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Abstract: Extreme flooding magnitudes and frequencies are essentially related to 

assessment of risk and reliability in hydrological design. Extreme flooding and its 

discharge are highly sensitive to regional climate change. Presently, its discharge can 

be reconstructed by a geological archive or record along the river valley. Two units of 

typical extreme flooding deposits (EFDs) carrying long-term information preserved in 

the Holocene loess–palaeosol sequence were found at Xipocun (XPC), which is 

located in Chengcheng County, China. It is situated in the downstream section of the 

Beiluohe (hereafter BLH) River. Based on multiple sedimentary proxy indices 

(grain-size distribution (GSD), magnetic susceptibility (MS), and loss-on-ignition 

(LOI), etc.), EFDs were interpreted as well-sorted clayey silt in suspension. They 

were then deposited as a result of riverbank flooding in a stagnant environment during 

high water level. Through the Optically Stimulated Luminescence (OSL) dating 
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technique and stratigraphic correlations, chronologies of two identified extreme 

flooding periods were 7 600~7 400 a B.P. and 3 200~3 000 a B.P. Two phases of 

extreme flooding occurrence under climate abnormality scenarios were characterized 

as having high frequencies of hydrological extremes in river systems. According to 

simulation and verification using the Slope–Area Method and Hydrologic 

Engineering Center's River Analysis System (HEC-RAS) model, the extreme flooding 

discharges at the XPC site were reconstructed between 9 625 m3/s and 16 635 m3/s. A 

new long-term flooding frequency and peak discharge curve, involved gauged 

flooding, historical flooding at Zhuangtou station and in situ reconstructed extreme 

flooding events, was established for the downstream BLH River. The results improve 

the accuracy of low-frequency flooding risk assessment and provide evidence for 

predicting the response of fluvial systems to climate instability. Thus, this improves 

the analysis of the BLH River watershed. 

Keywords: Extreme flooding deposits; In situ reconstruction; Magnitude; Long-term 

flooding frequency; Beiluohe River watershed 

 

1. Introduction 

Increasingly, magnitudes and frequencies of hydrological extremes in recent 

decades are seriously affecting ecosystems and social systems (IPCC, 2013; Taye et 

al., 2015). Extreme flooding that is usually considered a disaster caused by the 

inadequate capacity of riverbanks to contain high flows under semi-arid and 
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semi-humid conditions (Xu et al., 2014; Zhang et al., 2015a). Statistics show that 

more than 40% of all natural disasters each year is attributed to extreme flooding and 

the trend in flooding damage has grown exponentially in the last few decades (Apurv 

et al., 2015). Fluvial extreme flooding is a perennial and recurrent problem in China. 

The reported number of extreme and severe flooding occurrences in China between 

206 B.C. and 1949 was 1 092. These events on average occur every two years 

throughout China (Zhang et al., 2016). Global climate instability and prolonged 

rainfalls exert a powerful impact on regional extreme flooding events (Beniston et al., 

2011; Stoffel et al., 2014). China’s flood-related losses reach 113 billion renminbi 

(RMB) per year, making up 43.6% of the total losses caused by natural disasters, and 

have steadily increased since 1994 (Wang et al., 2014; Liu et al., 2016). In this 

context, the simulation of extreme flooding dynamic processes and exploration of 

what their triggers have become key issues.  

Extreme flooding magnitudes and frequencies are essentially related to 

assessment of risk and reliability in hydrological design. The likelihood of a flooding 

event is routinely extrapolated by introducing past flooding observations with 

statistical approaches (Rodriguez-Morata et al., 2016; Tanaka et al., 2017). However, 

rainfall/flooding gauge records are regularly restricted in terms of timeline length and 

poorly representative of these extremes in some watersheds. Subsequently, this has 

led to a high level of uncertainty in flood frequency analysis (Toonen, 2015; Gado 

and Nguyen, 2016). Thus, in situ reconstructions of extreme flooding magnitudes and 

frequencies depending on geological archives that document real long-term 
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information are required to improve the precision and reliability of estimations (Baker, 

1987; Baker et al., 2002; Benito et al., 2010, 2011, 2015). 

Past extreme flooding deposits (EFDs) constitute a fundamental source for in situ 

reconstructions of peak discharges and stages through numerous large flooding 

processes in different ranges (Baker, 2006, 2008). Once fluvial flooding events have 

receded, EFDs are embedded in some aeolian loess-soil sequences, and subsequently 

preserved in the long-term on riverbanks or terraces located on China’s Loess Plateau 

(Huang et al., 2009, 2010, 2011; Guo et al., 2015). Recent studies have established the 

visual characteristics and sedimentological criteria for identifying EFDs from 

sediments generated in other earth surface processes along river valleys (Huang et al., 

2012, 2013, 2017; Liu et al., 2015). Based on the elevation and thickness of EFDs, 

real peak discharges and stages of past extreme fluvial flooding events are simulated 

using two methods: firstly, the Slope-Area Method (SAM); and secondly, the 

Standard Step Method (STM). These are combined with geomorphological, 

sedimentological, hydrological and geochronological approaches.  

Dating of extreme flooding events determined by the Optically Stimulated 

Luminescence (OSL) approach is useful to explore the rhythm of flooding occurrence 

and understand the fluvial hydrological system’s response to the Asian summer 

monsoon. A long-term watershed-scale flooding sequence is built that incorporates 

extreme flooding events. This can not only greatly extend the gauged time series and 

improve representativeness for flooding databases, but also eliminate the uncertainty 

of flood risk assessments. Furthermore, it provides a sound basis for design-flood and 
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check-flood as required by large-scale hydraulic structures. 

The BLH River watershed is located in the hilly and gully regions of the Loess 

Plateau, where it poses acute problems relevant to heavy river loads and frequent 

fluvial flooding disasters. The ever-increasing probability and magnitude of extreme 

fluvial flooding is an urgent and persistent problem and has been for decades in this 

watershed. However, only a few investigations have been undertaken on previous 

extreme flooding events. Consequently, there is still lack of knowledge concerning the 

long-term sequence in the downstream reaches of the BLH River. Thus, continuous 

research on long-term extreme fluvial flooding is essential to enrich flooding datasets 

for flood prevention, control, and flood management in the watershed. 

Together with some successfully conducted field trips, the novel EFDs in the 

lower BLH River were highlighted. The primary objectives of this paper are to: (i) 

clarify extreme fluvial flooding events based on EFDs by visual characteristics and 

sedimentological proxy indices; (ii) create a chronological framework of extreme 

fluvial flooding events by OSL dating in combination with our previous works; (iii) 

reconstruct peak discharges and stages of extreme fluvial flooding in-situ with 

hydrological models; and (iv) establish a novel local long-term flooding sequence and 

interpret the response of the river system to the Asian summer monsoon. 

2. Regional setting 

The BLH River is one of largest tributaries of the Yellow River with a length of 

680.3 km and watershed area of 26 905 km2. The river’s hydrological network 
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appears to have typically dendritic pattern forms and flows through the central Loess 

Plateau (Fig. 1a, b). The upstream that lies in the loess hilly-gully region is where the 

fluvial sediment originates. The sediment load transported by the river is 2.8×107 tons 

per year most of which is suspended sediment load made up of fine clay- and 

silt-sized particles (Zhang et al., 2015b; Guo et al., 2017). The midstream is located in 

the loess tableland area with a length of 229.3 km and mean channel slope of 2.2 . 

The downstream that belongs to the Guanzhong Plain where it meets the Weihe River 

is often struck by flooding events in summer. The mean annual runoff volume of this 

river is 9.3×108 m3. These EFDs cannot stay indefinitely in the upper reaches given 

the steep slopes and supercritical flows. However, they are always preserved over the 

long-term in flood-prone areas of the middle reaches and lower reaches. Three 

extreme flooding sites, specifically Liangmaocun (LMC), Zhangjiachuan (ZJC) and 

Caihezhan (CHZ) (Zhang et al., 2015b) were found in the midstream and one new site, 

i.e. Xipocun (XPC) was discovered in the downstream (Fig. 1b). 
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Fig. 1. (a) Map showing the Beiluohe (BLH) River watershed in the middle reaches of Yellow 

River. (b) Site map showing locations of extreme flooding sites including Liangmaocun (LMC), 

Zhangjiachuan (ZJC), Caihezhan (CHZ) in the midstream and Xipocun (XPC) in the downstream 

of BLH River and gauge stations; (c) Topographical map of the XPC sampling site downloaded 

from Google Earth. 

The BLH River watershed is located in a temperate continental monsoon 

climatic regime. The main feature of this climate is the inhomogeneous distribution of 

regional precipitation in different seasons. Typically, the rainy season lasts from June 

to September with 75.8% of total annual rainfall taking place intensively in this period. 

Mean annual precipitation is 550.7 mm, but annual fluctuations in rainfall are large in 

parts of this watershed. For instance, the maximum precipitation was 838.1 mm in 

1964 and the minimum precipitation was 287.3 mm in 1996. As far as the extension 
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of the summer Western Pacific Subtropical High (WPSH) and superposition of 

multiple regional rainstorms are concerned, riverbank flooding is the most devastating 

natural disaster in this watershed each year. They are accompanied with a single peak, 

which is a fine peak-shaped flow-duration curve and comprising an anticlockwise 

loop rating that characterizes the stage-discharge relationship. 

Annual maximum flood peak discharge records for Zhuangtou gauge station (35º 

00´N, 109º 50´E) (Fig. 1a) are available for the 60 years covering 1933 to 2000. 

Suspended sediment data series indicated that the BLH River has a mean suspended 

sediment concentration (SSC) of 119 kg/m3 and the highest SSC of 1 190 kg/m3 

measured at Zhuangtou station in 1950. The largest modern flood with peak discharge 

of 6 280 m3/s, peak stage rising of 2.3 m, and the runoff volume reaching up to 

1.9×108 m3 during the flooding process occurred at Zhuangtou station on 1st 

September, 1994. Two historical floods with peak discharges of 5 000 m3/s and 10 

700 m3/s occurred in 1662 and 1856, respectively. The Zhuangtou gauge station is the 

closest station with a distance of 17 km from the XPC site. 

3. Methodology 

3.1 Sedimentation method 

Clues to extreme flooding events can be found with use of approved 

sedimentological methods. Extreme fluvial flooding investigations were conducted 

along the BLH River in 2008-2016. Diverse EFDs sites were discovered in the 

downstream reaches and identified through sedimentological and paleohydrological 
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criteria in our previous studies (Fig. 1b). Two EFDs beds inserted into a Holocene 

perpendicular loess-soil sequence were newly exposed and measured at the XPC site 

in Chengcheng in the lower reaches of the BLH River (Fig. 1b and c). The XPC 

profile is located at the trailing edge of the second river terrace (T2) and rapidly 

pinches out along the slope direction on the left riverbank. The front-end of the first 

riverbank terrace (T1) is ca. (Circa) 10 m, and that of the second terrace (T2) is ca. 16 

m higher than the normal water level of the BLH River.  

Based on the micro-topographical observations and sedimentological 

comparisons, visual characteristics, color difference, texture and structure, and 

stratigraphic subdivisions of the XPC profile are described and shown in Table 1. 

Under the surface, the XPC profile was divided into five stratigraphies (Fig. 2). The 

EFD1 unit of 80 cm thickness and EFD2 unit of 45 cm thickness were inter-bedded 

between slope deposits (SD) and separated by lithosols with some breccia, indicating 

their formation in two different periods. The EFD1 unit contains eight thin sub-layers 

that are wavy horizontal beddings, and the EFD2 unit includes two sub-layers which 

are parallel beddings. Stratigraphic relationships illustrate that each EFD unit 

represents an extreme flooding event.  

Table 1  

Stratigraphic subdivisions and sedimentary descriptions of the XPC profile with the EFDs in the 

downstream of the BLH River. 

Depth (cm) 
Stratigraphic 
subdivisions 

Sedimentary descriptions 

0~40 Slope deposit SD1  Grey, granular structure, coarse sand with some breccias, 
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Sediment samples were collected every 5 cm along the XPC section. Multiple 

sedimentary proxy indices, including grain-size distribution (GSD), magnetic 

susceptibility (MS), Loss-on-Ignition (LOI), and Calcium carbonate (CaCO3) contents 

of air-dried sediment samples were determined in the Shaanxi Normal University 

laboratory. GSDs were measured by a Malvern Mastersizer-S Laser Analyzer with 

(NaPO3)6 as a dispersant after pretreatment with 10 ml 10% H2O2 to remove organic 

matter and 10 ml 10% HCl to resolve calcium carbonate (Huang et al., 2012, 2013). 

Grain-size statistical indices (GSI), such as median (Md), mean (Mz), skewness (Sk), 

kurtosis (Kg) and sorting (S) were introduced by applying graphic illustrations of 

depositional environmental information (Friedman et al., 1992). MS was tested on a 

mass of 10 g of sediment with Bartington MS2 magnetic susceptibility meter 

(0.47/4.7 kHz). LOI values were calculated after a 4-hour burn at 550  in a muffle 

furnace. CaCO3 contents were gauged with an Eijkelkamp 08.53 carbonate analyzer. 

3.2  Dating method 

ploughed modern soil, many plant roots, badly sorted. 

40~85 
Extreme flooding 
deposit EFD2  

Consists of two rippled laminated extreme flooding deposit beds, 
towards the slope edges, thickness of the upper layer is 10 cm, 
turbidity reddish brown, clayey silt; the thickness of the lower 
layer is about 20~25 cm, turbidity yellowish orange, silt, 
lenticular lithosol with some breccias between the two layers. 

85~100 Slope deposit SD2  
Grey, granular structure, lithosol with some breccias, badly 
sorted. 

100~180 
Extreme flooding 
deposit EFD1  

Turbidity yellowish orange, silt, eight parallel-wavy beddings, 
the thickness of a single layer is 10 cm, pointing in the direction 
of slopes. 

180~? Slope deposit SD3  
Grey, granular structure, lithosol with some breccias, badly 
sorted. 
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Chronology of fluvial flooding events is another source of extreme 

characteristics in a historic framework. Two OSL samples were obtained from the 

XPC flooding sedimentary layers at depths of 70 cm and 110 cm. OSL dating on 

quartz grains between fractions sizes of 40 μm and 63 μm was carried out by the 

single aliquot regenerative-dose (SAR) protocol (Murray and Wintle, 2000; Koul et 

al., 2016) in the TL/OSL dating laboratory of Shaanxi Normal University. All 

measurements were performed on a Risø-TL/OSL-DA20 dating system and obtained 

the equivalent dose (De) corresponding to the natural OSL signal. The concentrations 

of K, U, and Th used in calculating OSL ages were measured by neutron activation 

analysis (Tamura et al., 2007) at the China Institute of Atomic Energy in Beijing. The 

application program Age.exe (Grün, 2003) ran and generated the results for the OSL 

dates (Fig. 2). 
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Fig. 2. Stratigraphic subdivisions and OSL dating of the XPC profile correlation with the CHZ profile 

in the BLH River watershed. SD: slope deposit, EFD: extreme flooding deposit, MS: modern soil, L0: 

recent loess, S0: palaeosol, Lt: transitional loess, L1: the Malan loess. 

3.3 Hydraulic modeling 

Peak stages of extreme flooding were estimated with the slackwater flow depth 

method (Guo et al., 2017). Each extreme flooding peak stage (PS) is obtained by 

adopting the bottom elevation of end-point SWDs (BE) and the slackwater depth (SD), 

which is calculated by the ratio of the SWD thickness (T) to the bulk of suspended 

sediment load of the flood (P, %). As a result, the PS can be inferred from equations: 
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PS=BE+SD and SD=TP-1. Peak discharges of extreme flooding were reconstructed 

using the Slope-Area Method (SAM) and one-dimensional (1D) Hydrologic 

Engineering Centre’s River Analysis System (HEC-RAS). The Slope-Area method 

(SAM) based on Manning's empirical formula is written as follows:  

Q= n−1A R2/3 S1/2                                                     (1) 

where, the hydraulic radius R, which is the quotient of the channel cross-section area 

A and wetted perimeter L, the channel slope S, and the empirical roughness coefficient 

n refer to Manning (Herget and Meurs, 2010; Guan et al., 2016). The 

multi-dimensional HEC-RAS model requires validate boundary conditions and results 

in large errors at large spatial scales (>100 km2) while the 1D HEC-RAS model is 

widely used for the flooding scenario simulation in relatively steady and straight 

rivers (Singh et al., 2018). Hydraulic features and parameters of the river channel, 

including geometry, slope gradient and roughness coefficients were measured in situ 

during field surveys. Manning’s roughness coefficients for the main channel and 

extreme flooding channel on the left and right sides were assigned by reference to the 

Hydrological Calculation Norms for Hydraulic Engineering in China (GB/T 

50095-2014). Channel cross-section geometry and water level surface elevations of 

the river at the XPC site were monitored using two systems: an electronic rangefinder 

(Contour-XLR1-LC5279, USA); and GPS in association with large scale topographic 

maps, these being 1: 10 000 and 1: 5 000.  

4. Results and discussion 
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4.1 Sedimentary environments of EFD 

The texture of sedimentary material provides clues to the process of information 

and depositional environments (Thorndycraft et al., 2005, 2006; Prieto and Rojas, 

2015). At the XPC site, grain-size distribution frequency and probability cumulative 

curves of EFDs are shown in Fig. 3. EFD1 and EFD2 are consisting primarily of silts 

ranging in size from 2 μm to 63 μm (Fig. 3a). The XPC EFDs contain an average 

proportion of coarse silt size ranging from 16 μm to 63 μm and this is 42.1%, while 

that of fine silt size varies from 2 μm to 16 μm and is 38.6%. However, the sand-sized 

(>63 μm) percentage is 6.9% and the clay-sized (<2 μm) percentage is 12.4%, 

respectively. Therefore, the chief component of the EFD stratum is coarse silt. 

Moreover, the curves of the EFDs peak at the coarse silt (16~63 μm) is clearly 

oriented to the coarse side. The distribution frequency curves of EFDs present as 

positively skewed and their kurtosis is single and narrow, which confirms that the 

EFDs are typically well-sorted. The probability of cumulative curves shows the 

relationship of sediment transport dynamics to populations, indicate that finer EFDs 

experienced the processes of suspension and truncation points were lower than 200 

μm (Fig. 3b). 
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Fig. 3. Grain-size distribution frequency and probability cumulative curves of EFDs at the XPC site in 

the downstream of the BLH River. 

The statistical grain-size indices such as median (Md), mean (Mz), standard 

deviation (σ), skewness (SK), kurtosis (Kg) and sorting (S) are important for 

charactering grain-size presented in Table 2. As observed in the table, Md and Mz of 
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EFDs are 15.5 μm and 21.0 μm, respectively. The ratios of clay to coarse silt range 

from 0.15 to 0.18 (Table 3). In addition, the standard deviation (σ) indicates the 

fluctuations in transportation conditions and depositional environments (Ghosh and 

Chatterjee, 1994). The higher standard deviation (σ) values mean these EFDs 

experienced fluvial long-distance transportation by high energy flooding. Variation in 

the kurtosis (Kg) values is a reflection of the flow characteristics of the depositing 

medium and measures the sorting of sediments (Ghosh and Chatterjee, 1994). The 

kurtosis (Kg) values of EFDs are less than 3.0 with fewer extreme outliers show that 

these EFDs are mainly well-sorted. Furthermore, they are mainly composed of fine 

clayey silt. The nature of EFDs is that at higher flow rates of extreme flooding, all 

clay and silt are kept in suspension. 

Table 2  

Grain-size distribution and statistical indices of EFDs at the XPC site in the downstream of the BLH 

River. 

Extreme flooding 

deposits 

<2 μm 2~16 μm 16~63 μm >63 μm Md Mz σ SK Kg S 

(%) (%) (%) (%) μm μm     

EFD2 13.21 40.98 38.70 7.10 14.01 20.02 2.08 0.24 1.01 1.42 

EFD1 11.50 36.25 45.55 6.70 16.98 22.01 1.99 0.35 1.02 1.35 

The index of MS does not only represent ferromagnetic mineral contents in 

deposits, it also reveals the material source, sedimentary dynamics and secondary 

environmental change of EFDs. LOI is an indicator of organic carbon content 

(including crystal water) in sediments. CaCO3, as a soluble salt, is a fundamental 

component of topsoil and sediment in arid and semi-arid regions. These parameters 
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are widely used to describe climate change and environmental conditions. Thus, 

characteristics of EFDs at the XPC site were identified in combination with these 

proxy indices. MS values of EFDs in the XPC profile were lower than those of the 

typical aeolian loess (40~100×10−8 m3/kg) and palaeosol (100~140×10−8 m3/kg) in the 

Loess Plateau (Huang et al., 2010). MS and CaCO3 contents of EFD2 were higher 

than those of EFD1, but the LOI value of EFD2 was lower than that of EFD1 (Table 

3). EFDs contain less magnetic mineral, organic matter and calcium carbonate than 

aeolian loess and palaeosol in the watershed, which suggests that variations in 

sediments’ components were related to depositional environments of saltation and 

suspension. Moreover, the higher location of the deposition during high flooding stage 

represents the more powerful uplift force of flooding in the internal hydrodynamics 

scenario. 

Table 3  

Magnetic susceptibility (MS), loss-on-ignition (LOI), CaCO3 content and clay/coarse silt ratio of EFDs 

at the XPC site in the downstream of the BLH River.  

Extreme flooding deposits 
MS 

( 10-8 m3/kg) 
LOI 
(%) 

CaCO3 content  
(%) 

Clay/coarse silt ratio  

EFD1 39.00 1.81 10.93 0.15 
EFD2 49.70 1.62 12.12 0.18 

Together with stratigraphical and sedimentological proxy index, it is noted that 

the texture of extreme flooding records at the XPC site were well-sorted clayey silt 

carried in suspension along high-energy extreme flooding currents. Two phases of 

flooding events in the lower BLH river valley were derived from the suspended 
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sediment load in a high location and the relatively stagnant environment of the river. 

These events were traced through an analysis of these EFDs. 

4.2 Chronology of extreme flooding events 

The chronological framework of the XPC profile was established by OSL dating 

and pedostratigraphical correlation with the existing well-dated CHZ profile in the 

BLH River (Fig. 2). The OSL sample in the upper stratum of EFD1 dated to 7 430

340 a in the XPC profile was consistent with typical archives of EFD1 lying between 

S04 with the base dating of 7 890 320 a and S03 with the base dating of 7 400 400 a 

at the CHZ site (Zhang et al., 2015b). It is confirmed that extreme flooding events 

prevailed in the BLH River watershed during the first flooding phase between 7 600 

and 7 400 a B.P. and this coincided with the flourishing Laoguantai culture (7 800~7 

000 a B.P.) according to archeological excavations. In addition, a climatic cooling 

event documented by high-resolution pollen records from Lake Ugii Nuur in central 

Mongolia was dated to 7 400 a B.P. (Zhang et al., 2018). Contemporary 

reduction in rainfall was revealed by well-dated, high-resolution stalagmite δ18O 

records from Hoti Cave (H5) in northern Oman of 7 400 a B.P. (Neff et al., 2001). The 

timing of EFD1 suggests extreme flooding events of the BLH River during the 

mid-Holocene between 7 600 and 7 400 a B.P. which coincide with higher climate 

variations. 

The second extreme flooding phase recorded by EFD2 with an OSL dating of 3 

130 150 a in the XPC profile which corresponded to the S01 layer of the CHZ profile, 
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was laid down between 3 200 and 3 000 a B.P. At the same time, abrupt monsoonal 

climate shifts occurred in the late Holocene with colder and drier regimes after the 

mid-Holocene Climate Optimum over the arid and semi-arid regions (Peng et al., 

2005; Huang et al., 2009, 2017). In early Chinese history, this period coincided with 

the cultural transition from the Shang Dynasty (1 600~1 046 B.C.) to the Pre-dynastic 

Zhou (1 200~800 B.C.) accompanied by mega-droughts, frequent flooding, drying-up 

rivers, harvest failures, great famine, plague outbreaks, and social upheavals (Huang 

et al., 2009). More previous research findings provided ample evidence of 

extraordinary hydro-climatic events taking place from 3 200 a B.P. to 2 800 a B.P., 

which coincided with some extreme flooding events identified in the middle Yellow 

River and its tributaries, such as the Qishuihe River, Weihe River and Jinghe River 

(Huang et al., 2010, 2011, 2012, 2013). Furthermore, Nile Delta pollen assemblages 

were characterized by large shifts in the abundance of Cyperaceae pollen dating to 3 

000 a B.P., which reflected extreme regional droughts that affected Middle Eastern 

civilizations (Bernhardt et al., 2012). It is clear that an abrupt climatic deterioration 

with more dramatic variability from 3 200 to 3 000 a B.P. at the end of the 

mid-Holocene Climate Optimum (Kale et al., 2000; Michael, 2001; Bohorquez et al., 

2013; Lillios et al., 2016) was associated with frequent severe droughts and extreme 

flooding in the Yellow River basin. However, the flooding deposits during 4 200~4 

000a B.P. were not discovered in the XPC profile and they may have been scoured by 

the larger flooding of 3 200~3 000 a B.P. Therefore, two extreme flooding periods, 

that are, 7 600~7 400 a B.P. and 3 200~3 000 a B.P. in the BLH River watershed, 
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coincided with global climatic events and were considered as a response of the 

regional fluvial system to high climatic variability and instability.  

4.3 In situ reconstruction of extreme flooding 

4.3.1 Peak stages reconstruction 

Regardless of methods used for a quantitative reconstruction of extreme flooding, 

the field evidence of flooding peak stage is of first importance (Sheffer et al., 2008; 

Rodriguez-Morata et al., 2016). Peak stages of two extreme flooding events based on 

EFDs at XPC site were reconstructed with the slackwater flow depth method (Guo et 

al., 2017). The end-point of each EFDs bed is above its base level in the 0.70~1.80 m 

range. Elevations of EFDs greatly depend on the river channel morphology and 

generally vary from 10.0 m to 15.0 m above the normal water level in China (Yang et 

al., 2000). Extreme flooding peak stages are estimated by bottom elevations of EFDs 

and extreme flooding depths, which are calculated by the ratio of the EFDs’ thickness 

to the bulk of suspended sediment load during flooding. As a result, extreme flooding 

peak stages for EFD1 and EFD2 at the XPC site are 457.67 m and 463.67 m above 

sea level (a.s.l.), respectively (Table 4). 

Table 4 

In situ reconstructed peak discharges of extreme flooding events at the XPC site and other sites in the 

BLH River watershed 
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Extreme flooding 
events 

Flooding 
peak stages 
(m a.s.l.) 

Flooding 
water 
depth 
H(m) 

Channel 
slope 

S 

Roughness 
values 

n 

Cross 
section 

area 

A(m
2
) 

Hydraulic 
radius 
R(m) 

Peak 
discharges 

Q(m
3
/s) 

XPC-EFD1 457.67 17.27 0.0015 0.038 1 987.50 11.07 9 625 

XPC-EFD2 463.67 23.27 0.0015 0.035 2 802.30 12.73 16 635 
CHZ-EFD1 634.80 15.45 0.0025 0.040 2 081.15 11.30 12 600 
CHZ-EFD2 635.50 16.15 0.0025 0.040 2 218.50 10.85 13 600 
CHZ-EFD3 635.85 16.50 0.0025 0.040 2 289.27 10.95 14 100 

ZJC-EFD1-1 605.70 28.70 0.0014 0.055 3 270.60 15.11 13 810 
ZJC-EFD1-3 607.00 30.00 0.0014 0.055 3 553.90 16.01 15 591 

LMC-EFD1-1 778.40 17.50 0.0016 0.050 3 044.50 11.42 12 350 
LMC-EFD1-5 780.00 19.10 0.0016 0.050 3 471.40 12.21 14 730 

4.3.2 Magnitude reconstruction 

The ultimate objective of palaeoflood hydrology research is to reconstruct the 

magnitude and frequency of extreme flooding events (Rodriguez-Morata et al., 2016; 

Scorpio et al., 2018). The peak discharges (Q) of extreme flooding events at the XPC 

site was estimated by the Slope-Area method (SAM). It evaluates the mean flow 

velocity in open channels for a uniform, steady, one-dimensional flow condition. 

Slope S of the BLH River channel at the XPC site is normally parallel to the gradient 

of the water surface profile, i.e., elevation difference per length measured through an 

electronic rangefinder and GPS during fieldwork and revised in association with a 

1:10 000 scale contour map. Channel morphology data were collected with detailed 

measurements of water surface, streambed, breadth, depth, and bank full elevations. 

The bedrock channel reaches of the BLH River provide stable cross-sections through 

the XPC sampling site for calculation of extreme flooding discharge. The roughness 

coefficient n depends on boundary conditions of the flooding area such as grain-size 

of sediments, species categories and crown density of vegetation (Ayvaz et al., 2013; 
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Singh et al., 2018). Referring to the hydrological calculation standards for hydraulic 

engineering in China, the values of roughness coefficient n at the XPC channel are 

0.035 and 0.038. By the Slope-Area method (SAM) which involves the Manning 

equation, extreme flooding peak discharges are simulated at the XPC site and lie in 

the interval of 9 625~16 635 m3/s (Table 4). To assess the flow speed and hydraulic 

regime caused by extreme flooding, the Froude (Fr) number of flow was adopted as 

an index of flow status:  

Fr = vg-1/2H-1/2                                                       (2) 

where, v is the flow velocity, g is the acceleration due to gravity, and H is the flooding 

water depth. From the values of Fr between 0.47 and 0.49, this clarified that the 

reconstructed flooding currents presented higher and strong flowing regimes with 

suspension transportation. 

Fig. 4. (a) Cross-section distributions for extreme flooding hydrological reconstruction at the XPC site 

along the BLH River channel; (b) Cross-sectional morphology and peak stages of extreme flooding; (c) 
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Water surface lines and channel bottom of the BLH River at the sampling site. 

To avoid errors of simulated discharges caused by a single cross-section, the 

HEC-RAS version 4.1 for 1D steady flow model with GIS compatibility was put into 

operation to reconstruct the flooding magnitude (U.S. Army Corps of Engineers, 

2010). The 1D energy equation of this model is as follows:  

Z2+Y2+0.5g-1α2V2
2=Z1+Y1+0.5g-1α1V1

2+he                                      (3) 

where, Z is the elevation of channel, g is the acceleration due to gravity, Y is water 

depth of the cross-section, V is mean flow velocity, α is kinetic energy correction 

coefficient, and he is water head loss. There were 13 cross-sections distributed along 

the main channel and these were 1.3 km in length (Fig. 4a); their parameters were 

imputed in the hydraulic model. The stable bedrock canyon and narrow cliff without a 

tributary was ideal and critical boundary conditions existed throughout the study 

location. Cross-section morphologies calibrated based on DEMs and geometric data 

were imported from ArcGIS 10.0. The HEC-RAS model simulated the water surface 

profiles of the 13 cross-sections. Peak discharges of extreme flooding were obtained 

in terms of Manning's n values between 0.035 and 0.040 covering valley floor and 

margins in the HEC-RAS modeling system. Regarding the elevation of end-point 

EFDs as the minimum stage of extreme flooding, the minimum peak discharges of 16 

635 m3/s and 9 625 m3/s assessed by STM were well matched with the results 

simulated by SAM (Table 4). These estimated discharge values of extreme flooding at 

the LMC, ZJC, CHZ, and the XPC sites are 1.5 to 2.6 times larger than the maximum 
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gauged discharge of the BLH River (Table 4). However, the discharge results contain 

an error of 5~12% when inputting a 25% variation in roughness values (0.75n and 

1.25n). 

Modern mega flooding discharges analog plays a crucial role for checking the 

validity of estimated extreme flooding discharges. The features of the modern 

flooding were also simulated by operating the HEC-RAS model. The estimated peak 

stage of modern flooding at the 7th cross-section was 453.6 m a.s.l. and 13.2 m higher 

than the normal water level. Compared with observed data that the flooding peak 

discharge was 6 280 m3/s and the water stage rose 12.3 m in 1994 at Zhuangtou gauge 

station, the simulated peak stage of modern flooding with an error of 7.3% confirms 

there is a good agreement with those corresponding observed data. The results again 

ascertained that the two approaches for reconstructing extreme flooding events were 

feasible. Furthermore, as put forward by Baker (2006) the reconstructed discharges of 

extreme flooding events followed the relationship between peak discharge and 

drainage area of global maximum flooding events were reliable. 

4.4 Long-term frequency reconstruction 

The log-Pearson type (LP) III distribution is the most common method applied to 

assess the frequency of fluvial flooding and predict the flood design in China. The 

flooding frequency was estimated at the XPC site in the downstream the BLH River 

by the discharge-based approach. Annual maximum flooding peak discharges for 

long-term frequency reconstruction at the Zhuangtou station from 1933 to 2017 are 
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shown in Fig. 5b. The relationship between flooding frequencies and their peak 

discharges without consideration of historical flooding and extreme flooding events is 

shown in Fig. 5a. In contrast, the curve with a consideration of historical flooding 

peak discharges of 5 000 m3/s (1662) and 10 700 m3/s (1856) shows that peak 

discharges drastically increase corresponding frequencies <1%. However, beyond this, 

the results appear to be significant reduction corresponding frequencies <1% due to 

integrating with the in situ reconstructed extreme flooding events with larger 

magnitudes and lower frequencies than the gauged and historical flooding. It is clear 

that the magnitude quantification of long-term extreme flooding events greatly 

influences the accuracy of low-frequency and large-magnitude flooding. The 

maximum estimated flooding magnitudes are 16 635~9 625 m3/s at the 10 000-year 

timescale on the Chengcheng reach in the downstream BLH River. Flooding 

frequency analysis involved in 100-year or 1000-year flooding was performed 

effectively by interpolation instead of conventional extrapolation which overestimates 

the intensity of low-frequency events. Thus, a long-term flooding frequency curve 

built as a red line in Fig. 5a provides a credible recurrence of regional flooding risk 

and design-floods prediction of water conservancy construction in the downstream 

region of the BLH River.  

5. Conclusions 

Sedimentary environments and dynamic conditions of two units of EFDs (EFD1 

and EFD2) found at the XPC site in the downstream BLH River were revealed by 
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multiple sedimentation proxy indices. Specifically, deposits were carried in 

suspension during high-energy extreme flooding currents with a high water level and 

the river having a relatively stagnant environment. The applications of the OSL dating 

technique and stratigraphic correlations determined that two extreme flooding phases 

documented by EFDs were 7 600~7 400 and 3 200~3 000 a B.P. Through the 

Slope-Area Method and HEC-RAS model, the in situ reconstructed magnitudes of 

extreme flooding were 16 635 m3/s and 9 625 m3/s. A novel long-term peak 

discharge-frequency curve was established with gauged, historical and extreme 

flooding data and showed that the reconstructed maximum flooding discharge is 16 

635 m3/s on the 10 000-year timescale in the BLH River downstream. Quantification 

magnitudes and frequencies of long-term extreme flooding events revealed the main 

driving mechanisms between hydrological extremes and regional monsoonal climate 

fluctuations. The BLH River’s response to regional climatic variations in the 

Holocene period during the watershed scale was the homochronous extreme flooding 

in middle and lower reaches. These extreme flooding periods sometimes were 

followed by frequent heavy rainfall, and sometimes experienced prolonged drought, 

which bought about extreme flooding or drying up of river systems.  

Therefore, periods of extreme flooding occurrence under climate abnormality 

scenarios characterized with high frequencies of hydrological extremes resembled 

those of historical periods or the present. Thus, two extreme flooding events in the 

BLH River are helpful in understanding the effects of global climatic variations on 

river system dynamics. Extreme flooding in situ reconstruction provides a real 
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long-term record including magnitudes and frequencies information. This not only 

improves the reliability for risk assessment and hydrological design, but also predicts 

the response of local fluvial systems to the non-stationarity of climate at watershed 

scales. Further study on simulation of extreme flooding events with magnitudes and 

frequencies in different scenarios and applied for local inundation maps is necessary. 

Fig. 5. (a) Relationship between flooding frequency-peak discharge and a long-term frequency curve 

was established by incorporating gauged flooding (1933~2017), historical flooding (1662 and 1856), 

ACCEPTED MANUSCRIPT



AC
CE

PT
ED

 M
AN

US
CR

IP
T

 

28 
 

and extreme flooding data at the Zhuangtou gauge station in the BLH River watershed; (b) 

Non-successive flooding data at the Zhuangtou gauge station in the BLH River watershed. 
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