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Abstract—In this paper, we propose novel approaches using
state-of-the-art machine learning techniques, aiming at predicting
energy demand for electric vehicle (EV) networks. These methods
can learn and find the correlation of complex hidden features to
improve the prediction accuracy. First, we propose an energy
demand learning (EDL)-based prediction solution in which a
charging station provider (CSP) gathers information from all
charging stations (CSs) and then performs the EDL algorithm to
predict the energy demand for the considered area. However, this
approach requires frequent data sharing between the CSs and
the CSP, thereby driving communication overhead and privacy
issues for the EVs and CSs. To address this problem, we propose
a federated energy demand learning (FEDL) approach which
allows the CSs sharing their information without revealing real
datasets. Specifically, the CSs only need to send their trained
models to the CSP for processing. In this case, we can significantly
reduce the communication overhead and effectively protect data
privacy for the EV users. To further improve the effectiveness
of the FEDL, we then introduce a novel clustering-based EDL
approach for EV networks by grouping the CSs into clusters
before applying the EDL algorithms. Through experimental
results, we show that our proposed approaches can improve the
accuracy of energy demand prediction up to 24.63% and decrease
communication overhead by 83.4% compared with other baseline
machine learning algorithms.

Keywords- Energy demand, electric vehicle, charging sta-
tion, federated learning, clustering.

I. INTRODUCTION

The electric vehicles (EVs) have emerged as one of the sus-
tainable solutions to transform the conventional transportation
systems with less oil use, high energy efficiency, and low gas
emissions. According to International Energy Agency [1], the
number of EVs on the road will rise tremendously by more
than 4000% in 2030. This trend will lead to an explosion of
energy demand in the power market and make a significant
impact on the power grid system.

Generally, the power grid supplies the energy for charging
stations (CSs) once receiving requests from EVs [2]. However,
this approach experiences a serious energy transfer congestion
when a huge number of EVs charging the energy simultane-
ously [3] and lead to high energy transfer cost for the charging
station provider (CSP). To deal with this problem, energy can
be reserved in advance at the CSs to meet real-time demands
from the EVs [4]. Particularly, in [4], the authors proposed a
solution to orchestrate EVs’ charging using offline schedul-
ing scheme. However, without considering the real demand
history, this approach may suffer from under/over-utilization,
due to the unpredictable and dynamic EVs’ energy demands.

Hence, effective and intelligent approaches to predict energy
demands for CSs in the EV networks are of significance to
optimize energy efficiency. As such, the CSP can reduce the
energy transfer cost and stabilize the energy demand in the
power grid system. Furthermore, the CSP can provide real-
time energy charging and guarantee stable energy supply for
the upcoming EVs.

To predict energy demand for EV networks, the authors
in [5] introduced a mobile application which can estimate
energy availability at each CS using k-nearest neighbor (kNN)
algorithm. Specifically, the history of consumed energy and
charging duration for connected EVs is captured as the dataset
and then stored on the remote server. In [6], the authors
proposed a reinforcement learning-based demand response
scheme to optimize the amount of energy charging for an
individual EV based on daily forecasted price policy. Further-
more, the authors in [7] developed a driving activity-based
recommendation system applying a multiple regression-based
learning approach, aiming at improving the energy consump-
tion prediction accuracy for EVs. In [8], an online learning to
optimize EVs’ charging demands using previous-day pricing
profiles from the distribution company was proposed. Alter-
natively, the authors in [9] designed a smart charging policy
for EVs using machine learning tools including deep neural
network (DNN), shallow neural network (SNN), and kNN
to decide the charging time when the EVs are connected to
the CSs. Nonetheless, these approaches only consider energy
demand prediction independently at each EV or CS, and thus
they may not be effective for the whole EV network. In fact,
predicting the energy demand using shared information or
global models can further improve the prediction accuracy.
Furthermore, those machine learning-based solutions do not
address the communication overhead and privacy issues, which
are very crucial in the future EV networks.

In this paper, we introduce state-of-the-art machine
learning-based approaches which can not only significantly
improve the accuracy of energy demand prediction, but also
remarkably reduce the communication overhead for EV net-
works. In particular, we first introduce a communication model
using the CSP as a centralized node to gather all information
from the CSs in a considered area. We then develop an energy
demand learning (EDL)-based solution utilizing deep learning
method to help the CSP accurately predict energy demands
for the CSs in this area. However, this approach requires
the CSs to share their local data with the CSP, and thus
it may suffer from serious overhead and privacy issues. To
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Fig. 1: Charging station distribution in Dundee city, the United
Kingdom between 2017 and 2018 [13].

address these issues, we propose a novel federated energy
demand learning (FEDL) approach in which the CSs only
need to share their trained models obtained from their datasets
instead of sharing their real datasets. To further improve the
prediction accuracy, we develop the clustering-based EDL
approach which can classify the CSs into several clusters
before the learning process is performed. In this way, we can
reduce the dimensionality of the dataset based on the useful
feature classification [11], and thus the biased prediction can
be minimized [12]. Through experimental results, we show
that our proposed approaches can improve the accuracy of
energy demand prediction up to 24.63% and significantly
reduce the communication overhead by 83.4% compared with
those of other baseline machine learning algorithms. The major
contributions are summarized as follows:
• We design the state-of-the-art machine learning-based

approach that leverages the EDL algorithm to improve the
accuracy of energy demand prediction for CSs through
the CSP.

• We introduce the novel approach using FEDL method to
reduce overhead and privacy for the CSs.

• We develop the clustering-based EDL approach to min-
imize the cost of biased prediction, thereby further im-
proving the prediction accuracy.

• We conduct extensive experimental results to evaluate the
efficiency of the proposed methods using the real CS
session dataset in Dundee city, the United Kingdom.

II. SYSTEM MODEL

The distribution of CSs is described in Fig. 1. This distribu-
tion is obtained from real data provided in [13] for locations
of the CSs in Dundee City, the United Kingdom between
2017 and 2018. Each CS receives energy from power sources
through power grid system to serve EVs. Each CS has a log
file to record all transactions of EVs charging at this station. In
particular, each transaction includes the following information:
CS ID, EV ID, charging date, charging time, and consumed
energy within a particular period. Then, the CS can store

each transaction in its log file and use the log file to predict
energy demand in the next period. This information will be
captured and updated in the log file periodically. Since the
number of transactions at each CS is usually very few, and
thus not sufficient to predict the energy demand accurately. As
a result, the CSP in the EV network will take responsibilities
to gather information, i.e., transactions or trained models, from
the CSs and then perform learning algorithms to predict energy
demand for the whole network. In this way, the CS can reduce
the energy cost to serve the upcoming EVs as the energy stored
in advance may have inexpensive price [14]. Additionally, we
can provide real-time energy charging and guarantee stable
energy supply for the EVs in the EV network.

Let I = {1, . . . , i, . . . , I} denote the set of CSs in the EV
network. We also defineMi = {1, . . . ,m, . . . ,Mi}, as the set
of charging transactions at CS-i. We denote energy demand
for transaction m at CS-i as ωmi .

III. ENERGY DEMAND PREDICTION

In this section, we present three approaches to predict
energy demands of CSs including centralized EDL, FEDL, and
clustering-based EDL algorithms. Specifically, each approach
is useful to implement in the following particular scenarios.

A. Centralized Energy Demand Learning

This method is especially applicable when the CSs have
limited computing resources and cannot execute the EDL
process by themselves. Specifically, in this approach, the CSP
first collects all information, i.e., log files Xi,∀i ∈ I, from the
CSs, in order to make an accumulated log file Xcsp. Then, we
develop a deep learning algorithm to help the CSP predict the
energy demand in the EV network with high accuracy. To learn
through the DNN in the CSP, we denote L = {1, . . . , l, . . . , L}
to be the set of learning layers. In particular, the Xcsp of layer
l, i.e., Xl

csp, is used as the training input matrix to produce the
following output matrix of layer-l in the CSP

Yl
csp = acsp

(
GlX

l
csp + hl

)
, (1)

where Gl and hl are the global weight matrix and global
bias vector of the layer l, respectively, while acsp is a tanh
activation function [15] to compute the hyperbolic tangent of
Xl

csp, which is expressed by

acsp =
eX

l
csp − e−X

l
csp

eX
l
csp + e−X

l
csp
. (2)

When hidden layers are applied, we can define Xl+1
csp = Yl

csp.
Furthermore, we apply a dropout layer ldrop after the last
hidden layer to avoid the generalization error and overfitting
issue by randomly dropping the X

ldrop
csp with a fraction rate f .

Hence, the remaining input elements are scaled by 1
1−f .

Suppose that υ = (G,h), where G =
[G1, . . . ,Gl, . . . ,GL] and h = [h1, . . . ,hl, . . . ,hL], as
the global model for all layers, the prediction error ρ(υ(φ))



for epoch time φ (i.e., the time when all transactions of Xcsp

has been observed) in the CSP is expressed as follows:

ρ(υ(φ)) =

I∑
i=1

Mi∑
m=1

ρmi (υ(φ)), (3)

where ρmi (υ(φ)) = (ymi − xmi )2. In this case, xmi = ωmi and
ymi are the elements of input matrix X1

csp and output matrix
YL

csp, respectively. Then, we can compute the global gradient
of using EDL at φ by

∇υ(φ) =
∂ρ(υ(φ))

∂υ(φ)
. (4)

After ∇υ(φ) is obtained, the CSP updates the global model
υ(φ) to minimize the prediction error, i.e., min

υ
ρ(υ), using

adaptive learning rate optimizer Adam [16] which produces
fast convergence and significant robustness to the model. Let
ηφ and δφ denote the exponential moving average of the∇υ(φ)

and the squared ∇υ(φ) to infer the variance at φ, respectively.
Then, the update rules of ηφ+1 and δφ+1 can be described as
follows:

ηφ+1 = γφη ηφ + (1− γφη )∇υ(φ),

δφ+1 = γφδ δφ + (1− γφδ )(∇υ
(φ))2,

(5)

where γφη and γφδ ∈ [0, 1) indicate the exponential decay steps
of ηφ and δφ at φ, respectively. Furthermore, we consider
the learning step λ to determine how fast we need to update
the global model. Specifically, the update rule for λ can be
expressed by

λφ+1 = λ

√
1− γφ+1

δ

1− γφ+1
η

. (6)

Then, the global model υ(φ+1)
k to learn Xcsp for the next epoch

time φ+ 1 is updated as follows:

υ(φ+1) = υ(φ) − λφ+1
ηφ+1√
δφ+1 + ε

, (7)

where ε represents a constant to avoid zero division when the√
δφ+1 is almost zero. The learning process repeats and then

terminates when the prediction error converges, or a certain
number of epoch time T is reached. In this case, the final
global model υ∗ in the CSP is obtained to predict Ŷcsp of
training dataset Xcsp and new dataset X̂csp using Eq. (1).
The algorithm for energy demand prediction using EDL is
summarized in Algorithm 1. The processes between Lines 4
and 11 are implemented in the CSP.

B. Federated Energy Demand Learning

Since the CSP needs to collect data from CSs, this cen-
tralized learning may lead to the communication overhead
and data privacy concerns. To deal with these issues, we
develop a framework using federated energy demand learning
(FEDL) method. Particularly, the CSP only requires to collect
the trained models, i.e., gradient information, from the set
of CSs, and then updates the global model efficiently before
sending back to the CSs [10]. After that, the CSs can use
this information to learn by themselves using deep learning
method. Given that J = {1, . . . , j, . . . , J} as the set of CSs

Algorithm 1 EDL-Based Prediction Algorithm

1: Initialize acsp and υ(φ) when φ = 0
2: Generate Xi,∀i ∈ I
3: Send Xi,∀i ∈ I to the CSP
4: Set X1

csp ←
∑
i∈I

Xi with emi , ∀m ∈Mi,∀i ∈ I

5: while φ ≤ T and ρ(υ(φ)) do not converge do
6: Learn X1

csp to obtain YL
csp at layer-L using υ(φ)

7: Calculate ρ(υ(φ)) and ∇υ(φ)

8: φ← φ+ 1
9: Update υ(φ)

10: end while
11: Predict Ŷcsp using X̂csp and υ∗ in the CSP for the next-

period energy requests

. . .
AGGREGATOR GLOBAL MODEL
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. . .
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Fig. 2: Federated energy demand learning architecture.

which acts as workers to implement the EDL algorithms using
their Xj locally as illustrated in Fig. 2. Thus, Xj is expressed
by

Xj =

I∑
i=1

βijXi, (8)

where βij is a unique binary variable with βij = 1 indicating
that the CS-j has information from CS-i, and βij = 0
otherwise.

For DNN, the output matrix of layer-l at CS-j is generated
by

Yl
j = aj

(
GlX

l
j + hl

)
, (9)

where Xl
j is the input matrix of layer l at CS-j (with X1

j = Xj

and aj is the tanh activation function at CS-j. Additionally, we
use dropout layer to eliminate the input Xldrop

j by a fraction rate
f . At the output layer, we can obtain output matrix YL

j and
find the prediction error for each φ at CS-j as follows:

ρj(υ
(φ)) =

I∑
i=1

Mi∑
m=1

βijρ
m
i (υ(φ)). (10)

Next, we can compute the local gradient at CS-j by

∇υ(φ)
j =

∂ρj(υ
(φ))

∂υ(φ)
. (11)

Upon completing ∇υ(φ)
j for every φ, each CS-j sends the



local gradient to the CSP for global gradient aggregation as
expressed by

∇υ(φ) =
1

J

J∑
j=1

∇υ(φ)
i . (12)

In particular, the CSP acts as a model server to accumulate
the gradients, and then updates the global model υ(φ) before
sending back to the CS-j, ∀j ∈ J (as illustrated in Fig. 2).
This allows all CS-j, ∀j ∈ J to collaborate by sharing
local model information to each other to further improve
the prediction accuracy through the CSP. To ensure that the
gradient staleness is 0, the gradient aggregation is enabled
immediately after J local gradients are received by the CSP
synchronously. In this way, the gradient staleness occurs when
the local gradients are computed using an obsolete global
model.

To minimize the prediction error, i.e., min
υ
ρj(υ), we also

apply the Adam optimizer and update the global model υ(φ+1)

as expressed in Eqs. (5)-(7). This υ(φ+1) is then pushed back
to the CS-j, ∀j ∈ J for the next local learning process.
The aforementioned process continues until the prediction
error converges or a certain number of epoch time T is
reached. Then, we can predict Ŷj,∀j ∈ J of training dataset
Xj,∀j ∈ J and new dataset X̂j,∀j ∈ J at CS-j, ∀j ∈ J
using υ∗ through Eq. (9). The algorithm for energy demand
prediction using FEDL is shown in Algorithm 2 in which the
processes between Lines 9 and 11 is executed in the CSP.

Algorithm 2 FEDL-Based Prediction Algorithm

1: Initialize aj and υ(φ) when φ = 0
2: Generate Xj ,∀j ∈ J
3: while φ ≤ T and ρj(υ

(φ)),∀j ∈ J do not converge do
4: for ∀j ∈ J do
5: Learn X1

j to obtain YL
j at layer-L using υ(φ)

6: Calculate ρj(υ(φ)) and ∇υ(φ)
j

7: Send ∇υ(φ)
j to the CSP for global model update

8: end for
9: Compute current υ(φ)

10: φ← φ+ 1
11: Update and send υ(φ) back to J CSs
12: end while
13: for ∀j ∈ J do
14: Predict Ŷj using X̂j and υ∗ for the next-period energy

requests
15: end for

C. Clustering-Based Energy Demand Learning

Learning the dataset without considering the useful feature
classification as the aforementioned approaches may produce
biased energy demand prediction, especially when we combine
imbalanced features and known labels in one dataset. Then,
to obtain better prediction accuracy, we can group CSs into
K clusters before the learning process is performed. In this
case, the clustering decision is determined by using location
information of the CSs, i.e., the latitude and longitude. We

utilize the constrained K-means algorithm [17] to perform the
clustering process. In particular, we modify the constrained
K-means algorithm to generate balance number of the CSs
in each cluster through using minimum and maximum cluster
size constraints. This consideration is to give a fairness of
the learning process for the CSs in each cluster based on their
deployment locations. Given K = {1, . . . , k, . . . ,K} as the set
of clusters and dataset N containing CS IDs and their locations
ni,∀i ∈ I, we aim to determine centroids (i.e., cluster centers)
Ck,∀k ∈ K such that the accumulation of squared distance
between each ni and its closest centroid Ck is minimized as
optimization problem described below.

min
{τ ,C}

∑
i∈I

∑
k∈K

τki (ni − Ck)2, (13)

s.t. θlowk ≤
∑
i∈I

τki ≤ θ
high
k ,∀k ∈ K, (14)∑

k∈K

τki = 1,∀i ∈ I, (15)

τki ∈ {0, 1},∀i ∈ I,∀k ∈ K, (16)
θklow ≥ 0, θkhigh ≥ 0,∀k ∈ K, (17)

where τki is a binary variable with τki = 1 representing
that the location of CS-i is the nearest to the centroid Ck
and τki = 0 otherwise. The constraints (14) guarantee that
the CSs’ locations in each cluster-k are within predefined
minimum θklow and maximum θkhigh thresholds. Additionally,
the constraints (15) indicate that a location of CS-i is clustered
to the closest centroid only. To reach the optimal solution,
we need to update the centroid C

(t)
k at each iteration t.

Specifically, in the cluster-k, we have

C
(t+1)
k =

∑
i∈I

τ
k,(t)
i ni∑

i∈I
τ
k,(t)
i

, (18)

if θklow ≤
∑
i∈I

τki ≤ θkhigh and

C
(t+1)
k = C

(t)
k , (19)

otherwise. The process terminates when C(t+1)
k = C

(t)
k ,∀k ∈

K, and thus we can obtain the optimal set Ik in the cluster-k.
To this end, we can perform the centralized EDL or FEDL
method to predict the energy demand for the CSs in each
cluster independently. The algorithm for the clustering-based
EDL using customized constrained K-means method is shown
in Algorithm 3.

IV. PERFORMANCE EVALUATION

A. Dataset Pre-Processing and Evaluation Method

To evaluate the performance of the proposed learning meth-
ods, we use the real data obtained from charging stations
in Dundee city, the United Kingdom between 2017 and
2018 [13]. In particular, the dataset has 65,601 transactions
which include CS ID from 58 CSs, transaction ID for each
CS, EV charging date, EV charging time, and consumed



Algorithm 3 Clustering-Based EDL with Customized Con-
strained K-Means Algorithm

1: Generate N containing ni,∀i ∈ I
2: Set K and initialize random Ck,∀k ∈ K when t = 0
3: while C(t+1)

k 6= C
(t)
k ,∀k ∈ K do

4: Solve optimization problem in Eq. (13) with the con-
straints in Eqs. (14)-(17)

5: Update t+ 1
6: for ∀k ∈ K do
7: if θklow ≤

∑
i∈I

τki ≤ θkhigh then

8: C
(t+1)
k =

∑
i∈I

τ
k,(t)
i ni∑

i∈I
τ
k,(t)
i

9: else
10: C

(t+1)
k = C

(t)
k

11: end if
12: end for
13: end while
14: Generate the optimal set Ik in the cluster-k, ∀k ∈ K
15: Perform EDL or FEDL method using Algorithm 1 or 2,

respectively, in the cluster-k, ∀k ∈ K

energy (in kWh) for each transaction. We use the first four
information as the learning features, and the consumed energy
as the learning label. Then, we classify CS ID, charging
date, and charging time as categorical features. Specifically,
we convert the charging date and charging time information
into 7-day (i.e., 1, 2, . . . , 7) and 24-hour (i.e., 0, 1, . . . , 23)
categories, respectively. In addition, each CS has the latitude
and longitude information which will be used for clustering.

Then, we adopt the RMSE to show the prediction accuracy,
i.e., prediction error, because we deal with the prediction of
energy demand which is categorized as a regression prediction
model, i.e., when the mapping function yields the continuous
prediction outputs. Given S transactions, the RMSE can be
computed as follows:

RMSE =

√√√√ 1

S

S∑
s=1

(ωs − ω̂s)2, (20)

where ωs and ω̂s are the actual and predicted energy demand
for transaction s.

B. Experimental Setup

We evaluate the performance using TensorFlow CPU in
UTS shared cluster with configuration Intel Xeon E5-2687W
v2 3.4GHz 8 cores 32GB RAM. We compare our pro-
posed methods with some other conventional machine learning
methods including decision tree (DT), random forest (RF),
support vector regressor (SVR), k-neighbors regressor (KNR),
stochastic gradient descent regressor (SGDR), and multi-layer
perceptron regressor (MLPR) [18]. We split the dataset into
80%, 70%, 60%, as well as 50% training dataset, and the rest
of the portions for testing dataset. From the training dataset, we
divide the number of transactions by J training subsets, when
FEDL is implemented. Each CS-j runs the testing dataset for

Charging Station 
Provider (CSP)

Charging Stations (CSs)

Fig. 3: Charging station clustering.

the upcoming energy demand prediction. For clustering, we
define K = 2, and thus we divide 58 CSs into 2 clusters as
shown in Fig. 3. For DNN, we use two hidden layers with 64
neurons per layer and one dropout layer with a fraction rate
0.15. We also apply the adaptive learning rate Adam optimizer
with initial step size 0.01 and tanh function as the activation
function.

C. Simulation Results

Table I shows the comparisons between baseline and pro-
posed machine learning methods for various training set ratios.
We first evaluate the prediction accuracy, i.e., RMSE, of the
testing set when 80% training set ratio is used. In particular,
the RMSE obtained by the centralized EDL with clustering
and the FEDL with clustering are 24.28% and 24.63% lower
than those of the baseline methods, respectively. The reason
is that the clustering approach can improve the prediction
accuracy by grouping similar useful features and/or labels
together in the same cluster [12]. As such, by clustering
the CSs based on their locations, we can reduce the cost
of biased prediction results over the whole dataset, which
leads to the lower prediction error. For the FEDL and the
centralized EDL without clustering, the RMSE performance is
also always better than those of the baseline learning methods
up to 23.51%. Moreover, the gap between the FEDL as well
as the centralized EDL without clustering and the proposed
learning methods with clustering is only within 2%. This
is because the FEDL and the centralized EDL can deeply
learn the useful features from the dataset. Specifically, the
use of hyperparameter settings in the DNN, e.g., the number
of hidden layers and neurons, the regularization methods, the
activation functions, and the mini-batch size, contributes to the
prediction accuracy improvement. Additionally, for the FEDL,
it can learn the subset of the whole dataset independently at
different workers, and achieve the average prediction with less
variance and lower error in respect of the number of workers.

In constrast to the proposed learning methods, the baseline
learning methods cannot learn the useful features and their
correlations deeply. The reason is that they do not explore



TABLE I: Testing RMSE of energy demand prediction for
various learning methods and training set ratios

Learning approach Training set ratio
80% 70% 60% 50%

KNR 7.18 7.71 7.57 7.67
MLPR 6.57 6.62 6.90 6.53
SGDR 6.55 6.57 6.54 6.54

DT 6.47 6.49 6.47 6.47
SVR 6.46 6.50 6.50 6.53
RF 6.35 6.66 6.88 6.80

EDL 5.86 5.86 5.86 5.87
FEDL 5.81 5.82 5.81 5.84

EDL + Clustering 5.77 5.79 5.85 5.87
FEDL + Clustering 5.76 5.78 5.78 5.83
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Fig. 4: Communication overhead between baseline and pro-
posed machine learning methods.

nonlinear transformations of the complex hidden features and
multiple levels of processing layers as provided by the EDL
and FEDL methods. For other training set ratios (i.e., 0.7%,
0.6%, and 0.5%), we observe that the proposed learning
methods still outperform all the baseline learning methods. In
particular, the centralized EDL with clustering and the FEDL
with clustering still have the lowest RMSE for training set
ratio 0.7%. Furthermore, the FEDL with clustering has the
lowest RMSE for the rest of training set ratios. This interesting
trend can provide useful information for the CSP to choose
the suitable proposed learning methods in terms of stability,
robustness, and flexibility.

In Fig. 4, we show that the use of FEDL method can
significantly reduce the communication overhead up to 83.4%
compared with the centralized methods including all baseline
methods and the centralized EDL. This is because the CSP
only requires to collect the trained models from the workers
without sending any real dataset. This advantage aligns with
the reduction of privacy issue for participating EVs and CSs.

V. CONCLUSION

In this paper, we have proposed the novel machine learning-
based approaches leveraging deep learning techniques to im-
prove the energy demand prediction accuracy and reduce
the communication overhead in the EV network. In the first

approach, the CSP gathers information from all CS and
then predict energy demand for the whole network using
the deep learning technique. After that, we have introduced
the federated energy demand learning-based method in which
the energy demand learning can be performed at the CSs
without disclosing the privacy of EVs and CSs. Furthermore,
we have applied the clustering-based energy demand learning
method for the CSs to further improve the energy demand
prediction accuracy. Through the simulation results, we have
demonstrated that our proposed approaches outperform other
machine learning algorithms in terms of the prediction accu-
racy and communication overhead.
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