tonic inhibitory currents mediated by α6βδ-type 

GABAAR in cerebellar granule cells [8, 13]. Worthy of note, this mutation strongly 

increases diazepam effect on GABA-evoked currents [11]. Consistently, a model where 

the amino acidic residue at position 100 affects ethanol sensitivity in the GABAARs is part 

of the benzodiazepine ligand-binding pocket on the α6-subunit [19, 40]. Other studies have 

also described α6 polymorphisms that correlate to alcohol dependence in humans [41, 42]. 

Our observation that genetic deletion or pharmacological blockade of D3R increased 



GABAA α6 subunit expression in the ventral striatum [16], a brain structure involved in 

voluntary ethanol intake, provides a tool to study how the increased expression of α6 

subunit-containing receptors may affect alcohol intake. Indeed, some studies have 

evaluated the contribution of other GABAAR subunits, such as α4 and δ, but no data are 

available on the role of NAc GABAA α6 subunit in alcohol intake; this latter has only been 

studied for its involvement in the motor incoordination associated to alcohol, given its 

abundant localization in cerebellum granule cells.

Several studies, in the last two decades, have tried to elucidate how the subunit 

composition of different GABAARs determines their electrophysiological and 

pharmacological features (inhibitory currents, ligand binding), or, at the organism level, the 

animal behavior (anxiety, addiction, response to anxiolytics). While most studies have 

dealt with recombinant systems, such as Xenopus laevis oocytes injected either with 

cRNA coding for the different subunits [9, 21] or with cRNA coding for concatenated 

subunits [43], no studies had the opportunity to examine native systems, i.e. animals 

spontaneously and stably expressing specific subunits in defined CNS structures. 

Polymorphisms of α6 subunit have been found to be associated both to anxiety-related 

traits [44] and to benzodiazepine sensitivity in humans [45]. It is not yet known whether 

increased expression of α6 subunit containing GABAAR isoforms in brain areas that 

normally express negligible amounts of α6 produces different responses to GABA (i.e. 

different inhibitory currents) and/or to exogenous modulators. This might be due to the lack 

of in vivo systems with significant changes in α6 expression. Early studies with α6 subunit 

knockout mice [26, 46] remained inconclusive as it was later discovered that the knockout 

construct affected the expression of neighboring subunits in the GABAA gene cluster [47]. 

We took advantage of Ro 15-4513, because it has been proposed to compete with ethanol 

within a binding pocket involving α6 [23]. We expected a different effect of Ro 15-4513 in 

D3R+/+, which poorly express α6 in the NAc, versus D3R-/-, which robustly express α6. 



Indeed, we found an opposite effect of Ro 15-4513 in the two groups; in D3R+/+, the 

systemic administration of Ro 15-4513 reduced ethanol intake, presumably as a result of 

its action as a negative allosteric modulator in multiple GABAARs [21], where it would 

behave as an “ethanol antagonist” [23, 48].  Conversely, in D3R-/-, Ro 15-4513 

paradoxically increased ethanol intake, a surprising finding that might be explained in 

terms of differential modulation of the GABAAR containing α6 subunit by Ro 15-4513. 

These data were confirmed and validated by intra-NAc injection experiments, where the 

local administration of furosemide, a selective α6-GABAA receptor antagonist [37], 

completely blocked the effect of Ro 15-4513. 

The antagonism between Ro 15-4513 and ethanol might be more at the functional level, 

rather than at the binding level. While the reported affinity of Ro 15-4513 for α4 and α6 

containing GABAAR is quite similar in the nanomolar range [9, 21, 23], the effect on the 

GABA-dependent currents in cells expressing exclusively α4 or α6 subunits is not clear 

and might be quite different. This is consistent with the paradoxical activation of neurons 

by gaboxadol in a transgenic Thy1α6 mouse line, ectopically expressing the GABAAR α6 

subunit gene under the Thy-1.2 promoter [20]. We directly address this issue by 

measuring MSN mIPSCs in the NAc and their sensitivity to Ro 15-4513. Based on the 

above premises, we hypothesized that a change in GABAA α6 subunit expression would 

increase spontaneous mIPSCs and that Ro 15-4513 would inhibit mIPSCs in MSN from 

D3R-/-, robustly expressing α6, whereas it would be ineffective in α6-deficient MSNs from 

D3R+/+. The electrophysiological analysis of MSNs revealed a significant increase in 

mIPSC amplitude in D3R-/-, which expressed GABAAR containing α6 subunit in NAc, 

compared to D3R+/+. Accordingly perfusion with Ro 15-4513 induced a significant reduction 

of amplitude in the NAc of D3R-/-, but was ineffective in D3R+/+. This latter observation 

clearly indicates that the modulation of the GABAAR channel by Ro 15-4513 depends on 

the presence of α6 subunit and is consistent with the observation of opposite effects of this 



drug on ethanol intake in D3R+/+and D3R-/-. To precisely assess the spatial expression of 

α6 subunit in the brain of D3R+/+and D3R-/-, we carried out in situ hybridization (ISH) 

experiments. The systematic assessment of α6 expression in the CNS by ISH confirmed  

qPCR results, indicating that α6 expression in D3R-/- was restricted to a limited brain area, 

corresponding to the NAc. These results were reinforced also by autoradiography data 

obtained with [3H]Ro 15-4513. The fact that genetic or pharmacological manipulation of 

D3R induced changes in the GABAAR α6 subunit expression specifically in the NAc  is 

consistent with the leaving relatively unchanged other brain areas is not so surprisingly, 

considering that, at variance with D2R, restricted expression of D3R in this brain region t 

same structures where we observe increased α6 expression [49]. To the best of our 

knowledge, it is not known in detail how D3R controls GABAAR subunit mRNA expression; 

however, other studies have shown dynamic D3R-dependent down-regulation of 

GABAergic control over lateral/basolateral amygdala neurons [50], NAc [51] and 

hippocampus [52]. A direct dynamic interplay between metabotropic DA receptors and 

other ionotropic receptors in plasma membrane has been documented by single-molecule 

detection imaging and electrophysiology in live hippocampal neurons [53]. Furthermore, 

cell signaling downstream of D3R affects GABAARs in the NAc [51], but numerous other 

complex mechanisms may impact GABAARs trafficking [54] and deserve further studies to 

be elucidated. Finally, because these changes in GABAAR function can be related to 

dopaminergic transmission, they may assume further relevance in clinical situations, such 

as schizophrenia and Parkinson’s disease, where D3R are chronically blocked or 

stimulated by drug-treatments [38]. 

In conclusion, these data indicate that α6-containing GABAARs in the NAc play an 

important role in controlling alcohol intake by increasing GABAergic-inhibition in the MSNs. 

Because changes in α6-containing GABAARs are specifically induced in the NAc by D3R-



blockade, the interplay between DAergic and GABAergic transmission may present a 

novel relevant mechanisms in reinforcing properties of alcohol and other addictive drugs. 
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Figure Legends

Figure 1. Alcohol intake and D3R-dependent GABAA α6 subunit mRNA expression in the 

NAc. A and B, GABAAR α1, α2, α4, α6, γ2 and δ subunits mRNA expression in the 

nucleus accumbens (NAc) and in the prefrontal cortex (PFC) of wild type (D3R+/+) and D3R 

null mice (D3R-/-). Abundance of transcripts was assessed by qPCR (primer sequences are 

reported in Tab. S3). C and D, ethanol intake (in the drinking in the dark paradigm, DID) 

and 6 expression in wild type (D3R+/+) heterozygous (D3R+/-) and null mice (D3R-/-). DID 

was measured for 4 days, in mice with limited access (2h/day for 3 days and 4h the 4th 

day) to ethanol solution (20%). Abundance of transcripts in the NAc was assessed by 

qPCR after DID; expression level is given as mean fold changes relative to controls.  

*P<0.05, **P<0.01 vs. the corresponding control (D3R+/+,); one- or two-way ANOVA and 

Newman–Keuls post hoc test.  Each experimental group included 8-10 mice.

Figure 2. Expression of 6 GABAA subunit mRNA and [3H]-Ro 15-4513 binding in the NAc 

and Cerebellum of D3R+/+ and D3R-/- mice. A, B, C and D In situ hybridization (ISH) 

detection of 6; E, F, G and H, [3H]-Ro 15-4513 autoradiography. A, C, E and G show 

representative images.  B, D, F and H show average optical density, (expressed in 

arbitrary units); n=6-8 per group. *P < 0.05 vs. D3R+/+, unpaired t test.

Figure 3. Opposite effect of RO 15-4513 on alcohol intake, in D3R+/+ and D3R-/- (drink in 

the dark paradigm, DID). A and B, ethanol intake in D3R+/+ and D3R-/- intraperitoneally (i.p.) 

treated with vehicle (VEH) or Ro 15-4513 (5 mg/kg); C, ethanol intake in D3R-/- locally 

injected into the NAc with VEH, Ro 15-4513 (10 nmol/mouse) or furosemide (10 

nmol/mouse) plus Ro 15-4513; D, ethanol intake in D3R+/+ pretreated with VEH or the 



selective D3R antagonist, SB 277011A for 7 days (10 mg/kg, i.p.) plus Ro 15-4513 (5 

mg/kg, i.p.) over DID paradigm. 

Each experimental group included 8-13 mice. *P<0.05, **P<0.01, ***P<0.001 vs. vehicle 

(VEH). One- or two- way ANOVA and Newman–Keuls post hoc test.

Figure 4. NAc medium spiny neurons from D3R-/- mice exhibited increased GABAA 

inhibitory currents sensitive to Ro 15-4513. A and B, representative traces showing mIPSC 

recordings in slice from D3R+/+  and D3R-/- mice before and after treatment with Ro 15-4513 

(0.3 µM; in red). C, analysis of the peak amplitudes of mIPSCs; notice an increase in D3R-/- 

compared to D3R+/+ and a decrease following Ro 15-4513 application in D3R-/- only. D-F, 

cumulative frequency distributions for mIPSC amplitude in the experimental conditions 

shown in A and B. G-I, analysis of mIPSC frequency, rise time and decay time. 

*P<0.05, unpaired (D3R-/- vs. D3R+/+) or paired (pre- vs. post- Ro 15-4513) t test (D3R-/-, 

n=19; D3R+/+, n=16).
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Supplementary Information

Table S1. In situ hybridization (ISH) signals for GABAA ??1, ??2, ??4, ??6, γ2 and δ subunit 
mRNA in the prefrontal cortex from D3R+/+ and D3R-/- mice.

GABAA subunit ISH signal (D3R-/- over D3R+/+ ratio)
α1 0.92  0.02
α2 1.10  0.11
α4 0.80  0.07
α6 1.15  0.13
γ2 0.89  0.30
δ   0.83  0.17

Table S2. In situ hybridization (ISH) signals for GABAA ??1, ??2, ??4, ??6, γ2 and δ subunit 
mRNA in the hippocampus from D3R+/+ and D3R-/- mice.

GABAA subunit ISH signal (D3R -/- over D3R +/+ ratio)

α1 0.91  0.09
α2 1.19  0.13
α4 1.07  0.03
α6 1.20  0.10
γ2 0.96  0.26
δ   0.85  0.16



Table S3. Primers for Real-Time PCR

Target gene Primer sequence 

Gabra1 5’-GACCAGGTTTGGGAGAGCGTGT-3’

3’-GCCGGAGCACTGTCATGGGTC-5’

Gabra2 5’-CCCAGTCAGGTTGGTGCTGGC-3’

3’-ACAGGGCCAAAACTGGTCACGT-5’

Gabra4 5’-CCTGTGCCTGGCGGCTTGTTTA-3’

3’-CCCCAAATCCAGGACGCAGCC-5’

Gabra6 5’-GGCCAGGATTTGGGGGTGCTG-3’

3’-TCAGTCCAAGTCTGGCGGAAGA-5’

Gabrg2   5’-ACCCAGAGGCGAGAGGCGAG-3’

3’-GCTTGTGAAGCCTGGGTAGAGCG-5’

Gabrd 5’-CCGACCAGGCATTGGAGGTGC-3’

3’-TGCTGTCCCGCCAGCTCTGA-5’

Gapdh 5’-CAACTCACTCAAGATTGTCAGCAA-3’

3’-GGCATGGACTGTGGTCATGA-5’



Figure S1. Pharmacological blockade of D3R counteracts alcohol intake and induced 

overexpression of GABAA 6 subunit in the NAc of D3R+/+. A and B, ethanol intake (DID) and 

6 expression in D3R+/+ treated with vehicle (VEH) or the selective D3R antagonist, SB 

277011A (10 mg/kg, i.p.) for 7 days. Each experimental group included 8-13 mice. *P<0.05, 

***P<0.001 vs. VEH; two-way ANOVA and Newman–Keuls post hoc test.  

Material and Methods

In situ hybridization

Air-dried slides were fixed in ice-cold 4% paraformaldehyde for 5 min. The sections were 

washed in 1 PBS at room temperature for 5 min, dehydrated in 70% ethanol for 5 min and 

stored in 95% ethanol at 4 °C until used. The antisense DNA oligonucleotide probe (Oligomer 

Oy, Helsinki, Finland) sequences were as follows: α6, 5’-CAG TCT CTC ATC AGT CCA AGT 



CAT-3’;  was complementary to the mouse GABAAR subunit mRNA sequence. Poly[35S]dATP 

(PerkinElmer Life and Analytical Sciences, Boston, MA) tails were added to the 3’-ends of the 

probes by deoxynucleotidyl transferase (Promega Corporation, Madison, WI). Unincorporated 

nucleotides were removed by Illustra ProbeQuant G-50 Micro Columns (Amersham 

Biosciences, Buckinghamshire, UK). Labelling efficiency (360,000 cpm/μl) was determined by 

a scintillation counter. The labeled probe was diluted to 0.06 fmol/μl of hybridization buffer 

consisting of 50% formamide and 10% dextran sulfate in 4X Saline Sodium Citrate (SSC). 

Nonspecific controls for the antisense probes were produced by adding 100-fold excess of 

unlabeled probes. The hybridization occurred under glass Menzel-Gläser coverslips (Thermo 

Fisher Scientific, Boston, MA) overnight at 42 °C. Finally, the slides were washed in 1X SSC 

at room temperature for 10 min, in 1X SSC at 55°C for 30 min, and 1X SSC, 0.1X SSC, 70% 

EtOH and 95% EtOH at room temperature for 1 min each. The slides were then air-dried and 

exposed with plastic [14C]-radioactivity standards (GE Healthcare) to BioMax MR films 

(Eastman Kodak Company, Rochester, NY). Films were scanned (Epson expression 1680 

Pro). Images were imported into the FIJI version of the free image processing software 

ImageJ. The [14C]-standards were exposed simultaneously with the brain sections as the 

reference. The hybridization values were converted to arbitrary optical density units. Non-

specific signal was subtracted to obtain the specific signal. All measurements were analyzed 

in blind.

[3H]Ro 15-4513 autoradiography 

Slides were pre-incubated in ice-cold 50 mM Tris–HCl buffer, pH 7.4, containing 120 mM 

NaCl for 15 min. The final incubation for basal [3H]Ro 15-4513 binding was performed in the 



pre-incubation buffer containing 15 nM [3H]Ro 15-4513 (23 Ci/mmol, PerkinElmer Life and 

Analytical Sciences) at 4 °C for 1 h. This high ligand concentration was aimed at estimating 

the receptor number rather than affinity. The non-specific binding was determined in the 

presence of 10 μM flumazenil. The sections were then washed in ice-cold pre-incubation 

buffer twice for 1 min, dipped in ice-cold distilled water, air-dried at room temperature and 

exposed with [3H]-plastic standards for 12  weeks (GE Healthcare) to Biomax MR films 

(Eastman Kodak). The films were scanned (Epson expression 1680 Pro) and binding density 

was expressed as arbitrary optical density units (FIJI IMAGE-J). The [3H]-standards were 

exposed simultaneously with the sections as the reference. Non-specific binding was 

subtracted to obtain the specific binding values. All data were analyzed in blind.

Electrophysiology

Animals were sacrificed by cervical dislocation. Brains were rapidly removed and placed in 

ice-cold cutting solution containing (in mM): TRIS-HCl 72, TRIZMA base 18, NaH2PO4 1.2, 

NaHCO3 30, KCl 2.5, glucose 25, HEPES 20, MgSO4 10, Na-pyruvate 3, ascorbic acid 5, 

CaCl2 0.5, sucrose 20. Slices (300 μm thick) were cut on a vibratome (VT1200S; Leica 

Microsystems, Germany) and immediately transferred to an incubation chamber held at 32°C 

and filled with a recovery solution containing (in mM): TRIS-HCl 72, TRIZMA base 18, 

NaH2PO4 1.2, NaHCO3 25, KCl 2.5, glucose 25, HEPES 20, MgSO4 10, Na-pyruvate 3, 

ascorbic acid 5, CaCl2 0.5, sucrose 20. After 30 min, slices were transferred to a second 

incubation chamber held at 32°C and filled with artificial cerebrospinal fluid (aCSF) containing 

(in mM): NaCl 124, KCl 3.2, NaH2PO4 1.2, MgCl2 1, CaCl2 2, NaHCO3 26, and glucose 10, pH 

7.4. During incubations, the chambers were continuously bubbled with 95% O2/5% CO2. 



Slices were equilibrated at room temperature for at least 45 min. Slices were then transferred 

to a submerged recording chamber constantly perfused with heated aCSF (32°C) and 

bubbled with 95% O2/5% CO2. Medium spiny neurons (MSNs) within the NAc shell subregion 

were identified with a 40X water-immersion objective on an upright microscope equipped with 

differential interface contrast optics under infrared illumination (BX5IWI, Olympus, Center 

Valley, PA) and video observation. Electrodes were made from borosilicate glass 

micropipettes (Warner Instruments, Hamden, CT) prepared with a P-97 Flaming-Brown 

micropipette puller (Sutter Instruments, Novato, CA). Patch pipettes had a resistance of 4-6 

MΩ when filled with an internal solution containing (in mM): CsCl 135, HEPES 10, EGTA 1.1, 

CaCl2 0.1; Mg-ATP 2.5, Na-GTP 0.25, phosphocreatine 5, pH 7.2. After establishing a 

gigaseal, the patch was broken by applying negative pressure to achieve a whole-cell 

configuration. A series resistance lower than 15 MΩ was considered acceptable, and 

monitored constantly throughout the entire recording. Neurons were held at -70 mV. 

Tetrodotoxin (TTX, 0.5 μM, Tocris),  D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5, 50 

μM, Tocris) and 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide 

(NBQX, 10 μM, Tocris) were applied to the bath to block action potential-mediated 

neurotransmitter release, NMDA and AMPA receptors, respectively. Ro 15-4513 (0.3 μM) was 

applied in the bath after 5-7 min of TTX, APV and NBQX perfusion. All recordings were 

carried out at least 10 min after application of any drug to the bath. Recordings were 

performed using a Multiclamp 700B/Digidata 1550A system (Molecular Devices, Sunnyvale, 

CA) and digitized at a 10,000 Hz sampling frequency.
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ABSTRACT

The dopamine D3 receptor (D3R), in the nucleus accumbens (NAc), plays an important role 

in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic 

medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We 

previously reported that genetic deletion or pharmacological blockade of D3R increases 

GABAA α6 subunit in the ventral striatum. Here we tested the hypothesis that D3R-

dependent changes in GABAA α6 subunit in the NAc affect voluntary alcohol intake, by 

influencing the inhibitory transmission of MSNs. 

We performed in vivo and ex vivo experiments in D3 knockout (D3R -/-) mice and wild type 

littermates (D3R +/+). Ro 15-4513, a high affinity α6-GABAA ligand was used to study α6 

activity.

At baseline, NAc α6 expression was negligible in D3R+/+, whereas it was robust in D3R−/−; 

other relevant GABAA subunits were not changed. In situ hybridization and qPCR 

confirmed α6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark 

paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D3R+/+, but 

increased it in D3R−/−; this was confirmed by intra-NAc administration of Ro 15-4513 and 

furosemide, a selective α6-GABAA antagonist. Whole-cell patch-clamp showed peak 

amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons 

higher in D3R-/- compared to D3R+/+; Ro 15-4513 reduced the peak amplitude in the NAc of 

D3R-/-, but not in D3R+/+.

We conclude that D3R-dependent enhanced expression of α6 GABAA subunit inhibits 

voluntary alcohol intake by increasing GABA inhibition in the NAc.

Key words: dopamine D3 receptor; GABAA receptor; alpha6 subunit; ethanol; nucleus 

accumbens; Ro 15-4513
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Chemical compounds studied in this article Ro 15-4513 (PubChem CID: 5081); SB 
277011A (PubChem CID: 75358288); Furosemide (PubChem CID: 3440)

Abbreviations: DID, drinking in the dark paradigm; DR, dopamine receptor; D1-5R, 

dopamine D1-5 receptor; GABA, gamma-aminobutyric acid; GABAARs, GABAA receptors; 

ISH, in situ hybridization; mIPSCs,  miniature inhibitory postsynaptic currents; MSN, 

medium spiny neuron; NAc, nucleus accumbens; PFC, prefrontal cortex; VTA, ventral 

tegmental area.
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1. Introduction

Alcohol is the most widely used and abused of all psychoactive drugs. Despite its 

mechanism of action being still elusive, general consensus recognizes its major impact on 

the brain reward system. Repeated intake of ethanol induces alterations in the nucleus 

accumbens (NAc), a main component of the mesolimbic reward circuit [1], as several other 

drugs of abuse [2]. In this brain region more than 95% of the cells are GABAergic Medium 

Spiny Neurons (MSNs), whose activity is regulated by dopaminergic and glutamatergic 

inputs [3]. MSNs comprise three distinct cell subpopulations; one expressing dopamine 

D1-like receptors (D1R and D5R), a second one expressing dopamine D2-like receptors 

(D2R, D3R, D4R), and a small third one expressing both D1-like and D2-like receptors [4, 5]. 

GABAA receptors (GABAARs) in the NAc have been considered as a primary target for 

alcohol, and may be involved in voluntary alcohol consumption [6]; moreover, chronic 

alcohol intake alters GABAergic function in the NAc, which sustains behavioral addictive 

patterns [1, 6]. GABAAR is an heteromeric pentamer chloride channel assembled from a 

variety of subunits from the 19 known up to now, α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3 [7]. This 

lead to the formation of multiple isoforms that are likely to differ in their alcohol sensitivity 

[8]. This ionotropic receptor represents a major pharmacological target for many drugs, 

including benzodiazepines, barbiturates and ethanol. While GABA binds to an orthosteric 

site, these exogenous compounds (and some endogenous modulators) bind to allosteric 

sites, affecting the gating of the channel and/or the response to GABA [7]. Previous 

findings reported that GABAAR containing α6 subunit is particularly sensitive to alcohol; 

indeed, rats expressing the naturally occurring R100Q allelic variation of α6 exhibit a 

higher sensitivity to motor incoordination induced by moderate doses of ethanol [9] and 

avoid alcohol consumption [10]. This mutation was originally found in a selectively bred, 

alcohol-sensitive rat line [11], which also shows reduced voluntary acceptance of alcohol 
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solutions [12]. Furthermore, the hypersensitivity to ethanol was also seen in tonic inhibitory 

currents mediated by the α6βδ-type GABAARs in cerebellar slices [13]. GABAergic MSNs 

receive dopaminergic inputs from the ventral tegmental area (VTA) [14]; activation of this 

circuitry, the dopaminergic mesolimbic pathway, is classically considered as responsible 

for the reward response to physiological (e.g. food intake, sexual activity) or pathological 

(drug of abuse) stimuli. Activation of D3R, highly expressed in the NAc, is involved in the 

control of alcohol consumption [15-17]. Indeed, either D3R gene deletion or D3R 

pharmacological blockade inhibit alcohol intake [15]. Because DRs and GABAARs are co-

localized in MSNs, both contributing to the control of NAc output [18], we hypothesized 

that some cross-talk may exist between D3R and GABAARs in the regulation of reward 

system. In this respect, we have already shown that genetic deletion or pharmacological 

blockade of D3R, by using the selective D3R antagonist SB 277011A, increases GABAA α6 

subunit expression in the ventral striatum [19]. Thus, this behavioral effect on alcohol 

intake might be linked with changed GABAA α6 subunit expression levels in the NAc, due 

to the D3R gene deletion or D3R pharmacological blockade by SB 277011A. Here, we 

tested the hypothesis that D3R-dependent changes in GABAA α6 subunit expression in the 

NAc affect the alcohol intake behavior, and, at the cell level, the electrical activity of MSNs, 

thereby influencing the inhibitory synaptic transmission in the NAc. To do so, we attempted 

to directly reveal GABAA α6 activity, by using Ro 15-4513, an imidazobenzodiazepine 

GABAA ligand exerting differential effects depending on the α subunit present in the 

GABAAR isoform, showing negative allosteric agonism with α1,2,3 and 5, but positive 

agonism with α4 and α6 [20, 21]. Interestingly, based on molecular docking analysis and 

ligand binding interactions, Ro 15-4513 has been proposed to compete with ethanol within 

a binding pocket involving α6 [22, 23]. More importantly, Ro 15-4513 has shown efficacy in 

reducing alcohol drinking in rodents [24, 25], but the detailed mechanisms of action have 

remained unknown. However, Ro 15-4513 may be considered a high affinity α6-GABAAR 

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420



ligand, since its binding is obvious in a α6 rich brain structure, such as the cerebellum, 

while it is hardly detectable in the very same structure in α6 null mice [26]. 
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2. Materials and methods

2.1. Animals

Mice D3R-/-, D3R+/- and D3R+/+ littermates (males, 8–12 weeks old) were individually 

housed, with free access to chow and water (except in the ethanol drinking procedures), in 

an air-conditioned room, with a 12-h light–dark cycle. Mice D3R-/- and D3R+/- were congenic 

after 10th–12th generation of back crossing into C57BL/6J mouse line [27]. All 

experiments were carried out according to the Directive 2010/63/EU and to the Institutional 

Animal Care and Use Committee of the University of Catania. 

2.2. Analysis of mRNA expression by real-time quantitative RT-PCR

NAc was freshly dissected out for real-time quantitative RT-PCR by using punches 

(bilateral) of 14-gauge on ice, held in ice-cold PBS solution and frozen on dry ice 

according to Koo et al. [18]. Total RNA was isolated by TRIzol (Invitrogen, Carlsbad, CA) 

from the brain tissues. Single-stranded cDNA was synthesized with Super-Script III 

(Invitrogen), by random priming. Aliquots of cDNA were amplified in parallel reactions with 

external standards at known amounts, using specific primer pairs for α6-GABAA subunit, 

D3R and GAPDH (reference gene). GAPDH levels did not differ among different groups 

and were not changed by alcohol exposure in the DID paradigm. Each PCR reaction (20 μl 

final volume), contained 0.5 mM primers, 1.6 mM Mg2+, and 1 X Light Cycler-Fast Start 

DNA Master SYBR Green I (Roche Diagnostics, IN). Amplifications were carried out in a 

Light Cycler 1.5 instrument (Roche Diagnostics). Quantification was obtained by the ΔCt 

comparative method. 
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2.3. Drinking in the dark paradigm (DID)

The 4-hour version of the behavioral paradigm was used, as described by Rhodes et al. 

[28]. The procedure started 3h after lights off in the animal room; water bottles were 

replaced with graduated tubes with stainless steel drinking spouts containing 20% (v/v) 

ethanol (Sigma, St Louis, MO)  in tap water; this was done in home cages where animals 

were singly housed [28]; the ethanol tubes remained in place for 2 h. After the 2-h period, 

intakes were recorded, and the ethanol tubes were replaced with water tubes. This 

procedure was repeated on days 2 and 3. On day 4, the procedure was again repeated 

except that the ethanol tubes were left in place for 4 h, and intakes were recorded after 4 

h. 

2.4. In situ hybridization and [3H]Ro 15-4513 autoradiography 

The in situ hybridization (ISH) and [3H]Ro 15-4513 autoradiography were carried out as 

described earlier [29, 30]. The detailed protocols are reported in Supplemental Information 

section. 

2.5. Systemic administrations

Ro 15-4513 and SB 277011A hydrochloride were from Tocris (Ellisville, MO). Drugs were 

intraperitoneally (i.p.) injected. Ro 15-4513 (5 mg/kg) [31] was dissolved in 10% dimethyl 

sulfoxide whereas SB 277011A hydrochloride (10 mg/kg) [15, 19] was dissolved in saline. 

All drugs and their respective vehicles were injected in a volume of 10 ml/kg. In the DID 

paradigm, we first tested D3R+/+, D3R+/- and D3R -/- naïve (n = 8/10 per group). For 

pharmacological experiments with Ro 15-4513, we allocated D3R+/+ and D3R -/- mice to 4 
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experimental groups: D3R+/+ treated with vehicle, D3R+/+ treated with Ro 15-4513, D3R-/-  

treated with vehicle and D3R-/- treated with Ro 15-4513 (n = 8/10 per group).

In another set of experiments, D3R+/+ and D3R-/- were randomly allocated to 3 experimental 

groups (n= 8/13 per group): D3R+/+ treated with SB277011A for 7 days before SB 277011A 

plus Ro 15-4513 during the DID procedure; D3R+/+ treated with Vehicle for 7 days before 

Vehicle plus Ro 15-4513 during the DID procedure and D3R+/+ treated with Vehicle for 7 

days before Vehicle plus Vehicle during the DID procedure. SB 277011A and Ro 15-4513 

were i.p. injected, respectively 1h and 15 minutes before DID. On day 4, animals were 

sacrificed 1 h after ethanol-drinking procedure and the brain tissues were taken. 

2.6. Intra-accumbens administrations

Ro 15-4513 and furosemide (Tocris) were dissolved in 10% dimethyl sulfoxide and 90% 

synthetic cerebrospinal fluid (CSF) [15, 19]. Cannulas were implanted as previously 

described (11). After anesthesia with tiletamine + zolazepam (60 mg/kg) and 

medetomidine (40 μg/kg), mice were implanted with a 26-gauge guide cannula into the 

NAc (coordinates from Bregma: anterior-posterior = + 1.42 mm, latero-lateral ± 0.75 mm to 

a depth of 4.1 mm). The cannulas were fixed to the skull with acrylic dental cement 

(RelyX™ Unicem). After 6–8 days recovery, drugs (10 nmol/mouse ) were bilaterally 

injected in a final volume of 1 μl over 1 min through infusion cannulas connected to a 

Hamilton microsyringe by a polyethylene tube. Ro 15-4513 was injected 15 minutes before 

the DID, whereas furosemide was injected 5 min before Ro 15-4513. Animals were 

handled gently to minimize stress during infusion. After the infusion procedure, the needle 

was left in place for another minute to allow diffusion. In the DID paradigm, mice were 

allocated to three experimental groups (n = 8/10 per group): D3R-/- / vehicle, D3R-/- / Ro 15-
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4513, D3R-/- / furosemide + Ro 15-4513. After behavioral testing, a solution of 4% 

methylene blue was infused for histological localization of infusion cannulas.

2.7. Electrophysiology

For the preparation of brain slices, we followed the protocol described by Scala et al. [32], 

with minor modifications. The detailed protocol is reported in Supplemental Information 

section. The electrophysiological recordings were analyzed using the Clampfit 10.7 

software (Molecular Devices). A template was constructed using the “Event 

detection/create template” function, as described in [33], then, miniature inhibitory 

postsynaptic currents (mIPSCs) were detected using the “Event detection/template 

search” function. All the waveforms detected during a single recording using template 

analysis were averaged and amplitude, rise time and decay time calculated. 

2.8. Statistical analysis

Data are expressed as means ± standard deviation (SD). Statistical significance was 

assessed with the Student’s t test (when used, paired-t test has been indicated in the text), 

one- or two-way analysis of variance (ANOVA) and post hoc Newman-Keuls. The level of 

significance was set at 0.05. 
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3. Results

3.1. Alcohol intake and GABAA α6 subunit expression

We previously reported that D3R-/- mice have low ethanol intake [15] and exhibit higher 

basal expression of GABAA α6 in the ventral striatum [19]. Here, we assessed whether a 

link exists between alcohol consumption and GABAA α6 subunit expression in the NAc. 

D3R-/- exhibited about 5-fold higher basal mRNA expression of α6 subunit as compared 

with D3R+/+in the NAc [main effect of genotype F (2, 14) = 9.447, P<0.01; post hoc: 

P<0.01], but not in the prefrontal cortex (PFC), while other relevant GABAA subunits were 

not changed (Fig.1 A-B). Based on these data, we compared D3R+/+, heterozygous D3R+/- 

and homozygous D3R-/- in the drinking-in-the-dark (DID) paradigm. As shown in Fig. 1C, 

D3R+/+exhibited obvious ethanol preference in DID paradigm on day 1, 2 and 3, whereas 

D3R-/- had significantly lower ethanol intake [main effect of day: F (3, 60) = 40.58, P<0.01; 

main effect of genotype F (2, 20) = 7.812, P<0.01; post hoc: P<0.01 and P<0.05]. D3R+/- 

showed alcohol intake similar to D3R+/+and, consistently, a low α6 expression in the NAc 

(Fig. 1D).  The lack of difference in ethanol intake on day 4 might be linked to the 4h-time 

window used instead of a 2h-time window (see Methods). Overall, these data suggest that 

there is a link between α6 mRNA expression and alcohol intake such that the high level of 

GABAA α6 subunit expression in the NAc is associated to reduced alcohol consumption. 

To precisely assess the spatial expression of α6 subunit in the brain of D3R+/+and D3R-/-, 

we carried out in situ hybridization (ISH) experiments and analyzed the results in a blinded 

manner. These experiments confirmed that, while heavily enriched in the cerebellar 

granule cell layer, significant α6 expression in the forebrain of D3R-/- occurred specifically in 

the NAc [P<0.05], being very low in the other examined brain areas (Fig. 2 A-D, Tab. S1-

S2). Furthermore, the expression of other relevant GABAA subunits was not changed in 
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D3R-/- (Tab. S1-S2). Data obtained by ISH confirmed the qPCR data (Fig. 1 A-B). 

Autoradiography following incubation with a high 15 nM concentration of [3H]Ro15-4513 

showed a statistically significant increase of [3H]Ro15-4513 binding in the NAc [P<0.05] 

(Fig. 2 E-F). Ro 15-4513 binds at α6/4β3δ-type GABAA receptors with high affinity (KD ≈ 10 

nM) [21, 34], consistent with an increased expression of α6/4β3δ-type GABAA receptors in 

the NAc.

3.2. Alcohol antagonist Ro 15-4513 increased ethanol consumption in mice expressing 

GABAA α6 in NAc

Ro15-4513 was earlier named “alcohol antagonist” [35], because, in some studies, it 

inhibited alcohol intoxication, preference and self-administration in wild type rodents [31, 

36]. Therefore, based on ISH and [3H]Ro15-4513 binding data, we tested the hypothesis 

that Ro 15-4513 differently affects ethanol intake in mice expressing different levels of α6 

in the NAc. As shown in Fig. 3 A, systemic administration of Ro 15-4513 decreased 

voluntary ethanol intake in D3R+/+ [main effect of day F (3, 63) = 55.62, P<0.01; main effect 

of treatment F (1, 21) = 7.198, P<0.05; post hoc: P<0.05], but increased voluntary ethanol 

intake in D3R-/- (Fig. 3 B) [main effect of day F (3, 39) = 34.87, P<0.01; main effect of 

treatment F (1, 13) = 9.384, P<0.01; post hoc: P<0.05]. Worthy of note, D3R-/-, which 

normally show low preference for alcohol [15], following Ro 15-4513–treatment reached a 

level of ethanol consumption similar to that of D3R+/+. To gain stronger evidence of the 

specific role of D3R-dependent expression of α6 GABAA subunit in the NAc, we tested 

D3R-/- mice in the DID after intra-NAc administration of Ro 15-4513, with or without 

furosemide, an α6-GABAA receptor antagonist [37]. As shown in Fig. 3 C, intra-NAc 

administration of Ro 15-4513 increased voluntary ethanol intake in D3R-/- [main effect of 

treatment F (2, 13) = 22.31, P<0.001; main effect of days X treatment interaction F (6, 39) 
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= 3.297 P<0.05, post hoc: P<0.05, P<0.01 and  P<0.001 vs vehicle]; the effect of Ro 15-

4513 injected in this brain area was blocked by pretreatment with furosemide [main effect 

of treatment F (2, 13) = 22.31, P<0.001; main effect of days X treatment interaction F (6, 

39) = 3.297, post hoc: P<0.001 vs furosemide+Ro 15-4513] (Fig. 3D). This result confirms 

that the increased expression of α6-GABAAR in the NAc has a key role in modulating the 

paradoxical effect of Ro 15-4513 in D3R-/- mice, ruling out potential off target and/or non-

specific effects of Ro 15-4513 (on other brain areas, because of intraNAc injection, and on 

other GABAA receptor isoforms, because of furosemide antagonism). Thus, the 

paradoxical response to Ro 15-4513 seen in D3R-/- is related to increased expression of -

GABAAR in the NAc, which also accounts for the low ethanol consumption observed in 

these mice, as mentioned above.  

Changes of GABAAR function induced by alterations in dopaminergic transmission may 

have clinical relevance, because a number of DR ligands are currently used to treat 

different neuropsychiatric disorders [38]. In this respect, consistent with data obtained in 

D3R-/- mice, we previously reported that chronic treatment with the selective D3R 

antagonist SB 277011A increases α6 expression in the ventral striatum and accelerates 

the appearance of tolerance to the anxiolytic effect of diazepam [19]. Here, to assess the 

functional relevance of the D3R/α6-GABAAR cross-talk, we treated D3R+/+with SB 277011A 

for 7 days, (10 mg/kg i.p. as done in [19]) before testing in the DID paradigm. As shown in 

Fig. 3D, pretreatment of D3R+/+ with SB 277011A for 7 days, which increased the 

expression of α6-GABAAR in the NAc (Figure S1), induced a paradoxical effect of Ro 15-

4513 on alcohol intake, similar to D3R-/- [main effect of days F (3, 108) = 31.59, P<0.001; 

main effect of treatment F (2, 36) = 19.34, post hoc: P<0.05, P<0.001 vs vehicle]. These 

data indicate that treatment with a D3R antagonist, sufficient to change the expression of 

α6-GABAAR in the NAc, determines changes in ethanol intake. 

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900



3.3. D3R-/- mice exhibited Ro 15-4513-driven decrease of mIPSC amplitude in Medium 

Spiny Neurons 

To test the hypothesis that α6 subunit expression in the NAc shell, as seen in D3R-/- mice, 

modifies inhibitory transmission, we performed whole-cell patch-clamp recordings on 

GABAergic MSNs, which represent >95% of the cell population in this brain region, and 

recorded miniature inhibitory postsynaptic currents (mIPSCs). Analysis of the peak 

amplitudes of mIPSCs revealed a significant increase in D3R-/- compared to D3R+/+(Fig. 4; 

A-D; 38.58 ± 3.35 pA, n = 19 versus 29.51 ± 2.96 pA, n = 16; P<0.05). In contrast, there 

was no significant difference in mIPSC frequency (D3R-/-: 1.98 ± 0.30 Hz, D3R+/+: 1.77 ± 

0.26 ms) and mIPSC kinetics (Fig. 4 G, H; rise time, D3R-/-: 0.72 ± 0.06 ms; D3R+/+: 0.72 ± 

0.06 ms; decay time, D3R-/-: 16.96 ± 1.10 ms; D3R+/+: 16.14 ± 1.31 ms). Next, we tested 

the effects of Ro 15-4513 on mIPSCs in MSNs from D3R+/+and D3R-/-. Based on ISH and 

qPCR data, indicating that α6-GABAARs in the NAc are scarce in naïve D3R+/+mice and 

given the opposite effect of Ro 15-4513 treatment on ethanol intake observed in D3R-/- 

mice, we expected that Ro 15-4513 would have differential effects on mIPSCs. For this in 

vitro experiment we selected the 0.3 μM Ro 15-4513 concentration, because it completely 

antagonizes ethanol enhancement of α4β3δ-type GABAAR current [21]. As shown in Fig. 

4, bath application of 0.3 μM Ro 15-4513 did not significantly alter the frequency, rise time, 

decay time and amplitude of mIPSCs in D3R+/+ (n = 16; paired t test), but induced a 

significant reduction of amplitude in the NAc of D3R-/- (Figure 3; B-F; 38.58 ± 3.35 pA, 

versus 31.93± 3.03 pA, n = 19 P<0.05; paired t test) while frequency, rise time and decay 

time were not affected. These results suggest that the activity of α6-GABAAR in D3R-/- 

influences inhibitory synaptic transmission of MSN within NAc shell, possibly because α6 

expression, higher than in D3R+/+, is sufficient to generate a population of heteromeric 

GABAARs containing α1 and α6 [39]. 
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4. Discussion

We found that increased expression of α6 GABAA subunit, induced by D3R deletion or 

pharmacological blockade, is associated to reduced alcohol intake and increased GABA 

inhibition in the NAc. We revealed GABAA α6 activity by using Ro 15-4513, both in terms 

of behavior (ethanol intake) as well as of neuronal excitability (electrophysiology) a GABAA 

ligand that exerts α6-dependent effects. Ro 15-4513 is considered a high affinity α6-

GABAAR ligand, since its binding is obvious in a α6 rich brain structure, such as the 

cerebellum, while it is hardly detectable in the very same structure in α6 null mice [26]. 

We previously reported that alcohol sensitization is linked to increased D3R expression 

induced by ethanol intake and is associated with the activation of RACK1/BDNF pathway. 

In fact, selective blockade of the TrkB, the receptor for BDNF, reverses stable intake of 

ethanol in WT mice and decreases D3R expression levels in their striatum, while it results 

ineffective in D3R-/- mice [15]. 

The α6 subunit came to the attention of the alcohol addiction studies following the 

identification of the R100Q mutation in the Sardinian non-ethanol-preferring rat line, 

suggesting a possible involvement of the GABAAR containing α6 subunit in the genetic 

predisposition to alcohol preference [10]. This mutation is associated with hypersensitivity 

to motor-impairing effects of ethanol and tonic inhibitory currents mediated by α6βδ-type 

GABAAR in cerebellar granule cells [8, 13]. Worthy of note, this mutation strongly 

increases diazepam effect on GABA-evoked currents [11]. Consistently, a model where 

the amino acidic residue at position 100 affects ethanol sensitivity in the GABAARs is part 

of the benzodiazepine ligand-binding pocket on the α6-subunit [19, 40]. Other studies have 

also described α6 polymorphisms that correlate to alcohol dependence in humans [41, 42]. 

Our observation that genetic deletion or pharmacological blockade of D3R increased 
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GABAA α6 subunit expression in the ventral striatum [16], a brain structure involved in 

voluntary ethanol intake, provides a tool to study how the increased expression of α6 

subunit-containing receptors may affect alcohol intake. Indeed, some studies have 

evaluated the contribution of other GABAAR subunits, such as α4 and δ, but no data are 

available on the role of NAc GABAA α6 subunit in alcohol intake; this latter has only been 

studied for its involvement in the motor incoordination associated to alcohol, given its 

abundant localization in cerebellum granule cells.

Several studies, in the last two decades, have tried to elucidate how the subunit 

composition of different GABAARs determines their electrophysiological and 

pharmacological features (inhibitory currents, ligand binding), or, at the organism level, the 

animal behavior (anxiety, addiction, response to anxiolytics). While most studies have 

dealt with recombinant systems, such as Xenopus laevis oocytes injected either with 

cRNA coding for the different subunits [9, 21] or with cRNA coding for concatenated 

subunits [43], no studies had the opportunity to examine native systems, i.e. animals 

spontaneously and stably expressing specific subunits in defined CNS structures. 

Polymorphisms of α6 subunit have been found to be associated both to anxiety-related 

traits [44] and to benzodiazepine sensitivity in humans [45]. It is not yet known whether 

increased expression of α6 subunit containing GABAAR isoforms in brain areas that 

normally express negligible amounts of α6 produces different responses to GABA (i.e. 

different inhibitory currents) and/or to exogenous modulators. This might be due to the lack 

of in vivo systems with significant changes in α6 expression. Early studies with α6 subunit 

knockout mice [26, 46] remained inconclusive as it was later discovered that the knockout 

construct affected the expression of neighboring subunits in the GABAA gene cluster [47]. 

We took advantage of Ro 15-4513, because it has been proposed to compete with ethanol 

within a binding pocket involving α6 [23]. We expected a different effect of Ro 15-4513 in 

D3R+/+, which poorly express α6 in the NAc, versus D3R-/-, which robustly express α6. 
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Indeed, we found an opposite effect of Ro 15-4513 in the two groups; in D3R+/+, the 

systemic administration of Ro 15-4513 reduced ethanol intake, presumably as a result of 

its action as a negative allosteric modulator in multiple GABAARs [21], where it would 

behave as an “ethanol antagonist” [23, 48].  Conversely, in D3R-/-, Ro 15-4513 

paradoxically increased ethanol intake, a surprising finding that might be explained in 

terms of differential modulation of the GABAAR containing α6 subunit by Ro 15-4513. 

These data were confirmed and validated by intra-NAc injection experiments, where the 

local administration of furosemide, a selective α6-GABAA receptor antagonist [37], 

completely blocked the effect of Ro 15-4513. 

The antagonism between Ro 15-4513 and ethanol might be more at the functional level, 

rather than at the binding level. While the reported affinity of Ro 15-4513 for α4 and α6 

containing GABAAR is quite similar in the nanomolar range [9, 21, 23], the effect on the 

GABA-dependent currents in cells expressing exclusively α4 or α6 subunits is not clear 

and might be quite different. This is consistent with the paradoxical activation of neurons 

by gaboxadol in a transgenic Thy1α6 mouse line, ectopically expressing the GABAAR α6 

subunit gene under the Thy-1.2 promoter [20]. We directly address this issue by 

measuring MSN mIPSCs in the NAc and their sensitivity to Ro 15-4513. Based on the 

above premises, we hypothesized that a change in GABAA α6 subunit expression would 

increase spontaneous mIPSCs and that Ro 15-4513 would inhibit mIPSCs in MSN from 

D3R-/-, robustly expressing α6, whereas it would be ineffective in α6-deficient MSNs from 

D3R+/+. The electrophysiological analysis of MSNs revealed a significant increase in 

mIPSC amplitude in D3R-/-, which expressed GABAAR containing α6 subunit in NAc, 

compared to D3R+/+. Accordingly perfusion with Ro 15-4513 induced a significant reduction 

of amplitude in the NAc of D3R-/-, but was ineffective in D3R+/+. This latter observation 

clearly indicates that the modulation of the GABAAR channel by Ro 15-4513 depends on 

the presence of α6 subunit and is consistent with the observation of opposite effects of this 
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drug on ethanol intake in D3R+/+and D3R-/-. To precisely assess the spatial expression of 

α6 subunit in the brain of D3R+/+and D3R-/-, we carried out in situ hybridization (ISH) 

experiments. The systematic assessment of α6 expression in the CNS by ISH confirmed  

qPCR results, indicating that α6 expression in D3R-/- was restricted to a limited brain area, 

corresponding to the NAc. These results were reinforced also by autoradiography data 

obtained with [3H]Ro 15-4513. The fact that genetic or pharmacological manipulation of 

D3R induced changes in the GABAAR α6 subunit expression specifically in the NAc  is 

consistent with the leaving relatively unchanged other brain areas is not so surprisingly, 

considering that, at variance with D2R, restricted expression of D3R in this brain region t 

same structures where we observe increased α6 expression [49]. To the best of our 

knowledge, it is not known in detail how D3R controls GABAAR subunit mRNA expression; 

however, other studies have shown dynamic D3R-dependent down-regulation of 

GABAergic control over lateral/basolateral amygdala neurons [50], NAc [51] and 

hippocampus [52]. A direct dynamic interplay between metabotropic DA receptors and 

other ionotropic receptors in plasma membrane has been documented by single-molecule 

detection imaging and electrophysiology in live hippocampal neurons [53]. Furthermore, 

cell signaling downstream of D3R affects GABAARs in the NAc [51], but numerous other 

complex mechanisms may impact GABAARs trafficking [54] and deserve further studies to 

be elucidated. Finally, because these changes in GABAAR function can be related to 

dopaminergic transmission, they may assume further relevance in clinical situations, such 

as schizophrenia and Parkinson’s disease, where D3R are chronically blocked or 

stimulated by drug-treatments [38]. 

In conclusion, these data indicate that α6-containing GABAARs in the NAc play an 

important role in controlling alcohol intake by increasing GABAergic-inhibition in the MSNs. 

Because changes in α6-containing GABAARs are specifically induced in the NAc by D3R-
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blockade, the interplay between DAergic and GABAergic transmission may present a 

novel relevant mechanisms in reinforcing properties of alcohol and other addictive drugs. 
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Figure Legends

Figure 1. Alcohol intake and D3R-dependent GABAA α6 subunit mRNA expression in the 

NAc. A and B, GABAAR α1, α2, α4, α6, γ2 and δ subunits mRNA expression in the 

nucleus accumbens (NAc) and in the prefrontal cortex (PFC) of wild type (D3R+/+) and D3R 

null mice (D3R-/-). Abundance of transcripts was assessed by qPCR (primer sequences are 

reported in Tab. S3). C and D, ethanol intake (in the drinking in the dark paradigm, DID) 

and 6 expression in wild type (D3R+/+) heterozygous (D3R+/-) and null mice (D3R-/-). DID 

was measured for 4 days, in mice with limited access (2h/day for 3 days and 4h the 4th 

day) to ethanol solution (20%). Abundance of transcripts in the NAc was assessed by 

qPCR after DID; expression level is given as mean fold changes relative to controls.  

*P<0.05, **P<0.01 vs. the corresponding control (D3R+/+,); one- or two-way ANOVA and 

Newman–Keuls post hoc test.  Each experimental group included 8-10 mice.

Figure 2. Expression of 6 GABAA subunit mRNA and [3H]-Ro 15-4513 binding in the NAc 

and Cerebellum of D3R+/+ and D3R-/- mice. A, B, C and D In situ hybridization (ISH) 

detection of 6; E, F, G and H, [3H]-Ro 15-4513 autoradiography. A, C, E and G show 

representative images.  B, D, F and H show average optical density, (expressed in 

arbitrary units); n=6-8 per group. *P < 0.05 vs. D3R+/+, unpaired t test.

Figure 3. Opposite effect of RO 15-4513 on alcohol intake, in D3R+/+ and D3R-/- (drink in 

the dark paradigm, DID). A and B, ethanol intake in D3R+/+ and D3R-/- intraperitoneally (i.p.) 

treated with vehicle (VEH) or Ro 15-4513 (5 mg/kg); C, ethanol intake in D3R-/- locally 

injected into the NAc with VEH, Ro 15-4513 (10 nmol/mouse) or furosemide (10 

nmol/mouse) plus Ro 15-4513; D, ethanol intake in D3R+/+ pretreated with VEH or the 
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selective D3R antagonist, SB 277011A for 7 days (10 mg/kg, i.p.) plus Ro 15-4513 (5 

mg/kg, i.p.) over DID paradigm. 

Each experimental group included 8-13 mice. *P<0.05, **P<0.01, ***P<0.001 vs. vehicle 

(VEH). One- or two- way ANOVA and Newman–Keuls post hoc test.

Figure 4. NAc medium spiny neurons from D3R-/- mice exhibited increased GABAA 

inhibitory currents sensitive to Ro 15-4513. A and B, representative traces showing mIPSC 

recordings in slice from D3R+/+  and D3R-/- mice before and after treatment with Ro 15-4513 

(0.3 µM; in red). C, analysis of the peak amplitudes of mIPSCs; notice an increase in D3R-/- 

compared to D3R+/+ and a decrease following Ro 15-4513 application in D3R-/- only. D-F, 

cumulative frequency distributions for mIPSC amplitude in the experimental conditions 

shown in A and B. G-I, analysis of mIPSC frequency, rise time and decay time. 

*P<0.05, unpaired (D3R-/- vs. D3R+/+) or paired (pre- vs. post- Ro 15-4513) t test (D3R-/-, 

n=19; D3R+/+, n=16).
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Supplementary Information

Table S1. In situ hybridization (ISH) signals for GABAA ??1, ??2, ??4, ??6, γ2 and δ subunit 
mRNA in the prefrontal cortex from D3R+/+ and D3R-/- mice.

GABAA subunit ISH signal (D3R-/- over D3R+/+ ratio)
α1 0.92  0.02
α2 1.10  0.11
α4 0.80  0.07
α6 1.15  0.13
γ2 0.89  0.30
δ   0.83  0.17

Table S2. In situ hybridization (ISH) signals for GABAA ??1, ??2, ??4, ??6, γ2 and δ subunit 
mRNA in the hippocampus from D3R+/+ and D3R-/- mice.

GABAA subunit ISH signal (D3R -/- over D3R +/+ ratio)

α1 0.91  0.09
α2 1.19  0.13
α4 1.07  0.03
α6 1.20  0.10
γ2 0.96  0.26
δ   0.85  0.16



Table S3. Primers for Real-Time PCR

Target gene Primer sequence 

Gabra1 5’-GACCAGGTTTGGGAGAGCGTGT-3’

3’-GCCGGAGCACTGTCATGGGTC-5’

Gabra2 5’-CCCAGTCAGGTTGGTGCTGGC-3’

3’-ACAGGGCCAAAACTGGTCACGT-5’

Gabra4 5’-CCTGTGCCTGGCGGCTTGTTTA-3’

3’-CCCCAAATCCAGGACGCAGCC-5’

Gabra6 5’-GGCCAGGATTTGGGGGTGCTG-3’

3’-TCAGTCCAAGTCTGGCGGAAGA-5’

Gabrg2   5’-ACCCAGAGGCGAGAGGCGAG-3’

3’-GCTTGTGAAGCCTGGGTAGAGCG-5’

Gabrd 5’-CCGACCAGGCATTGGAGGTGC-3’

3’-TGCTGTCCCGCCAGCTCTGA-5’

Gapdh 5’-CAACTCACTCAAGATTGTCAGCAA-3’

3’-GGCATGGACTGTGGTCATGA-5’



Figure S1. Pharmacological blockade of D3R counteracts alcohol intake and induced 

overexpression of GABAA 6 subunit in the NAc of D3R+/+. A and B, ethanol intake (DID) and 

6 expression in D3R+/+ treated with vehicle (VEH) or the selective D3R antagonist, SB 

277011A (10 mg/kg, i.p.) for 7 days. Each experimental group included 8-13 mice. *P<0.05, 

***P<0.001 vs. VEH; two-way ANOVA and Newman–Keuls post hoc test.  

Material and Methods

In situ hybridization

Air-dried slides were fixed in ice-cold 4% paraformaldehyde for 5 min. The sections were 

washed in 1 PBS at room temperature for 5 min, dehydrated in 70% ethanol for 5 min and 

stored in 95% ethanol at 4 °C until used. The antisense DNA oligonucleotide probe (Oligomer 

Oy, Helsinki, Finland) sequences were as follows: α6, 5’-CAG TCT CTC ATC AGT CCA AGT 



CAT-3’;  was complementary to the mouse GABAAR subunit mRNA sequence. Poly[35S]dATP 

(PerkinElmer Life and Analytical Sciences, Boston, MA) tails were added to the 3’-ends of the 

probes by deoxynucleotidyl transferase (Promega Corporation, Madison, WI). Unincorporated 

nucleotides were removed by Illustra ProbeQuant G-50 Micro Columns (Amersham 

Biosciences, Buckinghamshire, UK). Labelling efficiency (360,000 cpm/μl) was determined by 

a scintillation counter. The labeled probe was diluted to 0.06 fmol/μl of hybridization buffer 

consisting of 50% formamide and 10% dextran sulfate in 4X Saline Sodium Citrate (SSC). 

Nonspecific controls for the antisense probes were produced by adding 100-fold excess of 

unlabeled probes. The hybridization occurred under glass Menzel-Gläser coverslips (Thermo 

Fisher Scientific, Boston, MA) overnight at 42 °C. Finally, the slides were washed in 1X SSC 

at room temperature for 10 min, in 1X SSC at 55°C for 30 min, and 1X SSC, 0.1X SSC, 70% 

EtOH and 95% EtOH at room temperature for 1 min each. The slides were then air-dried and 

exposed with plastic [14C]-radioactivity standards (GE Healthcare) to BioMax MR films 

(Eastman Kodak Company, Rochester, NY). Films were scanned (Epson expression 1680 

Pro). Images were imported into the FIJI version of the free image processing software 

ImageJ. The [14C]-standards were exposed simultaneously with the brain sections as the 

reference. The hybridization values were converted to arbitrary optical density units. Non-

specific signal was subtracted to obtain the specific signal. All measurements were analyzed 

in blind.

[3H]Ro 15-4513 autoradiography 

Slides were pre-incubated in ice-cold 50 mM Tris–HCl buffer, pH 7.4, containing 120 mM 

NaCl for 15 min. The final incubation for basal [3H]Ro 15-4513 binding was performed in the 



pre-incubation buffer containing 15 nM [3H]Ro 15-4513 (23 Ci/mmol, PerkinElmer Life and 

Analytical Sciences) at 4 °C for 1 h. This high ligand concentration was aimed at estimating 

the receptor number rather than affinity. The non-specific binding was determined in the 

presence of 10 μM flumazenil. The sections were then washed in ice-cold pre-incubation 

buffer twice for 1 min, dipped in ice-cold distilled water, air-dried at room temperature and 

exposed with [3H]-plastic standards for 12  weeks (GE Healthcare) to Biomax MR films 

(Eastman Kodak). The films were scanned (Epson expression 1680 Pro) and binding density 

was expressed as arbitrary optical density units (FIJI IMAGE-J). The [3H]-standards were 

exposed simultaneously with the sections as the reference. Non-specific binding was 

subtracted to obtain the specific binding values. All data were analyzed in blind.

Electrophysiology

Animals were sacrificed by cervical dislocation. Brains were rapidly removed and placed in 

ice-cold cutting solution containing (in mM): TRIS-HCl 72, TRIZMA base 18, NaH2PO4 1.2, 

NaHCO3 30, KCl 2.5, glucose 25, HEPES 20, MgSO4 10, Na-pyruvate 3, ascorbic acid 5, 

CaCl2 0.5, sucrose 20. Slices (300 μm thick) were cut on a vibratome (VT1200S; Leica 

Microsystems, Germany) and immediately transferred to an incubation chamber held at 32°C 

and filled with a recovery solution containing (in mM): TRIS-HCl 72, TRIZMA base 18, 

NaH2PO4 1.2, NaHCO3 25, KCl 2.5, glucose 25, HEPES 20, MgSO4 10, Na-pyruvate 3, 

ascorbic acid 5, CaCl2 0.5, sucrose 20. After 30 min, slices were transferred to a second 

incubation chamber held at 32°C and filled with artificial cerebrospinal fluid (aCSF) containing 

(in mM): NaCl 124, KCl 3.2, NaH2PO4 1.2, MgCl2 1, CaCl2 2, NaHCO3 26, and glucose 10, pH 

7.4. During incubations, the chambers were continuously bubbled with 95% O2/5% CO2. 



Slices were equilibrated at room temperature for at least 45 min. Slices were then transferred 

to a submerged recording chamber constantly perfused with heated aCSF (32°C) and 

bubbled with 95% O2/5% CO2. Medium spiny neurons (MSNs) within the NAc shell subregion 

were identified with a 40X water-immersion objective on an upright microscope equipped with 

differential interface contrast optics under infrared illumination (BX5IWI, Olympus, Center 

Valley, PA) and video observation. Electrodes were made from borosilicate glass 

micropipettes (Warner Instruments, Hamden, CT) prepared with a P-97 Flaming-Brown 

micropipette puller (Sutter Instruments, Novato, CA). Patch pipettes had a resistance of 4-6 

MΩ when filled with an internal solution containing (in mM): CsCl 135, HEPES 10, EGTA 1.1, 

CaCl2 0.1; Mg-ATP 2.5, Na-GTP 0.25, phosphocreatine 5, pH 7.2. After establishing a 

gigaseal, the patch was broken by applying negative pressure to achieve a whole-cell 

configuration. A series resistance lower than 15 MΩ was considered acceptable, and 

monitored constantly throughout the entire recording. Neurons were held at -70 mV. 

Tetrodotoxin (TTX, 0.5 μM, Tocris),  D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5, 50 

μM, Tocris) and 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide 

(NBQX, 10 μM, Tocris) were applied to the bath to block action potential-mediated 

neurotransmitter release, NMDA and AMPA receptors, respectively. Ro 15-4513 (0.3 μM) was 

applied in the bath after 5-7 min of TTX, APV and NBQX perfusion. All recordings were 

carried out at least 10 min after application of any drug to the bath. Recordings were 

performed using a Multiclamp 700B/Digidata 1550A system (Molecular Devices, Sunnyvale, 

CA) and digitized at a 10,000 Hz sampling frequency.
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