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Abstract  1 

Many adults remain inactive, despite exercise benefits for sleep and appetite, due to increased time-2 

restraints. Methods to improve exercise compliance include preferential time-of-day or engaging in 3 

short-duration, high-intensity interval exercise (HIIE). Hence, this study aimed to compare effects of 4 

HIIE time-of-day on sleep and appetite. Eleven inactive men undertook sleep monitoring to determine 5 

baseline (BASE) sleep stages and exclude sleep disorders. On separate days, participants completed 6 

30min HIIE (60s work at 100% V�O2peak: 240s rest at 50% V�O2peak) in the 1) morning (MORN; 0600-7 

0700h), 2) afternoon (AFT; 1400-1600h) and 3) evening (EVEN: 1900-2000h). Measures included 8 

appetite-related hormones (acylated ghrelin, leptin, peptide tyrosine tyrosine), and glucose pre-9 

exercise, 30min post-exercise, and next morning; overnight polysomnography (PSG; sleep stages); and 10 

actigraphy, self-reported sleep and food diaries for 48h post-exercise. There were no between-trial 11 

differences for total sleep time (p=0.46). Greater stage N3 sleep was recorded for MORN (23 ± 7%) 12 

compared to BASE (18 ± 7%; p=0.02); however, no between-trial differences existed (p>0.05). Rapid 13 

eye movement (REM) sleep was lower and non-REM sleep was higher for EVEN compared to BASE 14 

(p≤0.05). At 30min post-exercise, ghrelin was higher for AFT compared to MORN and EVEN (p=0.01); 15 

while glucose was higher for MORN compared to AFT and EVEN (p≤0.02). No between-trial differences 16 

were found for perceived appetite (p≥0.21) or energy intake (p=0.57). Evening HIIE can be performed 17 

without subsequent sleep disruptions and reduces acylated ghrelin. However, perceived appetite and 18 

energy intake appear to be unaffected by HIIE time-of-day. 19 

Keywords: Sleep, vigorous exercise, appetite regulation   20 
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Introduction 21 

Regular exercise is believed to be an important behaviour to assist in the improvement of sleep 22 

(Buman et al., 2014). However, there has been coincidental reductions in exercise participation and 23 

sleep duration in recent decades which is reportedly due to a commonly cited barrier of ‘lacking time’ 24 

(Rajaratnam & Arendt, 2001; Gibala et al., 2012; Buman et al., 2014). For example, in Australia peak 25 

inactivity occurs at 35-54 years of age (ABS, 2015), while 60-64% of this age group also have at least 26 

one persistent sleep problem such as not obtaining adequate sleep, feeling unrefreshed upon waking, 27 

or waking frequently during the night (Adams et al., 2017). In addition, reduced sleep duration has 28 

also played a significant role in the upregulation of the orexigenic hormone acylated ghrelin and 29 

downregulation of anorexigenic hormones such as leptin and peptide tyrosine tyrosine (PYY) which is 30 

highlighted in acute sleep deprivation studies (Magee et al., 2009; Omisade et al., 2010; St-Onge et 31 

al., 2012). To combat this, short duration, high-intensity interval exercise has been encouraged to 32 

increase exercise participation (Gibala et al., 2012). Also, the physiological basis for this type of 33 

exercise in relation to sleep and appetite is supported by evidence of increased sleep efficiency and 34 

reduced sleep onset latency (Dworak et al., 2008; Hayashi et al., 2014); increased anorexigenic 35 

signalling and subsequent reduction of energy intake (Sim et al., 2014; Broom et al., 2017); and higher, 36 

longer lasting reductions on post-prandial glucose compared to moderate-intensity exercise (Little et 37 

al., 2014).   38 

 39 

The American Academy of Sleep Medicine (2001) supports the recommendation of regular exercise 40 

to aid sleep; although, it is advised to avoid high-intensity or vigorous exercise close to bed time since 41 

this may increase arousal and disrupt subsequent sleep. However, the evidence for this is limited and 42 

appears to be a common warning which has come from early exercise and sleep research rather than 43 

recommendations that have evolved from more recent research (Irish et al., 2015). Instead, 44 

experimental findings indicate that sleep is not disturbed by evening high-intensity exercise but may 45 

improve some variables including sleep efficiency, stage N3 sleep and sleep onset latency (O’Connor 46 
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et al., 1998; Youngstedt et al., 1999; Flausino et al., 2012; Myllymäki et al., 2012; Robey et al., 2013; 47 

Hayashi et al., 2014). It has been postulated that the acute body-heating, anxiolytic and antidepressant 48 

effects of exercise may, in part, explain these observed sleep changes following evening high-intensity 49 

exercise (Youngstedt, 2005). Nevertheless, most studies have recruited young, active adults already 50 

obtaining recommended sleep quantity and thus do not represent the age-associated changes in sleep 51 

patterns experienced by many middle-aged, inactive adults (Copinschi et al., 2014). Given that sleep 52 

quantity decreases with age, it is possible that older populations may be more responsive to acute 53 

exercise stimuli due to greater room for change (i.e. not hindered by a ceiling effect) (Youngstedt, 54 

2005). It may also be important to examine sleep patterns following evening high-intensity exercise in 55 

middle-aged populations compared to high-intensity exercise performed in the morning and 56 

afternoon (i.e. 4 to 8 hours prior to bed time) (Irish et al., 2015) as discouraging evening high-intensity 57 

exercise, particularly of short duration, may remove a preferential time-of-day for exercise or 58 

eliminate exercise altogether for time-poor individuals (Buman et al., 2014).  59 

 60 

Further consideration is needed for metabolic functioning following evening high-intensity exercise 61 

and potential changes in subsequent sleep. For instance, should evening high-intensity exercise induce 62 

poor sleep outcomes such as shortened total sleep time, and increased sleep onset latency and wake 63 

after sleep onset it is likely to be associated with elevations in acylated ghrelin concentration and 64 

reduced anorexigenic peptide levels including leptin and PYY (Magee et al., 2009; Omisade et al., 2010; 65 

St-Onge et al., 2012). In isolation, high-intensity interval exercise, has been shown to have a positive 66 

effect on acylated ghrelin, leptin and PYY, and further associated with favourable reductions in energy 67 

intake for up to 24 h post-exercise (Thivel et al., 2012; Sim et al., 2014; Panissa et al., 2016). However, 68 

in these studies, exercise was performed in the morning and due to circadian variations responses 69 

may not reflect hormonal changes following exercise performed in the afternoon or evening. Leptin 70 

has been previously examined following a 30 s Wingate anaerobic test performed in the morning and 71 
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evening whereby authors observed no difference between trials (Bilski et al., 2016). However, ghrelin 72 

and PYY have yet to be investigated in relation to exercise time-of-day. 73 

 74 

Given the potential interaction between exercise, sleep and appetite, it may be important to 75 

investigate the role of exercise on sleep and appetite simultaneously due to the complex pathways 76 

which regulate these physiological processes (Copinschi et al., 2014). As such, the aim of this study 77 

was to compare the effect of high-intensity interval exercise performed in the morning, afternoon and 78 

evening on sleep, appetite-related hormones and free-living energy intake in inactive, middle-aged 79 

men. It was hypothesized that high-intensity afternoon and evening exercise would increase the 80 

proportion of stage N3 sleep compared to baseline and morning exercise; while all exercise trials 81 

would induce favourable appetite changes (anorexigenic changes in the circulating hormones and 82 

reduced energy intake) due to the implementation of a standardised high-intensity exercise protocol.  83 

 84 

Methods 85 

Ethical Approval 86 

Each participant was required to provide informed written consent to the protocols, which were 87 

approved by the Charles Sturt University Human Ethics Committee (H16136). This study conformed to 88 

the standards set by the Declaration of Helsinki, except for registration in a database.  89 

 90 

Participants 91 

Eleven overweight, inactive men (mean ± SD; age: 49 ± 5 y; apnoea hypopnea index (AHI): 12 ± 4; BMI: 92 

28 ± 3 kg·m-2; V�O2peak: 34 ± 8 ml·kg-1·min-1) completed this study. Inclusion/exclusion criteria included 93 

non-smokers, participating in < 150 min of moderate-intensity exercise per week, had no previous or 94 
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current diagnosis of sleep or metabolic disorders, and no medical conditions or medications that affect 95 

sleep quality or quantity. Volunteers were also excluded if the baseline PSG studies indicated an AHI 96 

of ≥ 15. Initially, 13 men volunteered to participate in the study; however, one participant was 97 

excluded due to signs of severe sleep apnoea and one participant withdrew due to an illness unrelated 98 

to the study. Sleep was initially assessed by the STOP-BANG questionnaire (Chung et al., 2008), the 99 

Epworth Sleepiness Scale (Johns, 1991) and the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 100 

1989). Risk of sleep apnoea was further assessed during two consecutive nights of polysomnography 101 

(PSG) measurement. Medical clearance was obtained from a General Practitioner and a Pre-Exercise 102 

Medical Health Questionnaire was completed by each participant prior to enrolling in the study to 103 

ensure no underlying conditions would be exacerbated by vigorous exercise.  104 

 105 

Experimental Overview 106 

Participants attended the laboratory for an initial familiarisation session and baseline assessments of 107 

anthropometry and peak oxygen consumption (V�O2peak) and habitual sleep and eating patterns were 108 

documented for 7 days prior to testing. During this time, two consecutive nights of PSG sleep testing 109 

were conducted to exclude sleep apnoea and record normal sleep stages and arousals. Following 110 

baseline (BASE), participants completed three experimental trials (4 days duration for each) in a 111 

randomised fashion. The experimental trials included 30 min of high-intensity interval exercise (60 s 112 

at 100% V�O2peak: 240 s at 50% V�O2peak) (Sim et al., 2014) performed 1) in the morning (MORN: 0600 - 113 

0700 h), 2) afternoon (AFT: 1400 - 1600 h), and 3) evening (EVEN: 1900 - 2000 h). Experimental trials 114 

were separated by a minimum of 5 days recovery. Primary outcome measures included post-exercise 115 

sleep quality and quantity, changes in plasma concentrations of appetite-related hormones, ratings of 116 

perceived appetite, and post-exercise free-living energy intake.  117 

 118 
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Familiarisation and Baseline Testing 119 

The familiarisation session involved assessments of height, body mass, and waist and hip girths were 120 

completed to calculate body mass index (BMI) and waist-to-hip ratio (WHR), respectively. Further, 121 

V�O2peak was assessed using a ramp protocol (Barstow et al., 2000) on a cycle ergometer (Lode B.V., 122 

Excalibur Sport, Groningen, The Netherlands) to calculate workloads for the experimental trials. The 123 

V�O2peak test commenced at 50 W for the first 2 min and increased 25 W every minute thereafter with 124 

cadence maintained at 70 rpm until volitional exhaustion. During the test, heart rate (HR; F1, Polar, 125 

Electro-Oy, Kempele, Finland) was monitored every minute and breath-by-breath pulmonary gas 126 

exchange was obtained via a mouthpiece connected to a calibrated metabolic gas oxygen analysis 127 

system and custom-developed software (LabVIEW; National Instruments, Austin, TX, USA).  128 

 129 

At-home baseline data was obtained for a total of 7 days which included 7 nights actigraphy recorded 130 

via a wrist-worn actigraph (Actiware 2, Philips Respironics, Andover, MA), alongside a diary to verify 131 

sleep bed and wake times, and food intake. During this time, participants were instructed to maintain 132 

usual bed time, wake time, and diet. These data were obtained to provide a representation of habitual 133 

sleep quantity, behaviour and diet as a comparative control (Champagne et al., 2013; Bei et al., 2016). 134 

The two nights of PSG sleep measurement were conducted during the 7 night baseline period, 135 

depending on participant and equipment availability. A level II, take home PSG device was used to 136 

exclude sleep disorders and record baseline sleep stages and arousals. 137 

 138 

Experimental Trials 139 

During each experimental trial, participants did not engage in physical activity and documented all 140 

food and drink consumption 24 h prior to exercise. On the day of exercise, participants abstained from 141 

alcohol and caffeine; and fasted overnight for the MORN trial to ensure participant’s sleep on the night 142 
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prior to exercise was not shortened due to fasting requirements and for 3 h prior to the AFT and EVEN 143 

trials. Upon arrival, participants indicated perceived hunger and fullness on validated Visual Analogue 144 

Scales (VAS) (Flint et al., 2000) and a capillary blood sample was obtained from the fingertip for the 145 

assessment of appetite-related hormones and glucose. Participants then performed the high-intensity 146 

interval protocol which consisted of 6 × 60 s maximal sprints (100% V�O2peak) interspersed by 240 s of 147 

active recovery (50% V�O2peak) which equated to a total exercise duration of 30 min (Sim et al., 2014). 148 

Exercise was performed on a stationary cycle ergometer (Wattbike Trainer, Wattbike Ltd, Nottingham, 149 

UK) and intensity was monitored via power output (PO) every minute. Heart rate (F1, Polar, Electro-150 

Oy, Kempele, Finland) responses were also recorded every minute for calculation and reporting of 151 

mean HR across the entire exercise protocol. Participants also reported rating of perceived exertion 152 

(RPE; 1-10 scale) (Borg, 1982) every 5 min. Immediately post-exercise, participants were instructed to 153 

passively rest for 30 min, after which time a second blood sample was obtained, and perceived 154 

appetite was recorded to assess the acute effects of exercise on appetite variables. That night, sleep 155 

was recorded using a level II, take home PSG device and scored for sleep stages and arousals. 156 

Participants returned to the laboratory the following morning (60 min after waking), for a fasted 157 

capillary blood sample and reported perceived appetite to examine appetite variables in relation to 158 

the preceding night’s sleep. Actigraphy, and sleep and food records were maintained for 3 days during 159 

each trial, including the day of exercise, one day after exercise, and two days after exercise (refer to 160 

Figure 1). Data were examined for sleep quantity and energy intake up to 48 hours post-exercise. 161 

Following exercise, participants were free to choose bed times, wake-up times, and food intake to 162 

observe sleep and eating responses to the respective trials. 163 

 164 

Polysomnography 165 

Polysomnography was performed using recommended electrode and sensor placements (Berry et al., 166 

2016), connected to the Alice PDx system (Philips Respironics, Pittsburg, USA) and analysed using 167 
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Sleepware G3 software version 3.7.4 (Philips Respironics, Pittsburg, USA). Electrode and sensor 168 

placements included: three electroencephalogram (EEG; F3-A2, C4-A1, and O1-A2) electrodes, 169 

unilateral electrooculogram (EOG), chin electromyography (EMG), electrocardiography (ECG; lead I), 170 

oxygen saturation via pulse oximetry, thoracic and abdominal respiratory effort via belts, and nasal 171 

airflow via pressure transducer. The BASE sleep studies were scored to exclude sleep disorders and 172 

data were used for the BASE sleep staging and arousal parameters; whereas, only the sleep staging 173 

and arousal data were analysed for experimental sleep studies. All sleep studies were scored based 174 

on standard guidelines (Berry et al., 2016) by an experienced sleep technologist who was blinded to 175 

the experimental trials. Sleep parameters assessed included time in bed, total sleep time (TST), sleep 176 

efficiency (SE) [(sleep duration - wake time) / sleep duration) × 100], sleep onset latency (SOL; time 177 

from lights out to the first epoch of sleep), rapid eye movement (REM) onset latency, wake after sleep 178 

onset (WASO; total time awake after sleep onset), percent of time spent in each sleep stage (N1: stage 179 

1; N2: stage 2; N3: stage 3; total NREM: non-rapid eye movement sleep; REM), and arousal index.   180 

 181 

Actigraphy 182 

Actigraphy was recorded in 1 min epochs (Esliger & Tremblay, 2006) and analysed using Actiware v5.70 183 

software (Philips Respironics, Pittsburgh, USA). Variables obtained included bed time, wake time, time 184 

in bed (period between bed time and wake time), TST (time asleep during time in bed), SOL (period 185 

between bed time and sleep onset), SE (percent of time in bed spent sleeping), WASO (total time 186 

awake after sleep onset), and number of awakenings (Knutson et al., 2007).  187 

 188 

Appetite Perception and Hormones 189 

Perceived hunger and fullness were assessed using a VAS comprised of straight lines (100 mm) 190 

accompanied by a question anchored with words representing opposing extreme states of hunger and 191 
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fullness at either end (Flint et al., 2000). A 600 μl sample of blood was collected from a fingertip using 192 

a sterile lancet. To assist vasodilation, the hand was submerged in a bowl of warm water for 5 min 193 

prior to blood draw. Blood glucose concentration was measured directly from the fingertip using an 194 

Accu-Chek Performa (Roche, Manheim, Germany). The remaining blood was immediately aliquoted 195 

into pre-chilled EDTA tubes (Becton Dickinson, Sydney, Australia) treated with serine protease 196 

inhibitor (25 μl per 600 μl of blood; Pefabloc® SC, Sigma-Aldrich, St. Louis, USA) then immediately 197 

centrifuged at 3000 rpm for 10 min. Plasma obtained was stored at -80˚C and later analysed according 198 

to manufacturer’s instructions for acylated ghrelin, leptin and PYYtotal using a commercially available 199 

assay kit (Cat. No# HMHEMAG-34K; Milliplex, Millipore Corporation, MA, USA). These hormones were 200 

chosen based on previous literature demonstrating their responsiveness to exercise (Broom et al., 201 

2009; Balaguera-Cortes et al., 2011) and association with sleep and appetite (Spiegel et al., 2011). For 202 

acylated ghrelin, leptin and PYYtotal the intra- and inter-assay coefficient of variations were < 10% and 203 

< 15%, respectively. 204 

 205 

Sleep and Energy Intake Records 206 

Sleep diary entries were used to confirm bed times and wake-up times for actigraphy data. For food 207 

records, instructions on the use (including a 1 day example), and the necessity for accurate (i.e. food 208 

and drink brands and quantities) and detailed recordings of energy intake immediately after 209 

consumption were emphasised. Total energy and macronutrient intake were calculated using 210 

commercially available software (Foodworks; Xyris Software, Kenmore Hills, QLD, Australia). Also, 211 

absolute (g) and relative data (%) were calculated for carbohydrate, fat and protein intake.  212 

  213 

Statistical Analysis 214 
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A priori sample size calculations for a repeated measures ANOVA was performed using G*Power 215 

(version 3.1.9.2) which confirmed that the final sample size of 11 participants was adequate for the 216 

input parameters which included the PSG sleep variables as these were the primary study measures. 217 

A repeated-measures (trial × time interaction) ANOVA with a Bonferroni correction and Tukey’s post 218 

hoc were used to determine significant differences for performance, physiological and perceptual 219 

measures, perceived appetite, glucose and appetite-related hormones, total and macronutrient 220 

energy intake, PSG and actigraphy variables. PSG data were further separated to analyse the initial 221 

180 min after sleep onset as the first 1-2 sleep cycles have been shown to be altered by acute stimuli 222 

including evening high-intensity exercise (Myllymäki et al., 2012). Analysis was performed using 223 

Statistical Package for Social Sciences (SPSS v 20.0, Chicago, USA). Data are reported as mean ± 224 

standard deviation (SD) and statistical significance was accepted at p ≤ 0.05. 225 

 226 

Results 227 

Exercise Responses 228 

There was no significant difference for mean power output between MORN (355 ± 106 W), AFT (396 229 

± 126 W) or EVEN (391 ± 139 W) (p = 0.11; Figure 2A). As for trial × time interactions, power output 230 

was higher at sprint 1 and sprint 2 for AFT compared to MORN (p ≤ 0.05). While for EVEN, power 231 

output was greater at sprint 2 compared to MORN (p = 0.01; Figure 2A). Mean heart rate was 126 ± 232 

13 bpm for MORN, 132 ± 10 bpm for AFT, and 130 ± 9 bpm for EVEN. Mean heart rate for AFT was 233 

higher compared to MORN (p = 0.05). There was no trial × time interaction for RPE; although, a main 234 

effect of time for all trials indicated increased RPE from sprint 1 to sprint 6 (p ≤ 0.01; Figure 2B).  235 

 236 

Sleep Questionnaires, Polysomnography and Actigraphy 237 
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The results for the STOP-BANG questionnaire, Epworth Sleepiness Scale and PSQI at baseline were 2 238 

± 1, 7 ± 4 and 5 ± 2, respectively. Whole night and initial 180 min polysomnography data are presented 239 

in Table 1. There were no significant differences for time in bed, total sleep time, sleep efficiency, 240 

sleep onset latency, wake after sleep onset, stage N1 and N2 sleep, or arousal index between BASE, 241 

MORN, AFT and EVEN (p > 0.05). However, there was a greater proportion of stage N3 sleep following 242 

MORN compared to BASE (p = 0.02). There was a greater proportion of NREM sleep after EVEN 243 

compared to BASE for whole night sleep (p = 0.05) and initial 180 min of sleep (p = 0.006). Also, for 244 

the initial 180 min of sleep, proportion of REM sleep was lower for EVEN compared to BASE (p = 0.006). 245 

Analysis of actigraphy data (Table 2) showed there were no trial × time interactions for all variables (p 246 

> 0.05). However, there was a main effect of time for all trials which indicated a lower number of 247 

awakenings on the night post-exercise compared to one (p = 0.05) and two days post-exercise (p = 248 

0.04). 249 

 250 

Perceived Appetite and Appetite-Related Hormones 251 

There was no trial × time interaction for perceived hunger (p = 0.51) or perceived fullness (p = 0.21; 252 

Figure 3). The hormone and glucose responses for MORN, AFT and EVEN are shown in Figure 4. There 253 

was a trial × time interaction for acylated ghrelin, with post hoc analyses revealing significantly higher 254 

values pre-exercise for AFT compared to MORN (p = 0.001) and EVEN (p = 0.03), and for EVEN 255 

compared to MORN (p = 0.004; Figure 4A). Acylated ghrelin remained higher 30 min post-exercise for 256 

AFT compared to MORN and EVEN (p = 0.01), while concentrations were higher for EVEN compared 257 

to AFT the morning post-exercise (p = 0.01; Figure 4A). The percentage change of acylated ghrelin was 258 

-34 ± 50% for MORN, for AFT -68 ± 30% and -74 ± 37% for EVEN (p = 0.06). Glucose values at 30 min 259 

post-exercise were higher for MORN compared to AFT and EVEN (p ≤ 0.02; Figure 4D). Also, the 260 

percentage change in glucose was 26 ± 25% for MORN, AFT for 16 ± 21% and 14 ± 28% for EVEN from 261 

pre to 30 min post-exercise (p = 0.37). There was no trial × time interaction for leptin or PYYtotal (p > 262 
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0.05). Although, there was a main effect of time for leptin in which values were higher at pre-exercise 263 

and the morning after exercise compared to 30 min post-exercise for all trials (p ≤ 0.01; Figure 4B). 264 

The percentage change of leptin was -35 ± 20% for MORN, for AFT -34 ± 27% and -29 ± 16% for EVEN 265 

(p = 0.64). While, the percentage change of PYYtotal was 20 ± 61% for MORN, for AFT 88 ± 157% and 22 266 

± 81% for EVEN (p = 0.17). 267 

 268 

Free Living Energy Intake 269 

Total energy intake and macronutrient intake is presented in Table 3. There were no significant 270 

differences between trials for total energy intake (p = 0.57), and carbohydrate, fat, protein, sodium, 271 

sugar or caffeine intake (p ≥ 0.09). 272 

 273 

Discussion 274 

We investigated the effects of exercise time-of-day on sleep patterns, appetite responses and 275 

subsequent free-living energy intake in overweight, inactive men. Our novel findings show that many 276 

sleep variables do not differ to high-intensity interval exercise performed at different times of day. 277 

Although, the proportion of stage N3 sleep was higher after MORN compared to BASE; and after EVEN 278 

there was an increase in NREM sleep and decrease in REM sleep compared to BASE in the initial 180 279 

min of sleep. There was also a favourable decline in acylated ghrelin from pre-exercise to 30 min post-280 

exercise for AFT and EVEN compared to MORN; however, there were only small changes for all trials 281 

in leptin and PYYtotal. Similarly, there were no differences between trials for perceived appetite or 282 

energy intake. Sprint power output during the high-intensity interval protocol was significantly higher 283 

for AFT and EVEN compared to MORN despite no between-trial differences for mean power output. 284 

Collectively, these findings indicate that acute evening high-intensity exercise does not impair 285 

subsequent sleep patterns and is unlikely to alter energy intake compared to exercise performed at 286 
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other times of day or to no exercise. Although, the greater efforts during maximal sprints in the 287 

afternoon and evening may stimulate larger reductions of orexigenic signals compared to morning 288 

high-intensity exercise which would be of more benefit to appetite control long-term.  289 

 290 

Findings from the present study are consistent with experimental evidence suggesting that vigorous 291 

exercise performed close to bed time does not disrupt sleep (O’Connor et al., 1998; Youngstedt et al., 292 

1999; Myllymäki et al., 2011; Flausino et al., 2012; Robey et al., 2013; Hayashi et al., 2014). Following 293 

the evening trial, PSG data indicated an increase in NREM sleep and decrease in REM sleep 294 

predominantly within the initial 180 min of sleep which have also been previously reported by Netzer 295 

et al. (2001) and Robey et al. (2013). Netzer et al. (2001) further presented a correlation between an 296 

extension of REM onset latency and reduction of REM sleep percentage in the first half of sleep with 297 

an increase in norepinephrine following intense exercise. Although the mechanisms are not fully 298 

understood, it is known that noradrenergic cells are tonically active during all sleep stages except for 299 

REM sleep (Poe et al., 2010). Given that high-intensity interval exercise, compared to moderate-300 

intensity exercise, is associated with a post-exercise 14.5 fold increase in norepinephrine release 301 

(Boutcher, 2010), it is plausible that the presence of such high levels close to bed time are linked to 302 

delayed REM sleep. Norepinephine may further enhance and prolong long-term potentiation (i.e. 303 

persistent strengthening of synapses based on recent patterns of activity) which occurs during NREM 304 

sleep stages and facilitates the events to convert early long-term potentiation to lasting long-term 305 

potentiation (Poe et al., 2010). Nonetheless, opposing findings for evening vigorous exercise have 306 

been presented by Souissi et al. (2012) whereby total sleep time and sleep efficiency were lower, and 307 

sleep onset latency and awakenings increased compared to afternoon vigorous exercise. As such, 308 

further research is needed to examine the potential influence of covariates including age, gender and 309 

training status, that may affect sleep responses to evening high-intensity interval exercise.  310 

 311 
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Limited differences were observed in appetite responses; although, for the hormone changes, it did 312 

appear that afternoon and evening high-intensity exercise induced greater changes in acylated 313 

ghrelin, while morning high-intensity exercise altered glucose only. Interestingly, there was large 314 

variation in pre-exercise acylated ghrelin concentrations which are likely attributed to the natural 315 

circadian rhythm of this hormone which is typically lowest in the morning before progressively 316 

increasing until mid-afternoon (Birketvedt et al., 2012; Copinschi et al., 2014). As such, relative 317 

changes following exercise compared to pre-exercise values for the respective trials may provide a 318 

clearer understanding of time-of-day effects on circulating ghrelin. In this study, the magnitude of 319 

change for acylated ghrelin was larger following afternoon and evening trials compared to changes 320 

after morning high-intensity interval exercise, but these differences were not significant. Nonetheless, 321 

it is possible that the sprint power output differences between the afternoon and evening trials 322 

compared to the morning trial induced the observed ghrelin changes from pre-exercise to 30 min post-323 

exercise. In support, Sim et al. (2014) observed a significantly greater reduction in ghrelin 324 

concentration for a very high-intensity exercise protocol compared to high-intensity interval exercise, 325 

moderate-intensity continuous exercise and a non-exercise control trial. Further, lower ghrelin levels 326 

continued for the very high-intensity protocol for up to 90 min post-exercise (Sim et al., 2014). Despite 327 

implementing the same high-intensity interval protocol for all trials in the current study, sprint power 328 

output, particularly for the first 2 sprints, was higher for AFT and EVEN compared to the MORN trial. 329 

These data are largely supported by previous findings which report that maximal short-duration 330 

performance output nadirs in the morning and peaks in the afternoon in general and athletic 331 

populations (Atkinson et al., 1993; Souissi et al., 2002; Souissi et al., 2004; Souissi et al., 2007; 332 

Chtourou & Souissi, 2012). Therefore, it may be more beneficial to engage in high-intensity interval 333 

exercise in the afternoon and evening as performance output is likely to be greater leading to larger 334 

reductions in orexigenic signals.  335 

 336 
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Despite the reduction in acylated ghrelin levels post-HIIE in the AFT and EVEN trials, there were no 337 

associated reduction in perceived appetite or energy intake in this study. Much of the research 338 

investigating energy intake following exercise has been conducted during morning hours. Bilski et al. 339 

(2016) previously measured leptin following morning and evening high-intensity exercise, finding no 340 

difference between trials. However, unlike the current study, authors did observe a reduction in 341 

perceived hunger and post-exercise energy intake following both morning and evening high-intensity 342 

exercise (Bilski et al., 2016). Differences between studies may be due to the provision of an ad-libitum 343 

meal to examine post-exercise energy intake compared to the self-reported diaries used in the present 344 

study which may not be sensitive enough to detect significant changes in energy intake. Furthermore, 345 

Bilski et al. (2016) only examined energy intake immediately post-exercise while the present study 346 

investigated potential long-lasting exercise effects on energy intake (i.e. up to 48 hours post-exercise).  347 

 348 

The novel aspect of the current study is the examination of sleep and appetite concurrently following 349 

this distinct times-of-day. Even so, there are several limitations which need to be addressed and may 350 

assist the direction of future research. The difference in time of fasting for the MORN trial (i.e. 10 h 351 

overnight) compared to the AFT and EVEN trials (i.e. 3 h) were likely to have an effect on the diurnal 352 

variations of the appetite-related hormones and glucose levels. However, the overnight fast was 353 

chosen for the MORN trial to avoid forced sleep restriction which may also alter diurnal changes 354 

(Spiegel et al., 2004). Also, there were limited time points for the analysis of acylated ghrelin, leptin, 355 

PYYtotal and glucose; however, the three designated time points are in alignment with capturing acute 356 

and prolonged responses across all hormones. Eating and sleep behaviour may have influenced energy 357 

intake rather than changes in feeding mechanisms following high-intensity interval exercise 358 

performed at different times of the day. As such, future research may benefit from assessing 359 

prolonged energy intake in a controlled laboratory setting and collecting more frequent blood samples 360 
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to identify diurnal changes of appetite-related hormones and glucose after HIIE performed in the 361 

morning, afternoon and evening.  362 

 363 

In summary, this study does not support the recommendation of avoidance of evening high-intensity 364 

exercise due to its effect on sleep. Rather this study shows high-intensity exercise can be safely 365 

performed in the evening without subsequent detriment to sleep duration or arousal index. Also, high-366 

intensity exercise performed in the afternoon and evening are likely to be associated with greater 367 

performance output; therefore, greater reductions in orexigenic signals. As such, collectively these 368 

observations support the evening as a viable time-of-day for individuals to engage in high-intensity 369 

exercise should this be a preferential time-of-day. 370 
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Table 1. Mean ± SD whole night and initial 180 min polysomnography for baseline (BASE), morning exercise (MORN; n = 10), afternoon exercise (AFT; n = 11), and evening exercise (EVEN; n = 
11) trials. 

 BASE MORN AFT EVEN 

 Whole Night Initial 180 min Whole Night Initial 180 min Whole Night Initial 180 min Whole Night Initial 180 min 

Time in bed (min) 484.6 ± 39.8  450.4 ± 43.5  461.7 ± 34.9  454.5 ± 36.8  

Total sleep time (min) 405.7 ± 54.4 163.7 ± 14.3 387.7 ± 55.9 169.1 ± 6.7 407.1 ± 40.7 167.5 ± 11.3 392.6 ± 33.9 171.1 ± 5.0 

Sleep efficiency (%) 83.7 ± 6.9 90.8 ± 7.9 86.0 ± 6.3 93.7 ± 3.7 88.2 ± 5.6 92.8 ± 6.3 86.5 ± 5.4 94.9 ± 2.8 

Sleep onset latency (min) 23.1 ± 16.2  19.5 ± 11.7  18.4 ± 15.2  20.4 ± 14.3  

Rapid eye movement latency (min) 84.2 ± 21.0 82.9 ± 21.9 107.9 ± 60.1 107.0 ± 60.4 109.5 ± 34.6 109.5 ± 34.5 81.0 ± 24.0 81.0 ± 24.0 

Wake after sleep onset (min) 55.7 ± 32.6 16.7 ± 14.2 43.1 ± 27.6 11.1 ± 6.8 36.2 ± 21.6 13.0 ± 11.3 41.5 ± 24.9 9.2 ± 5.1 

Stage N1 sleep (%) 8.4 ± 4.0 6.9 ± 3.4 6.8 ± 3.2 5.4 ± 2.4 6.3 ± 2.3 5.6 ± 3.2 7.0 ± 2.7 5.5 ± 3.1 

Stage N2 sleep (%) 53.9 ± 5.9 52.8 ± 7.9 54.2 ± 8.0 50.4 ± 8.9 55.5 ± 7.7 55.3 ± 7.9 56.3 ± 8.9 53.9 ± 14.1 

Stage N3 sleep (%) 18.0 ± 7.2 27.7 ± 10.6 22.9 ± 7.3a 35.3 ± 10.9 21.0 ± 7.3 31.9 ± 8.2 20.6 ± 7.9 33.0 ± 9.8 

Non-rapid eye movement (%) 80.3 ± 3.9 87.3 ± 5.4 83.5 ± 6.7 91.1 ± 5.9 82.8 ± 5.2 92.4 ± 4.2 83.9 ± 4.8a 92.4 ± 5.1a 

Rapid eye movement (%) 19.7 ± 3.9 12.7 ± 5.4 16.4 ± 6.9 8.9 ± 5.9 17.2 ± 5.2 7.6 ± 4.3 16.1 ± 4.8 7.7 ± 5.1a 

Arousal index (#/h) 12.4 ± 4.2 5.8 ± 5.8 12.8 ± 3.6 5.4 ± 4.1 12.3 ± 4.3 3.6 ± 3.9 10.8 ± 4.1 3.4 ± 2.8 

a Indicates differences compared to BASE (p ≤ 0.05).  
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Table 2. Mean ± SD actigraphy sleep data recorded at home for baseline (BASE), day of morning exercise (MORN-0), one day after MORN (MORN+1), two days after MORN (MORN+2), day of 
afternoon exercise (AFT-0), one day after AFT (AFT+1), two days after AFT (AFT+2), day of evening exercise (EVEN-0), one day after EVEN (EVEN+1), and two days after EVEN (EVEN+2) (n = 11). 

 BASE MORN-0 MORN+1 MORN+2 AFT-0 AFT+1 AFT+2 EVEN-0 EVEN+1 EVEN+2 

Bed time (hh:mm) 22:15 ± 0:33 22:15 ± 0:34 22:35 ± 0:38 22:24 ± 0.36 22:29 ± 0:39 22:10 ± 0:39 22:21 ± 0:46 22:24 ± 0:51 22:20 ± 0:39 22:34 ± 0:57 

Wake time (hh:mm) 6:24 ± 0:45 5:49 ± 0:32 6:21 ± 0:43 6:22 ± 0:51 6:02 ± 0:35 6:22 ± 1:05 6:27 ± 1:13 6:02 ± 0:38 5:59 ± 0:32 5:56 ± 0:34 

Time in bed (hh:mm) 8:02 ± 0:36 7:33 ± 0:34 7:46 ± 0:27 7:59 ± 1:01 7:32 ± 0:37 7:50 ± 0:55 8:01 ± 0:46 7:38 ± 0:43 7:38 ± 0:46 7:22 ± 1:02 

Total sleep time 
(hh:mm) 6:34 ± 0:32 6:26 ± 0:56 6:20 ± 0:37 6:27 ± 0:48 6:23 ± 0:42 6:39 ± 0:48 6:50 ± 0:42 6:25 ± 0:50 6:36 ± 0:48 6:17 ± 0:57 

Sleep onset latency 
(min) 14.3 ± 18.9 30.2 ± 30.4 23.5 ± 19.4 31.7 ± 42.7 24.3 ± 21.4 25.1 ± 9.4 24.1 ± 12.7 26.5 ± 23.4 15.5 ± 13.4 12.5 ± 13.6 

Sleep efficiency (%) 82.1 ± 3.6 84.4 ± 9.1 82.3 ± 6.6 82.0 ± 8.9 84.6 ± 8.5 83.1 ± 4.8 84.5 ± 5.8 84.0 ± 7.9 86.3 ± 4.3 85.3 ± 4.4 

Wake after sleep 
onset (min) 41.1 ± 13.9 29.6 ± 9.1 45.4 ± 18.3 46.3 ± 27.6 32.3 ± 17.6 41.7 ± 18.9 36.1 ± 13.9 35.8 ± 17.6 36.0 ± 8.7 38.2 ± 10.1 

Number of 
Awakenings (#) 20.4 ± 3.6 17.9 ± 5.3 23.4 ± 6.6* 22.6 ± 8.6* 17.6 ± 4.9 22.3 ± 6.0* 21.8 ± 6.1* 16.9 ± 4.5 21.0 ± 7.4* 22.0 ± 5.9* 

* Indicates a main effect of time for all trials (p ≤ 0.05). 
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Table 3. Mean ± SD total energy and macronutrient breakdown for baseline (BASE), day of MORN (MORN-0), one day after MORN (MORN-1), two days after MORN (MORN-2), day of AFT (AFT-

0), one day after AFT (AFT+1), two days after AFT (AFT+2), day of EVEN (EVEN-0), one day after EVEN (EVEN+1), two days after EVEN (EVEN+2) (n = 11). 

 BASE MORN-0 MORN+1 MORN+2 AFT-0 AFT+1 AFT+2 EVEN-0 EVEN+1 EVEN+2 

Total Energy 
Intake (kJ) 8501 ± 3248 8162 ± 4274 8167 ± 4166 7583 ± 2928 7839 ± 1283 7215 ± 3266 7813 ± 3544 6954 ± 1337 6856 ± 3294 6238 ± 1641 

Carbohydrates (g) 204 ± 84 160 ± 14 161 ± 38 175 ± 87 220 ± 88 179 ± 72 169 ± 44 210 ± 113 179 ± 77 138 ± 36 

(%) 41 ± 7 41 ± 10 37 ± 5 39 ± 10 43 ± 10 40 ± 1 42 ± 9 44 ± 14 46 ± 10 36 ± 6 

Fats (g) 78 ± 37 73 ± 42 60 ± 23 68 ± 29 83 ± 28 66 ± 43 61 ± 34 70 ± 22 51 ± 21 67 ± 32 

(%) 34 ± 6 33 ± 8 33 ± 7 34 ± 7 37 ± 6 32 ± 10 30 ± 8 36 ± 11 35 ± 8 35 ± 6 

Protein (g) 97 ± 37 92 ± 51 96 ± 41 86 ± 27 93 ± 37 79 ± 38 80 ± 45 93 ± 30 69 ± 30 84 ± 41 

(%) 19 ± 3 19 ± 4 20 ± 4 20 ± 5 18 ± 5 18 ± 4 16 ± 4 19 ± 3 17 ± 4 19 ± 4 

Sodium (mg) 2078 ± 349 2511 ± 1400 2384 ± 1338 2302 ± 1136 2658 ± 713 1985 ± 1372 1655 ± 665 2890 ± 1210 1956 ± 1089 2112 ± 1053 

Sugar (g) 81 ± 41 59 ± 17 72 ± 49 62 ± 18 85 ± 46 66 ± 46 73 ± 49 93 ± 64 81 ± 49 54 ± 17 

Caffeine (mg) 146 ± 76 83 ± 69 113 ± 70 129 ± 104 100 ± 86 100 ± 78 125 ± 78 137 ± 107 155 ± 90 164 ± 89 
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