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Abstract 

One of the greatest challenges in mathematics education is in fostering an 
understanding of what mathematicians would recognise as “mathematical 
thought.” We seek to encourage students to develop the transferable skills of 
abstraction, problem generalization and scalability as opposed to simply 
answering the specific question posed. 

This difference is perhaps best illustrated by the famous – but likely apocryphal 
– tale of Gauss’s school days and his approach to summing all positive integers 
up to and including 100, rather than just summing each sequentially. 

Especially with the rise of technology-enabled marking and results-focussed 
tutoring services, the onus is on the educator to develop new types of question 
which encourage and reward the development of mathematical processes and 
deprioritise results alone. Some initial work in this area is presented here. 

Introduction 

“There is no agreed upon definition of mathematics, but there is 
widespread agreement that the essence of mathematics is extension, 
generalization, and abstraction” (Hamming 1985) 

In the literature there are many more general definitions of what constitutes 
mathematics than this one from the American mathematician and computer 
scientist Richard Hamming. These tend to speak in broad terms, defining any 
task described in numerical terms or any form of quantitative problem solving as 
being mathematics. However, these less tightly defined ideas of what lies at the 
heart of mathematical thinking fail to capture why mathematics is a vital part of 
universal education and why its skills are transferrable to multiple aspects of 
everyday life (Rombeg and Kaput 1999). A student may solve a problem or 
perform a numerical routine without employing the kinds of thinking which would 
be recognised as mathematical in nature (at least according to Hamming’s 
definition.)  

For example, school students tend to learn how to calculate the areas of 
common shapes or volumes of solids. In all likelihood none of these students 
will ever need to, for example, calculate the area of a rhombus in their later lives 
or careers. As such, if students simply memorise that they must calculate half 
of the product of the two diagonal lengths to obtain the correct answer to such 
a question, they have acquired a “trick” which is of minimal value, beyond 
scoring marks on the school examination. If instead, they are encouraged to 
understand the underlying geometry and congruent subshapes, they may 
develop skills which are more widely applicable to a whole range of other 
problems. 



A Famous Example 

Possibly the clearest example of this distinction between solving problems 
numerically and employing mathematical thought – i.e. approaches which are 
generalizable and scalable – is the often-told story of Carl Friedrich Gauss.  

It is said that, when in elementary school, Gauss’s teacher attempted to give the 
students the seemingly arduous task of adding together all positive integers up 
to and including 100. The teacher was assuming that summing these 
sequentially – 1+2 =3, 3+3=6, 6+4=10, 10+5=15,…etc. – would take the 
students a great time to complete as they would need to perform 99 separate 
addition calculations. 

Gauss, as the story goes, recognised the sum as being what we would now 
know as the partial sum of an arithmetic sequence. He reasoned that 
1+100=101, 2+99=101,…,50+51=101 hence the total was equivalent to the sum 
of 50 pairs of numbers each summing 101, so was equal to 5050. 

Working with Hamming’s definition of what lies at the heart of mathematics, 
Gauss’s logic is certainly extendable, generalizable and handles the problem in 
abstraction. If the teacher had asked him to sum only the even numbers, he 
would be able to produce 25 pairs each equal to 102 and hence a total of 2550. 
If the teacher had asked him to sum the first million integers, or all integers 
between 1000 and 10,000, the approach employed would be robust to any such 
modifications or generalizations. 

A Problem for Assessment 

If we apply this idea to the example from Gauss’s schooldays, let us consider 
the example of four hypothetical students as shown in Table 1. 

Student A Student B 

1+2=3, 3+3=6, 6+4=9, 9+5=13… 

…4760+100 

1+2=3, 3+3=6, 6+4=10, 10+5=15… 

…4950+100 

Final answer 4860 Final answer 5050 

Student C Student D 

1+99=100, 2+98=100, 3+97=100. 
This gives 49 pairs each summing to 

100, plus 100 itself 

1+100=101, 2+99=101, 3+98=101. 
This gives 50 pairs each summing to 

101 

Final answer 5000 Final answer 5050 

Table 1:  The methods employed by four hypothetical students attempting to 
sum the first 100 positive integers and the values obtained. 

In evaluating the students’ performance on the task, most assessors would 
agree that Student A’s answer should be marked the lowest. It not only fails to 
employ a scalable approach, but also produces an incorrect numerical answer. 
At the other extreme, Student D’s approach (which is that attributed to Gauss) 
would surely be awarded full marks. 



How to assess the other two students’ performances is more problematic and 
would likely vary more widely between assessors and their marking criteria. 
Most mark schemes would suggest that Student C’s approach would be worth 
some partial marks as the method employed was logically sound and 
mathematical in nature, but the final result was undermined by a careless 
oversight in missing that the number 50 did not belong to any of the 50 pairs 
which each summed to 100.It would, however be scalable to similar but larger 
problems and the student may be unlikely to make such an error again. By 
contrast Student B’s approach would usually be awarded full marks as its final 
answer is correct, although its method is of little value to larger problems and 
shows minimal development of mathematical argument or generalizable skills. 

Despite this deficit, it does not seem to be reasonable not to award Student B 
full marks as the student has answered the question correctly. What, then, are 
the alternatives to ensure that the marking criteria can separate students who 
can develop and display mathematical thought from those who can unthinkingly 
apply a brute force routine?  

Traditionally, a question might have a “using method X” type statement, but this 
is clearly far from ideal; it takes away the student’s opportunity to select the most 
reasonable approach for the question. Another option is to set problems with a 
sufficient time constraint such that a solution could only be reasonably be 
obtained if some degree of mathematical understanding were demonstrated. An 
example of this would asking a student to integrate an odd function on an interval 

which is symmetric about 0. For example, if asked to evaluate 
10

7

10

cos( )x x dx


 , a 

student may obtain a correct solution via multiple implementations of integration 
by parts but this would be time-consuming. Another student may recognise that 
an odd function would necessarily integrate to zero on this interval. With 
sufficient time constraints, only one such approach would likely yield the correct 
answer within the allotted time. The downside of this approach, however, is that 
it may incentive students to simply guess answers. If there is a problematic 
integral which they feel they should be able to evaluate in under a minute, they 
may simply guess the answer without understanding the mathematical concept 
examined. 

Example from Undergraduate Cohort 

In 2018, a cohort of 98 students at the University of Technology Sydney enrolled 
in a first-year undergraduate level subject in Probability and Random Variables. 
When studying finite discrete Markov Chains and their equilibrium distributions, 
students had studied about both what these were conceptually and also that 
they could be obtained via eigenvalue-eigenvector methods from the transpose 
of the associated transition matrix. When presented with a tutorial problem 
(Figure 1) whose solution could be more easily obtained by simple inspection 
and understanding of the system, many students instead attempted to employ 
the much more arduous routine rather than the much more direct approach 
which they could have used if they had fully understood the problem.  



 

 

 

Find the equilibrium 
distribution

 Πeq A B C Dπ π π π  

for the Markov Chain 
represented by the state 
transition diagram here 
where Aπ  is the 

equilibrium probability 
that the system is in 
State A etc. 

Figure 1  The tutorial problem presented to students.  

 

This problem can be solved, like all similar problems with finite discrete Markov 
Chains, via calculating an eigenvector of the transpose of the transition matrix, 

in this case 
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. For this problem, however, it can be seen by 

inspection that the system will eventually reach a point whereby it is always in 

State B or State D, each 50% of the time hence  Π 0 0.5 0 0.5eq  . 

Student results were grouped based on each student’s answer to this one 
tutorial question, by whether or not the student had attempted the more direct 
answer or not and whether or not the answer obtained was correct. After the 
(independent) final exam, the performance of all students within each of the four 
groups was recorded. Table 2 shows the pass rate for each group. 

Method employed, Result n = Pass rate 

Direct, Correct 20 90% 

Routine, Correct 24 75% 

Direct, Incorrect 8 87.5% 

Routine, Incorrect/No attempt 29 37.93% 

Table 2: Pass rates for the four groups. From the cohort of 98 enrolled 
students 17 were absent either for the tutorial in question of the final 
exam and were excluded from this dataset. 

Given the very small sample size here, few definitive conclusions can be drawn 
but this small study perhaps poses interesting questions for future larger 
evaluation projects. It is interesting to note that the pass rate for students who 



simply applied the more arduous eigenvector method and got the answer correct 
was lower than that for students who attempted to figure out the answer directly 
from the problem description. 

Quasi-Multiple-Choice Questions 

One possible approach to gain the benefits of problems which reward 
mathematical understanding as opposed to applying rote-learnt routines while 
not rewarding guesswork is quasi-multiple-choice questions. For such 
questions, students would be presented with a choice of which question to 
answer from a finite list and would then be required to provide an open-ended 
answer to their chosen problem. Each of the options would be chosen to be 
likely intractable in the relatively short time allocated if only routine tools were 
employed. One option would be set up so that it can be quickly answered by 
students who understand and observe that better methods may exist for 
problems of the type of that option. An example of this is given in Table 3 

Evaluate one of the following definite integrals.  

Clearly state which part (a, b, c or d) you have answered. 

a) 

10

6

10

cos( )x x dx


  b) 

10

7

10

cos( )x x dx


  c) 

10

6

0

cos( )x x dx  d) 

10

7

0

cos( )x x dx  

Table 3: An example of a quasi-multiple choice question.  

All questions may be answered by multiple implementations of integration by 
parts. In all cases, however, this is a non-trivial task timewise. A student who 
understands that one of these problems involves integrating an odd function on 
an interval symmetric about 0 would readily choose to answer part b and give 
the answer 0. 

At the moment, this quasi-multiple choice concept has not, to the best of my 
knowledge, been tested on a student cohort but may be implemented in the near 
future. 

Discussion 

Increasingly, student attainment is quantified and recorded at all levels from 
preschool right through to postgraduate education (Thomas and Klymchuk 
2012). An unintended consequence of this – at least in mathematics education 
– has been the prioritisation of results (which can be readily measured) over 
skills and understandings (which are more difficult to quantify directly.) This is 
perhaps further worsened by the appealing rise of technology-enabled marking 
which, in general, will only check whether a result is numerically (or, in some 
cases, algebraically) equal to a known result and not how that result was 
obtained. Additionally, there is increasing evidence from around the world (Le 
et al. 2010, Trenholm et al. 2018) that many modern technology-dependent 
subject delivery modes are further creating opportunities for superficial learning 
at the expense of skill or thought development. 

Much of the discussion must come back to a more philosophical question of why 
assessment is ever undertaken. Marks and grades should not be awarded as a 
prize for an answer or as a goal in and of themselves; they are supposedly a 



proxy for the skills a student should have demonstrated. Assessment questions 
which can be answered through rote learning or surface understanding may 
encourage students to maximise their total marks even if it this comes at the 
expense of genuine intellectual development. In recent years, there have been 
several interesting projects seeking to address such issues, perhaps most 
notably the Reframing Mathematical Futures II project, led out of the Royal 
Melbourne Institute of Technology (Siemon 2017). Focussing on the crucial 
Middle Years (Year 7 to Year 10), the project seeks to give “teachers, textbook 
authors and curriculum writers a sense of what type of reasoning they can 
expect and encourage at each level and in what directions students’ reasoning 
should be developed” (Stacey 2010) 

The work discussed here seeks to extend and build on these initiatives in the 
context of fostering undergraduate-level mathematical thinking. Although ideas 
such as the quasi-multiple-choice question remain as yet untested, if properly 
refined and developed, they perhaps offer an opportunity to blend the best 
opportunities afforded by technology-aided assessment with the need to 
incentivise students to prioritise mathematical thinking processes as well as 
obtaining a numerically-correct result. 
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