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Abstract—This paper investigates the coexistence of non-
orthogonal multiple access (NOMA) and full-duplex (FD), where
the NOMA successive interference cancellation technique is
applied simultaneously to both uplink (UL) and downlink (DL)
transmissions in the same time-frequency resource block. Specif-
ically, we jointly optimize the user association (UA) and power
control to maximize the overall sum rate, subject to user-specific
quality-of-service and total transmit power constraints. To be
spectrally-efficient, we introduce the tensor model to optimize the
UL users’ decoding order and the DL users’ clustering, which
results in a mixed-integer non-convex problem. For solving this
problem, we first relax the binary variables to be continuous, and
then propose a low-complexity design based on the combination
of the inner convex approximation framework and the penalty
method. Numerical results show that the proposed algorithm
significantly outperforms the conventional FD-based schemes,
FD-NOMA and its half-duplex counterpart with random UA.

Index Terms—Full-duplex radios, non-convex programming,
non-orthogonal multiple access, self-interference, spectral effi-
ciency, successive interference cancellation, user clustering.

I. INTRODUCTION

For the next generation wireless system, improving the

spectral efficiency (SE) plays a pivotal role in meeting the

exponential demand of mobile data and new services, es-

pecially over the limited radio spectrum [1]. To that end,

non-orthogonal multiple access (NOMA) [2], [3] and in-band

full-duplex communications are amongst the most promising

solutions. Unlike conventional multiple access methods that

separate concurrent transmissions onto different orthogonal di-

mensions (e.g., in code like CDMA, in time or frequency like

TDMA or FDMA), NOMA allows multiple transmissions to

coexist. Also to improve the SE, thanks to the latest advances

in self-interference suppression, the in-band full-duplex (FD)

radios can now transmit and receive simultaneously on the

same frequency, even using the same antenna array or RF-

chains. Theoretically, FD can double the SE of a wireless

link over its half-duplex (HD) counterparts [4].

The coexistence of NOMA and FD has recently received

paramount interest. The authors of [5], [6] focus on mitigating

the network interference. In [7]–[9], the successive interfer-

ence cancellation (SIC) technique was adopted for the UL

reception in FD systems in which only the random decoding

order with respect to (w.r.t.) UL users’ indices was considered.

An optimal user pairing in NOMA network was investigated

in [10], but merely applied to the DL transmission. Addition-

ally, a joint power and subcarrier allocation scheme to enhance

the throughput of users was investigated in [11]. Further,

the authors in [5] showed that FD-NOMA can improve the

achievable rate, while a joint NOMA beamforming and user

scheduling in FD systems was also reported in [12]. It is worth

noting that most of the above work simply adopts the random

schemes for both UL and/or DL transmission. As such, this

work aims to establish framework that optimizes DL user

clustering as well as UL users’ decoding order to maximize

the total sum rate (SR).
To that end, we formulate a SR maximization problem for

a FD-NOMA multiuser MISO (MU-MISO) system, subject to

minimum data rate constraints for each user. Our formulation

explicitly considers the effects of user association (UA) in both

DL and UL channels. For the UL reception, we adopt the SIC

technique that results in a permutation problem to optimize

the UL users’ decoding order. For the DL transmission,

a promising approach is to divide DL users into multiple

clusters with different channel conditions by introducing a

tensor of binary numbers. NOMA is then implemented within

each cluster. The resulting optimization problem is a mixed-

integer non-convex programming, which often requires expo-

nential time find its globally optimal solution. To tackle it,

we propose novel transformations using on the inner convex

approximation (ICA) framework and penalty function (PF)

method. Numerical results are provided to demonstrate the

convergence of the proposed algorithm and the achieved SR

gains of the proposed FD-NOMA scheme over state-of-the-

art approaches, i.e., the conventional FD [7], FD-NOMA with

random UA and HD-NOMA.
Notation: XT , XH and tr(X) are the transpose, Hermitian

transpose and trace of a matrix X, respectively. �{·} returns

the real part of the argument. x ∼ CN (η,Z) means that x
is a random vector following a circularly symmetric complex

Gaussian distribution with mean η and covariance matrix Z.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a small cell in which the BS is equipped with

N > 1 antennas. To facilitate the NOMA operation, the cell

is virtually partitioned into Z annular regions (or zones). As

illustrated in Fig. 1, we number the zones/regions of Z �
{1, 2, . . . , Z} in ascending order w.r.t. their distance from the

BS. Without loss of generality, we assume that each zone

contains K DL users1 leading to M = ZK DL users in total.
The BS is assumed to be equipped with the circulator-

1Note that the following analysis is also applicable when zones have
different numbers of DL users.



Fig. 1. A small cell FD-NOMA MU-MISO system. FD-BS serves M = ZK
DL users, with K DL users in each of the Z zones, and L UL users which
are assumed to be uniformly deployed in the cell.

based FD radio prototypes [13] to simultaneously serve M
and L single-antenna DL and UL users in the same fre-

quency band, respectively. We denote the k-th DL user in

zone i by Udik, ∀i ∈ Z, k ∈ K � {1, 2, . . . ,K}, while

the �-th UL user at an arbitrary location is represented by

Uu� , ∀� ∈ L � {1, 2, . . . , L}. The channel vectors from the

BS to Udik and from Uu� to the BS are denoted by hd
ik ∈ C

N×1

and hu
� ∈ C

N×1, respectively. To capture the imperfect

SI suppression (SIS) at the BS, let GSI ∈ C
N×N and

ρ ∈ [0, 1) be the SI channel matrix and the residual SiS level,

respectively. Further, let g�,ik denote the CCI channel from

Uu� to Udik.

A. Downlink Transmission

Before proceeding further, we first lay a foundation on the

third-order tensor to generalize the DL user clustering, through

the following definitions.

Definition 1: A cluster of DL users is a group consisting

of Z DL users, in which no two DL users come from the

same zone. The NOMA beamforming is thus applied to K
different clusters. The third-order tensor T � [Tkji]k,j∈K,i∈Z
is used for UAs, where Tkji ∈ {0, 1}. If Tkji = 1, the j-th

DL user in zone i is admitted to the k-th cluster, and vice

versa.

Definition 2: It is clear that there are K! possible per-

mutations of clusters, and thus, the considered problem can

be simplified by utilizing DL user indices in the first zone

to index the clusters. In other words, the k-th DL user in

the first zone is always admitted to the k-th cluster. T is

formed by Z matrices w.r.t. the index i as T = {Ci}i∈Z ,

with Ci �
[
Tkji

]
k,j∈K ∈ {0, 1}K×K representing the i-th

zone, and thus the first matrix of T is assigned to the identity

matrix, i.e., C1 �
[
Tkj1

]
= IK . According to Definition 1,

Ci, i ∈ Z\{1} is considered as the association variables of

DL users.

From the two definitions above, we now establish the UA

between two arbitrary zones as follows.

Theorem 1: Let Tiz ∈ {0, 1}K×K , ∀i, z ∈ Z be an UA

matrix between zones i and z. If the entry T iz
kj , ∀k, j ∈ K is

set to 1, the k-th DL user in zone i and the j-th DL user in

zone z are grouped into the same cluster, and vice versa. Based

on the structure of T, the matrix Tiz is simply calculated as

Tiz = CT
i Cz. (1)

Proof: Please see Appendix A.

In the DL channel, BS employs a linear beamforming

vector wik ∈ C
N×1 to precode the data symbol xdik, with

E
[|xdik|2] = 1, intended to Udik. The received signal at Udik can

be expressed as

ydik =
∑
i′∈Z

∑
k′∈K

(hd
ik)

Hwi′k′xdi′k′ +
∑
�∈L

p�g�,ikx
u
�︸ ︷︷ ︸

CCI

+nik, (2)

where p� and xu� , with E
[|xu� |2] = 1, are the transmit

power coefficient and data symbol of Uu� , respectively; and

nik ∼ CN (0, σ2
ik) is the additive white Gaussian noise

(AWGN) at Udik. The messages intended to the DL user in

cluster k are sequentially decoded as follows. Udik first decodes

the messages of Udi′j with i′ ∈ Z+
i � {i + 1, . . . , Z} for

T ii′
kj = 1, and then removes them by using the SIC technique

before decoding its own message. The received signal-to-

interference-plus-noise ratio (SINR) at Udik can be generally

expressed as

γdik(w,p,T) = min
z∈Z−

i ∪{i}
max
j∈K

{
T zi
jk |(hd

zj)
Hwik|2

Θzi
jk(w,p,T)

}
, (3)

where Z−
i � {1, . . . , i − 1}, p = [p�]�∈L, w = [wH

i ]Hi∈Z
with wi � [wik]k∈K, and the interference-plus-noise (IN) for

decoding the Udik’s message at Udzj , denoted by Θz,i
jk (w,p), is

given as

Θzi
jk(w,p,T) =

∑
i′∈Z

∑
k′∈K

|(hd
zj)

Hwi′k′ |2 +
∑
�∈L

p2� |g�,zj |2

−
∑

i′∈Z+
i ∪{i}

∑
k′∈K

T zi′
jk′ |(hd

zj)
Hwi′k′ |2 + σ2

zj . (4)

B. Uplink Transmission

The received signal vector at the FD-BS in the UL trans-

mission can be expressed as

yu =
∑
�∈L

p�h
u
�x

u
� + ρ

∑
i∈Z

∑
k∈K

GH
SIwikx

d
ik︸ ︷︷ ︸

SI

+n, (5)

where n ∼ CN (0, σ2
UI) is the AWGN. To decode the UL

messages, we adopt the minimum mean-square error and SIC

(MMSE-SIC) decoder at the FD-BS [14]. To jointly optimize

the UL users’ decoding order, we introduce binary variables

β�m ∈ {0, 1}, ∀�,m ∈ L. Specifically, the message of the �-th
UL user is successfully decoded prior to that of the m-th UL

user if β�m = 1 in sync with βm� = 0, and they are in reverse

order if β�m = 0. Accordingly, the received SINR of Uu� at

the FD-BS can be expressed as

γu�
(
w,p,β

)
= p2�(h

u
�)

H
(
Ψ�(w,p,β)

)−1
hu
� , (6)

where

Ψ�(w,p,β) �
∑
m∈L

β�mp2mhu
m(hu

m)H

+ ρ2
∑
i∈Z

∑
k∈K

GH
SIwikw

H
ikGSI + σ2

UI.

C. Problem Formulation

With the above discussion, the achievable rate in nats/s/Hz

of Udik and Uu� are respectively given as Rd
ik

(
w,p,T

)
= ln

(
1+

γdik(w,p,T)
)

and Ru
�

(
w,p,β

)
= ln

(
1 + γu� (w,p,β)

)
. We



can now state the SR maximization problem under the quality-

of-service (QoS) and power constraints (SRM problem for

short) as

max
w,p,T,β

RΣ �
∑
i∈Z

∑
k∈K

Rd
ik

(
w,p,T

)
+
∑
�∈L

Ru
�

(
w,p,β

)
(7a)

s.t. ‖w‖2 ≤ Pmax
bs , (7b)

p2� ≤ Pmax
� , p� ≥ 0, ∀� ∈ L, (7c)

Rd
ik

(
w,p,T

) ≥ R̄d
ik, ∀i ∈ Z, k ∈ K, (7d)

Ru
�

(
w,p,β

) ≥ R̄u
� , ∀� ∈ L, (7e)

T iz
kj ∈ {0, 1}, ∀i, z ∈ Z, ∀k, j ∈ K, (7f)∑

k∈K
T iz
kj = 1,

∑
j∈K

T iz
kj = 1, ∀i, z ∈ Z, ∀k, j ∈ K, (7g)

β�m ∈ {0, 1}, ∀�,m ∈ L, (7h)

β�� = 0, ∀� ∈ L, (7i)

β�m + βm� = 1, � 	= m, ∀�,m ∈ L, (7j)∣∣∑
m∈L

β�m −
∑
m∈L

β�′m
∣∣ ≥ 1, � 	= �′, ∀�, �′ ∈ L, (7k)

where Pmax
bs and Pmax

� in (7b) and (7c) are the transmit power

budgets at the BS and Uu� , respectively. In (7d) and (7e), we

impose the minimum QoS requirements R̄d
ik ≥ 0 and R̄u

� ≥ 0
in order to maintain some degree of fairness among users.

Constraints (7f) and (7g) establish the criteria for DL user

clustering, in which Tiz satisfies the property of tensor T
given in Theorem 1, while constraints (7h)-(7k) determine the

decoding orders of UL users. Obviously, problem (7) belongs

to a class of mixed-integer non-convex problem.

Remark 1: The merits of Theorem 1 to problem (7) are

as follows. Firstly, since C1 is fixed to identity matrix,

the association problem avoids searching all permutations

of clusters while still achieving a close-to-optimal solution.

The second advantage is to reduce the number of association

variables by utilizing the relationship among Tiz, i, z ∈ Z .

Case study with Z = 2: As pointed out in [15], a larger

cluster size with the distinct channel conditions among DL

users is more desirable in the NOMA system. In this paper, we

focus on a small-cell setup due to current practical limitations

of FD radios [6]–[9]. As such, we will study user pairing (each

pair including one near DL user Ud1k in the inner zone and

one far DL user Ud2j in the outer zone) for DL transmission to

reduce the system load, which has been widely adopted in the

literature [6], [16]. In this case, T includes two UA matrices

as C1 = IK and C2 ∈ {0, 1}K×K . For convenience, let

α = T12 = C2 be a unique matrix of UA variables in T, and

then the entries of α are αkj ∈ {0, 1}, indicating whether Ud1k
in zone 1 is paired with Ud2j in zone 2. From (3), the SINRs

at Ud1k and Ud2j are respectively simplified as

γd
1k(w,p,α) =

|(hd
1k)

Hw1k|2
φk(w,p,α)

, (8a)

γd
2j(w,p,α) = min

{
max
k∈K

{αkj |(hd
1k)

Hw2j |2
ψk

j (w,p)

}
,
|(hd

2j)
Hw2j |2

ϕj(w,p)

}
,

(8b)

where the IN φk(w,p,α) experienced by Ud1k is

φk(w,p,α) =
∑

k′∈K\k |(hd
1k)

Hw1k′ |2 +∑
�∈L p2� |g�,1k|2 +∑

j′∈K(1−αkj′)|(hd
1k)

Hw2j′ |2+σ2
1k, while the INs involved

in the SINRs for decoding the Ud2j’s message at Ud1k and

itself are given as ψk
j (w,p) �

∑
k′∈K |(hd

1k)
Hw1k′ |2 +∑

j′∈K\j |(hd
1k)

Hw2j′ |2 +
∑

�∈L p2� |g�,1k|2 + σ2
1k,

and ϕj(w,p) �
∑

k′∈K |(hd
2j)

Hw1k′ |2 +∑
j′∈K\j |(hd

2j)
Hw2j′ |2+

∑
�∈L p2� |g�,2j |2+σ2

2j , respectively.

We remark that the first term in (8b) is the SINR for decoding

the Ud2j’s message at Ud1k, which is imposed on γd2j(w,p,α)
to ensure that Ud1k can successfully decode the Ud2j’s message

by SIC [15]. Toward this end, we consider the following

modification of (7)

max
w,p,α,β

RΣ �
∑
i∈Z

∑
k∈K

Rd
ik

(
w,p,α

)
+
∑
�∈L

Ru
�

(
w,p,β

)
(9a)

s.t. (7b), (7c), (7e), (7h) − (7k), (9b)

Rd
ik

(
w,p,α

) ≥ R̄d
ik, ∀i ∈ Z, k ∈ K, (9c)

αkj ∈ {0, 1}, ∀k, j ∈ K, (9d)∑
k∈K αkj = 1,

∑
j∈K αkj = 1, ∀k, j ∈ K. (9e)

III. PROPOSED SOLUTION FOR (9)

To begin with, we transform problem (9) to the continuous

relaxation (CR) form using the PFs as follows:

max
w,p,α,β

∑
i∈Z

∑
k∈K

Rd
ik

(
w,p,α

)
+
∑
�∈L

Ru
�

(
w,p,β

)
+ Fp (10a)

s.t. (7b), (7c), (7e), (7i) − (7k), (9c), (9e), (10b)

0 ≤ αkj ≤ 1, ∀k, j ∈ K, (10c)

0 ≤ β�m ≤ 1, ∀�,m ∈ L, (10d)

where α and β are relaxed to be continuous as

in (10c) and (10d), respectively. We define Fp �∑
k∈K

∑
j∈K �dkjfp(αkj)+

∑
�∈L

∑
m∈L �u�mfp(β�m), where

fp(x) � x2 − x, and �dkj > 0 and �u�m > 0 are the penalty

parameters. It is obvious that the difficulty in solving problem

(10) is due to the non-concave objective function (10a) and

non-convex constraints in (7e), (7k), and (9c).

Concavity of the objective (10a): Let us start by handling

the non-concavity of Rd
ik(w,p,α). For Ud1k (DL users in zone

1), we introduce new variales ω1k, ∀k ∈ K to explicitly expose

the non-convex parts of Rd
1k(w,p,α) as

Rd
1k(w,p,α) ≥ ln

(
1 +

1

ω1k

)
, (11a)

|(hd
1k)

Hw1k|2
φk(w,p,α)

≥ 1

ω1k
, (11b)

which does not affect the optimality. From (11a) and as

an effort to reduce the complexity, the concave minorant of

Rd
1k(w,p,α) at the (κ+ 1)-th iteration is derived as

Rd
1k(w,p,α) ≥ A(ω

(κ)
1k ) + B(ω

(κ)
1k )ω1k := R̈

d,(κ)
1k , (12)

due to the convexity of ln
(
1+ 1

ω1k

)
, where A(ω

(κ)
1k ) � ln

(
1+

1

ω
(κ)
1k

)
+ 1

(ω
(κ)
1k +1)

and B(ω
(κ)
1k ) � − 1

ω
(κ)
1k (ω

(κ)
1k +1)

[15, Eq. (82)].

Obviously, we obtain Rd
1k(w,p,α) = R̈

d,(κ)
1k as κ → ∞.

By applying the ICA method, we iteratively replace the non-

convex constraint (11b) by

φk(w,p,α) ≤ ω1kγ̃
(κ)
1k

(
w
)
, (13)

over the trust region (i.e., the feasible domain):

γ̃
(κ)
1k (w) � 2�{(hd

1k)
Hw

(κ)
1k }�{(hd

1k)
Hw1k}

− (�{(hd
1k)

Hw
(κ)
1k })2 > 0, ∀k ∈ K, (14)

where γ̃
(κ)
1k (w) is the first order approximation of



|(hd
1k)

Hw1k|2 around the point w
(κ)
1k found at iteration

κ. To address the non-convexity of (13), we introduce the

following lemma.

Lemma 1: Consider a function h(x, y) � xy2, x > 0.

The convex majorant of h(x, y) is expressed as

h(x, y) ≤ z(κ)

2x(κ)
x2 +

x(κ)

2z(κ)
z2 � h̃(κ)(x, z), (15)

by imposing a second-order cone (SOC) constraint: y2 ≤ z,

where z > 0 is a new variable.

Proof: The proof is omitted due to the space limitation.

From Lemma 1, the convex upper bound of φk(w,p,α) is

φk(w,p,α) ≤ φ̃
(κ)
k (w,p,λ,μ), (16)

where φ̃
(κ)
k (w,p,λ,μ) �

∑
k′∈K\k |(hd

1k)
Hw1k′ |2 +∑

�∈L p2� |g�,1k|2 +
∑

j′∈K h̃(κ)(λkj′ , μkj′) + σ2
1k, λ �

[λkj ]k,j∈K and μ � [μkj ]k,j∈K are alternative variables, in

which λkj and μkj satisfy the following convex constraints:

λkj = 1− αkj , ∀k, j ∈ K, (17a)

|(hd
1k)

Hw2j |2 ≤ μkj , ∀k, j ∈ K. (17b)

In this regard, we iteratively replace (13) by the convex

constraint:

φ̃
(κ)
k (w,p,λ,μ) ≤ ω1kγ̃

(κ)
1k

(
w
)
, ∀k ∈ K, (18)

which is the SOC representative. To address Rd
2j(w,p,α),

we can equivalently express the SINR γd2j of Ud2j (DL users

in zone 2) as

γd
2j(w,p,α) = min

{
min
k∈K

{ |(hd
1k)

Hw2j |2
αkjψk

j (w,p)

}
,
|(hd

2j)
Hw2j |2

ϕj(w,p)

}
.(19)

We replace αkj by αkj + ε to avoid the numerical problem

design when αkj = 0, where ε is a given small number. In the

same manner to (12), the non-smoothness and non-concavity

of Rd
2j(w,p,α) are tackled as

Rd
2j(w,p,α) ≥ A(ω

(κ)
2j ) + B(ω

(κ)
2j )ω2j := R̈

d,(κ)
2j , (20)

by imposing the following constraints

|(hd
1k)

Hw2j |2
(αkj + ε)ψk

j (w,p)
≥ 1

ω2j
, and

|(hd
2j)

Hw2j |2
ϕj(w,p)

≥ 1

ω2j
. (21)

As in (11b), the non-convex constraints (21) are innerly

convexified by

ψk
j (w,p) ≤ ω2j γ̈

(κ)
2,kj

(
w,α

)
, ∀k, j ∈ K, (22a)

ϕj(w,p) ≤ ω2j γ̃
(κ)
2j

(
w
)
, ∀j ∈ K, (22b)

over the trust regions:

γ̈
(κ)
2,kj(w,α)�

2�{((hd
1k)

Hw
(κ)
2j

)∗(
(hd

1k)
Hw2j

)}
α
(κ)
kj + ε

−|(hd
1k)

Hw
(κ)
2j |2

(α
(κ)
kj + ε)2

(αkj + ε) > 0, ∀k, j ∈ K, (23a)

γ̃
(κ)
2j (w)� 2�{(hd

2j)
Hw

(κ)
2j }�{(hd

2j)
Hw2j}

−(�{(hd
2j)

Hw
(κ)
2j })2 > 0, ∀j ∈ K. (23b)

Next, at the feasible point (w(κ),p(κ),β(κ)), the UL rate

function Ru
�

(
w,p,β

)
is globally lower bounded by

Ru
�(w,p,β) ≥ Ã

(κ)
� (p�)− Φ

(κ)
� (w,p,β), (24)

where Ã
(κ)
� (p�) � ln

(
1 + γu� (w

(κ),p(κ),β(κ))
) −

γu� (w
(κ),p(κ),β(κ))( 2p�

p
(κ)
�

−1), Φ
(κ)
� (w,p,β) � σ2

Utr(Ξ
(κ)
� )+

p2�(h
u
�)

HΞ
(κ)
� hu

� +
∑

m∈L\� β�mp2m(hu
m)HΞ

(κ)
� hu

m +

ρ2
∑

k∈K
(
wk

)H
GSIΞ

(κ)
� GH

SIwk, in which we have

Ξ
(κ)
� � (Ψ

(κ)
� )−1 − ((p

(κ)
� )2hu

�(h
u
�)

H +Ψ
(κ)
� )−1,

with Ψ
(κ)
� � σ2

UI +
∑

m∈L\� β
(κ)
�m

(
p
(κ)
m

)2
hu
m

(
hu
m

)H
+

ρ2
∑

k∈K GH
SIw

(κ)
k

(
w

(κ)
k

)H
GSI. To convexify the

right-hand side of (24), we apply Lemma 1 to

the second term of Φ
(κ)
� (w,p,β). It is true that

Φ
(κ)
� (w,p,β) ≤ Φ̃

(κ)
� (w,p,β,ν), where Φ̃

(κ)
� (w,p,β,ν) �

p2�(h
u
�)

HΞ
(κ)
� hu

� + ρ2
∑

k∈K
(
wk

)H
GSIΞ

(κ)
� GH

SIwk +∑
m∈L\� h̃

(κ)(β�m, νm)(hu
m)HΞ(κ)

m hu
m + σ2

Utr(Ξ
(κ)
� ), with

the additional SOC and linear constraints:

p2m ≤ νm ≤ Pmax
m , ∀m ∈ L, (25)

where ν � [νm]m∈L are new variables. The concave quadratic

minorant of Ru
�(w,p,β) at iteration κ+ 1 is given by

Ru
�(w,p,β) ≥ Ã

(κ)
� (p�)− Φ̃

(κ)
� (w,p,β,ν) := R̈

u,(κ)
� . (26)

Finally, we apply the ICA method to fp(x), given as fp(x) ≥
(2x(κ) − 1)x − (x(κ))2 := f̃

(κ)
p (x), where x(κ) is a feasi-

ble point at iteration κ. Clearly, the objective function and

constraints (7e), (9c) are innerly convexified by replacing the

non-concave functions Rd
ik(w,p,α) and Ru

�(w,p,β) with

the concave functions R̈
d,(κ)
ik and R̈

u,(κ)
� , respectively, while

fp(αkj) and fp(β�m) in Fp are replaced by f̃
(κ)
p (αkj) and

f̃
(κ)
p (β�m), respectively.

Convexity of constraint (7k): To handle the non-convexity

of (7k), we first replace the absolute function with the maxi-

mum function as:

|s��′ | = max(s��′ ,−s��′) ≥ 1, � 	= �′, ∀�, �′ ∈ L,
where s��′ �

∑L
m=1 β�m − ∑L

m=1 β�′m. Then, a smooth

approximation, which exploits the log-sum-exp form, is ap-

plied to the max function, i.e., max(s��′ ,−s��′) ≥ fLSE(s��′),

where fLSE(s��′) � 1
Ω ln

( exp(Ωs��′ )+exp(−Ωs��′ )
2

)
, with Ω be-

ing a predefined large number. By applying the ICA method to

fLSE(s��′) around the point s
(κ)
��′ �

∑L
m=1 β

(κ)
�m−∑L

m=1 β
(κ)
�′m,

(7k) is replaced by the following linear constraint:

f
(κ)
LSE(s��′) ≥ 1, � 	= �′, ∀�, �′ ∈ L, (27)

where

f
(κ)
LSE(s��′) � fLSE(s

(κ)
��′ ) +

∂fLSE
∂s��′

∣∣∣
s��′=s

(κ)

��′

(
s��′ − s

(κ)
��′

)
.

From the discussions above, the successive convex program

to solve (10) at iteration κ+ 1 is given as:

max
X

R̊
(κ+1)
Σ � R̈

(κ)
Σ + F̃ (κ)

p (28a)

s.t. (7b), (7i), (7j), (9e), (10c), (10d),

(14), (17), (18), (22), (23), (25), (27), (28b)

R̈
d,(κ)
ik ≥ R̄d

ik, ∀i ∈ Z, k ∈ K, (28c)

R̈
u,(κ)
� ≥ R̄u

� , ∀� ∈ L, (28d)

where R̈
(κ)
Σ �

∑
i∈Z

∑
k∈K R̈

d,(κ)
ik +

∑
�∈L R̈

u,(κ)
� , F̃

(κ)
p �∑

k∈K
∑

j∈K �dkjf
(κ)
p (αkj) +

∑
�∈L

∑
m∈L �u�mf

(κ)
p (β�m),

and X � {w,p,α,β,ω,λ,μ,ν}, with ω �
[
ωik

]
i∈Z, k∈K.

To summarize, Algorithm 1 outlines the proposed algorithm

to solve (10), referred to as ICA-CR-PF. Without loss of

optimality, the constant penalty parameters can be uniformly

selected through � � max{�dkj , �u�m}k,j∈K, �,m∈L.



Algorithm 1 Proposed ICA-CR-PF for Problem (10)

1: Initialization: Set RΣ := −∞ and
(
w∗,p∗,α∗,β∗) := 0.

2: Set κ := 0 and generate an initial feasible point X(0).
3: repeat
4: Set 	dkj = 	u�m = 	, ∀k, j ∈ K, ∀
,m ∈ L.

5: Solve (28) to obtain X� and R̊
(κ+1)
Σ .

6: Update X(κ+1) := X�.
7: Set κ := κ+ 1.
8: until Convergence
9: Use

(
w∗,p∗,α∗,β∗) in X(κ) to compute RΣ as in (9a).

10: Output: RΣ and the optimal solution
(
w∗,p∗,α∗,β∗).

Convergence Analysis: The optimal solutions achieved by

the proposed algorithms at iteration κ are also feasible for

the problem at iteration κ + 1, i.e., F (κ) ⊆ F (κ+1), where

F (κ) denotes the convex feasible sets of (28) at iteration

κ. Moreover, F (κ) is closed and bounded due to the ICA

method and the power constraints (7b) and (7c). The feasible

sets F (κ) are compact and non-empty, and thus it satisfies

the connectedness condition for Karush-Kuhn-Tucker (KKT)

invexity as κ → ∞.

Complexity Analysis: We first observe that the convex

programs given in (28) involve only the SOC and linear

constraints, thus leading to low computational complexity.

In particular, it takes a polynomial time complexity of

O(
c2.5υ2 + c3.5

)
[6], where c = 6K2 + 3L2 + 8K + 3L+ 1

and υ = 3K2 + L2 + 2K(N + 1) + 2L are the numbers of

scalar variables and linear/SOC constraints, respectively.

IV. NUMERICAL RESULTS

A. Simulation Setup

We numerically evaluate the performance of the proposed

algorithm, with the following settings. The BS located at

the cell-center of small-cell serves L = 4 UL users and

M = 8 DL users. All UL users are randomly placed in

the cell, while four DL users are randomly placed in zone-

1 between 10 and 50 meters, and the other four DL users

are randomly located in zone-2 between 50 and 100 meters.

The channel vector between BS and user U ∈ {Uu� , Udik}
is generated as h =

√
10−PLBS,U/10ĥ, with h ∈ {hu

� ,h
d
ik},

while the channel response from Uu� to Udik is generated as

g�k =
√
10−PL�k/10ĝ�k. Here, PLBS,U and PL�k represent the

path loss (in dB), as given in Table I, with dBS,U and d�k
being the distances (in km) between BS and user U and

between users Uu� and Udik, respectively. ĥ and ĝ�k repre-

sent small-scale fading and are distributed as CN (0, I). The

entries of the SI channel GSI are modeled as independent

and identically distributed Rician random variables, with the

Rician factor of 5 dB [6]. The other parameters are given in

Table I, as in [13], [17]. The SRs are divided by ln 2 to be

presented in bits/s/Hz. For comparison purpose, the following

schemes are also considered: (i) Both UL users’ decoding

order and DL user pairing are randomly selected, referred to

as the strategy of random UA (FD-NOMA + RUA); (ii) A

conventional FD scheme in [7] without applying NOMA is

used (FD-Conventional); (iii) Under FD-NOMA with RUA,

BS serves DL and UL users separately in two independent

communication time blocks (HD-NOMA).

TABLE I
SIMULATION PARAMETERS

Parameter Value

Radius of small cell 100 m

System bandwidth, B 10 MHz

Noise power spectral density, σ2
ik = σ2

U ≡ σ2 -174 dBm/Hz

Residual SIS parameter, ρ2 -90 dB

PL between BS and a user U, PLBS,U 103.8 + 20.9log10(dBS,U) dB

PL from Uu� to Udik, PL�k 145.4 + 37.5log10(d�k) dB

Power budget at UL users, Pmax
� , ∀� 18 dBm

Power budget at BS, Pmax
bs 38 dBm

Number of antennas at BS, N 10

Rate threshold, R̄u
� = R̄d

ik ≡ R̄, ∀�, i, k 1 bps/Hz

Error tolerance, ε 10−3
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Fig. 2. System performance for different schemes.

B. Performance Evaluation

Fig. 2 depicts the system performance for different resource

allocation schemes, w.r.t. the maximum transmit power at

the BS and the minimum rate threshold, respectively. As a

benchmark, we implement the brute-force search (BFS) to

find the best UA (UA-BFS). As can be seen in Fig. 2(a), the

ICA-CR-PF based algorithm deviates only 1% ∼ 2% from

the optimal SR, meaning that a very good performance is

achieved while with much less complexity compared to the

UA-BFS. Fig. 2(b) shows the cumulative distribution function

(CDF) of the FD-based schemes as a function of the QoS

requirement, R̄. The HD-NOMA scheme is omitted here

since its DL and UL transmissions are separately executed.

Obviously, the probabilities of feasibility of all considered

schemes are smaller when R̄ is higher. As expected, FD-

NOMA schemes can maintain more rate fairness among all

DL and UL users when compared with the FD-Conventional

scheme. In addition, FD-NOMA schemes using the ICA-CR-

PF algorithm offsets about 2 bits/s/Hz of the rate threshold

more than the scheme of FD-NOMA with RUA in about

50% of the simulated trials. It further confirms that the joint

optimization of UA might help satisfy higher QoS levels for

the FD-NOMA schemes.
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Fig. 3. Convergence rate of UA variables and PF values with different
penalty parameters � = aκ, for a = {2, 3}.

C. Convergence Behavior in Different Penalty Parameters

We finally provide further insight into the selection of �
in the ICA-CR-PF based algorithm, as illustrated in Fig. 3.

In implementation, the penalty parameter � = aκ, which

increases with the iteration index, provides fast convergence.

However, the best value of a mainly depends on the specific

setting. Therefore, the ICA-CR-PF based algorithm combined

with the binary search is used to find a just once. To evaluate

the effectiveness of a, we define the convergence measure-

ments as u � vec
([
[α2

kj − αkj ]k,j∈K [β2
�m − β�m]�,m∈L

])
and f̂p � 0.1vec

([
[fp(αkj)]k,j∈K [fp(β�m)]�,m∈L

])
, where

vec(X) represents the vectorization of matrix X. For example,

Fig. 3 depicts the values of ‖u‖∞ and ‖f̂p‖∞ (left y-axis) and

penalty parameter � (right y-axis) versus the iteration index

κ (common x-axis) in the cases of a = {2, 3}. For the above

setting, a = 3 in Fig. 3(b) is a better choice as it provides the

lower convergence rates of ‖u‖∞ and ‖f̂p‖∞. Remarkably,

the convergence behaviors of the UA variables are almost the

same for each setting, and thus, the penalty parameter � is

determined at the beginning of a setting.

V. CONCLUSION

In this paper, a joint power control and UA problem has

been proposed to maximize the sum rate of a cellular FD-

NOMA system. A tensor model for DL users and a permu-

tation matrix for UL users have been employed to formulate

the UA problem, which significantly reduces the number of

association variables. By presenting novel methods to approx-

imate the formulated non-convex problem, an iterative low-

complexity algorithm have been developed, which is based

on the ICA framework and PF method. The proposed iterative

algorithm improves achievable sum rate at each iteration and

converges fast, being also superior to existing algorithms.

APPENDIX A: PROOF OF THEOREM 1

Let C0 be the unitary matrix representing the clustering

indices. It is obvious that Ci, i ∈ Z, is the change-of-basis

matrix of zone i, with respect to the basis C0. Therefore,[
Ci

]
kj
, k, j ∈ K, with [X]a,b denoting the element at the

a-th row and the b-th column of matrix X, indicates whether

the j-th DL user in zone i belongs to the k-th cluster. From

Definition 2, C1 = C0 = IK , leading that a user association

matrix T1i is equivalent to the change-of-basis matrix Ci

w.r.t. the basis C0. From the transformation law of tensor, the

user association matrix Tiz, (i, z) ∈ {Z × Z} is calculated

by

Tiz =
(
T1i

)−1
C1Cz = C−1

i Cz. (A.1)

Based on Definition 1, the matrix Ci, i ∈ Z , satisfies the

following conditions:
∑

k∈K
[
Ci

]
kj

= 1 and
∑

j∈K
[
Ci

]
kj

=
1. Accordingly, Ci characterized as a permutation matrix,

satisfies the property that C−1
i = CT

i . Equation (1) is then

obtained by substituting C−1
i = CT

i into (A.1).
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