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15 Abstract: 

16 Objectives

17 “Legacy effects” describe the phenomena where treatment effects are apparent during 

18 the post-trial period that are not attributable to the direct effects observed within the 

19 trial. We investigate different approaches to analysis of trial and extended follow up data 

20 for the evaluation of legacy effects.

21 Study design and setting

22 We conducted a simulation to compare three approaches, which differed in terms of the 

23 time period and selection of trial participants included in the analysis. 

24 Results 

25 The most common approach used for estimating legacy effects in the literature, which 

26 combines initial trial and post-trial follow-up data, gave the most biased estimates. 

27 Approaches using post-RCT data had better performance in most scenarios. When the 

28 size of the legacy effect was set to differ according to whether or not drugs were taken 

29 post-trial, the stratified approach using post-trial data but only from participants taking 

30 the drug post-trial performed were less biased but often had lower power to detect a 

31 legacy effect.

32 Conclusion

33 When estimating legacy effects, approaches to analysis that are restricted to post-trial 

34 follow-up data are preferred. If data are available on participant drug use post-trial, then 

35 both stratified and un-stratified approaches to analysis of the post-trial data should be 

36 investigated.
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46 1. Introduction:

47 The term “legacy effect” was first used in the context of cardiovascular disease prevention, 

48 in reports of the post-trial follow up after the United Kingdom Prospective Diabetes Study 

49 (UKPDS).[1] In that randomized controlled trial of intensive versus conventional 

50 glycaemic control, participants who were allocated to conventional treatment had a 

51 higher risk of microvascular complications than those on intensive treatment over the 

52 ten-year period of the active trial.[2] After the RCT ended, the trial investigators 

53 recommended that all participants aim for more intensive control, and the glycated 

54 haemoglobin levels of the two groups converged after one year. However, among 

55 participants undertaking follow-up after the trial, the statistically significant relative 

56 reduction in microvascular disease was found to have persisted, and additional 

57 statistically significant reductions in myocardial infarction and all-cause mortality also 

58 emerged for those originally randomised to the intensive-control group compared to 

59 those in the original control group. These findings were hypothesised to be a “legacy 

60 effect” of the earlier tighter glycaemic control for intervention group during the trial 

61 period that was only being realised years later.

62 Although the definition of legacy effects is not well specified, the term has generally been 

63 used to describe long term effects of a treatment that are observed after the trial has 

64 ended and that are not due to the direct (shorter term) effects of the treatment that were 

65 observed during the trial. These effects are thought to occur despite a similar proportion 

66 of individuals in the intervention and placebo group taking the active drug after the trial 

67 has ended, and attaining similar mean levels of the intermediate outcome (such as 

68 glycated haemoglobin, blood pressure or total cholesterol) in the post-trial period.[3–5]

69 Determining possible legacy effects may be of particular interest for interventions aimed 

70 at primary cardiovascular disease prevention. Here, the legacy effect concept has been 

71 used to support the case that early preventative treatment at a relatively young age may 

72 prevent cardiovascular disease at a much older age.[6] Many large-scale randomized 

73 controlled trials examining the effect of cardiovascular preventative treatment (drugs to 

74 control glucose in people with diabetes, and to lower blood pressure or cholesterol in 

75 people with or without diabetics) have reported the long-term health outcomes beyond 

76 the end of the trials.[4,7,8] The basic design of these studies is shown in Figure 1.
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77 In most of these studies, the long-term effects of the drugs have been calculated using 

78 data from both the trial period and the post-trial follow-up period. These reports focus 

79 on whether there is a survival benefit to the group randomized to active treatment, which 

80 is still detectable at long term follow-up.[9] Although such findings have been  used to 

81 argue that legacy effects exist, it is possible that the observed effects might be due in part, 

82 or entirely, to the direct treatment effects observed during the within-trial period.[10] 

83 Analysis without disentangling the contribution of within trial and post-trial effects will 

84 result in biased estimates. In this simulation study, we investigated how we might best 

85 analyse data from a matching RCT and post-trial follow up study, to detect a legacy effect. 

86 Our objectives were to compare the performance of three different approaches to the 

87 choice of time period and trial participants to include in analysis in terms of ability to 

88 correctly detect when a legacy effect was, or was not, present.

89 2. Method:

90 2.1 Simulation Design

91 We formulated a setting that combined an RCT and an extended follow-up study. 

92 Independent datasets were generated with a known legacy effect or no legacy effect of 

93 the drug, in addition to a direct effect of the drug in all scenarios. We then evaluated three 

94 different approaches to analysis by applying each of them to the simulated data. The 

95 simulated data was designed to broadly reflect data that might be observed in a clinical 

96 trial for cardiovascular disease prevention, and the distributions of the simulation 

97 variables was based on the review of legacy effects of statin drugs.[10]

98 2.2 Clinical question of interest: do statins have legacy effects in preventing 

99 cardiovascular disease?

100 A current subject of clinical debate is the age at which drugs to prevent cardiovascular 

101 disease (such as statins, blood pressure lowering drugs and diabetic drugs for tighter 

102 glucose control) should be offered to people at risk.[11] Advocates of earlier intervention 

103 argue that some people who are currently displaying no symptoms or signs of disease, 

104 and who are not at high short-term absolute risk of cardiovascular disease, may benefit 

105 from starting preventative medication at an early age. [12] The hypothesis that the earlier 
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106 one starts these drugs, the lower one’s risk of a cardiovascular event in the long term, has 

107 not been directly tested in an RCT, and because of feasibility issues it is unlikely to be. 

108 However, the hypothesis may be indirectly tested using data from post-trial follow-up 

109 after large controlled RCTs. A finding that randomisation to the active drug rather than 

110 comparator during the trial, has a “legacy” effect in protecting the person from 

111 cardiovascular disease after the trial, would suggest that earlier intervention may be 

112 worthwhile. An approach to data analysis that is able to reliably and accurately identify 

113 legacy effects is needed in order to use post trial follow up for this purpose.

114 2.3 Scenarios Investigated

115 Simulation settings were divided into two main scenarios, based on different 

116 assumptions on the size of the legacy effect for people who continued or discontinued 

117 using the drug post-trial. In the first scenario, “non-compounding legacy effect”, we 

118 assumed legacy effects were the same among the participants randomised to active 

119 treatment in the trial, irrespective of whether they continued to use the drug or not post-

120 trial. This scenario simulates the situation where the protective effect from earlier 

121 treatment (with statins for example) occurs whether or not the person continues to take 

122 the drug post-trial. In the second scenario, “compounding legacy effect”, we assumed that 

123 there were no legacy effects if a participant stopped using the drug post-trial. This 

124 scenario simulates the situation where there is only a protective effect from earlier 

125 treatment if the person continues to take the drug post-trial, as otherwise the underlying 

126 natural disease progression catches up and the protection is undone.  

127 We varied the size of legacy effects and proportion using the drug in the post-trial follow-

128 up across simulations. The size of the legacy effect was defined as relative to the initial 

129 (direct) treatment effect and included 0 (no legacy effect), 50% and 100% of the direct 
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130 treatment effect. Proportions using the drug in the post-trial follow-up were assumed to 

131 be the same in the two groups and ranged from 20% to 100%. This resulted in a total of 

132 30 sub-scenarios, and 10,000 simulations were run for each sub-scenario. Table 1 

133 provides a summary of all variables considered in the simulations. 

134 2.4 Data Generation

135 The starting point for simulation was to generate a cohort of patients with an underlying 

136 distribution of survival times. These survival times were generated from a Weibull 

137 distribution[13]. The shape parameter  was set at 0.5 which assumes the event rate is 𝜈

138 increasing over time, a situation often observed empirically in cardiovascular disease 

139 [14]. The scale parameter  was chosen so that approximately 90% of participants who 𝜆

140 receive no treatment will survive after the 5-year RCT. The initial (direct) treatment effect 

141 was set as 0.8 (HR=0.8) and the sample size for each simulation was chosen at 8,000 

142 people (4000 in each randomised group).[8,15]

143 For greater generalizability, the risk for each participant was simulated with a log- ℎrisk 

144 normal distribution. The mean and standard deviation on the log scale were set as -0.4 

145 and 0.5 respectively, and so about 80% of patients were at low risk ( )[16,17].ℎrisk < 1

146  Participants were assumed to have entered the randomized controlled trial (RCT) at , 𝑡0

147 and the initial trial ended at . The surviving participants were followed until the end of 𝑡1

148 the follow up period at  . The timepoints  were set as 5 years and 15 years, which 𝑡2 𝑡1, 𝑡2

149 assumes the duration of the initial trial and post-trial follow-up were 5 and 10 years 

150 respectively. 

151 If denotes a standard uniform distribution, then individual survival times can be 𝑈(0,1) 

152 generated using the formula:

153 𝑇 = { ( ‒ log (1 ‒ 𝑈) 
𝜆ℎ𝑟𝑖𝑠𝑘 exp (𝛽'𝑋(𝑡)))  

1
𝜈

‒ log (1 ‒ 𝑈) < 𝜆ℎ𝑟𝑖𝑠𝑘 exp (𝛽'𝑋(𝑡))𝑡𝜈
1

(𝑡𝜈
1 +

‒ log (1 ‒ 𝑈) ‒ 𝜆ℎrisk exp (𝛽'𝑋(𝑡))𝑡𝜈
1

𝜆ℎrisk exp (𝛽'𝑋(𝑡) + 𝛽𝐿𝐸) )
1

𝜈

‒ log (1 ‒ 𝑈) ≥ 𝜆ℎrisk exp(𝛽'𝑋(𝑡))𝑡𝜈
1
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154 In the equation above,  is a time-varying variable that takes a value of 0 while a 𝑋(𝑡)

155 participant is assigned to placebo and 1 when assigned to active treatment[18].   is the 𝛽

156 regression coefficient associated with the assigned treatment (representing direct 

157 treatment effects), while  is the regression coefficient associated with legacy effects. If 𝛽𝐿𝐸

158 the algorithm generates a participant’s survival time beyond the end of post-trial follow-

159 up, then the participant is considered censored and the survival time replaced by . For 𝑡2

160 simplicity, nonadherence with treatment and loss to follow-up were not considered in 

161 this study.

162 2.5 Comparison of approaches to analysis of data from long term follow up after RCT

163 Analysis for each scenario was performed according to the intention-to-treat principle, 

164 whereby participants are analysed in the groups to which they were randomly allocated 

165 at the start of the trial. Cox proportional hazard models were fitted to estimate the legacy 

166 effects, and individual risk was included as a covariate in the model. Three approaches 

167 were compared; these differed in terms of the choice of time period and trial participants 

168 to include in analysis.:

169 1. All trial participants. Data from the start of the RCT to end of post-trial follow-up was

170 used (All data).

171 2. Participants surviving post-trial. Post-trial follow-up data was used. (Post-trial data)

172 3. Participants surviving post-trial and who took the drug during post-trial follow-up.

173 Post-trial data used. (Post-trial data – drug strata)

174 2.6 Performance Indicators

175 Indicators used to assess the approaches to analysis were the bias, mean square error 

176 (MSE), coverage of 95% CIs and empirical power/size[19]. Bias was calculated as the 

177 difference between the average estimates over all simulations and the true value. Mean 

178 square error was calculated as the average squared difference between the estimated 

179 values and true value, according to the formula: where  MSE = (𝛽 ‒ 𝛽)2 + (𝑆𝐸(𝛽))2 𝑆𝐸(𝛽)

180 is the empirical standard error of the estimate of interest over all simulations.  MSE is a 

181 useful measure of the overall accuracy which incorporates both measures of bias and 

182 variability. The coverage of 95% confidence interval was calculated as the proportion of 

183 times that the obtained confidence interval included the true specified parameter value. 
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184 Empirical size/power were used to indicate the probability of making a correct statistical 

185 inference. Empirical size was calculated as the percentage of rejections of the null 

186 hypothesis for each data scenario created under the null hypothesis, and empirical power 

187 was calculated as the percentage of rejections of the null hypothesis for each data 

188 scenario created under the alternative hypothesis[20]. 

189 3. Results:

190 The hazard ratios (95% CI) estimated by the different approaches to analysis in 

191 simulations for each of the two scenarios are presented in Figure 2. In most simulated 

192 scenarios, the estimates using the ‘All Data’ approach were considerably biased. The 

193 hazard ratios were over-estimated (i.e. away from null) when there was no or a small 

194 legacy effect, and under-estimated (i.e. towards null) when there was a large legacy effect. 

195 In the “non-compounding legacy effect” scenario, where legacy effects for patients 

196 allocated to active treatment in the RCT were the same whether or not they continued to 

197 use the drug post-trial, both ‘Post-trial Data’ and ‘Post-trial data – drug strata’  approaches 

198 gave unbiased estimates for hazard ratios, but the former had better performance in 

199 terms of MSE (Figure 3). The ‘Post-trial data – drug strata’ approach, which use the least 

200 amount of the available data, generally had estimates with a larger MSE than the other 

201 approaches. In the “compounding legacy effect” scenario, where there were legacy effects 

202 for patients allocated to active treatment in the RCT only if they continued to use the drug 

203 post-trial, ‘Post-trial Data’ showed better performance than the ‘All Data’ approach, but 

204 ‘Post-trial data – drug strata’ approach was the least biased estimates. In addition, it 

205 showed more robust performance in terms of MSE compared with other methods.

206 The 95% coverage of the three approaches across the different scenarios are displayed 

207 Figure 4. The ‘Post-trial data – drug strata’ approach had consistently good coverage 

208 among all scenarios investigated. In the “non-compounding legacy effect” scenario, the 

209 ‘Post-trial Data’ approach also had good coverage. The ‘All Data’ approach to analysis had 

210 the worst coverage, with especially poor performance where there was no or small legacy 

211 effects. In the “compounding legacy effect” scenario, lower coverages were observed at 

212 different levels for ‘All Data’ and ‘Post-trial Data’ approaches. 

213 Figure 5 shows the results of empirical power/size. The ‘All Data’ approach to analysis 

214 always tended to accept the hypothesis of legacy effect. In addition, the power of the ‘Post-
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215 trial data – drug strata’ approach increased with the amount of the available data used in 

216 analysis in most scenarios. In the “non-compounding legacy effect” scenario, power was 

217 mainly lower using the ‘Post-trial data – drug strata’ approach than the ‘Post-trial Data’ 

218 approach in, whereas in the “compounding legacy effect” scenario, the reverse was true.

219 4. Discussion

220 An ‘All Data’ approach to analysis is usually taken for studies that contain an RCT and 

221 post-trial follow-up, and is an indication of long term treatment efficacy.[21,22] However, 

222 this approach appears to be inappropriate for the evaluation of legacy effects, as it results 

223 in biased estimates of the true legacy effect in most situations. In addition, this approach 

224 often falsely concludes that there is a legacy effect when in truth there is not, (i.e. type I 

225 error). The results of our simulation confirm our earlier hypothesis, that in order to 

226 disentangle the direct effects of treatment during the RCT from legacy effects occurring 

227 post-trial, we need to restrict our analysis to post-trial period.[10] 

228 Our study also shows that approaches to analysis that use only post-trial data may miss 

229 detecting a small size legacy effect, especially where sample sizes are small, which is to 

230 be expected.[23] The sample size calculated for the initial trial , while sufficient to detect 

231 the (usually larger) direct treatment effect within the trial, may be insufficient for 

232 detecting a legacy effect in post-trial period. Pooling data from several post-trial follow 

233 up studies in an individual participant data meta-analysis may be needed to overcome 

234 issues of insufficient power in the primary studies.  In addition, for many pragmatic post-

235 trial studies which use linkage to administrative data to track the participants’ health 

236 outcomes, some important individual information, such as medication status, is not 

237 available.[8,10] Therefore, only ‘Post trial data’ (not stratified) analysis can be conducted. 

238 Although the ‘Post-trial data – drug strata’ analysis performed better in the 

239 “compounding legacy effect” scenarios, we need information on the use of drugs in the 

240 post-trial period for this analysis. This requires the post-trial study to be pre-specified 

241 and funded.

242 Where data on post-trial drug use are available, analysis limited to people who took the 

243 drug post-trial may provide evidence about the benefits of starting treatment at a 

244 younger age, while analysis limited to people who didn’t take the drug post-trial may 

245 provide evidence about the safety of stopping drugs at an older age. We also found the 

246 ‘Post-trial data – drug strata’ approach to analysis to be more robust to variation in the 
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247 assumptions made about the size of the legacy effect for people who continue or 

248 discontinue using the drug in the post-trial period. But as the stratified approach uses 

249 relatively less amount of the available data, estimates tended to have a larger MSE.

250 Our study has some limitations. Although the risks for each individual were adjusted in 

251 the post-trial analysis in the simulation, we did not consider other confounders for 

252 simplicity. Potential sources of confounding include the differential use of medication, 

253 imbalanced levels of risk factors, differential loss to follow-up, and other differences 

254 between trial arms. These are likely to occur in post-trial follow up studies in real life, 

255 especially when the size of treatment effect is large.[24] We did not allow for competing 

256 events in our study, and these will become increasingly important the longer the duration 

257 of the post-trial follow-up, with the potential to bias the estimates of legacy effects.[25] 

258 In addition, our simulations were based on plausible scenarios of treatment using statins 

259 for primary prevention of cardiovascular disease, and these might not be generalisable 

260 to other types of interventions, such as surgical and behavioural interventions.[26] We 

261 were necessarily constrained in the number of possible scenarios that we were able to 

262 investigate in this study.

263 In conclusion, our study found that the approach most commonly used to estimate legacy 

264 effects is usually not appropriate as results may indicate the persistence of the direct 

265 effects of treatment rather than a legacy effect. When estimating the extent of legacy 

266 effects, approaches to analysis that are restricted to post-trial follow-up data are 

267 preferred. The selection of participants to include in the post-trial analysis is less clear 

268 cut, and we recommend using both the unstratified and stratified approaches to analysis 

269 if data on drug use post-trial are available. Importantly, more attention should be paid to 

270 the design of post-trial studies for evaluating possible legacy effects to ensure adequate 

271 sample sizes and study power to detect possible legacy effects.[27]
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356 Figure 1. The basic design of study for evaluating legacy effect (randomized controlled 
357 trials and post-trial follow up)

358 Figure 2. Hazard ratio estimated by different methods in simulated scenarios*

359 *The points with confidence intervals show estimated hazard ratio and corresponding 95% CI for each method in different 

360 scenarios and the dash lines indicate the truth values in each setting. Bias can be obtained by comparing the estimate and true value. 

361 The initial (direct) treatment effect was set as 0.8 (HR=0.8), and the size of the legacy effect was defined as relative to the initial 

362 treatment effect. 

363 Figure 3. Mean square error of different methods in simulated scenarios

364 Figure 4. Coverage Probabilities of 95% CI of different methods in simulated scenarios*

365 *The lines for “Post-trial Data” and “Post-trial data – drug strata” are basically overlapped in “No legacy effect” scenario and “non-

366 compounding legacy effect” scenario.

367 Figure 5.  Empirical Power/Size of different methods in simulated scenarios *

368 *The lines for “Post-trial Data” and “Post-trial data – drug strata” are basically overlapped in “No legacy effect” scenario and 

369 “Legacy=100%” of “non-compounding legacy effect” scenario.

370 Table 1. Summary of variables used in the simulation

Variable Value
Weibull parameter scale parameter =0.01, shape parameter =1.45 𝜆 ν

Log-normal parameter mean and standard deviation on log scale mean = -0.4, SD = 0.5

Sample size 8000

Length of RCT and PTFU 5 years and 10 years

Initial Treatment effect 0.8

Size of legacy effect (compared with 

treatment effect)
0, 50%, 100%

Proportion of treatment receiving in 

PTFU
20%, 40%, 60%, 80%, 100%
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