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Abstract   

The occurrence of antibiotics in drinking water has become a serious problem 

worldwide as they are a potential and real threat to human health. In this study, the 

variability of 10 typical antibiotics in two drinking water plants was investigated in 

two seasons (n = 12). The total concentrations of target antibiotics in raw water were 

significantly higher in winter than in summer, which may be attributed to the more 

frequent occurrence of colds and respiratory diseases as well as less rainfall in winter. 

The efficiency in removing the antibiotics varied from -46.5% to 45.1% in water plant 

A (WP-A ) using a conventional process and 40.3% to 70.3% in water plant B (WP-B) 

with an advanced treatment process. Results indicated that the antibiotics in WP-A 

were mainly removed via the coagulation process. However in WP-B, the ultraviolet 

+ chlorination process played a key role in antibiotics removal, followed by the 

pre-ozone + coagulation process. According to the human health risk assessment, it 

was suggested that the risk of drinking water was significantly higher than that of skin 

contact. However, the risk of carcinogenesis and non-carcinogenesis caused by 

antibiotics was at an acceptable level. 

Keywords: Distribution characteristic; Seasonal variation; Removal efficiency; Health 

risk assessment 

1. Introduction 

Safe drinking water is the basic requirement of human survival, which is directly 

related to human health and life safety (Baken et al., 2018; Li et al., 2018a). Currently, 

pollution of the water environment caused by pharmaceuticals and personal care 
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products (PPCPs) is now doing serious damage to drinking water sources in many 

societies (Lin et al., 2016; Yang et al., 2017). Antibiotics constitute one of the most 

important drugs that people often use. It is estimated that the number of antibiotics 

used worldwide ranges from 100,000 to 200,000 tons annually (Li et al. 2014) . 

Approximately 5460 and 3465 tons of antibiotics are used annually in humans and 

animals in the European Union and Switzerland, respectively (Hu et al., 2018a). Due 

to the lack of scientific drug management and guidance as well as public 

misunderstanding about the use of antibiotics, the abuse of antibiotics has become 

very serious in China (Bu et al., 2016; Qiao et al., 2018). China consumes 180,000 

tons a year, which is approximately 10 times larger than the annual consumption in 

the United States (Hu et al., 2018a).  

The total antibiotic usage was estimated to be approximately 162,000 tons for 

2013, and 52% of which was consumed by animals (Zhang et al., 2018). Antibiotics 

have the characteristics of low concentration, high toxicity and "pseudo-persistence" 

in the environment (Binh et al., 2018). Human beings, and aquatic and terrestrial 

organisms can be exposed to antibiotics for a long time. Even if existing in the 

environment in the level of μg/L and ng/L, they will wield adverse effects on human 

health and the natural environment (Schafhauser et al., 2018). Therefore, it is 

important to investigate the occurrence, distribution and human health risk of 

antibiotics in the aquatic environment.  

Different kinds of antibiotics have been detected in the surface waters of Haihe 

River (Dang et al., 2017), Huangpu River (Chen and Zhou, 2014), Jiulong River 
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(Zheng et al., 2011), Yangtze River (Sun et al., 2017), Yellow Sea (Na et al., 2014), 

Bohai Sea (Liu et al., 2016), Pearl Harbor (Li et al., 2018b) and Victoria Harbor 

(Minh et al., 2009) in China. Urban sewage discharge is an important way for 

antibiotics to enter the surface water environment. Rainwater, runoff erosion and 

aquaculture are also factors that cannot be ignored. Similarly, antibiotic residues were 

also detected in groundwater. Hirsch et al. (1999) studied the infiltration of 

groundwater by livestock wastewater and agricultural irrigation water in Germany, 

discovering the existence of 0.47 μg/L sulfamethoxazole and 0.16 μg/L sulfadiazine. 

Sacher et al. (2001) detected 49 ng/L of erythromycin and 410ng/L sulfamethoxazole 

in groundwater in Germany. Campagnolo et al. (2002) detected tetracyclines, 

sulfonamides, beta-lactams and macrolides in groundwater near a pig farm in the 

United States. It should be noted that antibiotics are also found in drinking water, not 

just surface and groundwater. Zuccato et al. (2000) detected tylosin with a 

concentration of 0.6-1.7ng/L in drinking water in the Italian city of Lodi. Boleda et al. 

(2014) detected azithromycin, clarithromycin, erythromycin and sulfamethoxazole in 

Spanish drinking water, with maximum concentrations of 9.5, 2.2, 1.5 and 1.4ng/L, 

respectively. Perret et al. (2006) detected three sulfonamide antibiotics in Italian 

drinking mineral water at concentrations ranging from 9 to 80 ng/L. 

Studies have shown that different concentrations of antibiotics have been found 

in the freshwater aquaculture water, Haihe River and soil in Tianjin (Chen et al., 2014; 

Li et al., 2014). Various types of antibiotics were also detected in water sources in a 

recent analysis (Su et al., 2018). It is therefore clearly evident that the chemical safety 
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of drinking water caused by these antibiotics is attracting much more research 

attention. However, the source, distribution and migration of antibiotics in 

environmental waters are mostly concentrated in surface water, groundwater and 

sewage treatment plants, and there is little research on the water supply system. The 

quality of water that is transported along the water supply system has a direct impact 

on human health (Zhang et al., 2016). Existing water treatment units have not been 

designed for novel pollutants such as antibiotics, and the migration and removal of 

antibiotics in the process of drinking water and water supply are still not fully 

understood. Therefore, it is of great significance for drinking water safety to study the 

distribution characteristics and transfer regularities of antibiotics in the water supply 

system and the removal efficiency of existing water treatment units.  

This study focused on 10 typical antibiotics found in Tianjin’s water supply 

system, and analyzed here were the concentration level and distribution characteristics 

of antibiotics in two different drinking water plants. An evaluation was carried out of 

the health risks caused by antibiotics in drinking water based on the uncertainty 

analysis method. It can provide good description of the distribution characteristics, 

migration and transformation of antibiotics as well as their potential hazards in 

Tianjin’s water supply system, so that the urban drinking water is completely safe to 

use. 

2. Materials and methods 

2.1 Study sites and sampling 

The water plants designated as A and B in Tianjin were selected for this research. 
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WP-A and WP-B used the same source of water (mainly Changjiang river water, 

while Luanhe river water has served as the standby water source).The water supply 

capacity of WP-A and WP-B is 500 thousands m3/d and 300 thousands m3/d, 

respectively. Raw water, unfiltered water, filtered water and effluent water which are 

treated by these waterworks were all collected. A water sample (5L) was collected 

with a water sample collector after each continuous water discharge which lasted for 

10 minutes. The collected water samples were then quickly transported in brown 

bottles to the laboratory and kept in a refrigerator at 4 . The process units and 

sampling points (n=12) of each water plant are shown in Fig. 1, of which S1-S6 were 

collected in summer and W1-W6 were collected in winter. Antibiotics were analyzed 

within 24h. In order to ensure the accuracy of the data, three parallel samples were 

established in each water sample and the average value was finalized.  

 

Fig. 1 Sampling flow diagram in WP-A and WP-B. 
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2.2 Chemicals and standards 

According to the full scanning analysis of the species of antibiotics in tap water 

and the study of the distribution of antibiotics in Tianjin’s main source of water, 10 

antibiotics were determined, including the following: tetracyclines: tetracycline (TC, 

98%) and doxycycline (DXC, 98.7%); quinolones: ofloxacin (OFC, 99%), 

enrofloxacin (ERC, 98.5%) and trimethoprim (TMP, 98.7%); β-lactams: penicillin G 

(PEN, 99.5%); macrolides: roxithromycin (ROX, 97%); lincosamides: lincomycin 

(LIN, 99.2%); and sulfonamides: sulfamerazine (SMR, 99.2%) and sulfamethoxazole 

(STX, 99.0%). The physicochemical properties of the target antibiotic compounds are 

summarized in Table 1. All the standard samples were powder samples purchased 

from Dr. Ehrenstorfer GmbH, Germany; Acetone solution of 13C3-Atrazine at a 

concentration of 100ng/μL purchased from Bailingwei, China; and Methanol solution 

of 13C3-Caffeine at a concentration of 1.0mg/mL purchased from Cambridge Isotope 

Laboratories, USA. Other solvents include methanol (HPLC, Fisher, USA), formic 

acid (85%, HPLC, Duksan), acetonitrile (HPLC, Fisher, USA) and ammonium 

formate (HPLC, CNW, Germany). 

 

Table 1 

The physicochemical properties of the target antibiotic compounds. 

Antibiotic compounds Acronym CAS number Molecular weight LogKow pKa Molecular formula 

Tetracycline TC 60-54-8 444.43 -1.30 3.3 C22H24N2O8 

Doxycycline DXC 564-25-0 444.44 -0.02 n/a C22H24N2O8 
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Ofloxacin OFC 82419-36-1 361.37 -0.39 n/a C18H20FN3O4 

Enrofloxacin ERC 93106-60-6 359.40 0.7 n/a C19H22FN3O3 

Trimethoprime TMP 738-70-5 290.32 0.91 7.12 C14H18N4O3 

Penicilline PEN 113-98-4 373.48 -0.301 n/a C16H18N2O4SK 

Roxithromycin ROX 80214-83-1 837.1 2.75 9.17 C41H76N2O15 

Lincomycin LIN 154-21-2 406.5 0.56 8.78 C18H34N2O6S 

Sulfamerazine SMR 127-79-7 264.3 0.14 n/a C11H12N4O2S 

Sulfamethoxazole STX 723-46-6 253.3 0.89 5.6 C10H11N3O3S 

2.3 Sample pretreatment 

A water sample of 1L was filtered by a 0.22 μm glass fiber filter (50mm i.d., Pall, 

USA) to remove suspended particulate matter. When 0.5 g ethylenediamine tetraacetic 

acid disodium (Na2EDTA) was added, the solution was shaken up and the pH was 

adjusted to 2-3 with concentrated hydrochloric acid. Then 150ng 13C3- caffeine was 

added to the water sample and mixed well. The samples were extracted and enriched 

using Oasis HLB SPE cartridges (6 mL/500 mg, USA). Before loading the pretreated 

water samples, cartridges were activated with 6 mL of methanol, 6mL of 2.5g/L 

Na2EDTA solution and 6 mL of ultra-pure water. The flow rate was 3-5ml /min. After 

the water samples were filtered, the cartridges were leached with 6mL ultra-pure 

water immediately and dried under negative pressure for 30 minutes. Using 6mL 

methanol and 6mL acetonitrile as the elution solvents, the target analytes were eluted 

under gravity conditions and the eluent was collected. The collected eluent was blown 

off to less than 1 mL by nitrogen gas in a water bath at 40 . The samples were 

re-dissolved by methanol repeatedly eluting the side wall. The final volume was 

determined to 1 mL. The eluent was transferred to the injection bottles after adding 10 

ACCEPTED MANUSCRIPT



AC
CE

PT
ED

 M
AN

US
CR

IP
T

 

9 

 

μL 50ppm 13C3-atrazine for instrumental analysis . 

2.4 Antibiotics analysis 

1200 high performance liquid chromatography (HPLC) (Agilent, USA) coupled 

with a 6410B triple quadrupole mass spectrometer (MS) (Agilent, USA) was utilized 

for the quantitative analysis of antibiotics. A Zorbax Eclipse Plus C18 (with diameter, 

length and pore size of 2.1 mm, 100 mm, 1.8 μm, respectively) chromatographic 

column was used for chromatographic analysis. The column temperature was set to 

40°C, the sample injection volume was 10 μL, and the mobile phase flow rate was 0.3 

mL/min.The aqueous phase (phase A) consisted of 3% formic acid and 0.1% 

ammonium formate aqueous solution. The organic phase (phase B) was methanol and 

acetonitrile with a volume ratio of 1: 1. The gradient programs of the UPLC were set 

up as shown in Table A1. All antibiotics were well separated and chromatographic 

peaks were well formed. The whole instrumental analysis process was completed in 

19 minutes. The correlation coefficients R2 were all greater than 0.9990, the detection 

limit was 0.001-0.26 ng/L, the recovery was 77.12% - 126.37%, and the relative 

standard deviation was less than 9.34%. The specific values of each antibiotic were 

shown in Table A2. 

To evaluate the removal efficiency of target antibiotics in each treatment unit and 

the entire process in the water treatment plants, the calculation formula of the removal 

rate of antibiotics was as follows: 

%100
,

,1,
,
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                                        (1) 
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where ηj,i is the removal rate of antibiotic i by j process, cj,i is the concentration of 

antibiotic i in j process (ng/L), cj+1,i is the concentration of antibiotic i in the 

subsequent process of j process (ng/L), ηt,i is the total removal rate of antibiotic i in 

various processes of waterworks, cr,i is the concentration of antibiotic i in raw water 

(ng/L), and ce,i is the concentration of antibiotic i in effluent (ng/L). 

2.5 Human health risk assessment 

Health risk assessment mainly evaluates the risk of exposure and the impact of 

harmful factors on individual people’s health by estimating the probability of adverse 

effects on the human body. Based on the health risk assessment theory of EPA 

(USEPA, 2001), the carcinogenic and non-carcinogenic risks of antibiotics that can 

arise in drinking water and bathing were assessed with the Monte Carlo method. 

Quantitatively estimating the population’s intake of pollutants through diet 

(mainly drinking water) (Strenge et al., 1995) is: 

ATBW
EDEFABSUTFCCDI dwdw

                          (3) 

where CDIdw is the daily exposure dose of pollutants in drinking water 

[mg/(kg×d)], Cdw is the concentration of pollutants in water (mg/L), TF is the 

purification coefficient of waterworks, U is the daily average water intake (L/d), ABS 

is the gastrointestinal absorption factor, EF is exposure frequency (d/a, at 360), ED is 

the exposure period (a, at 75), BW is the average body weight (kg), and AT is the 

average exposure time and should be the average of EF and ED product for the 
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population studied. 

In the process of bathing, the human body absorbs pollutants in the water 

through the skin. The exposure models are as follows (Strenge et al., 1995): 

ATBW
EDEFCFFTFEKSACCDI pdwsc

                  (4) 

where Cdw is the concentration of pollutants in water (mg/L), SA is the accessible 

skin surface area (cm2), Kp is the osmotic constant of chemical contaminants on skin 

surface (cm/h), FE is the bath frequency (d), FT is bath time (h), CF is the unit 

transformation factor (1L/1000cm3), EF is exposure frequency (d/a, at 360), ED is the 

exposure period (a, at 75), BW is the average body weight (kg), and AT AT is the 

average exposure time and should be the average of EF and ED product for the 

population studied. By means of questionnaire survey and taking families as units, a 

sample survey was conducted among residents in Tianjin to determine the values of 

exposure parameters of population behavior characteristics. The specific data refer to 

Table A3. 

The model established by Barratt (1995) was used to calculate the skin 

permeability coefficient. The fitting degree of the model was 0.904, and the formula 

was as follows. 

355.200387.0log82.000933.0log mptPMVPC          (5) 

where PC is the skin permeability coefficient (m/h), MV is the molecular weight 

of each antibiotic, logP is the octanol ratio, mpt is the melting point ( ). 

The risk assessment of antibiotics is based on the risk value (risk, R)(Crouch and 
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Wilson, 2010)  

CDIR  01.0R                                         (6) 

where CDI is the exposure dose per unit weight [mg/(kg×d)], while β is the 

exposure to carcinogenic intensity coefficient (kg×d/mg). 

Carcinogenic risk of multiple antibiotics: 

n

i
i

C RR
1                                                  (7) 

where Ri is the carcinogenic risk of chemicals i. 

The carcinogenic effect was calculated using models established by Zeise et al 

(2010): 

cLD
D

50                                                  (8) 

where LD50 (Zheng, 2005) is the median lethal dose of animals (mg/kg), and C 

and D are the regression coefficients. 

Human carcinogenic potency: 

aahh K                                                (9) 

where βh is the human carcinogenic intensity coefficient (kg×d/mg), Kah is the 

intermediate conversion coefficient (US EPA recommended value is 4.7), and βa 

represents the animal carcinogenic intensity coefficient (kg×d/mg). 

Non-carcinogenic risk of antibiotics: 

RfD
CDIHQ

                                                 (10) 

where HQ is the risk hazard quotient, and RfD is the non-carcinogenic reference 
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dose of pollutants [mg/(kg×d)]. 

The non-carcinogenic reference dose was estimated by the model proposed by 

Strenge et al (1995): 

5
50 104LDRfD                                          (11) 

where 4×10-5 is the empirical transformation coefficient (d-1). 

Comprehensive evaluation of non-carcinogenic risk of multiple compounds and 

multiple exposure routes: 

n

j

n

i ij

ij

RfD
CDI

HI
1 1

                                            (12) 

where CDIij is the exposure dose per unit body weight for the j exposure pathway 

of the i pollutant [mg/(kg×d)], and RfDi is the non-carcinogenic reference dose for the 

j exposure pathway of the i pollutant [mg/(kg×d)]. 

Crystal Ball 11.1.2.2 helped to to implement Monte Carlo sampling analysis and 

uncertainty analysis concerning health risk assessment. The objective here was to: 

firstly, improve the reliability of risk assessment results; and secondly, reduce the risk 

associated with decision-making.  

3. Results and discussion 

3.1 Seasonal variation of antibiotics concentration in raw water 

The changes in antibiotic concentration in raw water over time are shown in Fig.  

2. The dotted line indicates the division between winter and summer. Except for 

sulfonamide antibiotics (SAs), the detected concentrations of other antibiotics were 

significantly higher in winter than in summer (p < 0.05). This was mainly due to the 
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low rainfall in winter, as well as the frequent occurrence of colds and respiratory 

diseases which triggered the large use of antibiotics. A large amount of rainfall runoff 

in summer will wash antibiotics from the surface into the bodies of water and increase 

the antibiotic content in the water source, but because of dilution brought about by a 

large amount of rainfall, the concentration of antibiotics will be reduced.The seasonal 

distribution of DXC, OFC and ERC revealed a consecutive increase. The highest 

value (253.2 ng/L) of DXC was about 36 times larger than the lowest value (9.1 ng/L), 

the highest value (150.7 ng/L) of OFC was about 15.7 times larger than the lowest 

value (9.6 ng/L), and the results for ERC (the highest value: 245.9 ng/L; the lowest 

value: 20.8 ng/L) were 11.8 times. This may explain why the sources of these 

antibiotics were intermittent and their use increased significantly during winter. The 

content of PEN was very small in summer but the detected concentration in winter 

rose significantly and remained at a certain level (>30 ng/L), which resulted in a great 

difference between the average and the median concentration (Table 2). Considering 

the easy hydrolysis of PEN, it indicated that the use of PEN in winter not only 

increased, but did so frequently, resulting in a high concentration of PEN continuously 

being deposited in the raw water. Due to the small detection frequency of ROX, the 

annual seasonal variation was significant. LIN had a small peak from June to July, 

which may be due to the concentrated use of LIN during this period. The 

concentration level of STX was higher in both winter and summer, and the peak value 

of SMR appeared in both winter and summer, while the content was low for the rest 

of the time. This may suggest that the pollution emission of SMR was relatively 
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concentrated. 

 

Fig. 2 Seasonal distribution of antibiotics in raw water 

3.2 Occurrence and distribution of antibiotics in two water plants 

3.2.1 Antibiotics concentrations in WP-A 

The concentration of antibiotics in each stage of WP-A are documented in Table 

2. Ten antibiotics were detected in raw water, and the content of antibiotics ranged 

from 337.4-1531 ng/L. Except for the detection frequencies of ROX and PEN were 

41.7% and 91.7%, respectively, the detection rates of other antibiotics reached 100%. 

The average concentration of STX (206.8 ng/L) was the highest, followed by SMR 

(136.8 ng/L).The high detection rate and high concentration of sulfonamide 

antibiotics are not only related to the large use of sulfonamide antibiotics, but also 

because of the high stability and hydrophilicity of them in water, which are easy to 

enter the water environment through runoff and rainwater erosion, resulting in the 
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pollution of sulfonamide antibiotics in water (Hu et al., 2018b). PEN is one of the 

world’s most abundant antibiotics, but the detected concentration in raw water was 

not high, with an average concentration of 12.5 ng/L. The main reason is that 

β-lactam antibiotics are easily hydrolyzed in a water environment and not easily 

detected (Kim et al., 2018).  

The raw water was collected at A2, after the coagulation-air flotation process and 

before entering the filter. The total antibiotic level in pre-filtration water ranged from 

134.5 to 1032 ng/L, and the concentration of single antibiotic varied from 1.4 to 241.3 

ng/L. Except for ROX (the detection frequency was 41.7%), 100% of all the other 

antibiotics were detected in the 12 samples. Similar to the distribution of antibiotics in 

raw water, the average concentration of STX (104.7 ng/L) was the highest, followed 

by SMR (93.0 ng/L).  

The filter in WP-A was a double-valve filter. After passing through the filter, the 

total concentration of antibiotics ranged from 172.9 ng/L to 966.6 ng/L. The average 

concentration of STX (111.6 ng/L) was the highest, followed by DXC (100.2 ng/L). 

Compared with DXC, the average concentration of TC was only 27.1 ng/L, indicating 

that DXC was more widely and abundantly used than TC. The average concentration 

of LIN was 13.3 ng/L, which was only higher than that of PEN (10.8 ng/L) and ROX 

(0.7 ng/L). ERC was the highest quinolone antibiotic with an average concentration of 

80.13ng/L, higher than OFC (51.9 ng/L) and TMP (20.9 ng/L).  

The chloramine contact disinfection tank was the final treatment unit, and only 

then after disinfection would tap water be delivered to the user. The total 

ACCEPTED MANUSCRIPT



AC
CE

PT
ED

 M
AN

US
CR

IP
T

 

17 

 

concentration of antibiotics in the effluent ranged from 197.9 to 1138 ng /L. The 

content of DXC in tetracycline was higher than that in TC, and its concentrations 

were 41.0-256.5 ng/L and 2.1-90.6 ng/L, respectively. The content of STX in 

sulfonamides was larger, with an average concentration of 122.3 ng/L, and the 

average concentration of SMR was 74.2 ng/L. The highest concentration of ERC was 

234.5 ng/L, which was much higher than Macau's 5.2 ng/L and Guangzhou's 8.3 ng/L 

(Yiruhan et al., 2010), indicating that the pollution of ERC in Tianjin’s waterworks 

had reached very serious levels. Meanwhile, the average concentration of OFC was 

62.0 ng/L, which was similar to or more serious than the concentration of OFC in 

surface water (Hu et al., 2018c). The concentration of ROX was the lowest and the 

average concentration was only 1.0 ng/L. 

Table 2 

The concentration of antibiotics in each stage of WP-A (ng/L).  

Testing items 
Antibiotic compounds 
TC DXC OFC ERC TMP PEN ROX LIN SMR STX 

Raw 
water 
(n=12) 

Maxa 134.1 320.1 189.9 243.4 122.3 33.2 1.7 53.1 317.8 307.4
Minb 4.5 8.8 12.1 20.6 12.0 nde nd 8.3 13.4 76.6
Medc 49.0 98.2 55.8 105.4 56.1 12.5 1.1 24.9 136.8 206.8
Mean 23.0 72.4 39.6 92.1 54.2 3.2 1.0 23.0 112.5 212.3
Fred(%) 100.0 100.0 100.0 100.0 100.0 91.7 41.7 100.0 100.0 100.0

Unfiltered 
water 
(n=12) 

Max 82.7 241.3 146.9 161.8 61.8 36.6 2.4 23.2 229.8 215.1
Min 1.4 2.8 5.8 9.8 3.3 1.7 nd 7.7 13.6 3.6
Med 27.9 87.6 48.2 74.5 22.6 9.7 1.0 14.1 93.0 104.7
Mean 8.8 43.0 14.7 71.1 12.4 4.9 0.7 11.3 39.2 103.0
Fre(%) 100.0 100.0 100.0 100.0 100.0 100.0 41.7 100.0 100.0 100.0

Filtered 
water 
(n=12) 

Max 86.6 236.6 154.0 169.6 63.3 31.6 2.1 23.4 210.5 211.1
Min 1.8 <41.6 1.7 13.7 3.4 1.0 nd 3.7 2.4 12.8
Med 27.1 100.20 51.9 80.1 20.9 10.8 0.7 13.7 60.7 111.6
Mean 8.6 56.4 26.5 78.7 12.3 5.7 0.4 13.9 35.8 98.8
Fre(%) 100.0 100.0 100.0 100.0 100.0 100.0 41.7 100.0 100.0 100.0
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Effluent 
water 
(n=12) 

Max 90.6 256.5 157.2 234.5 112.7 38.2 2.0 27.7 246.7 232.0
Min 2.1 41.0 14.4 13.9 7.9 0.6 nd 3.3 5.7 47.4
Med 34.3 121.1 62.0 126.4 45.5 10.9 1.0 14.2 74.2 122.3
Mean 17.0 83.5 38.3 122.6 27.6 4.7 0.7 12.1 33.4 115.2
Fre(%) 100.0 100.0 100.0 100.0 100.0 100.0 41.7 100.0 100.0 100.0

a: Maximum, b: Minimum, c: Median, d: Frequency e: Not Detected 
 

3.2.2 Antibiotics concentrations in WP-B 

The concentration of antibiotics in each treatment stage of WP-B are shown in 

Table 3. The total content of antibiotics in raw water ranged from 444.2 ng/L to 941.9 

ng/L. Except for ROX, the detection frequency of other antibiotics was 100%. SMR 

concentrations were the highest with an average of 231.5 ng/L. STX was the next 

largest, and its average concentration was 105.4 ng/L. The concentrations of SMR and 

STX in raw water of WP-B were smaller than those of WP-A. The average 

concentrations of PEN and LIN were 26.0 ng/L and 26.2 ng/L respectively, which 

were slightly higher than those in WP-A.  

Water samples were collected at B2 once the pre-ozone contact tank, mechanical 

coagulation tank and inclined tube sedimentation tank had been completed. Consistent 

with the original water, 9 antibiotics excluding ROX were detected in the 

pre-filtration water with a concentration range of 395.2-695.2 ng/L. SMR was still the 

dominant compound with an average concentration of 182.2 ng/L. Meanwhile the 

LIN concentration was the lowest at 16.6 ng/L. The concentrations of TC and DXC 

were 25.1 ng/L and 68.6 ng/L, respectively, which were lower than those in WP-A. 

The concentrations of three QNs were similar and the average concentrations of OFC, 

ERC and TMP were 45.3, 42.2 and 48.5ng/L, respectively. The concentration of PEN 
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ranged from 8.8 ng/L to 35.8 ng/L, which was about twice the average concentration 

of that in raw water of WP-A.  

The WP-B adopted a v-type filter with an integral filter plate. The concentration 

range of antibiotics in water was 332.3-670.9 ng/L after filtration. SAs constituted the 

most abundant antibiotic, accounting for 45.3% of total antibiotics. The average 

concentrations of SMR and STX were 135.5 ng/L and 70.5 ng/L, respectively. PEN 

and LIN were the two smallest concentrations of antibiotics, with an average 

concentration of 17.6 ng/L and 17.1 ng/L, respectively. OFC, ERC and TMP 

accounted for 29.34% of the total antibiotics, and the highest concentrations were 

45.2, 40.8 and 47.5 ng/L, respectively.  

The total concentration range of antibiotics in the effluent water was 199.4-320.1 

ng/L. The concentration of TC was the lowest, with an average concentration of 10.9 

ng/L. The contents of LIN and PEN were slightly higher than those of TC, with an 

average concentration of 12.7 and 13.5 ng/L, respectively. The average concentration 

of STX was 51.7 ng/L, much lower than that of 115.2 ng/L in the effluent of WP-A. 

 

Table 3 

The concentration of antibiotics in each stage of WP-B (ng/L).  

Testing items 
Antibiotic compounds 
TC DXC OFC ERC TMP PEN ROX LIN SMR STX 

Raw 
water 
(n=12) 

Maxa 57.3 129.0 86.4 95.2 101.7 59.6 nd 38.7 332.3 156.9
Minb 8.4 40.7 31.8 26.0 47.2 9.2 nd 16.6 149.3 41.2
Medc 30.1 88.3 59.5 56.4 76.7 26.0 nd 26.3 231.5 105.4
Mean 32.1 93.8 63.0 56.9 85.5 14.3 nd 25.6 227.2 103.4
Fred(% 100.0 100.0 100.0 100.0 100.0 100.0 nd 100.0 100.0 100.0

Unfiltered Max 36.4 95.6 57.4 66.7 86.9 35.8 nd 24.2 282.0 116.1
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water 
(n=12) 

Min 5.7 45.1 32.2 26.8 19.9 8.8 nd 11.8 65.3 47.8
Med 25.1 68.6 45.3 42.2 48.5 20.2 nd 16.6 182.2 83.0
Mean 31.5 67.4 47.7 36.5 36.6 15.0 nd 16.1 170.6 85.3
Fre(%) 100.0 100.0 100.0 100.0 100.0 100.0 nd 100.0 100.0 100.0

Filtered 
water 
(n=12) 

Max 34.6 83.6 59.4 74.1 98.0 37.8 nd 27.8 276.0 101.3
Min 4.1 38.7 30.8 11.1 14.8 5.6 nd 8.8 62.4 15.8
Med 20.4 60.5 45.2 40.8 47.5 17.6 nd 17.1 135.5 70.5
Mean 22.0 59.0 47.1 35.8 32.2 12.4 nd 14.8 120.3 78.5
Fre(%) 100.0 100.0 100.0 100.0 100.0 100.0 nd 100.0 100.0 100.0

Effluent 
water 
(n=12) 

Max 18.1 62.0 38.1 41.6 41.2 25.3 nd 19.7 120.3 78.3
Min 4.0 24.1 22.9 9.4 5.7 5.7 nd 8.3 45.1 12.6
Med 10.9 42.4 29.5 21.0 21.8 13.5 nd 12.7 72.3 51.7
Mean 10.0 38.4 27.9 11.9 16.6 9.8 nd 10.7 65.4 57.8
Fre(%) 100.0 100.0 100.0 100.0 100.0 100.0 nd 100.0 100.0 100.0

a: Maximum, b: Minimum, c: Median, d: Frequency e: Not detected 

 

3.3 Removal of antibiotics in the two waterworks 

3.3.1 Removal of antibiotics utilizing each treatment unit in WP-A 

The total removal efficiency of antibiotics in WP-A ranged from -46.5%-45.1%. 

The mechanical flocculation tank of WP-A was two-stage flocculation, with 16 

flocculation units in two groups. The flocculation time was 10min, and the velocity 

gradient was 100s-1. There were 2 groups of 8 air flotation tanks, with a hydraulic 

retention time of 16 minutes and a dissolved gas ratio of 6×105-7.5×105 Pa. It can be 

seen from Fig.3(a) that the coagulation air flotation process exhibited a certain 

removal effect on all antibiotics except PEN. The antibiotics were bonded on the 

surface of the flocculus by adsorption and removed with the air flotation process. The 

average removal efficiencies of TC and DXC were 49.4% and 2.7%, respectively. 

According to the structure characteristics (bis-tetraphenylbenzene skeleton) of TC and 

DXC, they belong to hydrophobic organisms, which are easy to interact with the 

ACCEPTED MANUSCRIPT



AC
CE

PT
ED

 M
AN

US
CR

IP
T

 

21 

 

surface of solid particles. Therefore, it is likely that TC and DXC were removed from 

water phase to solid phase through adsorption. For PEN, hydrolysis is easy to occur in 

the water phase, so the detection rate and detection concentration were relatively low. 

However, due to the hydraulic shear and friction, PEN attached to the particulate 

matter was transferred from the solid phase to the water phase, resulting in a rising 

PEN concentration in the water before filtration.The acid dissociation coefficient (pKa) 

of LIN is 8.78 (Table 1). Under the pH of a neutral environment, LIN exists mainly in 

the form of cations (pH < pKa) , and furthermore it can be electrostatically adsorbed 

on the surface of particulate matter (Chen et al., 2010). The average removal rate of 

LIN in the coagulation process was 42.8%.  

Three certain amounts of quinolone antibiotics (QNs: OFC, ERC and TMP) were 

removed by coagulation air flotation, with the resultant removal efficiencies being 

14.0%, 18.0% and 60.0%, respectively. The removal efficiencies of SMR and STX 

were -43.4%-87.1% and 11.0%-97.3%, respectively. Consequently, the efficiency in 

removing antibiotics in the coagulation process is related to three things: the 

characteristics of flocs; the pKa of antibiotics; and the sediment-water distribution 

coefficient Koc. The higher the pKa, the more easily it is to be adsorbed by the 

positively charged flocs (Qiao et al., 2011). 

The double-layer filter tank utilized by WP-A was made of anthracite and quartz 

sand with a filtration rate of 9.7m/h. The backflush was made of air flush firstly, then 

steam-water combined flushing, and finally high speed water flush. Once the water 

passed through the filter, the concentrations of other antibiotics increased except those 
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for TMP, LIN and SMR, and the average removal efficiencies were negative, which 

indicated there were antibiotic residues in the filter. The removal ranges of TC and 

DXC were -166.2%-52.6% and -96.1%-98.9%, respectively, and these figures were 

related to the enrichment residues of antibiotics in the filter material as well as the 

frequency and effect of backflush. The average removal rate of TMP was 4.4%, 

indicating that the filter could reduce the TMP content in the in water, which was 

consistent with the results of Göbel et al. (2007). The average removal rate of STX 

was -2.4%, which meant that STX retained a certain amount of residue in the filter 

media.  

The effective volume of the disinfection contact pool was 12188m3 and the 

hydraulic residence time (HRT) was 35min. Sequential chlorination disinfection with 

short-term free chlorine followed by chloramine. The residual chlorine concentration 

of effluent was 1.2mg/L. According to what is shown in Fig. 3(a), the removal rates of 

all antibiotics in the chlorination process were negative. The antibiotics content in 

effluent increased significantly compared with that in filtered water, and the increases 

of different antibiotics ranged from 19.2% to 245.0%. Qiang et al. (2006) found that 

the removal rates of most antibiotics could reach 90% when the concentration of Cl2 

was 1 mg/L and the contact time was more than 30 minutes . However, because of the 

low free chlorine content and long residence time in the contact pool, the chloramine 

disinfection can not reduce the content of antibiotics, the concentrations of SMR and 

STX increased by 12.2% and 15.4%, respectively. Research showed that when free 

chlorine concentration was insufficient to promote sulfonamide breakdown, 
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N-chlorinated sulfamerazine and N-chlorinated sulfamethoxazole can regenerate 

SMR and STX, resulting in an increase in sulfonamide antibiotic content (Huang et 

al., 2004; Huber et al., 2003).  

The effect of the whole process on the removal efficiency of antibiotics varied 

greatly (see the error line in Fig. 3(a)), which was mainly related to the fluctuation of 

the concentration of antibiotics in raw water and the operating conditions. Generally 

speaking, the conventional water treatment process adopted by WP-A was greatly 

restricted to removing antibiotic residues. When the water source is seriously polluted 

by antibiotics, it is difficult to ensure the right quality of water is maintained when 

employing the conventional treatment process. This was consistent with the results of 

other studies (Boyd et al., 2003; Niina M. Vieno et al., 2007). 

3.3.2 Removal of antibiotics via each treatment unit in WP-B 

The removal efficiency of antibiotics in the WP-B is shown in Fig. 3(b). It can be 

seen that each treatment unit had a certain removal effect on antibiotics. The removal 

efficiency of antibiotics varied from 0.4% to 53.5%, and the total amount of 

antibiotics decreased from 700.1 ng/L to 275.8 ng/L. Meanwhile the contact time of 

pre-ozone process in WP-B was 3 minutes, the contact depth was 6.0 m, and the 

dosage of ozone was 2 mg/L. The removal efficiencies of TC and DXC by the 

pre-ozonation and coagulation sedimentation processes were 16.3% and 15.6%, 

respectively. Studies have shown that ozone oxidation is a promising technical 

measure for the removal of tetracycline antibiotics in water. The removal efficiencies 

of OFC, ERC and TMP by the pre-ozone and coagulation precipitation processes were 
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17.2%, 14.0% and 33.6%, respectively, while those for the flocculated air flotation 

process in WP-A were 14.0%, 18.0% and 60.0%. This indicates that the pre-ozone 

process could not significantly remove the quinolone antibiotics in water. LIN is 

mainly excreted from bodies in its original structure combined with bile and feces. 

This kind of drug is usually easily adsorbed on solid suspensions and subsequently 

removed (Göbel et al., 2007).  

The removal efficiencies of LIN in WP-A and WP-B were both about 30%, and 

this was mainly due to the coagulation - air flotation process rather than the pre 

-ozonation process. Andreozzi et al. (2006) also confirmed that ozone decomposition 

of lincomycin required an hour of contact time . Huber et al. (2005) used ozone 

countercurrent aeration to treat antibiotics in water, and they reported that 90% -99% 

of sulfonamides in water could be removed when ozone dosage (> 2 mg / L) was used 

for 10-20 minutes. Meanwhile in this study the removal efficiency of sulfanilamide 

was about 16%. This is because WP-B was located in a typical low plain landform, 

and the soil consisted of seashore immersed saline soil. Consequently, the salinity of 

the soil was high as was the level of mineralization, and the specific geological 

conditions made the concentration of bromide ions in the water source high. In order 

to prevent bromate from exceeding the standard, the ozone dosage and contact time of 

the pre-ozone process in WP-B should not be high. 

The v-type filter in WP-B was divided into eight groups, and each had a filtration 

area of 113.2 m2 and a filtration rate of 7.30 m/s. The filter media was a single layer 

of homogeneous quartz sand with gas-water backwashing. The removal efficiencies of 
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all antibiotics in the v-type filter were 0.4%-23.5%, while the content of all antibiotics 

in the filtration process in WP-A increased except that for TMP, LIN and SMR. The 

differences in antibiotic removal outcomes between the two filtration processes may 

have two reasons. One is that the adsorption performance of filter material 

(homogeneous quartz sand) in WP-B was better than that of filter material (anthracite 

and quartz sand) in WP-A. The other is that the backwashing effect of the v-type filter 

was better than that of an ordinary filter. Therefore, the filter material in WP-B was 

relatively clean, so there was no antibiotics accumulation or small accumulation. 

WP-B was disinfected by the combination of ultraviolet ray and chlorine, with 

the ultraviolet transmission rate of @235.7nm 90% and the lowest ultraviolet dose of 

40mJ/cm2. Liquid chlorine was used for chlorine disinfection. The residual chlorine 

concentration in the effluent was 0.5-1.2 mg/L. Compared with the removal efficiency 

(-245.0%-11.4% ) of the chlorine disinfection process in WP-A, the efficiency in 

removing of antibiotics utilizing the ultraviolet-chlorine combined disinfection 

process in WP-B was superior. In fact the removal efficiency was 19.2%-53.5%. On 

the one hand, this may be due to the role of ultraviolet disinfection process while on 

the other, it may be due to there being fewer precursors of antibiotics in water. 

Ultraviolet disinfection had a better effect on the removal of antibiotics which were 

easily degraded by light such as quinolone antibiotics, and the removal efficiencies of 

OFC, ERC and TMP were 33.3%, 46.7% and 53.5%, respectively. The removal 

efficiency of SMR and STX by ultraviolet-chlorine combined disinfection process in 

WP-B was 39.0% and 27.0%, respectively. Results were in contrast for 
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sulfamethoxazole, with easy UV degradabilit reported by Kim and Tanaka (2009). In 

this context, adjustments in the UV dose or contact time may be investigated to get 

higher removal (Collado et al., 2014). 

The total removal efficiency of antibiotics was 40.3%-70.3% in WP-B, which 

was better than that in WP-A’s the conventional treatment process. It demonstrated 

that the total removal of antibiotics in water can be improved via the deep treatment 

process such as pre-ozone, enhanced coagulation and ultraviolet disinfection. The 

removal of antibiotics mainly occurred during ultraviolet-chlorine disinfection, and 

the filtration process exhibited the lowest removal outcome. The removal of TMP 

throughout the entire process was the best (70.3%), followed by SMR (64.9%). 

Although the treatment process in WP-B proved to be better in the removal of 

antibiotics, it did not completely remove antibiotics in water. 
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Fig. 3 Removal efficiencies of antibiotics in WP-A and WP-B 

 

3.4 Human health risk assessment 

Previous studies have shown that dysbacteriosis is associated with multiple 

cancers, and repeated use of specific antibiotics can significantly increase the risk of 

certain cancers (Boursi et al., 2015). The health risk assessment model recommended 

by the USEPA (USEPA, 2001) was adopted in this study. Based on the analysis of the 

water quality of WP-A and WP-B, it showed that the removal efficiency of antibiotics 

in WP-A was poor and in a more disadvantageous state (see Fig.3). Therefore, 

considering the most disadvantageous situation, the concentration of antibiotics in the 

main pipe of WP-A were chose to evaluate the health risk. Konz et al. (1989) pointed 

out in the Exposure Factor Manual that direct or indirect daily water consumption of 

people’s different age groups showed a logarithmic normal distribution. The daily 

water consumption of adults older than 21 years of age was 2.985L in the 95% 
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confidence interval. Skin permeability coefficients, non-carcinogenic reference doses 

and human carcinogenic intensity coefficients of the 10 antibiotics are given in Table 

4.  

Based on the distribution and migration data of 10 antibiotics in the water supply 

network, the exposure dose of antibiotics in water through drinking water and skin 

contact was simulated by the Monte Carlo method (see Table 5). It is shown that the 

exposure dose through skin contact was much less than that through drinking water, 

while the exposure dose from drinking water in adult males was slightly higher than 

that of adult females, and the exposure dose from skin contact was lower than that of 

adult females. EPA stipulates that when the carcinogenic risk index of pollutants is 

less than or equal to l×10-6, the carcinogenic risk is considered acceptable. When the 

carcinogenic risk index of pollutants added is higher than 1×10-4, the risk is 

considered unacceptable. Fig. 4 depicts the level of carcinogenic and 

non-carcinogenic risk associated with exposure to drinking water. TC, DXC and STX 

had the highest levels of carcinogenic risk, which was in the order of 10-7, only one 

order of magnitude different from the warning value (dashed horizontal line), and the 

other antibiotics were in the order of 10-8. Health risk assessment results showed that 

the risk of carcinogenesis and non-carcinogenesis caused by multiple antibiotics in 

drinking water were acceptable (red line).  

The level of risk associated with exposure to antibiotics through skin contact is 

shown in Table 6. As shown in this particular table the non-carcinogenic risk of 

antibiotic skin contact ranged from 10-12 to 10-7 magnitude, and the carcinogenic risk 
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ranged from 10-13 to 10-10 magnitude, which was below the alert value and therefore 

deemed acceptable. The risk posed by unsafe drinking water was much higher than 

that of skin contact, and this the risk was higher for adult males than adult females, 

while the skin contact route presented the opposite rule. The total carcinogenic risk 

and non-carcinogenic risk of 10 antibiotics in drinking water were simulated and 

calculated. Results showed that the total carcinogenic risk (male 5.64 ×10-7, female 

5.45 × 10-7) and total non-carcinogenic risk (male 5.78 × 10-4, female 5.59 × 10-4) 

were at acceptable risk levels.  

 

Table 4  

Selected values of antibiotic related indexes. 

Antibiotics 
Skin permeability 

coefficient (cm/h) 

LD50 

(mg/kg) 

Non carcinogenic 

reference dose 

(mg/kg/d) 

Human carcinogenic 

intensity coefficient 

(kg·d/mg) 

TC 5.82E-07 678 0.02712 3.05E-02 

DXC 4.84E-06 1870 0.0748 1.30E-02 

OFC 9.35E-06 3590 0.1436 7.51E-03 

ERC 1.03E-04 5000 0.2 5.69E-03 

TMP 8.17E-04 5300 0.212 5.42E-03 

PEN 7.47E-08 2000 0.08 1.23E-02 

ROX 4.58E-07 665 0.0266 3.10E-02 

LIN 5.10E-05 4000 0.16 6.86E-03 

SMR 2.40E-04 25000 1 1.47E-03 

STX 2.32E-03 2300 0.092 1.09E-02 
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Table 5  

Exposure rates of antibiotics to humans through drinking water route and skin contact 

route. 

Antibiotics 

Drinking water route Skin contact route 

Adult males Adult females Adult males Adult females 

Mean Stana Mean Stan Mean Stan Mean Stan 

TC 4.12 2.77 3.95 2.77 3.66E-6 4.21E-6 7.01E-6 9.27E-6 

DXC 9.69 5.57 9.4 5.57 7.17E-5 7.48E-5 8.64E-4 1.70E-4 

OFC 6.53 3.23 5.43 3.20 8.04E-5 8.37E-5 1.55E-4 1.92E-4 

ERC 7.68 4.43 7.41 4.41 1.20E-3 1.25E-3 2.32E-3 2.86E-2 

TMP 5.84 4.04 5.63 3.99 7.26E-3 8.30E-3 1.40E-2 1.83E-2 

PEN 4.04 2.21 3.9 2.21 4.60E-7 4.71E-7 8.87E-7 1.09E-6 

ROX 0.26 0.40 0.25 0.38 1.82E-7 3.55E-7 1.41E-7 7.68E-7 

LIN 2.00 1.51 1.92 1.48 1.55E-4 1.87E-4 1.72E-4 4.10E-2 

SMR 13.51 7.63 13.04 7.67 4.97E-3 5.10E-3 9.54E-3 1.18E-2 

STX 9.41 6.48 9.05 6.41 3.33E-2 3.83E-2 3.81E-2 8.69E-2 

a: Standard deviation 
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Fig. 4 Risk levels of antibiotics in drinking water for different populations: (a) 

Non-carcinogenic risk level; (b) Carcinogenic risk level 

 

Table 6  

Health risk caused by skin contact of different groups.  

Antibiotics 

Non carcinogenic risk Carcinogenic risk 

Adult males Adult females Adult males Adult females 

Mean Stana Mean Stan Mean Stan Mean Stan 

TC 1.35E-10 1.60E-10 2.57E-10 3.36E-10 1.11E-13 1.28E-13 2.15E-13 2.91E-13 

DXC 9.59E-10 1.03E-09 1.85E-09 2.30E-09 9.31E-13 9.87E-13 1.81E-12 2.26E-12 

OFC 5.58E-10 5.97E-10 1.08E-09 1.32E-09 6.00E-13 6.32E-13 1.17E-12 1.49E-12 

ERC 6.03E-09 6.49E-09 1.16E-08 1.43E-08 6.83E-12 7.31E-12 1.33E-11 1.71E-11 

TMP 3.42E-08 3.97E-08 6.54E-08 8.67E-08 3.91E-11 4.55E-11 7.62E-11 1.03E-10 

PEN 5.74E-12 5.98E-12 1.10E-11 1.33E-11 5.63E-15 5.81E-15 1.10E-14 1.35E-14 

ROX 6.82E-12 1.41E-11 1.31E-11 3.02E-11 5.62E-15 1.18E-14 1.09E-14 2.41E-14 

LIN 9.69E-10 1.24E-09 1.86E-09 2.57E-09 1.06E-12 1.31E-12 2.06E-12 2.89E-12 

SMR 4.94E-09 5.22E-09 9.53E-09 1.16E-08 7.23E-12 7.59E-12 1.41E-11 1.75E-11 

STX 3.61E-07 4.22E-07 6.97E-07 9.47E-07 3.60E-10 4.23E-10 7.01E-10 9.39E-10 

a: Standard deviation 
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4. Conclusions 

The total antibiotics content in WP-A ranged from 134.5 ng/L to 1531 ng/L and 

in WP-B it ranged from 199.4 ng/L to 941.9 ng/L. The seasonal distribution of 

antibiotics in raw water was significant, and most antibiotics existed in larger 

concentrations in winter than in summer. The most efficient method for removing 

antibiotics was the ultraviolet + chlorine disinfection stage, followed by pre-ozone + 

coagulation precipitation process. In both drinking water plants it was evident that the 

filtration technology was not very efficient. The risk level of TC, DXC and STX in 

drinking water was significantly higher than that of other antibiotics, while the risk 

level of STX in skin contact was the highest. The risk posed by unsafe drinking water 

was significantly higher than the dangers of skin contact, but the risk of 

carcinogenesis and non-carcinogenesis caused by antibiotics was at an acceptable 

level. 
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