
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this 

work in other works.” 

 



QoS-Aware Fog Computing Resource Allocation using

Feasibility-Finding Benders Decomposition

Thai T. Vu, Diep N. Nguyen, Dinh Thai Hoang, Eryk Dutkiewicz

Abstract—We investigate a joint offloading and resource allo-
cation under a multi-layer cooperative fog and cloud computing
architecture, aiming to minimize the total energy consumption
of mobile devices while meeting users’ QoS requirements, e.g.,
delay, security, and application compatibility. Due to the mutual
coupling amongst offloading decision and resource allocation
variables, the resulting optimization is a mixed integer non-
linear programming problem that is NP-hard. Such problem
often requires exponential time to find the optimal solution. In
this work, we propose a distributed approach, namely feasibility-
finding Benders decomposition (FFBD), that decomposes the
original problem into a master problem for the offloading
decision and subproblems for resource allocation. These (simpler)
subproblems can be solved in parallel at fog nodes, thereby
reducing both the complexity and the computational time. The
numerical results show that the FFBD always returns the optimal
solution of the problem with significantly less computation time
(e.g., in comparing with the branch-and-bound method).

Keywords- Fog computing, offloading, resource allocation,

QoS, security, latency, MINLP, and Benders decomposition.

I. INTRODUCTION

A new network architecture, referred to as mobile edge

or fog computing, has recently received paramount interest.

The key idea of fog computing is to “move" computing re-

sources closer to mobile users [1]. In a fog network, powerful

computing devices, e.g., servers, are deployed at the edges of

the mobile network to support hardware resource-constrained

devices to perform high-complexity tasks. As a result, the de-

ployment of fog networks can save energy, increase operation

time, and enable new applications/services for mobile devices

by utilizing powerful resources at the edge. Fog computing

can also reduce operating costs for mobile network operators

up to 67% by reducing the total throughput and peak backhaul

bandwidth consumption [2].

However, unlike public clouds, e.g., Amazon Web Services,

a fog node does not possess abundant computing resource.

While the number of mobile applications is huge, every fog

node can support only a small number of application types

with different qualities of service (QoS), e.g., security. From

mobile users’ perspectives, computation offloading demand

also varies in both types and QoS requirements. For example,

some applications may require higher security levels (e.g.,

finance/health applications), whereas others may need lower

latency (e.g., games). Moreover, not all computational tasks

benefit from being offloaded to the fog node. Some tasks

even consume more energy when being offloaded than being

processed locally due to the communication overhead, i.e.,

transmitting requests and receiving results[1]. Given the above,

this work considers the joint task offloading and resource

allocation optimization problem, aiming to minimize the en-

ergy consumption for mobile devices under the fog nodes’

resource constraints, and mobile applications’ delay, security

and compatibility requirements.

The above problem has been visited from different angles

and using different approaches over the last few years [3]–

[7]. In [3], the offloading decision problem in a two-tier

architecture (i.e., the mobile users and the fog nodes) was

formulated as a non-cooperative game. To minimize the com-

pletion time for each tasks, the authors of [4] developed a

game-based distributed algorithm to optimally allocate the

computational tasks among nearby devices and the edge cloud.

The authors of [5] proposed a decomposition technique to

maximize the weighted sum of all users’ offloading utilities,

which comprises both the energy and delay required for each

task. The optimal task offloading problem was formulated and

addressed in [6] to minimize the average processing time

of each task. Focusing on IoT devices, the authors of [7]

aimed at minimizing average transmission energy consumption

while guaranteeing the average latency requirement. However,

most existing works did not consider offloading computing

task to the cloud servers, i.e., considering only the two-tier

architecture with a fog server.

As aforementioned, fog nodes are also limited in computing

power, in comparison to cloud servers. Therefore, in this paper,

we develop a multi-layer cooperative fog network including

mobile devices, multiple fog nodes, and a cloud cluster which

includes many cloud servers for different application types.

Under our architecture, the tasks can be offloaded to either

a fog node or a cloud server. To minimize the total energy

consumption for mobile users in the network while meeting all

tasks requirements, we first formulate the joint task offloading

and resource allocation optimization problem for all mobile

users and edge nodes. The resulting problem is a mixed integer

non-linear programming (MINLP) which is proven to be NP-

hard. Its optimal solution can be found by using the improve

branch-and-bound (BB) algorithm (IBBA) [8]. However, the

intermediate problems of IBBA still have a large size due

to mixed offloading and resource allocation variables. Conse-

quently, the computation time of the IBBA is still high. In this

work, we propose a distributed approach, namely feasibility-

finding Benders decomposition (FFBD), that decomposes the

original problem into a master problem for the offloading

decision and subproblems for resource allocation. These (sim-

pler) subproblems can be solved in parallel at fog nodes,

thus help reduce both the complexity and the computational

time. Especially, while other Benders decomposition (BD)

methods only work with linear problems, our FFBD directly

solves the non-linear ones. Under the FFBD, Benders cutting-

planes are generated directly based on the resource limitation

of fog nodes and the results of subproblems. The extensive

numerical results show that the FFBD method always returns



Fog nodes

1

2

N

1

2

M

Mobile devices

..
.

..
.

Cloud cluster

Fig. 1: Three-tier cooperative mobile edge computing network.

the optimal solution of the original problem with significantly

less computation time in comparing with the IBBA.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1 illustrates a three-tier fog computing system with N
mobile devices N = {1, . . . , N}, M cooperative fog nodes

M = {1, . . . ,M}, and one cluster of cloud servers. Mobile

devices can run programs belonging to a set of Q applica-

tions Q = {1, . . . , Q}. Each program contains independent

computing tasks which can be processed locally or offloaded

to fog nodes or the cloud cluster. Mobile devices, fog nodes

and the cloud servers have different security levels, denoted

as S = {1, . . . , S} [9], in which 1 is the highest security level

and S is the lowest one.

At each time slot, mobile user i can request to offload a

computing task Ii
(

Di
i, D

o
i , Ci, si, t

r
i , qi

)

, in which Di
i and Do

i

respectively are the input (including input data and execution

code) and output/result data lengths, Ci is the number of CPU

cycles that are required to execute the task, and qi ∈ Q is the

application type of task Ii. The QoS of task Ii is defined

by the delay tri and security requirements si ∈ S . Only

mobile device, fog nodes, or the cloud servers satisfying these

requirements are eligible to process the task.

1) Local Processing: Device i has a security level sli ∈ S
and a CPU processing rate f l

i (cycles per second). We assume

that the security level of a mobile device always satisfies its

task requirement, i.e., sli ≤ si. If task Ii is processed locally,

the necessary time T l
i to perform the task is given by

T l
i = Ci/f

l
i . (1)

Similar to [3], the CPU power consumption rate P l
i can be

modeled by a super-linear function of f l
i , as P l

i = α(f l
i )

γ ,
where α and γ are pre-configured parameters depending on

the chip architecture. The consumed energy El
i of the mobile

device for local computation is given by

El
i = P l

iT
l
i = α(f l

i )
γ−1Ci. (2)

2) Fog Node Processing: A fog node j has capabilities

denoted by a tuple (Ru
j , R

d
j , R

f
j , s

f
j ) in which Ru

j , Rd
j , Rf

j ,

and sfj ∈ S are the total uplink rate, total downlink rate, the

CPU cycle rate, and its security level, respectively. If task

Ii is processed at fog node j, then this node will allocate

bandwidth and computation resources for mobile device i,
defined by a tuple rij = (ruij , r

d
ij , r

f
ij), in which ruij , rdij ,

rfij respectively are uplink, downlink, and CPU cycle rates

for input, output transmissions, and task execution. In this

case, the energy consumption at the mobile user is for both

transferring input to and receiving output from the fog node

j. The delay includes time for transmitting input, receiving

output and task processing at the fog node.

Let euij and edij denote the energy consumption for transmit-

ting and receiving a unit of data, respectively. The consumed

energy of mobile device Ef
ij and the delay T f

ij are given by:

Ef
ij = Eu

ij +Ed
ij , and T f

ij = Di
i/r

u
ij +Do

i /r
d
ij +Ci/r

f
ij , (3)

where Eu
ij = euijD

i
i and Ed

ij = edijD
o
i .

3) Cloud Server Processing: Assume that all fog nodes are

connected to the cloud cluster. Let scqi be the security level of

the cloud computing toward application type qi. If task Ii has

si ≥ scqi , then a fog node can forward Ii to a suitable cloud

server in the cluster. We denote the data rate between a fog

node and the cluster as rfc, and the processing rate assigned

to each task on the cloud as f c.

If fog node j forwards task Ii to the cloud cluster, it will

allocate resources for mobile device i, defined by a tuple

rij = (ruij , r
d
ij , r

f
ij), in which ruij , rdij are uplink rate, downlink

rate for input and output transmissions, and rfij = 0. After

receiving the task, fog node j sends the input data to the cloud

server for processing, then receives and sends the result back

to the mobile user. In this case, the consumed energy Ec
ij

at the mobile user is only for transmitting input and output

data directly to and from fog node j as in the case of fog

node processing, while the delay T c
ij includes the time for

transmitting the input from mobile user to the fog node, time

from the fog node to the cloud cluster, time for receiving the

output from the cloud cluster to mobile user via the edge node,

and task-execution time at the cloud server. These performance

metrics are as follows:

Ec
ij = Ef

ij = Eu
ij + Ed

ij , (4)

and

T c
ij = Di

i/r
u
ij +Do

i /r
d
ij + (Di

i +Do
i )/r

fc + Ci/f
c. (5)

Because a fog node can support only some types of mobile

applications, let G(qi) be the set of all fog nodes that can sup-

port the application type qi. Equivalently, G(qi) =M/G(qi)
is the set of all fog nodes that do not support the application

type qi. In other words, the task Ii
(

Di
i, D

o
i , Ci, si, t

r
i , qi

)

cannot be processed at any fog node in G(qi).

B. Problem Formulation

We denote the binary offloading decision variable for task

Ii by xi = (xl
i, x

f
i1, . . . , x

f
iM , xc

i1, . . . , x
c
iM ), in which xl

i = 1,

xf
ij = 1, and xc

ij = 1 respectively indicate that task Ii is

processed locally at the mobile device, fog node j, the cloud

server (via fog node j), respectively. From Eq. (1)–(5), the

consumed energy Ei of the mobile user and the delay Ti when

task Ii is processed are given as

Ei = e
⊤
i xi, and Ti = h

⊤
i xi, (6)

where ei = (El
i, E

f
i1, ..., E

f
iM , Ec

i1, ..., E
c
iM ) and hi =

(T l
i , T

f
i1, ..., T

f
iM , T c

i1, ..., T
c
iM ).

Let e = (e1, . . . , eN ) and x = (x1, . . . ,xN ). Then, the

total consumed energy of mobile devices is given as

E = e
⊤
x. (7)



In this paper, we address a joint offloading decision (x)
and resource allocation (r) problem that aims to minimize

the total energy consumption of all mobile devices under

the delay, security, and application compatibility requirements.

The problem is formally stated as follows

(P0) min
x,r

e
⊤
x, (8)

s.t.

(R0)



























(C1) Ti ≤ tri , ∀i ∈ N ,

(C2)
∑N

i=1 r
f
ij ≤ Rf

j , ∀j ∈M,

(C3)
∑N

i=1 r
u
ij ≤ Ru

j , ∀j ∈M,

(C4)
∑N

i=1 r
d
ij ≤ Rd

j , ∀j ∈M,

ruij , r
d
ij , r

f
ij ≥ 0, ∀(i, j) ∈ N ×M,

(9)

and

(X0)



































(C5) xl
i +

M
∑

j=1

xf
ij +

M
∑

j=1

xc
ij = 1, ∀i ∈ N ,

(C6) xl
is

l
i +

M
∑

j=1

xf
ijs

f
j +

M
∑

j=1

xc
ijs

c
qi
≤ si, ∀i ∈ N ,

(C7) xf
ij = 0, ∀(i, j) ∈ N ×G(qi),

xl
i, x

f
ij , x

c
ij ∈ {0, 1}, ∀(i, j) ∈ N ×M.

(10)

where (C1), (C6) and (C7), respectively, are the delay, se-

curity and application compatibility requirements of tasks,

(C2), (C3) and (C4) are resource constraints at fog nodes, and

(C5) is offloading decision constraints.

III. PROPOSED OPTIMAL SOLUTIONS

The problem (P0) is NP-hard (the proof is omitted for

brevity, interested readers are referred to the technical re-

port [8]). Hence, it may take standard optimization solvers

exponential time. We observe that by relaxing its binary vari-

ables to real numbers xl
i, x

f
ij , x

c
ij ∈ [0, 1], ∀(i, j) ∈ N ×M,

both the objective function and the constraints in (P0) are

the sum of linear and linear-fractional functions of the forms

x, r, and x/r with positive coefficients. Thus, they are either

convex or concave functions with respect to x and r. The

relaxing problem is hence a convex optimization problem [10].

In the sequel, using on this characteristic, we propose an

effective approach to solve the problem (P0).

A. Feasibility-Finding Benders Decomposition

Due to the multiple non-linear constraints in (P0), the

Benders decomposition (BD) method in [11] is inapplicable.

Additionally, this linearization method with the dual multi-

pliers faces the zig-zagging issue [12] which increases the

computation time. This method also has difficulty in achieving

the optimal solution even though the lower bound is close to

the upper bound. Thus, we introduce a distributed algorithm

named Feasibility-Finding Benders decomposition (FFBD) as

illustrated in Fig. 2. The key point of FFBD is the generation of

Benders cuts that exclude superfluous solutions, based on the

set theory. This completely differs from the work [11], where

the Benders cuts are created by solving the dual problem. Due

to the finite number of Benders cuts, the FFBD is alway return

the optimal solution after a limited number of iterations.

Specifically, we first decompose (P0) into a master problem

(MP0) for the offloading decision and a subproblem (SP0)
for the resource allocation. Then, FFBD algorithm finds the

optimal solution of (P0) by iteratively solving (MP0) and

(SP0) at either the cloud server or fog nodes.

(MP0) min
x∈X0

{e⊤x|cuts(k)}, (11)

and

(SP0) min
x(k),r∈R0

{0}, (12)

where {0} is the zero constant function, Benders cutting-

planes cuts(k) are restrictions on integer offloading solution

x
(k) of (MP0) at iteration (k).
From Eq. (11) and (12), the cost function of (P0) is

identical with that of (MP0). (SP0) only verifies if the integer

offloading solution x
(k) of (MP0) leads to a feasible resource

allocation solution r. Theorem 1 shows that the iteration can

stop when a feasible solution (x, r) is found or (MP0) is

infeasible.

THEOREM 1. At any iteration (k), if a feasible solution (x)
of (MP0) leads to a feasible solution (r) of (SP0). Then,

(x, r) is the optimal solution of the original problem (P0).
At any iteration (k), if the master problem (MP0) is

infeasible, then the original problem (P0) is infeasible.

Proof: The detailed proof is presented in [8].

B. Distributed Subproblems

With fixed offloading decisions x
(k), (SP0) is equivalently

divided into M independent resource allocation subproblems

of M fog nodes. Without loss of generality, we assume N t
j

and N s
j , respectively, be the sets of tasks to be processed

at fog node j and at the cloud server via fog node j. Here,

N t
j and N s

j are equivalently determined by two offloading

decision variables x
f(k)
j = (xf

1j , . . . , x
f
Nj)

(k) and x
c(k)
j =

(xc
1j , . . . , x

c
Nj)

(k) in x
(k). We can write N t

j = {1, . . . , t},
N s

j = {t + 1, . . . , t + s}, and N t+s
j = N t

j ∪ N
s
j =

{1, . . . , t + s} is defined by x
(k)
j = (x

f(k)
j ,x

c(k)
j ). Variable

rj = (r1j , . . . r(t+s)j) denotes resource allocation of fog

node j towards its assigned set of tasks N t+s
j . The resource

allocation problem at fog node j can be defined as

(SP1) min
x
(k)
j

,rj∈Rj

{0}, (13)

where

(Rj)







































(C1j) Ti ≤ tri , ∀i ∈ N
t+s
j ,

(C2j)
∑

i∈N t
j
rfij ≤ Rf

j ,

(C3j)
∑

i∈N
t+s
j

ruij ≤ Ru
j ,

(C4j)
∑

i∈N
t+s
j

rdij ≤ Rd
j ,

rfij , r
u
ij , r

d
ij ≥ 0, ∀i ∈ N t+s

j ,

rfij = 0, ∀i ∈ N s
j .

(14)

All subproblems (SP1) can be solved distributedly among

fog nodes in cooperation with the cloud server for (MP0).
Besides, all these subproblems (SP1) can be solved in paral-

lel.

At iteration (k), if (SP1) is feasible at every fog nodes,

then x
(k) and r = (r1, . . . , rM ) are optimal solution of (P0).



Subproblem 1

Subproblem M

...

Feedback
(cuts)

Offloading 
Solutions

Fig. 2: Feasibility-Finding Benders Decomposition.

Otherwise, if (SP1) is infeasible at fog node j, a new cutting-

plane c
(k)
j will be added to the cut set of (MP0) for the

next iteration: cuts(k+1) = cuts(k) ∪ c
(j)
j . The following

section develops theoretical analysis which helps to improve

the efficiency of FFBD algorithm.

C. Fast Feasibility and Infeasibility Detection

From Eq. (3) and (5), the delay constraints (C1j) Ti ≤ tri
in (Rj) of (SP1) can be rewritten as










(

Di
i

ru
ij

+
Do

i

rd
ij

+ Ci

r
f
ij

)

≤ tri , ∀i ∈ N t
j

(

Di
i

ru
ij

+
Do

i

rd
ij

)

≤ tri −
(

(Di
i+Do

i )
rfc + Ci

fc

)

, ∀i ∈ N s
j .

(15)

Remarkably, the component
(

(Di
i+Do

i )
rfc + Ci

fc

)

is a constant.

If ∃i ∈ N s
j , t

r
i −

(

(Di
i+Do

i )
rfc + Ci

fc

)

≤ 0, then processing

task i at the cloud server does not satisfy its delay requirement

Ti ≤ tri . In other words, (SP1) is infeasible. A Benders cut

to prevent offloading task i to the cloud server can be created

directly for this case. Otherwise, if tri −
(

(Di
i+Do

i )
rfc + Ci

fc

)

>

0, ∀i ∈ N s
j , then we define the relative size (Di′

i , D
o′

i , C
′

i) of

task i as below.


















(

Di
i

tr
i

,
Do

i

tr
i

, Ci

tr
i

)

, ∀i ∈ N t
j





Di
i

(

tr
i
−

(Di
i
+Do

i
)

rfc −
Ci
fc

) ,
Do

i
(

tr
i
−

(Di
i
+Do

i
)

rfc −
Ci
fc

) , 0



 , ∀i ∈ N s
j .

(16)

Let βi =

(

Di′

i

ru
ij

+
Do′

i

rd
ij

+
C

′

i

r
f
ij

)

be the satisfaction rate of

Task i. The delay constraint in Eq. (15) becomes

βi =

(

Di′

i

ruij
+

Do′

i

rdij
+

C
′

i

rfij

)

≤ 1, ∀i ∈ N t+s
j . (17)

THEOREM 2. Define balancing rates βu
bal =

∑

i∈N
t+s
j

Di′

i

Ru
j

,

βd
bal =

∑

i∈N
t+s
j

Do′

i

Rd
j

, and βf
bal =

∑

i∈N
t+s
j

C
′

i

R
f
j

. If βbal = βu
bal +

βd
bal + βf

bal ≤ 1, then the problem (SP1) is feasible.

Proof. We need to show a feasible solution of (SP1).

Task Ii will be allocate resources ruij , rdij and rfij as ruij =
Di′

i

βu
bal

, rdij =
Do′

i

βd
bal

, and rfij =
C

′

i

β
f

bal

. We have βi =
Di′

i

ru
ij

+
Do′

i

rd
ij

+

C
′

i

r
f
ij

=
(

βu
bal + βd

bal + βf
bal

)

. Here, rfij = 0 and
C

′

i

r
f
ij

= 0, ∀i ∈

N s
j . Thus, βi = βbal ≤ 1, ∀i ∈ N t+s

j .

Besides,
∑

i∈N
t+s
j

ruij = Ru
j ,
∑

i∈N
t+s
j

rdij = Rd
j and

∑

i∈N
t+s
j

rfij = Rf
j satisfying resource limit conditions. In

conclusion, the problem (SP1) is feasible. �

THEOREM 3. If

∑

i∈N
t+s
j

Di′

i

Ru
j

> 1 or

∑

i∈N
t+s
j

Do′

i

Rd
j

> 1 or
∑

i∈N
t+s
j

C
′

i

R
f
j

> 1, then the problem (SP1) is infeasible.

Proof: The detailed proof is presented in [8].

D. Cutting-Plane Generation

Here, we introduce three types of cutting-planes which will

be updated in (MP0).
Resource Cutting-Plane: From Theorem 3, it dictates that

every subset of tasks Nj ⊆ N must not violate the up-

link, downlink and computation resources constraints at every

fog node j. Let c
u(fog)
j = (Di′

1 , . . . , D
i′

N )/Ru
j , c

d(fog)
j =

(Do′

1 , . . . , Do′

N )/Rd
j and c

f(fog)
j = (C

′

1, . . . , C
′

N )/Rf
j . Here,

(Di′

i , D
o′

i , C
′

i) is calculated as in Eq. (16) for i ∈ N t
j .

Let c
u(cloud)
j = (Di′

1 , . . . , D
i′

N )/Ru
j , c

d(cloud)
j =

(Do′

1 , . . . , Do′

N )/Rd
j and c

f(cloud)
j = (C

′

1, . . . , C
′

N )/Rf
j . Here,

(Di′

i , D
o′

i , C
′

i) is calculated as in Eq. (16) for i ∈ N s
j .

To eliminate all the subsets of N which violates the

resources constraints at edge node j, we add three following

Benders cuts into cuts set of the Master problem (MP0):

cuj = {c
u(fog)⊤
j x

f
j + c

u(cloud)⊤
j x

c
j ≤ 1}, cdj = {c

d(fog)⊤
j x

f
j +

c
d(cloud)⊤
j x

c
j ≤ 1}, and cfj = {c

f(fog)⊤
j x

f
j ≤ 1}.

Subproblem Cutting-Plane: At iteration (k), fog node j is

assigned a set of tasks N t+s
j = N t

j ∪N
s
j , which is defined by

offloading decision x
(k)
j = (x

f(k)
j ,x

c(k)
j ).

If (SP1) at fog node j is infeasible, then any resource allo-

cation problem at edge node j with assigned tasks Nj ⊇ N
t+s
j

is infeasible. Thus, to eliminate the all subproblems at edge

node j containing N t+s
j , a new Benders cut c

(k)
j is added into

cuts set of the Master problem (MP0) after iteration (k).

c
(k)
j = {x

f(k)⊤
j x

f
j + x

c(k)⊤
j x

c
j ≤ t+ s− 1}

Prefixed Decision Cutting-Plane: If task Ii satisfies El
i <

Ef
ij and T l

i ≤ tri , then it can be pre-decided as local

processing. As mentioned in Fast Feasibility and Infeasibility

Detection, if
(

tri −
(Di

i+Do
i )

rfc − Ci

fc

)

≤ 0, then task Ii could not

be processed at the cloud cluster. In these cases, the suitable

cutting-planes can be created and added to set cuts of (MP0).

E. FFBD Algorithm

Using three types of cutting-planes above, the distributed

FFBD, Algorithm 1, is summarized as below.

• Initialization: Set the iterator k = 1. Then, initialize

cuts(k) in (MP0) with 3M resource cutting-planes as in

Resource Cutting-Plane: cuts(k) =
⋃M

j=1{c
u
j , c

d
j , c

f
j }.

Other Benders cuts, as in Prefixed Decision Cutting-

Plane, are also added to the cuts(k) of (MP0).
• Master Problem: At iteration (k), (MP0) is solved to

find x
(k) ∈ X0 satisfying cuts(k). Here, x(k) defines M



Algorithm 1: FFBD Algorithm

Input : Sets N ,M,Q,S , {Ii}, {(R
u
j , R

d
j , R

f
j , s

f
j )}

Cloud cluster rfc, f c, {scqi}
Output: Optimal solution (x, r) of Problem (P0)

1 begin

2 Initialize k and cuts(k) as in Initialization.

3 while solution (x, r) has not been found do

4 x← Solve (MP0) with cuts(k) as in Master

Problem. ⊲ x store solution x
(k) at iteration k

5 if x is feasible then

6 Based on x, create M subproblems (SP1)
with asigned tasks N t+s

1 , . . . ,N t+s
M .

7 end

8 else

9 Return Problem (P0) is infeasible.

10 end

11 for (j = 1; j ≤M ; j = j + 1) do

12 rj ← Solve (SP1) at fog node j with task

set Nt+s
j as in Subproblems.

13 if rj is infeasible then

14 Add a new Benders cut c
(k)
j into

cuts(k+1) as in Subproblems.
15 end

16 end

17 if r = (r1 ∪ r2 ∪ · · · ∪ rM ) is feasible then

18 Return x and r ⊲ Solution is found

19 end

20 k ← (k + 1) ⊲ Increase iteration index

21 end

22 end

subproblems of the form (SP1). If (MP0) is infeasible,

then FFBD is terminated with the infeasibility of (P0).
• Subproblems: At iteration (k), fog node j independently

solves (SP1) toward its own assigned N t+s
j tasks. Before

calling a solver, Theorem 2 is used to check its feasibility.

If (SP1) is infeasible, then a new Benders cut c
(k)
j

as in Subproblem Cutting-Plane is created and added

into cuts(k+1) of (MP0) for the next iteration (k + 1):

cuts(k+1) = cuts(k) ∪ {c
(k)
j }.

In Algorithm 1, using Theorem 3 the resource cutting-planes

are created at the initial stage of (MP0). Thus, the sub-

problems violating Theorem 3 are prevented during iterations.

Consequently, the computation time of FFBD is reduced.

IV. PERFORMANCE EVALUATION

We set up a fog network with all parameters given in Table I.

There are 5 types of mobile applications Q = {1, . . . , 5} and

3 security levels S = {1(High), 2(Medium), 3(Low)}. In the

IoT ecosystem, mobile applications often have different char-

acteristics in term of tasks’ data size and complexity. There-

fore, it is reasonable to choose randomly data size and com-

plexity. We denote U(a, b) as the descrete uniform distribution

between a and b. Here, N tasks Ii
(

Di
i, D

o
i , Ci, si, t

r
i , qi

)

are

generated as Di
i ∼ U(1.0, 10.0)MB, Do

i ∼ U(0.1, 1.0)MB,

0

2

4

6

8

10

T
re

n
d
 o

f 
O

ff
lo

a
d
in

g

FFBD-S/F(infeasible)

IBBA(infeasible)

AOP(infeasible)

2 3 4 5 6 7 8 9 10

Delay Requirement T
i
r (s)

0

20

40

60

80

100

E
rr

o
r 

ra
te

 (
%

)

FFBD-S/F

IBBA

WOP

AOP

Fig. 3: Trend of offloading and error rate as the delay require-

ment is relaxed.

Ci ∼ U(0.1, 6.0) ×Di
i Giga cycles, si ∼ S , qi ∼ Q, and tri

varying between (2, 10)s. We assume that each fog node can

support randomly 3 in 5 mobile applications, and the cluster

of cloud servers can support all application types Q.

TABLE I: Experimental parameters

Parameters Value

Number of mobile devices N 10

Number of fog nodes M 4

CPU rate of mobile devices f l
i 0.5 Giga cycles/s

Security level of mobile devices sli 1(High)
Energy consumption model of devices (α, γ) (10−11Watt/cycle2, 2)
Unit transmission energy consumption euij 0.142 J/Mb

Unit receiving energy consumption edij 0.142 J/Mb

Uplink data rate of each fog node Ru
i 72 Mbps

Downlink data rate of each fog node Rd
i 72 Mbps

Processing rate of each fog node R
f
j 10 Giga cycles/s

Security level of each fog node s
f
j ∼ S = {1, . . . , S}

CPU rate provided by cloud servers fc 10 Giga cycles/s

Data rate between FNs and cloud servers rfc 5 Mbps

Security level of clouds towards ∼ S = {1, . . . , S}
application qi: s

c
qi

Here, we refer the policy in which all tasks are processed

locally as “Without Offloading” (WOP), and the policy in

which all tasks are offloaded to the fog nodes or the cloud

server then minimized the average delay of all tasks as

the “All Offloading” (AOP). The improved branch-and-bound

algorithm (IBBA) in [8] is used to compare with the FFBD.

To evaluate the efficiency of theoretical proposals, we develop

two variants of FFBD, FFBD-S for the case using the standard

MOSEK solver only, and FFBD-F for the case first using the

fast solution detection method described in Theorem 2. Both

FFBD-F/S and IBBA are implimented using the Optimizer

API of MOSEK solver [13]. The results obtained by FFBD-

S/F will be compared with the policies IBBA, WOP, and AOP.

In this paper, we study the impact of task delay require-

ments on the energy consumption of mobile devices and the

computation time of the proposed methods. After creating the

data set, we detect that there are 5 tasks receiving benefits from

offloading (El
i > Ef

i ), and all tasks have local delay between

2s and 24s. Thus, during experiments, the delay requirement

tri of all tasks is varied between 2s and 10s.

Fig. 3 shows the trends of offloading tasks and error rates.

Generally, while the trends of WOP and AOP are constants,

i.e., 0 and 10, respectively, the offloading trends (to either

fog nodes or cloud servers) of FFBD-S/F and IBBA methods



2 3 4 5 6 7 8 9 10

Delay Requirement T
i
r (s)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
/t
a
s
k
)

FFBD-S/F

IBBA

WOP

AOP

Fig. 4: Average consumed energy at mobile devices when the

delay requirement is looser.

0

2000

4000

6000

8000

10000

S
o
lv

in
g
 T

im
e
 (

m
s
)

3 4 5 6 7 8 9 10

Delay Requirement T
i
r (s)

0

20

40

60

80

100

N
u
m

b
e
r 

o
f 
P

ro
b
le

m
s

FFBD-S

FFBD-F

IBBA

Fig. 5: Computation time and number of solved intermediate

problems in order to find an optimal solution when the delay

requirement is looser.

decrease from 9 to 5 tasks since the delay requirement is

relaxed. Specifically, at first some tasks without offloading

benefits still have to be offloaded due to their high local

processing delay (T l
i > tri ). Then, when tri is larger, these

tasks will be executed locally to reduce the consumed energy if

T l
i ≤ tri . Noticeably, the fog network has not enough resources

to accept all offloaded tasks satisfying QoS constraints if delay

requirement tri ≤ 3. Hence, it is infeasible for FFBD-S/F and

IBBA at tri = 2s and for AOP at tri = 2s and 3s. Since

tri ≥ 8s, FFBD-S/F and IBBA return the optimum solution

with only 5 offloaded tasks, which get benefit from offloading.

From Fig. 3, while the error rate (the proportion of tasks with

unsatisfied QoS requirements) of WOP steadily decreases from

90% to 50%, it is zero for other methods at all feasible points.

Additionally, at tri = 3s, AOP is infeasible, but it is equivalent

to the error rate of 10% since FFBD-S/F and IBBA are feasible

with 9 offloading tasks.

The offloading trends completely match with the average

energy consumption depicted in Fig. 4. Generally, while it is a

constant for both WOP with 8.5J/task and AOP with 7.4J/task,

the consumed energy in FFBD-S/F and IBBA decreases from

6.3J/task to 3.5J/task when increasing the delay requirement.

Equivalently, both FFBD-S/F and IBBA methods reduce the

consumed energy from 15% and 26% to 52% and 59%,

respectively, in comparing with the AOP and WOP.

Fig. 5 shows the computation time and the number of in-

termediate problems being solved since the delay requirement

is looser. For FFBD-F/S, the intermediate problems are either

the master problem or subproblems solved by the standard

solver during iterations. The subproblems solved by the fast

feasible detection method as in Theorem 2 are ignored. For

IBBA, intermediate problems are the relaxing ones solved

during travelling the search tree. Here, the WOP and AOP

are ignored due to their inadequacy of the goal. Generally, the

computation time is proportional to the number of intermediate

problems. The FFBD-S/F methods are effective due to their de-

composition and initial Benders cuts based on Theorem 3 and

the cutting-plane generation from the results of subproblems.

The FFBD-F also has better results than that of the FFBD-S

due to the implementation of the fast solution finding method

described in Theorem 2. Especially, in the worst case, the

FFBD-F, FFBD-S and IBBA algorithms, respectively, have the

solving time of 2.7s, 4.2s and 8.1s equivalent to 58, 100 and

93 intermediate subproblems at tri = 3s.

V. CONCLUSION

We have proposed the joint offloading and resource allo-

cation problem for three-tier fog computing focusing on the

QoS of offloading tasks. To find the optimal solution, we

have developed the distributed method, namely FFBD, with

two variants FFBD-S/F based on the Benders decomposition

algorithm. The FFBD-F implemented with the fast feasible

detection method is the fastest algorithm in comparing with

the FFBD-S and IBBA. Numerical results have demonstrated

the efficiency in terms of energy consumption reduction of the

proposed solution.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 2017.

[2] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[3] X. Chen, et al., “Efficient multi-user computation offloading for mobile-
edge cloud computing,” IEEE/ACM Trans. Netw., vol. 24, no. 5, pp.
2795–2808, 2016.

[4] S. Jošilo and G. Dán, “Decentralized algorithm for randomized task
allocation in fog computing systems,” IEEE/ACM Trans. Netw., vol. 27,
no. 1, pp. 85–97, 2019.

[5] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.

Technol., vol. 68, no. 1, pp. 856–868, 2019.
[6] M. Chen and Y. Hao, “Task offloading for mobile edge computing in

software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, 2018.

[7] Y. Chen, et al., “Energy efficient dynamic offloading in mobile edge
computing for internet of things,” IEEE Trans. Cloud Comput., pp. 1–1,
2019.

[8] T. T. Vu, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, “Optimal
Task Offloading and Resource Allocation for Fog Computing,” Technical

report, 2019. [Online]. Available: https://arxiv.org
[9] H. El-Sayed, et al., “Edge of things: The big picture on the integration of

edge, iot and the cloud in a distributed computing environment,” IEEE

Access, vol. 6, pp. 1706–1717, 2018.
[10] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge

university press, 2004.
[11] Y. Yu, et al., “Green fog computing resource allocation using joint

benders decomposition, dinkelbach algorithm, and modified distributed
inner convex approximation,” in IEEE ICC 2018, 2018, Conference
Proceedings, pp. 1–6.

[12] M. Fischetti, et al., “Benders decomposition without separability: A
computational study for capacitated facility location problems,” EUR

J OPER RES, vol. 253, no. 3, pp. 557–569, 2016.
[13] E. D. Andersen and K. D. Andersen, “The mosek documentation and

api reference,” Report, 2019. [Online]. Available: https://www.mosek.
com/documentation/


	Introduction
	System Model and Problem Formulation
	System Model
	Local Processing
	Fog Node Processing
	Cloud Server Processing

	Problem Formulation

	Proposed Optimal Solutions
	Feasibility-Finding Benders Decomposition
	Distributed Subproblems
	Fast Feasibility and Infeasibility Detection
	Cutting-Plane Generation
	FFBD Algorithm

	Performance Evaluation
	Conclusion
	References

