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Abstract. In this paper, we demonstrated the implementation of General Purpose Graphics Processing Unit (GPGPU) pro-
gramming in Compute Unified Device Architecture (CUDA) C for the simulation of natural convection flow in a side-heated
three-dimensional (3D) rectangular cavity with a partition. In the present lattice Boltzmann method (LBM) D3Q19 multiple-
relaxation-time (MRT) and D3Q6 single relaxation-time (SRT) model are implemented for the simulation of fluid flow and
temperature phenomena, respectively. The parallel code is validated with the benchmark problem of a side heated cubic
cavity. The results are presented by the temperature distribution in terms of isotherms, local and average Nusselt number and
3D view of iso-surface for the different Rayleigh number (Ra) and the Prandtl number fixed at Pr = 0.71. It is also observed
that the present parallel implementation of the MRT-lattice Boltzmann simulation in GPU has a substantial computational
efficiency rather than the sequential programming in central processing units (CPU).

INTRODUCTION

Innovations in experimental and numerical studies for simulating thermal flows have been improved in a notable
attraction over the past few decades. Due to the introduction of various modern sensing technologies as well as the
development of new numerical methods and programming tools, different 3D convective flow phenomena are now
being simulated at larger grid allocation. Natural convection in a 3D geometry involves the laminar and turbulent flow
patterns due to the heat transfer between the heated and cold portion of the indoor environment. Detecting the detail
representation of turbulent flow patterns can be crucial in designing ducts and natural air conditioning systems for
the thermal comfort inside indoor places. Natural convection in an indoor environment is a common phenomenon
to study the thermal comfort inside the building in urban areas. Convective flow analysis in industrial applications
can be very incremental for developing better heat distributions in various types of open and closed spaces. The
natural convection is done by equilibrating the temperature difference between the heated and cold part inside a
cavity. The common phenomena of heat transfer between the heated and cold source can be simulated using the
experimental sensing tools or the computer-aided simulations. Tian and Karayiannis [1] conducted an experimental
study on a square cavity filled with air by using proportional-integral-differential (PID) for controlling the temperature
inside the cavity and low noise K-type thermocouples. Leong et al. [2] studied natural convection for a side heated
cubic cavity for different inclination angles and calculated experimental Nusslet numbers for the cavity. Despite the
accuracy of the experimental results of natural convection on different simple and complex geometries the numerical
simulation of convective flows become more popular due to the low setup cost and minimal time to simulate the
phenomena. Moreover, numerical simulations of convective flow using high-performance computers often agreed
with the experimental solutions at very good accuracy. Among all the various computational fluid dynamics (CFD)
methods, Navier-stokes (NS) based simulations have been the most used method for solving fluid flow problems for a
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wide range of engineering applications. However, the lattice Boltzmann method became renowned as a more sizable
numerical method than the formal N-S based methods in recent times.

LBM solves the fluid flow in terms of distribution of fluid particles inspired from the concepts of lattice gas cellu-
lar automata (LGCA) by Frisch et. al [3] which was initially developed for solving fluid flows using the Boltzmann’s
gas kinetic theory. Later different researchers [4, 5] developed more refined versions of LBM for simulating 2D and
3D incompressible flow phenomena for various engineering domain. Guo et al. [6] proposed a couple of LBGKmodel
incorporating the BGK collision operator from the BGK model of [7] and the model is capable of solving convective
heat phenomena for 2D or the 3D cases. Moreover, the heat transfer in natural convection solved as a passive scalar
advected by the fluid while the fluid continuity is solved in the velocity space using different lattice models of LBM.
The common lattice models for solving temperature are D3Q6,D3Q15 and D3Q19 while most of the SRT based LBM
methods use D3Q6 lattice configuration for solving the convective flow phenomena by LBM. Moreover, the evolution
equation for achieving the macroscopic energy equation by LBM coupled model of Guo et al. [6] is a popular nu-
merical solution of solving convective flow for various simple and complex geometries. In this paper, we used D3Q6
lattice model for solving the temperature of the fluid regime using the coupled LBGK method.

The most popular LBM methods are based on a single relaxation time(SRT) concepts where fluid continuity
is solved through distribution functions using a single relaxation parameter in the velocity space. Furthermore, this
solution suffers unstable flow simulations at high Rayleigh number (Ra) and Reynolds numbers(Ra). To mitigate the
problems in SRT based LBM solutions, d’Humieres et al. [8] presented a multiple-relaxation-time(MRT) model of
LBM for 3D incompressible flow and achieved very stable flow in high Reynolds numbers. MRT based LBM model
is very suitable for developing laminar and turbulent flow using high-performance hardware with parallel computation
abilities. Very recently, Molla et al.[9] have implemented the GPU based 2D MRT LBM and applied for the lid-driven
cavity flow with high Reynolds number as well as the natural and mixed convection flow for the porous media with the
high Rayleigh numbers. They found that MRT LBM is very much efficient for the larger grid size problems. However,
MRT based model have higher computational cost than the SRT based model which makes the model slower in
simulating fluid flows in cases of running the simulation programs in conventional CPU based sequential computing
hardware.

Furthermore, GPU based LBM programs are nowadays becoming popular for simulating fluid flows. In recent
years, the lattice Boltzmann method (LBM) become popular as a promising alternative of the NS solvers due to the
flexibility and the simplicity of the technique. LBM is also capable of parallel implementation of the grid which
can incredibly increase the simulation process. Previously, high-performance computers(HPC) perform sequential
programming of LBM algorithms to simulate fluid flow problems since the CPU of this hardware can only execute
sequential tasks. However, some parallel platform like OpenMPI [10] are available for parallel computation in CPU,
and the implementation paradigms are very complex. After the introduction of computing unified device architecture
(CUDA) by Nvidia Corporation in 2007, the parallel computation in HPC became easier, and computation on parallel
task execution units like GPU became possible for simulate fluid phenomena in a faster way than the convection
CPU programming. In this paper, a GPU based parallel implementation of MRT based 3D coupled LBGK method is
demonstrated for simulating the natural convection for a room having a partition inside the rectangular cavity.

FORMULATION OF THE PROBLEM

Physical representation of the problem domain
The natural convection in a rectangular enclosure with a heated wall boundary and a partition in a middle of the

cavity is simulated using the MRT based LBM. The MRT-LBM code is validated under geometry of a cubic cavity,
and the results are compared with the benchmark solutions. The schematic model is shown in Figure 1(a) with the
dimension of the room was 0.914m × 0.914m × 0.914m and a partition having 0.01m width and 0.457m height. The
grid size of 180×90×90 is been considered to simulation cases for two different Rayleigh number(Ra) of Ra=104 and
Ra=105. The reference length of the physical geometry for the normalization procedure was the height of the room H
which has been used in the result and discussion section of this current demonstration.

Governing Equations
The evolution equation of LBM considers the fluid motion at macroscopic scale as distributing particle towards differ-
ent discrete directions. The method uses discrete lattice model D3Q19 in Figure 1(b) which has 19 discrete position
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(a) (b)

FIGURE 1. (a)Physical geometry of the problem (left) and (b) the D3Q19 lattice model of the MRT-LBM model (right)

vector for designating the directions of the fluid particles due to collision event. In LBM, the collision and stream-
ing are the two major events for simulating the fluid flows. In collision process, fluid collides with each other and
reaches to a equilibrium at a single or multiple characteristic times while they depend on the single or multiple relax-
ation parameter. The SRT based LBM methods considers the collision between fluid particles in the velocity space
of the fluid regime while the MRT based approaches considers the process in the momentum space of the fluid con-
tinuity. The eqn. 1 is the formal evolution equation of the MRT based LBM method where distribution functions
( fα|α = 0, 1, 2, 3, ........,Q − 1) of Q = 19 discrete velocities is as follows [8, 11] as follows:

f (xi + ei.δt, tn + δt) = f (xi, tn) − M−1. Ŝ
(
m −meq) (1)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
−12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 4 −4 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 4 −4 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 4 4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 −1 1 1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Here, the f is the linear transformation of the Q matrixM while m and meq are the moments in moments space
M ∈ RQ. The collision between particles in MRT-LBM is performed in the moment space where collision matrix Ŝ
for different m moments for each discrete velocities of velocity model. Then advection is performed in the velocity
space V ∈ RQ through the f moments. The advection and collision terms of Eqn. 1 can be computed as follows:

f (xi + ei.δt, tn + δt) :=
(
f0 (xi + ei.δt, tn + δt) , ......, fQ

(
xi + eQδt, tn + δt

))T
f (xi, tn) :=

(
f0 (xi, tn + δt) , ......, fQ (xi, tn + δt)

)T
m :=

(
m0 (xi, tn) ,m1 (xi, tn) , ........,mQ (xi, tn)

)T
m(eq) :=

(
m0

(eq) (xi, tn) ,m1
(eq) (xi, tn) , ........,mQ(eq) (xi, tn)

)T
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TABLE 1. Comparison of the Average Nus-
selt number Nu of present MRT-LBM code with
benchmark results
Ra [12] [13] [14] 96 × 96 × 96
104 2.05 2.06 2.08 2.02
105 4.34 4.38 4.36 4.24

Here, T is transpose operator. In D3Q19 lattice model the velocities of the evolution equation (Eqn. 1) are defined
as follows:

ei= (0, 0, 0) i = 0
(±1, 0, 0) , (0,±1, 0) , (0, 0,±1) i = 1 − 6

(±1,±1, 0) , (±1, 0,±1) , (0,±1,±1) i = 7 − 18

The m(eq) is the non-conserved moments equilibrium which depends on the density fluctuations (δρ), energy(ε),
momentum (j = jx, jy, jz) and heat flux (q = qx,qy,qz) [11]. The 19 different moments of the D3Q19 lattice model
for MRT-LBM are crucial for defining the relaxation matrix Ŝ . The relaxation matrix Ŝ which is the diagonal matrix
of the moment spaceM as well as the moments equilibrium functions can be written as follows:

Ŝ = diag (1, 1.19, 1.4, 1, 1.2, 1, 1.2, 1, 1.2, s9, 1.4, s9, 1.4, s9, s9, s9, 1.98, 1.98, 1.98) (3)

m1
(eq)
= −11δρ +

19
ρ0
. j. j (4a)

m2
(eq)
= ωεδρ +

ωε

ρ0
j. j (4b)

m4,6,8
(eq)
=
−2
3
jx,y,z (4c)

m9
(eq)
=

1
ρ0

(
3 j2x − j. j

)
(4d)

m11
(eq)
=

1
ρ0

(
j2y − j2z

)
(4e)

m10
(eq)
= ωxx,m9

(eq) (4f)
m12

(eq)
= ωxxm11

(eq) (4g)

m13
(eq)
=

1
ρ0
jx. jy (4h)

m14
(eq)
=

1
ρ0
jy. jz (4i)

m15
(eq)
=

1
ρ0
jz. jx (4j)

m16
(eq)
= m17

(eq)
= m18

(eq)
= 0 (4k)

(4l)

The viscosity of the fluid is related with the

ν =
1
3

(
1
s9
−
1
2

)
c2 Δt c =

Δx
Δt
= 1 (5)
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TABLE 2. Grid independence test in terms
of the Average Nusselt number Nu for two
different grid arrangements.
Ra 120 × 60 × 60 180 × 90 × 90
104 2.6143 2.7322
105 5.9492 5.9819
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FIGURE 2. Velocity distribution (a) u velocity at x/H = 0.5 and (b) v velocity at y/H = 0.5 while z/H = 0.5.

RESULTS AND DISCUSSION

To validate the GPU basedMRT-LBM code, the natural convection for a 3D cubic cavity has been studied in terms
of average Nusselt number (Nu) that is shown in Table 1 comparing with the results of [12–14] and found excellent
agreement. For the code validation, the lattice size of (96×96×96) is chosen to simulate the natural convection. After
the code validation the natural convection in a rectangular cavity with a partition is shown in Figure 1(b) is simulated
for Ra = 104 and Ra = 105. The partition is located at the middle of the cavity, and the height is half (0.5H) of the
cavity height. The results are presented in terms of the velocity and temperature distribution, average Nusselt number
as well as streamlines and isotherms for two different Rayleigh numbers. Firstly, Table 2 shows the grid sensitivity test
in terms of the average Nusselt number Nu with two lattice sizes 120× 60× 60 and 180× 90× 90. The results indicate
that two sets of the grid are sufficient to simulate the present problem. Here 180 × 90 × 90 lattice size is chosen for
the rest of the computation. Here it can also be summarised that the average rate of heat transfer increases while Ra
increases.

The horizontal and vertical velocity distribution for the different different Rayleigh numbers (Ra = 104, 105)
are depicted in Figures 2(a)-(b) respectively at the mid of span-wise plane, z/H = 0.5. From these figures, it is
clearly seen that the velocity increase owing to the increase of Ra. In Figures 2(a), the u/U velocity is zero from
y/H = 0 to 0.5 due to the presence of partition and in frame (b), it is ensured that the maximum and minimum
v/U velocity occurred neat the hot and cold wall. Here the normalized velocity U is

√
gβΔH. Figure 3(a)-(b) show

the corresponding temperature distribution at x/H = 0.5 and y/H = 0.5, respectively. For the variation of Ra, the
temperature distribution vary significantly.

Figure 4(a)-(b) represents the isotherms at mid xy-plane of the cavity with partition where gradual temperature
distribution is observed for both Ra = 104 and Ra = 105, respectively. In the figure, it is clear that the temperature is
gradually distributed from the hot wall to the cold wall and the temperature has a higher magnitude near the left wall
and propagated to the cold right wall. It can also be concluded that the temperature distribution in natural convection
can be hindered due to the presence of a partition. The corresponding streamlines appended in u/U velocity are
illustrated in Figures 5(a)-(b). Due to the presence of the partition, the flow pattern changes and formed two large
vortex in the two side of the partitions. The maximum and minimum velocity u/U is 0.16 and −0.13 while Ra = 104
but the maximum and minimum velocity is 0.15 and −0.14 at the case of Ra = 105.

Figure 6 represents the temperature iso-surfaces of 3D of the cavity having one partition at the middle of the
room at Ra=104. In the figure, the convection is hindered due to the presence of the partition and the cold areas
remains cold near the cold wall. On the other hand,hot airflow of the convective flow distributed naturally at the top
of the partition.
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FIGURE 3. Temperature distribution at (a) x/H0.5 and (b) y/H = 0.5 while z/H = 0.5.
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FIGURE 4. Isotherms for (a) Ra = 104 and (b) Ra = 105 at z/H = 0.5.

CONCLUSION

In this paper, we presented a GPU based MRT-LBM implementation for the simulation of the natural convection
of a rectangular cavity using D3Q19 lattice model for velocity and D3Q6 coupled lattice model for temperature. We
found a considerable amount of efficiency over existing GPU based LBM simulations and also the implementations
using CPU. The GPU based parallel CUDA C code is validated for the 3D cubic cavity with the benchmark solutions.
The results are at great accord with the existing literature. Then the convective flow in a rectangular 3D cavity with
a partition is simulated for two different Ra, and we found the effect of the partition in convective heat transfer. For
Ra = 105, the average rate of heat transfer with and without partition are 5.9819 and 6.9471, respectively.

The convective flow in a real-world room using the LBM based solutions can interpret the thermal comforts
in an urban building and more solutions on civil engineering problems. Several researchers [16, 17] implemented
LBM in GPU based hardware and Obrecht et al. [16] found significant results of using maximum 86% of the global
DRAM (Dynamic random access memory) using the GPU based LBM code which is hardly found on the traditional
sequential CPU computing. Delbosc et al. [17] implemented memory efficient GPU code and found 6% efficiency
compared to the unorganized PULL-OUT scheme of LBM. We implemented PULL-IN scheme of GPU based LBM
code for efficient memory usage and achieved 7.32% efficiency over the PULL-OUT scheme.

In the present LBM code, we have not used shared memory and we do believe that we can accelerate more
by using shared memory technique in this GPU based MRT-LBM code. In our future research, adopting shared
memory approach we will investigate the turbulent air flow and heat transfer by using the large-eddy simulation
(LES) technique in this MRT based lattice Boltzmann method.

030017-6



0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

0.16
0.13
0.10
0.07
0.04
0.01
-0.02
-0.04
-0.07
-0.10
-0.13

(a)

x/H

y/
H

u/U

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

0.15
0.12
0.09
0.06
0.03
0.01
-0.02
-0.05
-0.08
-0.11
-0.14

(a)

x/H

y/
H

u/U

FIGURE 5. Streamlines appended on u/U velocity for (a) Ra = 104 and (b) Ra = 105 at z/H = 0.5.

FIGURE 6. 3D view of temperature iso-surfaces of the rectangular cavity with a partition while Ra=104.
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