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Fatigue is one problem with driving as it can lead to difficulties with sustaining attention, behavioral lapses, and a 

tendency to ignore vital information or operations. In this research, we explore multimodal physiological 

phenomena in response to driving fatigue through simultaneous functional near-infrared spectroscopy (fNIRS) and 

electroencephalography (EEG) recordings with the aim of investigating the relationships between hemodynamic 

and electrical features and driving performance. Sixteen subjects participated in an event-related lane-deviation 

driving task while measuring their brain dynamics through fNIRS and EEGs. Three performance groups, classified 

as optimal, suboptimal, and poor, were defined for comparison. From our analysis, we find that tonic variations 

occur before a deviation, and phasic variations occur afterward. The tonic results show an increased concentration 

of oxygenated hemoglobin (HbO2) and power changes in the EEG theta, alpha, and beta bands. Both dynamics are 

significantly correlated with deteriorated driving performance. The phasic EEG results demonstrate event-related 

desynchronization associated with the onset of steering vehicle in all power bands. The concentration of phasic 

HbO2 decreased as performance worsened. Further, the negative correlations between tonic EEG delta and alpha 

power and HbO2 oscillations suggest that activations in HbO2 are related to mental fatigue. In summary, combined 

hemodynamic and electrodynamic activities can provide complete knowledge of the brain’s responses as evidence 

of state changes during fatigue driving. 
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1. Introduction 
 
Fatigue is one of the most frequent problems we 

confront in our daily lives. Investigating mental fatigue 

is especially important because it is easily induced by 

prolonged tasks without being noticed.
1
 In addition, 

fatigue can lead to difficulties with sustaining attention,  

 
behavioral lapses, and a tendency to ignore vital 

information and operations.
2,3

 If people experience 

fatigue while driving, the consequences can vary from 

running off the road to drastic speed variations to fatal 

traffic accidents. In other words, the effects of fatigue 

can be much worse and more dangerous when driving 

than when undertaking less risky cognitive tasks.
4-6 
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Recent research shows that fatigue can be accurately 

identified through brain dynamics.
4-9

 Therefore, brain 

activations in response to fatigue have become increasingly 

critical area of study over the past few decades.
7-9

 Further, 

numerous studies have explored the relationships between 

brain oscillations and mental fatigue through tonic or 

phasic EEG changes.
5, 10-14

 Tonic variations occur before 

a discrete event, and phasic variations occur after the 

event.
9
 Some researchers suggest that power in the delta 

and theta bands increases substantially over the entire head 

when people drive for long periods, as does power in the 

alpha and beta bands but with relatively smaller 

augmentation.
13

 Others find that theta, alpha, and beta 

power trends in the frontal, parietal, and occipital regions 

are positively correlated with the level of mental 

fatigue.
4,5,10-14

 Moreover, accumulations of alpha and beta 

power correlate to demands on one’s attention.
11

 Further, 

tonic delta, theta, and alpha activities in the parietal and 

occipital areas are highly correlated with deteriorating 

performance.
5,12-14

 However, EEG recordings suffer from 

lower spatial resolution as comparing with the other non-

invasive neurophysiological devices such as functional 

magnetic resonance imaging (fMRI) and 

Magnetoencephal-ography (MEG). 

 

Beyond EEG measurements, blood-oxygen-level-

dependent imaging (BOLD-imaging) has also revealed 

correlations between fatigue driving and human 

performance. BOLD-imaging is often used as part of 

fMRI to measure BOLD signals while performing 

cognitive tasks. Previous studies have shown that 

fatigue causes more brain activations and greater effort 

is required when processing auditory information.
15-17

 

Researchers have also reported that the higher BOLD 

activations could be explored from the trials with 

shortest reaction time (RT) in the inferior parietal lobe 

as performing psychomotor vigilance task.
18,19

 

However, fMRIs restrict a person’s movement to the 

extent that brain states during daily work or exercise 

cannot be explored in this way.  
Over the past few decades, functional near-infrared 

spectroscopy (fNIRS) has emerged as an approach to 

reveal functional brain activity by monitoring cerebral 

oxygenated hemoglobin (HbO2) and deoxygenated 

hemoglobin (HbR). Studies drawing data from this 

technique have shown that subjective fatigue is negatively 

correlated with increased oxygenated hemoglobin over the 

ventrolateral prefrontal cortex when 

 
 

 

performing cognitive tasks, such as driving.
20,21

 

Researchers have also found that HbO2 activation levels 

decline in the frontal lobe during both cognitive functions 

and driving performance testing after insufficient sleep.
22

 

However, recent fatigue studies with long-duration driving 

tasks indicate the opposite results: HbO2 concentrations 

significantly increase in the prefrontal area when a driver 

feels drowsy.
22-25

 The contrast in results could possibly be 

due to the driver’s effort to compensate for their weariness 

so as to maintain driving performance, which causes an 

increase in demand for HbO2.
22-25x

 Generally, mental 

fatigue is negatively related to the amount of HbO2 in the 

anterior region of the brain, which can allow an increased 

concentration of HbO2 in the prefrontal cortex when 

participants try to maintain a desired level of performance 

in a task. 
7,8,22,27 

 
In this study, we designed an event-related lane-

departure driving task that mimics a realistic driving 

environment. Our primary aim was to explore the 

relationships between driver reaction times and brain 

dynamics. In parallel, we also wanted to examine 

fatigue-related brain dynamics in the occipital area, such 

as electrical activity and hemodynamic responses, 

through a multi-model integration of EEG and fNIRS 

signals. This allows a comprehensive investigation of 

the tonic and phasic brain dynamics associated with 

fatigue. The last purpose of the study is to gain insights 

into the relationships between hemoglobin changes and 

EEG activities. 

 
2. Materials and Methods 

 

2.1. Participants 
 
In this study, 16 healthy adults (4 female), aged 22 to 26 

(mean 23.5 years) with normal or corrected-to-normal 

vision and drivers licenses, participated in a night 

highway driving experiment. All participants were 

recruited from the National Chiao Tung University, 

Hsinchu, Taiwan. None reported any history of sleep or 

psychiatric disorders. All participants signed a consent 

form and were informed of the experimental procedures 

and the bio-signal data collection associated with the 

driving task in advance. 

 
2.2.  Experimental Environment and Procedure 
 
One virtual reality scene was constructed with 

WorldToolKit (WTK) software, which is a C-based 3D 
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graphic library. The driving scene was an endless four-

lane road displayed on a color monitor. The program 

simulated driving a car at a 100 km/h on a highway at 

night. The simulation was programmed to automatically 

drift the car away from the cruising lane with an equal 

probability of drifting to the left or the right. There were 

no other vehicles on the road or any stimuli that might 

influence the driver’s attention. The length of the task 

was 60 minutes, and the entire experiment was 

conducted in a quiet, dimmed room to reduce distracting 

noise and light.  
Prior to the experiment, each participant spent about 

five minutes reading a set of instructions and signing the 

consent form. They were then seated in a comfortable 

chair and were fitted with a suitable NIRS cap of source 

and detector probes. During our setup procedure, all 

participants were asked to practice the driving task to 

familiarize themselves with the experiment. 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. The experimental protocol was 60 minutes of simulated 

night driving. A random deviation to the right or the left was 

initiated by the program every 16-20 seconds. The participants 

were required to use the steering wheel to move the vehicle 

back to the original lane. 

 
Once the experiment began, each participant 

performed the lane-keeping task for one continuous 

hour. The drifting events were randomly triggered, and 

the participants had to move the car back to the cruising 

lane by turning a Logitech Inc. racing wheel. The next 

deviation would randomly appear within 16 to 20 

seconds after the vehicle had been returned to the 

cruising lane. The patterns of deviation were designed to 

fit the characteristics of hemodynamic responses.
26 

 
There are three time points in a deviation including 

deviation onset, response onset, and response offset, as 

shown in Fig. 1. Deviation onset is the moment when the 

program triggered the car to drift. Response onset and 

response offset indicate the moment the driver started and 

stopped turning the steering wheel to move the car back to 

the cruising lane after the deviation. The duration between 

the deviation onset and the response onset is the 

 
reaction time (RT). One epoch is defined from 2 

seconds before and 15 seconds after deviation onset. 

The two-second time period before the stimulus was 

selected as the baseline (tonic), and the 15 second 

period after deviation onset was selected as the event-

related change in brain dynamics (phasic). 

 
2.3. Data Recording 
 
The behavioral, EEG, and fNIRS data collected during the 

experiment were recorded simultaneously. RTs were 

continuously recorded with the WTK software, and the 

EEG data were recorded using a V-Amp 16 expert system 

(Brain Products GmbH Inc.) with 128 channels on a 

standard NIRS cap (https://nirx.net/nirscaps/) position 

according to the international 10-20 system. The EEG 

recordings included event markers to align the EEG data 

with the behavioral data. Of the 128 EEG channels, we 

only chose five to record EEG and fNIR signals in the 

occipital (POO9h and POO10h) and parietal regions 

(PPO1h, Pz, and PPO2h) as represented by the purple 

circles in Fig. 2. This avoided duplicate fNIRS source and 

detector channels (Fig. 2). The EEG signals were acquired 

at a 2000 Hz sampling frequency, and the impedance of 

each electrode was kept below 5 kΩ. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. EEG electrode and NIRS channel placements on a 

standard NIRS cap. The positions accord with the international 

10-20 system. The red circles are the NIRS sources, and the 

blue circles are the detectors. The purple circles represent the 

EEG electrodes over the parietal and occipital areas. 
 

The fNIRS data, measured concurrently, were recorded 

with the NIRScout apparatus (NIRx Medical Technologies, 

LLC.). The system consisted of 8 sources and 16 detectors 

to record the absorption of near-infrared light emitted by 

HbO2 and HbR at two wavelengths (i.e., 760 and 850 nm). 

The sources and detectors were placed on both the left and 

right parietal and occipital areas using a standard NIRS 

cap. The exact positions are shown in 
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Fig. 2. Given the area covered, we were able to use 26 

channels in total: 12 channels for the occipital region, 

seven channels for the right parietal region, and seven 

channels for the left parietal region. The sampling rate of 

the absorption changes was 7.8125 Hz, and the gain level 

of each channel was adjusted to less than or equal to 8 to 

ensure the quality of the measured data. Participants wore 

the NIRS cap that best fit their head without causing pain 

or discomfort. The average distance between each emitter 

and detector pair was approximately 3 cm, and the depth 

considered to be measurable was 2-3 cm from the scalp. 

 
2.4. Data Preprocessing 

 

2.4.1 EEG 
 

The EEG data were processed by EEGLAB
26

 with a 

band-pass filter in the range of 1 to 50 Hz. The filtered 

data were then down-sampled to 250 Hz to reduce 

computational complexity. Information in the time 

domain was then transferred into the frequency domain 

by fast Fourier transform using a 128-point Welch 

method with 64 overlapping points. The EEG power 

spectral density was separated into four frequency bands 

(i.e., delta: 1–3 Hz; theta: 4–7 Hz; alpha: 8–12 Hz; beta: 

13–30 Hz). 

 
2.4.2 NIRS 
 
The NIRS raw data were first transformed from light 

absorption into relative concentration levels of HbO2 

and HbR (unit: mM) with the modified Beer-Lambert 

law from the nirsLAB toolbox (NIRx Medical 

Technologies, LLC). The HbO2 and HbR 

concentrations were then high-pass filtered at 0.015 Hz 

and low-pass filtered at 0.08 Hz to eliminate potential 

noise from the heartbeat, respiration, and low-frequency 

signal drifts.
27-29

. All the NIRS channels were averaged 

through a region analysis
27

 after excluding the bad 

channels in areas of interest to improve the signal-to-

noise ratio (SNR) for further analysis. 

 
2.5. Data Analysis 

 

2.5.1 Behavioral data analysis 
 
We indexed each subject’s fatigue level and task 

performance through their RTs as per previous studies.
10-

14
 If the drivers were fully concentrating, they would 

notice the deviation immediately and turn the car back to 

 
 

 

the cruising lane with a shorter RT, whereas, with 

higher levels of fatigue, their RTs would increase.  
We normalized the RTs to account for the 

differences between subjects, rather than using the exact 

RT. The normalization was calculated by dividing the 

mean of the shortest 20% of each participant’s RTs as 

an RT-ratio to reduce individual variance. The RT-ratios 

were sorted from fast to slow then used to examine the 

global relationships between task performance and the 

physiological changes in different areas of the brain.  
Additionally, all trials were segmented into three groups 

according to performance to better investigate the 

relationship between the EEG data and the hemodynamic 

responses 
30

. The three performance groups were: 
 
(1) Optimal performance: RT-ratio ≤ 1. These 

participants stayed alert and had the best 

performance. 
 
(2) Suboptimal performance: 1 < RT-ratio < 2. These 

participants were fatigued but still maintained 

acceptable performance.  
(3) Poor performance: RT-ratio ≥ 2. The participants 

may have been too fatigued to perform the task. 

 

2.5.2 Tonic and Phasic analysis 
 

Since the characteristics of electrophysiology and 

hemodynamics are different, all the EEG frequency 

power bands and HbO2 concentration levels were first 

grouped and normalized separately into z-scores for 

further comparison (z = (x – µ) / σ, where x denotes the 

original EEG power or HbO2 concentration;μdenotes 

the mean (M) of the EEG power or HbO2 concentration; 

and s is the standard deviation of the EEG power or 

HbO2 concentration.  
In the tonic analysis, the EEG and HbO2 

concentrations within the two-second time period before 

deviation onset were averaged for each trial and plotted 

with respect to the RT-ratios.  
In the phasic analysis, the mean value of the two 

seconds of data before deviation onset was subtracted 

from the event-related EEG data. Event-related spectral 

perturbations were used to investigate the phasic 

changes with behavioral performance after a vehicle 

deviation had occurred.  
We used a moving-average technique to smooth the 

event-related time-frequency information. Then, the 

normalized EEG power and HbO2 concentrations for each 

trial were plotted with respect to the RT-ratios from 
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2 seconds before deviation onset to 15 seconds after 

deviation onset.  
All trial data were also divided into three 

performance groups and plotted separately.  
Since NIR sources and EEG channels move when a 

head nods while feeling sleepy, data with a low SNR 

were removed. Seven subjects with high SNR EEG and 

NIRS signals were selected for further analysis. 

Moreover, due to the relatively low data scale and the 

potential for the data to be easily perturbed by noise, the 

HbR results are not discussed in this article. Plus, for a 

clear comparison with previous EEG studies
9-14

, only 

the occipital data were included for further analysis. 

 

 
(A) (B)  
 
 
 
 
 
 
 
(C) (D) 

 
2.5.3 Statistical analysis 
 
To statistically validate the results, we conducted 

Pearson’s correlation tests. Each EEG frequency power 

and the HbO2 levels were tested with respect to the RT-

ratios in the areas of interest using a bootstrap method 

with a threshold p-value of < 0.05 for both the event-

related spectral perturbations and the hemodynamic 

responses with respect to behavioral performance (i.e., 

the RT-ratios). A two-sample t-test was used to compare 

the differences in the hemodynamic responses and the 

power of the EEG bands among the three performance 

groups for both tonic and phasic analysis. All statistical 

analyses were completed with Matlab. 

 
3. Results 

 

3.1.  Tonic Results 
 
To identify the relationships between the fNIRS and 

EEG data as driver consciousness lapsed, we analyzed 

the brain dynamics in both the tonic and phasic 

intervals. Participants where only fNIRS data were 

collected were excluded from the comparisons. Fig. 3 

shows the t-test correlation coefficients between the 

hemodynamic responses and the four EEG frequency 

bands in the occipital region. The results reveal 

significant negative correlations between the HbO2 

concentrations and all bands (Pearson's correlation 

coefficient, p<0.05). For the behavioral performance, 

the most significant correlations were -0.57 and -0.54 

with the delta and alpha bands, respectively. The theta 

and alpha bands also show significant correlations with 

the behavioral changes (see Fig. 3). 

 
Fig. 3. The correlations between HbO2 concentrations and 

frequency changes in the occipital region. (A) delta band, (B) 

theta band, (C) alpha band, and (D) beta band. *: p<0.05 

 
Fig. 4 shows the averaged HbO2 z-scores in the 

occipital region for the three performance groups 

(Optimal, Suboptimal, and Poor). HbO2 increased in the 

Optimal and Suboptimal groups but decreased in the 

Poor group, which indicates these participants failed to 

maintain driving performance. There were significant 

differences (t-test, p<0.05) between the Optimal and 

Suboptimal groups and between the Suboptimal and 

Poor groups. The Poor performance group had the 

lowest HbO2 scores in the trials. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Significant HbO2 changes in the occipital region among 

three performance groups (Optimal, Suboptimal, and Poor). The 

highest HbO2 scores were in the Suboptimal performance group; 

the lowest levels were in the Poor group. *: p<0.05 

 

3.2. Phasic Results 
 
The phasic power changes in the four frequency bands 

are shown in Fig. 5. The phasic analysis allowed us to 
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observe the changes in the brain dynamics as the RT-

ratios increased. Increases in the delta and theta bands 

are evident immediately after deviation onset (the black 

line), as are decreased perturbations before the response 

onset (the white curve). In the alpha and beta bands, 

decreased power occurred between deviation onset and 

response onset, and followed by increased activity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. The phasic changes in four frequency bands in the 

occipital region and the RT-ratios. The solid black lines 

represent the deviation inset, and the dashed white curves 

indicate the response onset. In each subplot, the RT-ratios are 

sorted (from fast to slow). The baselines were normalized. 

Warm (red) colors reflect increased EEG dynamics; cold 

(blue) colors decreased dynamics. Images are masked for 

significance at p=0.05 with FDR correction. (A) delta band 

(B) theta band (C) alpha band (D) beta band. 

 
The phasic HbO2 responses in the occipital region 

with respect to the RT-ratios are illustrated in Fig. 6. 

Positive HbO2 concentration scores appeared during the 

8 seconds immediately following deviance onset, after 

which we see negative HbO2 concentration scores from 

8-15 seconds before the driver’s HbO2 scores begin to 

return to normal (recovery stage). The positive HbO2 

scores in the occipital region after deviance onset 

slightly decreased as the RT-ratio increased. Moreover, 

we noted that the negative HbO2 scores in the recovery 

stage tended to be lower with longer RT-ratios.  
For further comparison, we analyzed the HbO2 

concentration scores with respect to the RT-ratios across 

the three performance groups. After deviation onset (the 

black line), HbO2 concentrations slightly increased, 

followed by a decrease before returning to normal 

levels, as shown in Fig. 7. According to the t-test results 

(p<0.05), the positive HbO2 concentration scores in the 

Optimal group were relatively higher than that in either 

 
 

 
the Suboptimal or Poor groups. Further, the negative HbO2 

scores in the Suboptimal group were significantly higher 

than both the Poor and Optimal groups (t-test, p<0.05). 

Both the Suboptimal and Poor groups appeared to need 

more time to return back to normal HbO2 levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Performance-related HbO2 concentration changes (z-

scores) in the occipital region. The epochs with smallest RT-

ratios are shown at the bottom of the figure. The solid black 

line indicates deviation onset and the dashed white line 

indicates response onset. Warm colors (red) represent 

increased concentration levels, and cold colors (blue) indicate 

decreased levels. Significance at p = 0.05 was adjusted with 

FDR correction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. The difference in occipital HbO2 concentration levels (z-

score) after deviation onset for the three performance groups 

(Optimal, Suboptimal, and Poor). Significant differences (p<0.05) 

between the groups are marked as asterisk lines at the base of the 

chart - light gray between the Optimal and Suboptimal groups; 

mid gray between the Optimal and Poor groups; black between 

the Suboptimal and Poor groups. 

 
Fig. 8 presents the hemodynamic responses and the 

theta and alpha dynamics among the three performance 

groups. After deviation onset, neuronal activation 

appeared first, followed by changes in the HbO2 levels. 
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These hemodynamic responses were related to neuronal 

activity in response to the events. Less theta and alpha 

activations were evident as the RT-ratio increased, 

especially in the Poor performance group. The EEG 

dynamics are consistent with the changes in HbO2 levels 

(see Figs. 6 and 7). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Changes in EEG power and HbO2 concentration levels 

among the three performance groups (Optimal, Suboptimal, 

and Poor) after deviation onset (phasic comparison). Left 

panel: theta band. Right panel: alpha band. 

 

4. Discussion 
 
The driving experiment was designed to study brain 

dynamics through simultaneous fNIRS and EEG 

recordings in the posterior regions of the brain, 

particularly in the occipital area. Beyond exploring the 

relationships between reaction times and both bio-

signals, we also divided the participants into three 

performance groups according to optimal, suboptimal, 

and poor RT-ratio brackets. Comparisons between the 

data in each of these groups provided deeper insights 

into the correlations between driver fatigue and brain 

dynamics. A discussion on our findings and 

observations follows. 

 
4.1. Tonic Changes in EEG Signals and HbO2 Levels 

with Driving Performance 
 
According to the tonic EEG dynamics in the occipital 

region, power in the theta, alpha and beta bands 

monotonically increases as the RT-ratio increases (see 

Fig. 3). This positive correlation has been widely 

reported in previous research.
5,11 -13

 We find prolonged 

task-induced mental fatigue impaired driving 

performance and caused power deflections during the 

baseline period (tonic). This observation does not 

accord with all research, as some researchers have found 

a different pattern in the alpha band where alpha power 

initially increases and then decreases with deteriorated 

performance.
10

 The monotonic increase we observed in 

the alpha band could be an indication that the 

participants fell asleep during the experiment.  
The tonic hemodynamic results (see Fig. 4) show the 

greatest and least changes in HbO2 were in the 

Suboptimal and Poor performance groups, respectively. 

The suppression of cerebral blood flow was related to 

subjective fatigue levels.
16-18

 Previous studies have also 

reported an increase in HbO2 at the onset of 

drowsiness.
7,24,31

 The higher levels of HbO2 in the 

Suboptimal group may be associated with a low oxygen 

consumption rate by the brain during the transition from 

being alert to being drowsy.
24, 31

 A similar phenomenon 

was found in the positive correlation between task 

difficulty and HbO2 levels.
32

 Therefore, HbO2 changes 

in the tonic domain might be illustrated by the cognitive 

demand of fighting fatigue. For example, in the 

Suboptimal group, the participants had felt tired but still 

tried their best to maintain driving performance, and this 

higher cognitive effort could be imaged. In contrast, the 

participants in the Poor performance group may have 

been so sleepy; they could only react in a passive way. 

As such, only a low demand would be placed on 

cognitive functions. 
 
4.2. Phasic Changes in EEG Signals and HbO2 Levels 

with Driving Performance 
 
Increased phasic theta activities and decreased phasic 

alpha activities associated with driving tasks have been 

well reported in previous EEG-related studies (see Fig. 

5).
9-13, 33, 46

 The increased occipital theta activation at 

the beginning of the lane deviation can be interpreted as 

controlling cognitive demands in response to visual 

stimuli
33

, as identifying and processing visual stimuli 

are associated with activations in the occipital region.
33 
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Event-related desynchronization has also been 

discovered in the alpha and beta bands (see Fig. 5) – 

especially, alpha suppression in the posterior area 

associated with visual scanning, motion preparation, and 

execution.
33, 34

 In this study, the participants were asked 

to keep the car in the cruising lane, which meant they 

had to focus on the vehicle’s position throughout the 

entire experiment as well as turn the steering wheel in 

response to a deviation. Among all three performance 

groups, the Poor performance group had the least theta 

activation (see Fig. 8).  
We also observed positive HbO2 z-scores (HbO2 

concentration levels w.r.t. RT-ratios) in the occipital 

region, followed by negative scores before recovery 

while attempting to correct from a lane deviation (see 

Figs. 6 and 7). In Fig. 7, the decrease in HbO2 scores in 

the Poor performance group may be related to 

deteriorated driving performance. According to previous 

NIRS
19-21

 and fMRI studies
16 -18

, deteriorated task 

performance is related to reduced cerebral blood oxygen 

saturation.  
Although the Suboptimal group had positive HbO2 

scores post vehicle deviation (see Fig. 7), the larger 

negative scores of HbO2 can be also discovered from 8 

to 15 seconds after event onset (recovery stage). The 

decreased HbO2 in the recovery stage could be due to 

oxygen consumption based on the reverse relation 

between local concentrations of deoxyhemoglobin and 

oxyhemoglobin.
34-36

 However, previous studies have 

suggested reduced HbO2 could also be associated with 

re-allocations in an immature cortex or high-demand on 

the cortex.
37

 Moreover, recent studies on fatigue driving 

with NIRS
8,19,22

 and with hybrid EEG & NIRS
23,24

 all 

demonstrate that concentrations of HbO2 in the 

prefrontal area are significantly enhanced with increased 

drowsiness or fatigue. Therefore, the decreased phasic 

HbO2 in the occipital site during the recovery stage 

could be interpreted as oxygen supplies being 

transferred to other task-related regions so as to meet 

increased demands elsewhere. In this way, all dynamics 

could be seen as compensatory efforts to maintain 

desired levels of driving performance.  
In the tonic results, HbO2 oscillations were found to be 

inversely correlated to the delta and alpha power bands 

over the occipital site. Fig. 3 shows that decreased occipital 

alpha power was accompanied by increased cerebral 

oxygenation in the resting state (tonic), and vice versa. 

Numerous studies have attempted to reveal the 

 
 

 

physiological links between cortical activations and 

neuronal alpha oscillations by applying combined EEG 

and fMRI or fNIRS approaches.
44,45

 EEG alpha power 

has been found to be negatively correlated with 

hemodynamic signals over the frontal, parietal, and 

occipital cortical areas during the resting state.
38 -40

 

Further, spontaneous hemodynamic signal fluctuations 

in the visual cortex and reduced consciousness are both 

known to significantly increase during light sleep. This 

implies that when consciousness levels increase, 

cerebral activation will desynchronize.
41

 On the basis of 

the inverse correlations between HbO2 concentrations 

and the alpha power band, it seems possible to index the 

subjects’ level of mental fatigue according to activations 

in the cerebral cortex as compared to alpha rhythms in 

the occipital region. 

 

5. Conclusions 
 
In this study, we explored multimodal physiological 

phenomena in response to fatigue driving through 

simultaneous EEG and fNIRS measurements while 

participating in a night driving experiment with random 

lane deviations of the vehicle. We conducted a tonic 

analysis of the two-second period before the lane deviation 

and a phasic analysis of the 15-second period after the lane 

deviation. The results of the analysis reveal relationships 

between the EEG power spectrum and the concentration 

levels of HbO2 in the occipital region of the brain with 

respect to reaction times. Generally, the patterns of 

occipital EEG power changes in both the tonic and phasic 

analyses are consistent with previous findings.
9-14

 Spectral 

power increased in the theta, alpha, and beta bands as 

performance deteriorated, which we assume to be related to 

driving fatigue.
9-14

 Negative correlations were found 

between the tonic HbO2 concentrations and all EEG 

frequency bands, especially the alpha rhythms. Moreover, 

the phasic HbO2 concentrations decreased as performance 

worsened. The relationships between delta and alpha EEG 

power and the HbO2 oscillations suggest that activations in 

HbO2 are related to mental fatigue. Therefore, the highest 

tonic occipital HbO2 changes, which occurred in the 

Suboptimal group, could be because these drivers allocated 

more brain resources to fighting fatigue so as to maintain 

acceptable driving performance. Overall, we find that 

occipital hemodynamic and electrodynamic activities can 

offer complete knowledge of the brain’s responses to 

drowsiness during driving and, therefore, 
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further explorations in brain state changes associated 

with driver fatigue are worthwhile.  
There are some limitations in the current research. First, 

only a few EEG and NIRS channels were measured, and 

only the channels in the occipital region were included 

in our analysis. Additional sensors covering all 

interesting brain regions will be considered in further 

research. Second, the small number of subjects may have 

limited our findings. Given that data quality was a major 

concern, the subjects with high quality of the EEG and 

fNIRS signals were included in this study. Third, we had 

discussed the prediction method in the future work to 

make the real contributions for fatigue driving. Despite 

these limitations, the preliminary results still clearly 

demonstrated the relationships between EEG signals, 

HbO2 levels, and driving performance. 

 
6. Acknowledgments 
 

This work was supported in part by each of: the 

Australian Research Council (ARC) under discovery 

grants DP180100670 and DP180100656; the Army 

Research Laboratory under Cooperative Agreement 

Numbers W911NF-10-2-0022 and W911NF-10-D-

0002/TO 0023; and the Taiwan Ministry of Science and 

Technology under the grant MOST 106-2221-E-009-

016-MY2. 

 
7. References 
 
1. K. Mandrick, Z. Chua, M. Causse, M. Causse, S. Perrey, 

and F. Dehais, Why a comprehensive understanding of 

mental workload through the measurement of 

neurovascular coupling is a key issue for 

neuroergonomics? Front Hum. Neurosci., 10 (2016) 250.  
2. D. van der Linden, and P. Eling, Mental fatigue disturbs 

local processing more than global processing, Psychol 

Res., 70 (5) (2006), 395-402. 

3. Y. Kato, H. Endo, and T. Kizuka, Mental fatigue and 

impaired response processes: event-related brain 

potentials in a Go/NoGo task, Int. J. Psychophysiol, 72 

(2) (2009) 204-211.  
4. M. A. Boksem, T. F. Meijman, and M. M. Lorist, Effects 

of mental fatigue on attention: An ERP study, Brain Res. 

Cogn., 25 (1) (2005) 107-116. 

5. C. S Wei, Y. P. Lin, Y. T. Wang, C. T. Lin and T. P. 

Jung, A subject-transfer framework for obviating inter-

and intra-subject variability in EEG-based drowsiness 

detection, NeuroImage, 174 (2018) 407-419. 

6. N. Naseer1 and K. S. Hong, fNIRS-based brain- computer 

interfaces: A review, Front Hum. Neurosci., 9 (2015) 3. 

 
7. M.-J. Khan, and K.-S. Hong, Passive BCI based on 

drowsiness detection: an fNIRS study, Biomedical Optics 

Express, 6(10) (2015) 4063–4078. 

8. T. Liu, M. Pelowski, C. Pang, Y. Zhou, and J. Cai, Near-

infrared Spectroscopy as a Tool for Driving Research, 

Ergonomics, 59(3) (2016)368-79. 

9. S. Makeig, and T.-P. Jung, Tonic, phasic, and transient 

EEG correlates of auditory awareness in drowsiness. 

Cognitive Brain Research, 4 (1996) 15–25. 

10. K. Lal and A. Craig, Driver fatigue: 

electroencephalography and psychological assessment, 

Psychophysiology, 39 (3) (2002) 313-321. 

11. C.-H. Chuang, L.-W. Ko, T.-P. Jung, and C.-T. Lin, 

Kinesthesia in a sustained-attention driving task, 

NeuroImage, 91 (2014)187-202. 

12. C. T. Lin, K. C. Huang, C. F. Chao, J. A. Chen, T. W. Chiu,  
L. W. Ko, and T. P Jung, Tonic and phasic EEG and 

behavioral changes induced by arousing feedback, 

NeuroImage 52, (2010) 633–642. 

13. K. C. Huang, T. Y. Huang, C. H. Chuang, J. T. King, Y.  
K. Wang, C. T. Lin, and T. P. Jung, An EEG-Based 

Fatigue Detection and Mitigation System, International 

Journal of Neural Systems, 26(4) (2016) 1650018-

1650018.  
14. A. Watanabe, N. Kato, and T. Kato, Effects of creatine on 

mental fatigue and cerebral hemoglobin oxygenation, 

Neuroscience research, 42 (4) (2002) 279-285. 

15. G. Lange, J. Steffener, D. B. Cook, B. M. Bly, C. 

Christodoulou, W. C Liu, J. DeLuca, and B. H. Natelson, 

Objective evidence of cognitive complaints in Chronic 

Fatigue Syndrome: A BOLD fMRI study of verbal 

working memory, NeuroImage, 26 (2) (2005) 513-24.  
16. D. B. Cook, P. J. O’Connor, G. Lange, and J. Steffener, 

Functional neuroimaging correlates of mental fatigue 

induced by cognition among chronic fatigue syndrome 

patients and controls, NeuroImage, 36 (1) (2007) 108-122.  
17. S. P. Drummond, A. Bischoff-Grethe, and D. F. Dinges, 

et al., The neural basis of the psychomotor vigilance task, 

Sleep, 28 (9) (2005) 1059-1061. 

18. J. Lim, W. C. Wu, J. Wang, J. A. Detre, D. F. Dinges, and  
H. Rao, Imaging brain fatigue from sustained mental 

workload: An ASL perfusion study of the time-on-task 

effect, NeuroImage, 49 (4) (2010) 3426-3435. 

19. Z. Li, M. Zhang, X. Zhang, S. Dai, X. Yu, and Y. Wang, 

Assessment of cerebral oxygenation during prolonged 

simulated driving using near infrared spectroscopy: Its 

implications for fatigue development, European Journal 

of Applied Physiology, 1073 (2009), 281-287.  
20. M. Suda, M. Fukuda, T. Sato, S. Iwata, M. Song, M. 

Kameyama, and M. Mikuni, Subjective feeling of 

psychological fatigue is related to decreased reactivity in 

ventrolateral prefrontal cortex, Brain Research, 1252 

(2009) 152-160.  
21. S. Miyata, A. Noda, N. Ozaki, Y. Hara, M. Minoshima, 

K. Lwamoto, M. Takahashi, T. Iidaka, and Y. Koike, 

Insufficient sleep impairs driving performance and 



 
10 C.-T. Lin et al 

 
cognitive function, Neuroscience Letters, 469 (2) (2010) 

229-233.  
22. C. T. Lin, M. Nascimben, J. T. King and Y. K. Wang, 

Task-related EEG and HRV entropy factors under 

different real-world fatigue scenarios, Neurocomputing, 

311 (2018) 24-31.  
23. C. H. Chuang, Z. Cao, J. T. King, B. S. Wu, Y. K. Wang 

and C. T. Lin, Brain electrodynamic and hemodynamic 

signatures against fatigue during driving, Front 

Neurosci., 12 (2018) 181.  
24. T. Nguyen1, S. Ahn, H. Jang, S. C. Jun, and J. G. Kim, 

Utilization of a combined EEG/NIRS system to predict 

driver drowsiness, Scientific Reports, 7 (2017) 43933. 

25. L. Kocsis, P. Herman, and A. Eke, The modified Beer-

Lambert law revisited, Physics in Medicine & Biology, 

51(5) (2006)91-8. 

26. A. Delorme, and S. Makeig, EEGLAB: an open source 

toolbox for analysis of single trial EEG dynamics 

including independent component analysis, Journal of 

Neuroscience Methods, 134 (1) (2004) 9–21. 

27. Y. K. Wang, S. A. Chen, and C. T. Lin, An EEG-based 

brain–computer interface for dual task driving detection, 

Neurocomputing, 129 (2014) 85-93. 

28. S. K. Piper, A. Krueger, S. P. Koch, J. Mehnert, C. 

Habermehl, J. Steinbrink, H. Obrig, and C. H. Schmitz, A 

wearable multichannel fNIRS system for brain imaging 

in freely moving subjects, NeuroImage, 85 (2014) 64–71. 

29. C. F. Lu, Y. C. Liu, Y. R. Yang, Y. T. Wu, and R. Y. 

Wang, Maintaining Gait Performance by Cortical 

Activation during Dual-Task Interference: A Functional 

Near-Infrared Spectroscopy Study, PLOS one, 10(6) 

(2015).  
30. C.-T. Lin, C.-H. Chuang, S. Kerick, T. Mullen, T. P. 

Jung, L. W. Ko, S. A. Chen, J. T. King, and K. 

McDowell, Mind-Wandering Tends to Occur under Low 

Perceptual Demands during Driving, Scientific Reports, 6 

(2016) 21353.  
31. C. Bogler, J. Mehnert, J. Steinbrink, and J. D. Haynes, 

Decoding vigilance with NIRS, PloS one, 9(7) (2014) 

e101729. 

32. A. C. Merzagora, M. Izzetoglu, R. Polikar, V. Weisser, 

B. Onaral, and M. T. Schutheis, Functional near-infrared 

spectroscopy and electroenceph- alography: A 

multimodal imaging approach, Int. Conf. on in 

Foundations of augmented cognition. neuroer gonomics 

and operational neuroscience, San Diego, CA, USA, 

(2009), LNAI 5638, pp. 417-426.  
33. Y. K. Wang, T. P. Jung, and C. T. Lin, Theta and alpha 

oscillations in attentional interaction during distracted 

driving, Frontiers in behavioral neuroscience, 12 (2018) 

3. 

34. G. Pfurtscheller, A. Stancak Jr, and C. Neuper, Event-

related synchronization (ERS) in the alpha band-an 

electrophy-siological correlate of cortical idling: A 

review, International Journal of Psychophysiology, 24 (1-

2) (1996) 39-46. 

 
 

 
35. Y. Hoshi, and M. Tamura, Dynamic multichannel near-

infrared optical imaging of human brain activity. Journal 

of Applied Physiology, 75 (1993) 1842–1846. 

36. C. Xu, B. Signe, L.-R. Allan, Functional near infrared 

spectroscopy (NIRS) signal improvement based on 

negative correlation between oxygenated and 

deoxygenated hemoglobin dynamics, NeuroImage, 49 

(2010) 3039–3046.  
37. H. Bortfeld, E. Wruck and D. A. Boas, Assessing infants' 

cortical response to speech using near-infrared 

spectroscopy, Neuroimage, 34 (2007) 407-415. 

38. S.I. Goncalves, J.C. Munck, P.J.W. Pouwels, R. 

Schoonhoven, J.P.A. Kuijer, N.M. Maurits, J.M. 

Hoogduin, E.J.W. Someren, R.M. Heethaar, F.H.L. da 

Silva, Correlating the alpha rhythm to BOLD using 

simultaneous EEG/fMRI: inter-subject variability, 

NeuroImage, 30 (1) (2006) 203-213. 

39. R. I. Goldman, J. M. Stern, J. Engel Jr, and M. S. Cohen, 

Simultaneous EEG and fMRI of the alpha rhythm, 

Neuroreport, 13 (18) (2002) 2487- 2492. 

40. H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-

Haddadi, C. Preibisch and K. Krakow, EEG- correlated 

fMRI of human alpha activity, NeuroImage, 19 (6) 

(2003) 1463-1476.  
41. S. G. Horovitz, M. Fukunaga, J. A. de Zwart, P. van 

Gelderen, S. C. Fulton, T. J. Balkin, and J. H. Duyn, Low 

frequency BOLD fluctuations during resting wakefulness 

and light sleep: A simultaneous EEGfMRI study, 

Human Brain Mapping, 29 (6) (2008) 671-682.  
42. Ritter and A. Villringer, Simultaneous EEG– fMRI, 

Neuroscience & Biobehavioral Reviews, 30 (6) (2006) 

823-838. 

43. L. Xu, B. Wang, G. Xu, W. Wang, Z. Liu, and Z. Li, 

Functional connectivity analysis using fNIRS in healthy 

subjects during prolonged simulated driving, 

Neuroscience Letters, 640(15) (2017) 21-28. 

44. R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, 

Methods for simultaneous EEG-fMRI: an introductory 

review. Journal of Neuroscience, 32(18) (2012) 6053-

6060.  
45. S. T. Ahn and S. C. Jung, Multi-Modal Integration of 

EEG-fNIRS for Brain-Computer Interfaces – Current 

Limitations and Future Directions, Frontiers in Human 

Neuroscience, 11 (2017)503. 

46. Y. K. Wang, T. P. Jung and C. T. Lin, EEG-based 

attention tracking during distracted driving, IEEE 

transactions on neural systems and rehabilitation 

engineering, 23(6) (2015). 


