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Abstract
The fate of coccolithophores in the future oceans remains uncertain, in part due to key factors having not

been standardized across experiments. A potentially moderating role for differences in day length (photoperiod)
remains largely unexplored. We therefore cultured four different geographical isolates of the species Emiliania
huxleyi, as well as two additional species, Gephyrocapsa oceanica (tropical) and Coccolithus braarudii (temperate),
to test for interactive effects of pCO2 with the light : dark (L : D) cycle. We confirmed a general regulatory effect
of photoperiod on the pCO2 response, whereby growth and particulate inorganic carbon and particulate organic
carbon (PIC : POC) ratios were reduced with elevated pCO2 under 14 : 10 h L : D, but these reductions were
dampened under continuous (24 h) light. The dynamics underpinning this pattern generally differed for the
temperate vs. tropical isolates. Reductions in PIC : POC with elevated pCO2 for tropical taxa were largely
through reduced calcification and enhanced photosynthesis under 14 : 10 h L : D, with differences dampened
under continuous light. In contrast, reduced PIC : POC for temperate strains reflected increases of photosynthe-
sis that outpaced increases in calcification rates under 14 : 10 h L : D, with both responses again dampened
under continuous light. A multivariate analysis of 35 past studies of E. huxleyi further demonstrated that differ-
ences in photoperiod account for as much as 40% (strain B11/92) to 55% (strain NZEH) of the variance in
reported pCO2-induced reductions to growth but not PIC : POC. Our study thus highlights a critical role for day
length in moderating the effect of ocean acidification on coccolithophore growth and consequently how this
response may play out across latitudes and seasons in future oceans.

Primary productivity by oceanic phytoplankton drives the
flux and eventual sequestration of carbon from the atmosphere
into the deep ocean. Calcium carbonate (CaCO3) biomineraliz-
ing nanoplankton (coccolithophores) are considered particularity

critical to this role as their photosynthesis directly assimilates
CO2, while their calcification provides dense mineral for ballast-
ing and facilitates export to the deep sea (Klaas and Archer 2002;
Bach et al. 2016). Coccolithophores appear particularly suscepti-
ble to ocean acidification (OA), the process whereby rising atmo-
spheric pCO2 concentrations are resulting in lower ocean pH
and modifications to carbonate chemistry (see Meyer and Riebe-
sell, 2015).

Experiments conducted on laboratory monocultures, as well
as natural populations, generally observe that exposure to ele-
vated pCO2 decreases coccolithophore calcification and/or inc-
reases photosynthetic rates (Riebesell 2004; Hoppe et al. 2011).
Shifts in the balance of calcification to photosynthesis drive a
decline in cellular ratios of particulate inorganic carbon (PIC) to
particulate organic carbon (POC), implying significant biogeo-
chemical implications (Ridgwell et al. 2009; Meyer and
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Riebesell 2015). However, coccolithophore responses are mod-
erated by several factors, which influence their productivity,
other than ocean carbonate chemistry, including temperature
(Sett et al. 2014; Feng et al. 2017), nutrient availability
(Lefebvre et al. 2011; Rouco et al. 2013; Tong et al. 2016), life-
cycle stage (Rokitta and Rost 2012; Kottmeier et al. 2014), and
taxonomy (Langer et al. 2006; Rickaby et al. 2010). Cocco-
lithophore responses may also be strain-specific (Langer
et al. 2009) and dependent upon environmental history and
local adaptation (Lohbeck et al. 2012).

Many OA studies have focused on the ubiquitous and abun-
dant coccolithophore species Emiliania huxleyi. Several morpho-
types and strains of E. huxleyi exist (Brand 1982; Young 1994),
which demonstrate varying responses to elevated pCO2

(e.g., Langer et al. 2009), potentially reflecting localized adapta-
tions to specific oceanic regions (Findlay et al. 2011). Species
other than E. huxleyi may also be regionally significant calcifiers
(Daniels et al. 2014, 2016). For example, Gephyrocapsa spp. can
contribute significantly to the coccolithophore community and
suspended PIC pool in the southeast Pacific and Mediterranean

Sea (Beaufort et al. 2007; Carmen �Alvarez et al. 2010). However,
only five coccolithophore species other than E. huxleyi have
currently been studied in the context of OA: Calcidiscus lepto-
porus (Langer et al. 2006; Diner et al. 2015), Calcidiscus quadri-
perforatus (Diner et al. 2015), Coccolithus braarudii (Langer
et al. 2006; Rickaby et al. 2010), Gephyrocapsa oceanica (Rickaby
et al. 2010; Sett et al. 2014), and Syrachosphaera pulchra (Fiorini
et al. 2011). Given that different species and strains represent
populations adapted to specific environmental conditions, it is
plausible to expect that the pCO2 response of tropical species
(and isolates) may differ from that for temperate species, for
example, due to differences in the temperature, light, and nutri-
ent climates, as well as carbonate chemistry buffering of their
natural environment.

Light availability is a key environmental driver of cocco-
lithophore productivity, with changes to dosage via intensity
(Zondervan et al. 2001; Rost et al. 2002; McCarthy et al. 2012;
Rokitta and Rost 2012; Jin et al. 2017), spectral quality (Gao
et al. 2012; Jin et al. 2013), and frequency (Jin et al. 2013), all
moderating how they respond to OA. Only three studies, on a
single temperate isolate of E. huxleyi (PML B92/11; Rost
et al. 2002, 2006; Zondervan et al. 2002), have tested for an
interactive role of pCO2 with differences in light dose (day
length). Although these studies did not report any significant
responses, this outcome is not directly consistent with physio-
logical expectations.

First, both increased pCO2 (Bach et al. 2013; Kottmeier
et al. 2014) and day length (Rost et al. 2006) decrease the
dependency of photosynthesis on HCO3

− and hence on car-
bon concentrating mechanism (CCM) activity (Bach
et al. 2013). Although photosynthetic rates are often higher
under increased pCO2, photosynthetic efficiency is lower with
increased photoperiod (Nielsen 1997; Rost et al. 2002, 2006;

Zondervan et al. 2002) as affinity for inorganic carbon
(Ci) is reduced (Rost et al. 2006). Enhancement of photosyn-
thesis by increased pCO2 may then be canceled out when the
photoperiod is increased. Second, calcification decreases with
pCO2 due to elevated H+ concentration ([H+]; Bach et al. 2013,
2015; Fukuda et al. 2014) but appears unchanged with photo-
period (Rost et al. 2002; Zondervan et al. 2002). As calcifica-
tion directly competes with photosynthesis for HCO3

− as a
substrate (Rokitta and Rost 2012; Bach et al. 2013; Bolton and
Stoll 2013), the decreasing dependency of photosynthesis on
HCO3

− (CCM activity), via increased pCO2 and photoperiod,
may then ultimately reduce the negative impact of elevated
[H+] (Bach et al. 2013).

These two lines of evidence indicate that the decline in the
PIC to POC ratio (PIC : POC) with increased pCO2 (see Meyer
and Riebesell 2015) should be lessened when the photoperiod
is also increased. However, such an expectation may ulti-
mately depend on the strength of the CCM (Rost et al. 2002,
2006) and the mechanism of Ci acquisition for photosynthesis
and/or calcification (Rickaby et al. 2010; Meyer and Riebesell
2015; Taylor et al. 2017), and hence the coccolithophore spe-
cies (or even isolate).

Photoperiod is a key factor regulating the timing and dura-
tion of seasonal productivity (Longhurst et al. 1995), which
becomes increasingly seasonally extreme toward polar latitudes
that are the least buffered against changes due to elevated pCO2

and OA (Shadwick et al. 2013). While day length is not influ-
enced by climate change, ocean warming and the associated
stronger stratification will alter the light dose (and nutrient avail-
ability) for phytoplankton in the upper ocean. Differences in
photoperiod have not been standardized across laboratory exper-
iments (Meyer and Riebesell 2015) or field studies that span
broad latitudinal gradients (Poulton et al. 2013; Richier
et al. 2014) and therefore, represents a key untested source of
variability in pCO2 responses. We conducted a multifactorial
experiment to examine interactions between photoperiod and
pCO2 upon geographically diverse coccolithophores. Specifically,
we tested the hypothesis that OA-induced declines to PIC : POC
ratios will be significantly lower under continuous 24 h light
regimes compared to a 14 : 10 h light : dark (L : D) photoperiod.
To consider our experimental results more broadly, we also con-
structed a database of responses from previous published studies
to examine the potential interactive influence of photoperiod to
elevated pCO2.

Methods
Strain selection and culture conditions

Six coccolithophore isolates were selected to enable intercom-
parison of day length–CO2 interactions within and between spe-
cies: four isolates of E. huxleyi (PCC70-3, PCC124-3, RCC962,
and NZEH) and one isolate each of G. oceanica (RCC1804) and
C. braarudii (PLY182) (Table 1). These isolates were chosen to
represent a cross section of geographical origin, isolation date,
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morphotype (for E. huxleyi), and cellular inorganic content (PIC
per cell; Supporting Information Table S2) under steady state
ambient pCO2. Isolates of E. huxleyi examined included those
from temperate (PCC70-3, PCC124-3, and NZEH) and tropical
(RCC962, French Polynesia, 8�190S, 141�150W) locations and
encompassed morphotypes A (PCC124-3), B (PCC70-3), and R
(NZEH; Young 1994). C. braarudii is a heavily calcifying cocco-
lithophore commonly found in temperate coastal and upwelling
regions (Daniels et al. 2014), whereas G. oceanica is found in tem-
perate and subtropical open-ocean regions, with the isolate used
in this study originating from the tropics (Sipadan, Malaysia,
4�60N, 118�370E).

All species were grown as semicontinuous cultures in climate-
controlled growth cabinets (Sanyo Gallenkamp, Fitotron
PG660), where temperate organisms (E. huxleyi stains PCC70-3,
PCC124-3, and NZEH and C. braarudii) were maintained at 17�C
and the tropical organisms (E. huxleyi stain RCC962 and
G. oceanica) were maintained at 20�C. All cultures were grown at
a light intensity of 150 μmol photons m−2 s−1. Cultures were
maintained in artificial seawater enriched with f/2 nutrients
(Guillard 1975), plus selenium, and diluted where necessary to
maintain cells in exponential growth. All media was filter steril-
ized via a 0.2-μm filter (Polycap 36AS, Whatman Filters) as
autoclaving resulted in significant reductions to the total alkalin-
ity. Triplicate 750 mL volumes for each isolate were simulta-
neously grown at ambient pCO2 (present day, ~ 390 ppm) and
under elevated pCO2 representative of future representative con-
centration pathway 8.5 (IPCC 2014) for 2080 (~ 1000 ppm).
Two different photoperiods were used: a 14 : 10 h L : D cycle
vs. continuous 24 h light, with a total daily photon dose of 15.1
and 25.9 mol photons m−2 d−1, respectively. Cultures were mon-
itored daily via cell counts using a Neubauer hemocytometer. All
cultures were harvested for physiological analyses once steady
state growth rates (μ, d−1) remained stable (< 5% difference
according to a daily running average), which typically required
3 to 4 weeks (= 15–20 generations).

Controlling and monitoring the carbonate system
Carbonate chemistry within the culture vessels was main-

tained by bubbling with CO2-enriched air via a series of mass

flow controllers (MFCs, EL-FLOW F-201AV; Bronkhorst High-
Tech), with a cylinder of 10% CO2 (BOC) and an air compressor
(Bambi, HT15 oil-free compressor). Each culture vessel was con-
nected separately to an MFC via nylon tubing. Ambient air fed
via the compressor was first passed through soda lime (Sigma
23,888) to remove CO2 and thus standardize the CO2 content.
MFCs were connected to PC-software (Bronkhorst High-Tech)
that both controlled and recorded the airflow and subsequently
to a gas mixer equipped with four taps. One tap fed to an infra-
red gas analyzer (Li-Cor, LI-820 analyzer) connected to a laptop
to verify the desired CO2 concentration, whereas the other three
taps ran into one set of triplicate cultures at a rate of 150 mL
min−1. All air-in and air-out ports on the culture vessels were
fitted with 0.2 μm hydrophobic air filters (Millipore), and an air
stone attached to the outflow of the air-in line within each cul-
ture vessel maximized diffusion of the gas into the media. Sterile
f/2 media was bubbled with the target pCO2 for 24 h before
inoculation to allow for pre-equilibration of the carbonate chem-
istry. All culture vessels were continuously stirred via a magnetic
stir plate to reduce formation of gas gradients and of cells settling
and/or clumping within the cultures. To ensure that the MFCs
provide full control over the biology, an initial experiment using
batch cultures for each isolate was used to identify the cell con-
centration at which each isolate began to induce modifications
to the carbonate chemistry. In all cases, cell concentrations of
~ 1 to 1.5 x 105 cells mL−1 began to induce significant draw-
down of total alkalinity. Periodic dilutions of the main experi-
mental cultures to maintain cells in exponential growth were
then used to maintain cell concentrations below this threshold.

Several parameters of the carbonate chemistry were moni-
tored daily from all culture vessels: total alkalinity (AT)
was measured using a Titrino auto-titrator (Metrohm;
0.024 mol L–1 HCl) on 20 mL aliquots gently gravity-filtered
through a 0.2-μm syringe filter (Minisart filter, Sigma-Aldrich).
Dissolved inorganic carbon (CT) was determined on a separate
15 mL aliquot, also through a 0.2-μm syringe filter, whereby the
filtrate was transferred to ashed glass vials (500�C, 3 h). Samples
were then analyzed using a total carbon analyzer (Shimadzu
TOC-VCSH Total Organic Carbon Analyzer with ASV-I autosam-
pler) calibrated with bicarbonate standards. Both AT and CT were

Table 1. Strain information (E. huxleyi morphotype [B, A, R] is indicated where known). SST data from optimum interpolation sea sur-
face temperature database and minimum and maximum temperatures for 2016 in�C. Light dose is calculated from day length and
mean PAR values (derived using the “R” package “phytotools”) and is in mol photons m−2 d−1.

Species Strain identifier(s) Location
Isolation
date

SST
(min–max)

Day length
(min–max)

Light dose
(min–max)

E. huxleyi RCC962/Biosope_32B_FL1-3 French polynesia, 8�190S, 141�150E Oct 2004 26.5–30.6 11–13 21.2–30.5

E. huxleyi (B) PCC70-3 Northern North Sea, 56�170N, 3�210E Jul 2011 6.5–16.2 8–16 1.3–40.5

E. huxleyi (A) PCC124-3 Bay of Biscay, 46�60N, 7�80W Jun 2011 12.0–19.5 9–15 4.6–37.9

E. huxleyi (R) NZEH/PLY M219/COWPO6 South Pacific (New Zealand),

47�410S, 174�10E
1992 7.8–13.1 9–15 4.0–40.3

G. oceanica RCC1804/Sipadan DM2-4 Sipadan, Malaysia, 4�60N, 118�370 E Dec 2008 28.4–30.0 11–12 25.7–25.8

C. braarudii PLY 182G English Channel, 50�100N, 4�170W Nov 1990 9.8–17.2 8–16 2.8–40.7
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then used to determine the entire carbonate system via CO2SYS
software (ver. 14) (Pierrot et al. 2006). Carbonate chemistry
recorded throughout the experiment in this way demonstrated
that our approach consistently maintained pCO2 at the desired
concentrations (see Supporting Information Table S1); it is
important to note that even with regular dilution and the proto-
cols employed above, some drawdown in AT and CT was still evi-
dent, particularly in the high CO2 treatments.

All cultures were finally sampled for the following:
PIC and POC Analysis—Two aliquots of 150 mL were each

filtered down onto ashed (500�C for 3 h) 25 -m MF300 glass
fiber filters (Fisher Scientific) and then placed in a desiccator
to dry for 24 h. Samples were stored in sterile cryotubes for
subsequent analysis. One of the paired filters was acidified
with ~ 2 mol L–1 HCl to drive off inorganic carbon and further
dried for 24 h. Total carbon on both filters was then deter-
mined using a carbon analyzer (Shimadzu TOC-VCSH Total
Organic Carbon Analyzer with ASV-I autosampler) calibrated
using a glucose standard. POC was quantified on the acidified
filters, and PIC was calculated by subtracting POC from the
total carbon from the nonacidified filters. PIC and POC con-
tent was normalized to corresponding measurements of cell
concentration.

Growth rates and cell size—Cell concentrations were quanti-
fied daily from each culture using a Neubauer hemocytometer
(Fisher Scientific). Doubling rates (μ) were calculated as μ

(d−1) = (ln c1 – ln c0) � Δt−1, where c0 is the initial count
(cells mL−1), c1 is the final count (cells mL−1), and Δt is the
time between the two counts (d). Mean cell size was measured
from a separate 15 mL aliquot from each culture using a Z1
Coulter Particle Counter (Beckman Coulter). Coccosphere thick-
ness was estimated by adding 5 μL of 0.25 mol L–1 HCl to the
sample to dissolve the coccoliths before rerunning each sample
through the particle counter, after Franklin et al. (2010). Differ-
ence in mean cell diameter before and after acidification was
taken as an estimate of the thickness of the coccosphere.

Data treatment and analysis
To directly examine the potential influence of day length

and species upon any OA response, absolute values for each
core variable (μ, cellular PIC content, cellular POC content,
PIC : POC, cell size; see Supporting Information Table S2) were
used to calculate the % change with increasing pCO2 (Suggett
et al. 2013). For this, values from replicate treatment vessels
Vt1, Vt2, Vt2 were always expressed as a % change from its
respective replicate control vessel, Vc1, Vc2, Vc2 since vessels
Vt1–Vc1, Vt2–Vc2, and Vt3–Vc3 were located pairwise in the
same area of the incubator. Periodic light measurements (QSL-
101 scalar quantum irradiance sensor, Biospherical Instru-
ments) demonstrated that the light fields for the pairwise
vessel arrangement in the incubators were the same for
control and respective treatment. Percentage data were tested
for normality (MATLAB) and divided by 100 prior to arcsin
transformation. The interactive influence of day length and

species on the percentage change for each response variable to
elevated pCO2 was then tested via two-way analysis of vari-
ance (ANOVA; MATLAB). The interactive effect of CO2 and
L : D cycle was also tested on the absolute values for μ, cellular
PIC content, cellular POC content, and PIC : POC for each
species via two-way ANOVA (see Supporting Information
Table S3).

E. huxleyi database
A database was constructed from past OA studies on cocco-

lithophores to more broadly consider our experimental results of
the potential influence of photoperiod upon growth and cellular
(sin)organic carbon content (Supporting Information Table S4).
Values for growth rate (μ) and PIC : POC were extracted along
with corresponding growth conditions (temperature, T; salinity,
S; photoperiod, L : D; nitrogen-to-phosphate ratio, N : P; light
intensity, E; total alkalinity, AT; and pCO2) and strain identifica-
tion. CO2SYS was used to calculate AT and/or pCO2 where other
carbonate chemistry parameters were reported; however, only AT

and pCO2 were included in subsequent multivariate analysis to
minimize potential autocorrelation.

To be consistent with our experimental approach, data were
only selected from studies where pCO2 was manipulated via the
CT pool as opposed to AT or Ca2+ availability (see Meyer and Rie-
besell 2015). Noncalcifying isolates were not included in the
analysis, or instances where PIC per cell was not measured
alongside POC per cell and μ. The method used to manipulate
CT (i.e., CO2 bubbling vs. acid–base additions with bicarbonate)
was not considered a variable in our analysis since these two
alternative CT manipulation approaches have been shown to
perturb the carbonate system in a similar way (Gattuso and
Lavigne 2009). Values for μ, PIC : POC, and pCO2 for the “OA
treatments” (T) were normalized relative to those for the corre-
sponding present-day ambient (A) control (μT:A, PIC : POCT:A,
and pCO2T:A). This ensured that any residual variability of μT:A or
PIC : POCT:A not explained by CO2T:A must be from other exper-
imental factors and/or isolate (as per Suggett et al. 2013); this
approach also accounts for potential discrepancies in the mea-
surements (e.g., analytical accuracy) of the independent variables
across studies. Normalized values for the control (i.e., μT:A,
PIC : POCT:A, and CO2T:A = 1) were then discarded from the data
set. Following these criteria, only a few data sets were available
for coccolithophore species other than E. huxleyi and therefore
we finally restricted our wider analysis to isolates of only this
species, to yield 159 data points from across 35 studies
(Supporting Information Table S4).

Positive (irradiance [E], CO2T:A) or negative (PIC : POCT:A)
variables were initially identified (MATLAB) and then square
root or square transformed, respectively, to stabilize the vari-
ance. The PRIMER-BEST match permutation (PRIMER v6,
PRIMER-E Ltd.) was then used to identify variables that best
explained variance of μT:A or PIC : POCT:A via repeated (99) per-
mutation testing. Data were standardized within each variable
category to ensure comparable measurement scaling and
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Euclidian distance used to produce the corresponding resem-
blance matrix. Significant variables identified from the
PRIMER-BEST match were then entered into a multiple step-
wise regression (MSR; MATLAB).

Results
Experimental conditions

It was important to ensure the carbonate system was as
tightly controlled as possible. Final pCO2 tended to be slightly
higher than the target in the ambient cultures but overall by
only � 15% in the 1000 ppm cultures. AT was typically
reduced in cultures via calcification. Media in ambient CO2

cultures was more stable, with AT only drifting by 2% to 7%
below that expected (~ 2400 μmol kg−1), whereas the high
CO2 cultures typically fell below 2000 μmol kg−1. The total CT

pool ranged from 1851 to 2428 μmol kg−1 and was consis-
tently lower in high CO2 cultures. Overall, the different L : D
cycles did not affect changes in carbonate chemistry.

Growth and carbon assimilation
Growth rates (μ, d−1) for the 14 : 10 h photoperiod typically

declined with elevated pCO2 (Supporting Information
Table S2), whereby the percentage change in growth rate (μ)
from ambient to elevated pCO2 was −50% to −60% (E. huxleyi
strain 962, G. oceanica) or −15% (E. huxleyi strains NZEH, 70-3,
and 124-3; Fig. 1A). Only C. braarudii exhibited a slight
increase in μ (4%) with elevated pCO2. In contrast, under con-
stant light, the decrease in μ from ambient to elevated pCO2

was only −50% (E. huxleyi strain 962) or −10% to −20%
(E. huxleyi strain NZEH and G. oceanica), and for all other taxa
μ increased by 3% to 5%. Thus, the longer photoperiod gener-
ally dampened or fully reversed the extent with which ele-
vated pCO2 lowered the growth rate (see also Table 2).

A similar response to photoperiod across taxa was observed
for the percentage change in PIC : POC from ambient to ele-
vated pCO2 (Fig. 1B). Specifically, PIC : POC was decreased
with elevated pCO2 by −70% (E. huxleyi 962, G. oceanica) or
−5% to −30% (all other taxa) under the 14 : 10 h photoperiod
compared to only −40% to −50% (E. huxleyi stain 962 and
G. oceanica) or −5% to 10% (all other taxa) under continuous
light. While small differences in the extent of pCO2 increase
between control and treatments were evident between isolates
(Supporting Information Table S1), neither the percentage
change in μ nor in PIC : POC for either photoperiod signifi-
cantly correlated with the corresponding percentage change
in pCO2 across taxa (Fig. 1C,D) and thus are not considered a
major source of variance.

Greatest reductions of μ and PIC : POC with increased
pCO2 under both photoperiods were observed for the two
tropical isolates, E. huxleyi stain RCC962 and G. oceanica and
reflected PIC per cell and POC per cell responses that were
very different compared to all other taxa (Fig. 1E,F). First, both
E. huxleyi stain RCC962 and G. oceanica were the only two

taxa to exhibit decreased PIC per cell with elevated pCO2; this
effect was greater under the 14 : 10 h photoperiod (−60% to
−70%) than under continuous light (−20% to 2%) (Fig. 1F).
All other taxa exhibited an increase in PIC per cell with
increased pCO2 by 10% to 30% for the 14 : 10 h photoperiod,
and to a lesser extent (10–20%, and in the case of
C. braarudii − 2%) under continuous light.

Second, all taxa exhibited an increase in POC per cell with
increased pCO2 under the 14 : 10 h photoperiod (25–55%
E. huxleyi stain 962 and G. oceanica; 30–80% all other taxa;
Fig. 1E). However, the percentage change of POC per cell with
increased pCO2 was higher for E. huxleyi stain RCC962 and
G. oceanica under continuous light (65–75%), whereas it was
lower for all other taxa (0–15%) compared to the 14 : 10 h
photoperiod. Together, these trends indicate two contrasting
functional responses among the taxa examined: (i) pCO2-
driven increases in photosynthesis and decreases in
calcification were enhanced and dampened, respectively, with
the longer photoperiod for E. huxleyi stain RCC962 and
G. oceanica and (ii) pCO2-driven increases in both photosyn-
thesis and calcification were both dampened (but with a
greater dampening of photosynthesis over calcification) with
the longer photoperiod for all other taxa.

General, but subtle, differences were also evident among
these two functional response groupings in cellular allocation of
PIC and POC for the different pCO2 and photoperiod treatments
(Figs. 1 and 2). Under the 14 : 10 h photoperiod, all taxa gener-
ally exhibited reduced (or slightly elevated; C. braarudii) μ but
larger cells with elevated pCO2 (Fig. 2A); these larger cells were
generally accompanied by substantially thinner (E. huxleyi stain
962 and G. oceanica) or thicker (all other taxa except C. braarudii)
coccospheres (Fig. 2B; Supporting Information Table S2). No
consistent trends in cell size or coccosphere thickness under ele-
vated pCO2 were evident under continuous light between these
two groups, but all taxa still generally exhibited reduced growth
rates (and lower PIC : POC).

A two-way ANOVA (see Supporting Information Table S3)
to test for possible interactive effects of pCO2 and day length
on the absolute values for growth and carbon allocation fur-
ther showed that L : D cycle was more important in driving
the changes observed across μ, PIC, POC, and PIC : POC for
the temperate isolates (E. huxleyi stains NZEH, 70-3, and
124-3) with interactive effects of L : D with pCO2 for μ and
POC. In contrast, CO2 was the more important variable for
the two tropical isolates (E. huxleyi stain RCC962 and
G. oceanica).

Broader data analysis for E. huxleyi
Collation of data from across past studies did not result in

any clear trends between elevated pCO2 ([CO2]T:A) and the rela-
tive change in growth rate (μT:A) when considering data from
previous studies (Fig. 3; Table 3). However, the BEST test
analysis (and MSR) identified that photoperiod (L : D), along
with nutrient availability (N : P), was a significant variable in
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Fig. 1. The combined effect of elevated pCO2 and light : dark cycle on growth rate (μ) (A and C), calcification (PIC : POC) (B and D), and cellular POC
(E) and PIC (F) quotas on six coccolithophores: four strains of E. huxleyi (NZEH, 962, 70-3, and 124-3), G. oceanica (Go), and C. braarudii (Cb). The data
are presented as percent change between low (400 μatm) and high (1000 μatm) CO2.

Table 2. Summary of two-way ANOVA examining the influence of genotype (coccolithophore species, E. huxleyi isolate, n = 6;
Table 1) and photoperiod (14 : 10 h vs. 24 h) upon the percentage change in response variable to elevated pCO2 (see Methods
section for procedures describing pretest normalization). Significant outcomes and interactions are highlighted in bold.

Source of variation

Growth PIC per cell POC per cell PIC : POC Cell size

df F p F p F p F p F p

Genotype 5 55.7 <0.001 27.1 <0.001 3.16 0.025 37.0 <0.001 2.67 0.047
Photoperiod 1 30.6 <0.001 3.81 0.060 5.35 0.030 38.8 <0.001 8.30 0.008

Genotype x photoperiod 5 4.19 0.007 12.6 <0.001 10.4 <0.001 2.35 0.072 2.70 0.045
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controlling the trends in μT:A across all the studies included in the
analysis, though they only explained < 10% of the variance. Our
experimental data strongly indicated that E. huxleyi isolate was a
key source of variance in the relative response of μ to elevated
pCO2 (Fig. 1, above); therefore, we repeated this analysis for indi-
vidual E. huxleyi isolates where relatively large data sets were avail-
able (B92/11 and NZEH; see Supporting Information Table S4).
The BEST test analysis identified that both temperature (T) and
L : D cycle were significant variables in explaining the variance of
μT:A for B92/11 and NZEH. However, the MSR was not able to
incorporate all variables into a single model; only T for B92/11
and L : D cycle for NZEH were successfully incorporated, explain-
ing 38% and 54% of the observed variance, respectively.

In contrast to μT:A, PIC : POCT:A was consistently related to
elevated pCO2 ([CO2]T:A) when considering all data (25.9%)
but also when considering data for only B92/11 (58%) or
NZEH (48%) (Table 3). Additionally, T was consistently identi-
fied as another important variable in explaining the variance
in PIC : POCT:A. While the decline in PIC : POC with elevated
pCO2 from our experiments varied substantially between
E. huxleyi isolates (Fig. 3), the regression slope of PIC : POCT:A

vs. [CO2]T:A for B11/92 was not significantly different from
that for NZEH (see Fig. 3 legend). However, overall, and in
contrast to our experimental data, photoperiod was not identi-
fied as a significant moderating variable in the response of
PIC : POC to pCO2 in this wider data set.

Discussion
Both photoperiod and Ci availability are well recognized to

influence the productivity and growth of microalgae, including
coccolithophores (Nielsen 1997; Rost et al. 2006). However,
previous studies investigating an interactive role of photoperiod
with pCO2 on a single isolate (E. huxleyi stain B92/11) did not

report any significant responses in terms of productivity or
growth (Rost et al. 2002, 2006; Zondervan et al. 2002). In con-
trast, our multifactorial experiment demonstrated a clear mod-
erating role for photoperiod upon elevated pCO2 exposure for
several isolates/species. However, while some patterns were evi-
dent (i.e., decreased growth rates with elevated pCO2 under the
shorter photoperiod), the interaction of pCO2 and photoperiod
ultimately yielded a more complex set of responses among the
isolates. For E. huxleyi, such a trend is consistent with previous
evidence for substantial intraspecific variation (Langer
et al. 2006, 2009), whereas few studies have considered the iso-
lates included in our study. Together, our data indicated general
functional responses for Ci assimilation among isolates:

i. E. huxleyi stain RCC962 and G. oceanica: POC per cell (photo-
synthesis) increased and cells became larger, whereas PIC per
cell (calcification) decreased and coccospheres thinned under
elevated pCO2 for the 14 : 10 h photoperiod. pCO2-driven
increases of photosynthesis and reductions of calcification
were exacerbated and dampened, respectively, under continu-
ous light. This was accompanied by larger cells and thicker
coccospheres for E. huxleyi stain RCC962 relative to smaller
cells and thinner coccospheres for G. oceanica.

ii. E. huxleyi stains 70-3, 124-3, and NZEH: photosynthesis and
calcification increased, cells became larger, and coccospheres
thickened with elevated pCO2 for the 14 : 10 photoperiod.
pCO2-driven increases to photosynthesis and calcification
were lessened under continuous light, with cells becoming
smaller while coccospheres remained thickened.

iii. C. braarudii: photosynthesis and calcification increased but
cells became smaller with a thinner coccospheres under
elevated pCO2 for the 14 : 10 h photoperiod. The same
response, except for unchanged calcification (PIC per cell),
was observed under elevated pCO2 with continuous light.

Fig. 2. Relationship between changes in cell size (A) and coccosphere thickness (B) with changes in growth rate (μ) at elevated pCO2 under two differ-
ent light : dark cycles for six coccolithophores: four strains of E. huxleyi (NZEH, 962, 70-3, and 124-3), G. oceanica (Go), and C. braarudii (Cb). The data
are presented as percent change between low (400 μatm) and high (1000 μatm) CO2.
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In agreement with our original hypothesis, these functional
responses always led to an overall decrease in PIC : POC with
elevated pCO2, which was notably lessened when day length
was longer. We observed differences in the extent of this
response between isolates/taxa, which presumably reflects dif-
ferences in the strength of the CCM (Rost et al. 2002, 2006)
and/or mechanism of Ci acquisition for photosynthesis
and/or calcification (Rickaby et al. 2010; Meyer and Riebesell
2015). It is typically accepted that coccolithophores have an
inefficient Ci pump (Rost et al. 2003), but the vast majority of
this data comes from only examining E. huxleyi. This species
has a low affinity for external CO2 and has been shown to uti-
lize bicarbonate (Zondervan et al. 2001; Rost et al. 2002;

Trimborn et al. 2007). E. huxleyi also has low or undetectable
carbonic anhydrase (CA) activity (Nimer et al. 1997). As such,
calcification has previously been proposed as a means of driv-
ing photosynthesis by directly providing CO2 (Nimer and
Merrett 1996; Sikes et al. 2009).

Previous work has demonstrated that G. oceanica relies mostly
on simple diffusion of CO2, but sometimes utilizes external CAs
in a manner similar to E. huxleyi (see Rickaby et al. 2010). Our
observations of G. oceanica showing a generally (but not exclu-
sively) similar response to E. huxleyi stain RCC962 vs. the other
E. huxleyi isolates could indicate that these taxa fall across a spec-
trum of reliance upon external CAs and/or simple diffusion. In
contrast, carbon for both photosynthesis and calcification by

Fig. 3. Changes in growth rate (μ) and calcification (PIC : POC) of strains of E. huxleyi (B11/92, NZEH, and all other strains) with changing pCO2

(A and B) and calcite saturation state (C and D). Data are from previously published works (see Supporting Information Table S3) and normalized to
control values (T = “treatment” values, A = “ambient” values).

Table 3. Multivariate output between environmental variables and (i) growth rate or (ii) PIC : POC. Environmental variables were tem-
perature (T), salinity (S), light intensity (E), photoperiod (L : D), nitrogen-to-phosphate ratio (N : P), total alkalinity (AT), as well as E. hux-
leyi isolate (see Supporting Information Table S3). Values for pCO2, as well as the independent variables, were values normalized as the
pCO2 treatment relative to pCO2 control (ambient, T : A; see main text) and with all values = 1 removed to avoid weighting by ambient
data. The BEST match permutation test shown is that resulting in the highest correlation coefficient (ρ) from the resemblance matrices
of the environmental data; the variables identified were subsequently included in the MSR.

Independent variable Taxa (n=)

BEST MSR

ρ p Variables Model F r2 p

μT:A All (155) 0.182 <0.01 L : D, N : P (−0.0113 � L : D)+1.177 15.8 0.095 <0.001

B92 (55) 0.342 <0.05 L : D, T, N : P (0.0394 � T) + 0.389 32.2 0.378 <0.001

NZEH (14) 0.425 0.103 T, E, L : D (0.0259 � L : D)+0.557 14.0 0.539 0.003

PIC : POCT:A All (159) 0.200 <0.01 S, T, [CO2]T:A (−0.107 � [CO2]T:A)+(0.017 � T)+0.768 27.1 0.259 <0.001

B92 (55) 0.311 <0.05 T, [CO2]T:A (−0.106 � [CO2]T:A)+(0.0595 � T)+1.991 35.4 0.576 <0.001

NZEH (20) 0.505 <0.01 T, [CO2]T:A (−0.041 � [CO2]T:A)+(0.0301 � T)+0.454 7.92 0.482 0.004
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C. braarudii is derived from one shared internal pool of DIC
actively transported into the cell, unless CT concentrations are
high enough in the surrounding seawater for cells to rely on sim-
ple CO2 diffusion (Rickaby et al. 2010). This perhaps explains
why this species responded differently to the other taxa tested
here. Unfortunately, without a full mechanistic analysis of the
carbon assimilation pathways amongst the different isolates,
resolving the underlying basis for these differences is not cur-
rently possible.

Light availability is known to affect Ci acquisition in
E. huxleyi, with both continuous light (Zondervan et al. 2001)
and high irradiances (Kottmeier et al. 2014; Zhang et al. 2015)
inhibiting HCO3

− uptake and resulting in a greater dependence
on CO2 diffusion. Both CO2 and high light have been reported
to interactively cause a H+ driven inhibition of HCO3

− uptake
(Kottmeier et al. 2016), which may explain why continuous
light appears to dampen the CO2-driven enhancement of POC
per cell (at least for the temperate isolates). Cells generally grew
more rapidly under continuous light (Supporting Information
Table S2), leading to a higher Ci requirement. However, the
reliance on CO2 diffusion imposed by both continuous light
and elevated pCO2 presumably does not allow an adequate Ci
supply to be maintained, since photosynthesis is not as
enhanced despite external Ci concentrations being high. At the
same time, PIC per cell either increased with CO2 (E. huxleyi
stains NZEH, 70-3, and 124-3) or was at least not as impaired
by CO2 as it was under the 14 : 10 h photoperiod (E. huxleyi
stain RCC962 and G. oceanica). This is possibly in order to use
H+ generated by calcification to drive external CAs, a mecha-
nism previously observed in G. oceanica (Rickaby et al. 2010), as
a means of “overcoming” the imposed reliance on CO2 diffu-
sion and keeping up with Ci demand.

The functional groupings we observed for the interactive
photoperiod-pCO2 responses at face value appear to corre-
spond with biogeographic origin, i.e., “temperate” (E. huxleyi
stains NZEH, 70-3, and 124-3 and C. braarudii) vs. “tropical”
(E. huxleyi stain RCC962 and G. oceanica) isolated species (see
Table 1). Considerable phenotypic variability is known to exist
between isolates of E. huxleyi (Iglesias-Rodriguez et al. 2006;
Müller et al. 2015), although past efforts have failed to fully
reconcile differences in isolate environmental history with OA
responses (Langer et al. 2009; Findlay et al. 2011; Blanco-
Ameijeiras et al. 2016). Furthermore, the previous pCO2

responses under both 14 : 10 h and continuous light regimes
for the temperate E. huxleyi strain B92/11 (Rost et al. 2002,
2006; Zondervan et al. 2002) are arguably more similar to
those for our “tropical” then “temperate” isolates.

A major potential source of variability underpinning our
observations is whether the experimental conditions (e.g.,
growth temperature and instantaneous irradiance) we exam-
ined confound direct comparisons of our observations across
taxa. While we see consistencies in trends across taxa with
two apparent functional groupings, we cannot determine
whether these reflect exposure to suboptimum or optimum

growth conditions equally across all isolates. For example,
20�C is below the growth optimum (25�C) for G. oceanica
(Rhodes et al. 1995; Buitenhuis et al. 2008). Elevated tempera-
tures have also been reported to decrease PIC per cell in cocco-
lithophores (Langer et al. 2007; Feng et al. 2009) and
sometimes cause malformation in coccoliths (Gerecht et al.
2018), although this is not consistent across studies (Feng
et al. 2008; Sett et al. 2014). High irradiances may cause
greater sensitivity to CO2 (e.g., G. oceanica), and can shift the
CO2 optima for growth, calcification, and photosynthesis to
lower concentrations (Zhang et al. 2015). CO2 sensitivity in
E. huxleyi has been shown to be dependent on photon flux
density, with CO2 effects observable above 150 μmol m−2 s−1

(Rost et al. 2002; Zondervan et al. 2002). In the current study,
cultures were maintained in ~ 150 μmol m−2 s−1, and while
this is within the limits of typical saturating light levels for
E. huxleyi under ambient CO2 conditions (Nimer and Merrett
1993), growth does not become inhibited until much higher
irradiances under high CO2 conditions (Zhang et al. 2015).
Tong et al. (2016) demonstrated that G. oceanica PIC per cell is
highest in low light conditions (50 μmol m−2 s−1), but daily
PIC production between 50 and 190 μmol m−2 s−1 is not sig-
nificantly different. As such, the distinct response observed in
our two tropical isolates may in fact be driven by very differ-
ent suboptimal growth conditions compared to the temperate
isolates; i.e., the low growth temperature used generally induc-
ing higher sensitivity to CO2, which is then coupled with a
high light dose to induce the more inhibited growth observed
under continuous light.

Although we observed a significant interactive effect of photo-
period upon the pCO2 response of μ and PIC : POC (Fig. 1;
Table 2) across all isolates we examined, a strong moderating role
for photoperiod across our broader analysis of past studies was
not observed (Table 3; with the exception of NZEH growth rate).
Consistent with previous analyses, we also observed a general
negative trend of CO2 on PIC : POC (Hendriks et al. 2010; Find-
lay et al. 2011), although with much heterogeneity between stud-
ies (Meyer and Riebesell 2015). This may reflect differences in
carbonate manipulation method across studies, which can signif-
icant impact on POC per cell (and hence PIC : POC) but not PIC
per cell (Meyer and Riebesell 2015), as well as differences in the
way pCO2 is calculated (Hoppe et al. 2012). However, the lack of
covariance most likely highlights that different aspects of cocco-
lithophore physiology are sensitive to different characteristics of
the carbonate system (Bach et al. 2011, 2015; Meyer and Riebesell
2015), as observed in our controlled experiments across isolates.
The lack of evidence for a moderating role of photoperiod pre-
sumably reflects the extent with which it has varied (compared
to other factors regulating growth) across prior studies.

Our statistical models indicated that salinity and tempera-
ture appear to be significant factors driving the sensitivity of
PIC : POC (and light influencing growth rate) to elevated
pCO2 (Table 3) across past studies. This could further support
the notion that the “tropical” vs. “temperate” responses
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observed during the culture experiments reflect different prox-
imities to environmental optima. Previous meta-analyses
showed that differences in nutrient regime and AT (Findlay
et al. 2011), as well as the method of carbonate manipulation
(Meyer and Riebesell 2015), have a strong regulatory effect on
PIC : POC response to elevated CO2. These studies used smal-
ler data sets than the analysis presented here, which means
the range of variance for the factors included will be different
between studies. Photoperiod may not return as a significant
variable simply because it is modified to a much smaller
extent across experiments. Additionally, these analyses are
likely further confounded by differences in achieved growth
rates across studies, which can have a significant effect on
PIC : POC (Daniels et al. 2014).

In summary, our results demonstrate how differences in
photoperiod can alter the observed physiological responses to
pCO2 in coccolithophores. Differences in functional response
between the tropical and temperate isolates may reflect subop-
timal growth conditions for E. huxleyi stain RCC962 and
G. oceanica, and thus further highlight how light and pCO2

availability interact to influence growth and productivity
depending on physiological optima to which cells are poised
to utilize resources. This underlines the need to further resolve
the complex nature of environmental optima such as light
(including L : D cycle; Zondervan et al. 2001), temperature
(Sett et al. 2014) and nutrient availability (Lefebvre et al. 2011;
Müller et al. 2017) that different species and isolates are accli-
mated to and how these interact with CO2 availability.

Our results have significant implications for predictions of the
response of coccolithophores to OA in the global ocean.
Although we have shown that coccolithophores will continue to
grow in future oceans, the way in which OA changes this growth
will be dependent on location, since natural L : D cycles are dic-
tated by latitude. The nature in which elevated CO2 changed the
cellular organic and inorganic carbon content was dependent on
L : D cycle in our culture experiments, thus changes to biogeo-
chemical cycles (and in particular carbon cycling) as climate
change and OA progress will possibly be dependent on latitude.
Longer photoperiods dampened the overall impacts of elevated
CO2, which means that OA could have more negative impacts
closer to the equator, where L : D cycles do not fluctuate much
around 12 : 12 h. However, as sea surface temperatures increase,
phytoplankton have been migrating to higher latitudes (Thomas
et al. 2012), and tropical plankton species have been reported as
far north as the North Sea (Barnard et al. 2004) and the Arctic Cir-
cle (Bjørklund et al. 2012). Changes in day length as these popu-
lations move away from the equator may also provide some
refuge from the impacts of increasing pCO2, but it is important
to note that OA will progress much more rapidly at higher lati-
tudes (McNeil and Matear 2008). Our results further demonstrate
that a better understanding how other environmental variables
interact with elevated pCO2 is needed to better predict how dif-
ferent areas of the global ocean will change over the coming
century.
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