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Abstract

A new hybrid system was developed in this study for the treatment of drinking water
consisting of pre-coagulation using polyaluminium chloride (PACI) and membrane filtration
(MF) with sponge cubes acting as biomass carriers (P-SMF). When compared to a conventional
MF (CMF) and a MF after coagulation by utilizing PACI (P-MF), better removal of nutrients,
UV>s4 and dissolved organic carbon (DOC) (> 65%) was obtained from the P-SMF. The
accumulation of biopolymers (including polysaccharides and proteins), humic substances,
hydrophilic organics, and other small molecular weight (MW) organic matter in the CMF led to
the most severe membrane fouling coupled with the highest pore blocking and cake resistance.

Pre-coagulation was ineffective in eliminating small MW and hydrophilic organic matter.
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Conversely, the larger MW organics (i.e. biopolymers and humic substances), small MW
organics and hydrophilic organic compounds could be removed in significantly larger quantities
in the P-SMF by PACI coagulation. This was achieved via adsorption and the biodegradation by
attached biomass on these sponges and by the suspended sludge. Further analyses of the
microbial community indicated that the combined addition of PACI and sponges generated a
high enrichment of Zoolgloea, Amaricoccus and Reyranella leading to the reduction of
biopolymers, and Flexibacter and Sphingobium were linked to the degradation of humic
substances. Moreover, some members of Alphaproteobacteria in the P-SMF may be responsible
for the removal of low MW organics. These results suggest that the pre-coagulation process
coupled with adding sponge in the MF system is a promising technology for mitigating

membrane fouling.

Key words: Drinking water treatment; Membrane filtration; Coagulation; Sponge; Microbial

community; Membrane fouling

1. Introduction

Membrane filtration has become a promising technology for the treatment of drinking water.
However, membrane fouling induced by natural organic matter (NOM) (e.g. humic acid,
biopolymers) and microorganisms is still a major obstacle for the wider application of membrane
technologies. Chemical coagulation is a pretreatment method that can improve water quality,
mitigate membrane fouling and eliminate some organic matter, especially hydrophobic fractions
of NOM with a larger molecular size. Nevertheless, biopolymers’ (polysaccharides and proteins)

contribution to irreversible fouling was not effectively reduced. Also the accumulation of
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bacteria, any remaining biopolymers, hydrophilic NOM and low molecular weight (MW)
organic matter on the membrane through operational processes was responsible for the
occurrence of membrane fouling (Gao et al., 2011a; Matilainen and Sillanpii, 2010).

Current studies have employed further treatment processes to enhance the removal of
fouling materials in membrane tanks. It was reported that Fe/Mn (Fe(II)/K;MnO4 (combination
of pre-oxidant and coagulant) as a pretreatment for ultrafiltration (UF): limited transmembrane
pressure (TMP) development; reduced bacterial activity and the associated extracellular
polymeric substances (EPS); altered organic matter properties; decreased levels of EPS within
cake layer; and lowered MW organic matter (< 10,000 Da) in membrane pores (Yu and Graham,
2015a). An integrated coagulation-UF system with a sand layer around the submerged membrane
module successfully retarded the cake layer formation and inner membrane fouling. This was
ascribed to the fact that the removal of deposited flocs in the sand layer by the backwash process
led to fewer bacteria on the flocs’ surface, and less generation and accumulation of both
biopolymers and EPS by the membrane (Yu and Graham, 2015b). Yu et al. (2016) discovered
that the coagulation-UF process with addition of a submersible ultraviolet (UVC) lamp (pulsed
UV in | min on and 31 min off cycles at 3.17 x 102 W/cm?) in the membrane tank at a low flux
of 20 L/m*-h, did not equate to any measurable increment in TMP. In fact, this presented with
smaller concentrations of bacteria and soluble microbial products (SMP), and considerably less
organic matter in membrane pores.

In recent years, the combination of biomass carriers with membrane technology has been
taken into account for enhancing performance when treating drinking water. The performance of
the attached growth membrane bioreactor (aMBR) with 15% polyvinyl alcohol gel (PVA-gel) as

the carrier and conventional membrane filtration reactor (MF) for polluted surface water
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treatment was evaluated by Li et al. (2017). They reported that compared to the MF system,
aMBR clearly performed better in terms of organic matter removal, less membrane fouling and
longer operating time. Conversely, some studies combined coagulation and PAC addition prior
to membrane filtration for drinking water treatment. Tian et al. (2010) directly added
polyaluminium chloride (PACI) and powdered activated carbon (PAC) into the submerged MBR
(MCABR), which successfully removed dissolved organic matter (DOM) better through the
synergetic effect of membrane separation, biodegradation by microorganisms, coagulation by
PACI and PAC adsorption from slightly polluted surface water. Yu et al. (2014) pointed out that
pre-coagulation by alum by continuously adding PAC at a low dosage before UF (CAUF)
enhanced the DOM removal (especially proteinaceous materials), and minimized reversible and
irreversible fouling in a short-term operation (< 20 days). However, after 20 days, a higher TMP
development rate in the CAUF was observed due to the accumulation of microorganisms and the
associated EPS in the cake layer.

Hu et al. (2014) added PACI as the coagulant into micro-polluted surface water, which was
collected as influent for a PAC-MBR. The PAC-MBR with the optimal PAC dosage (e.g. 2 g/L)
could minimize membrane fouling and improve effluent water quality, while removing
intermediate MW organic fraction (1-10 kDa) by PAC adsorption/biodegradation effect and
larger MW organic fraction (> 10 kDa) by membrane rejection. However, the overdose of PAC
(e.g. 3 g/L) caused less organic material to be removed, more rapid flux decline and worse
membrane fouling. Moreover, sludge discharge or PAC replacement should be conducted to
maintain low fouling propensity after a certain number of operational days. Observed here was

the fact that membrane fouling of the PAC-MBR with pre-coagulation was significantly affected



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

by internal fouling. This system should be operated at a low flux rate in combination with
effective physical cleaning protocols (Shao et al., 2014).

Previous studies indicated that sponge as attached growth media in a long-term sponge-
submerged MBR successfully demonstrated its superiority in improving treatment performance.
It also enhanced sludge characteristics and mitigated membrane fouling when treating synthetic
domestic wastewater (Deng et al., 2014). In view of the potential advantages of using sponge in
wastewater treatment, this study explored the feasibility of long-term operation of membrane
filtration (MF) systems with sponge addition after coagulation by PACI (P-SMF) for the
treatment of drinking water. Treatment performance was investigated in a conventional MF
(CMF), a MF with pre-coagulation (P-MF) and a P-SMF, in terms of nutrient and organic matter
removal. In all of the proposed MF systems, detailed analyses were conducted on characteristics
of influent, effluent, suspended sludge, foulants extracted from membrane surfaces and
membrane pores (e.g. MW distribution, hydrophilic components, EPS) along with the microbial

community to explain membrane fouling behaviors and mechanisms.

2. Materials and methods
2.1. Synthetic drinking water source

The synthetic drinking water was prepared by mixing domestic sewage with local tap water
at a volumetric ratio of 1:40 and 1 mg/L humic acid, which stimulated the slightly polluted
drinking water sources. Tapwater was retained overnight to completely remove residual chlorine
before adding humic acid to domestic sewage. Water quality of synthetic drinking water sources
is summarized in Table 1. Additionally, the temperature and pH of the prepared raw water were

20.1 £2.3 °C and 7.25 + 0.36 over the entire study period, respectively.
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Table 1.

2.2. Experimental set-up and operational conditions

Fig. S1 illustrates the experimental set-up of polyaluminium chloride (PACI) coagulation-
membrane filtration (MF) with sponge addition (P-SMF), PACI coagulation-MF (P-MF) and a
conventional MF (CMF), which were operated in parallel throughout the whole experiment. The
effective working volume for each membrane tank of MF systems was 2 L. For the P-SMF and
P-MF, PACI as the coagulant was added to the synthetic drinking water at a dosage of 10 mg/L.
Furthermore, the membrane tank of the P-SMF was filled with 6% of polyester-polyurethane
porous sponge cubes (dimensions being 10 mm x 10 mm x 10 mm in length, width and height,
respectively, density of 28-45 kg/m’, cell count of 90 cells/in). Prior to the continuous membrane
filtration experiment, the sponge cubes were acclimatized for 15 days to ensure the enrichment
of attached biomass on the sponge. In the membrane tank, a hollow fiber ultrafiltration (UF)
membrane module was used, consisting of polyvinylidene fluoride (PVDF) membranes which
had a pore size of 0.07 um and an effective surface area of 0.20 m*. Aeration was supplied by a
soaker hose air diffuser underneath the membrane modules at the bottom of the tank. Activated
sludge collected from a local wastewater treatment plant was put in the membrane tank at an
initial sludge concentration of 1.50 g/L, 1.52 g/L and 1.49 g/L for the P-SMF, P-MF and CMF,
respectively. During the operation, there was no sludge waste (infinite sludge retention time
(SRT)). Filtration flux of membrane permeate withdrawn from the membrane module was
consistently controlled at 10 L/m*h, resulting in a hydraulic retention time (HRT) of 1 h. A
backwash mode was implemented to physically control membrane fouling during the experiment

within a 58 min filtration cycle and 2 min backwash. When the experiment ended at TMP of 35.0
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kPa, the membrane was removed from the tank and put in chemical solutions, specifically HCI

(0.5%), NaOH (0.4%) and NaClO (0.2%) in sequence.

2.3. Analysis methods

Ammonium (NHy4-N), nitrite (NO,-N), nitrate (NO3-N) and phosphorus (PO4-P)
concentrations of influent and effluent samples were determined with standard methods (APHA,
AWWA, WEF, 1998) using a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA).
These concentrations of suspended solids in the membrane tank as mixed liquor suspended solids
(MLSS) and mixed liquor volatile suspended solids (MLVSS) were quantified based on standard
methods (APHA, AWWA, WEF, 1998). The measurement of UV absorbance at 254 nm, UVsa,
of 0.45 mm filtered solutions was done utilizing the above-mentioned HACH spectrophotometer.
Dissolved organic carbon (DOC) was determined using a total organic carbon (TOC) analyzer
(TOC-LCPH, Shimadzu, Japan). The quantification of bacteria concentration as the
Heterotrophic Plate Count (HPC) was done using the yeast extract agar method (ISO6222, 1999).
Extracellular polymeric substances (EPS) and soluble microbial products (SMP) extracted from
suspended sludge and cake layer in the membrane tank were analyzed for proteins (EPSp, SMPyp)
and polysaccharides (EPSc, SMP() (Deng et al., 2014; Frelund et al., 1996; Raunkjer et al.,
1994). After removing the cake layer from the membrane surface, membrane fibers were taken
and soaked in 0.01 mol/L NaOH (pH = 12) to extract foulants from membrane pores (Kimura et
al., 2009).

Three-dimensional excitation emission matrix (EEM) spectrophotometry served to
determine dissolved organic matter (DOM) characteristics using a fluorescence

spectrophotometer (RF-6000, Shimadzu, Japan). It was conducted at different emission
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wavelengths ranging from 200 to 550 nm at 5 nm increment and excitation wavelengths from
200 to 450 nm at 5 nm increment with a scanning speed of 2000 nm/min. The determination of
hydrophilic and hydrophobic organic components was carried out with resins of Superlite DAX-
8 (Supelco, USA) and Amberlite XAD-4 (Rohm and Hass, Germany), which fractionated NOM
into strongly hydrophobic organic matter that was subsequently adsorbed by DAX-8. Weakly
hydrophobic (or transphilic) organic matter was adsorbed by XAD-4 and hydrophilic organic
matter which passed through both resins (Qu et al., 2012). Molecular weight distribution of
samples was determined by high-performance size exclusion chromatograph (HPSEC) using a
high performance liquid chromatogram (HPLC) (Shimadzu 20A Prominence LC system,
Shimadzu, UK). It was equipped with UV/VIS detection (SPD-20A, Shimadzu, UK) at 254 nm.
HPSEC was undertaken using a BioSep-SEC-s3000 column (Phenomenex, UK) 300 % 7.8 mm
(inner diameter (ID)) and Security Guard™ Cartridge fitted with a GFC 3000 disc 4 x 3.0 mm
(ID). The mobile phase of 0.01 mol/L sodium acetate was employed at a flow rate of 1 mL/min.
Then the samples were injected with a volume of 500 pL.

At the experiment’s completion, the individual fouling component for the fouled membrane

was determined based on the resistance-in-series model and Darcy’s equations (Choo and Lee,

1996):
J= AP/uR )
Rr=Rm+ Rc+Rp (2)

where Rt is total resistance, Ry is the intrinsic membrane resistance, Rc is the cake resistance,
and Rp is the pore blocking resistance.
Fouled membrane and clean membrane were characterized by Fourier Transform Infrared

Spectroscopy (FTIR, Nicolet iS50, Thermo Fisher Scientific, USA). Scanning electronic
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microscopy (SEM) (Hitachi S4800, Japan) observations were undertaken for fouled membranes
and a clean membrane sample, which could refer to the protocol proposed by Tian et al. (2010).
A confocal laser scanning microscopy (Leica TCS SP8, Leisa, Germany) was used to observe the
surface of the fouled membrane. SYTO 63 (20 uM, Thermo Fisher Scientific, USA), Fluorescein
isothiocyanate (FITC) (10 g/L, sigma) and ConA (0.25 g/L, sigma) were employed to stain total
bacterial cells, proteins and polysaccharides of foulants on the membrane surface, respectively
(Chen et al., 2006). Suspended sludge, cake layer on membrane surface and attached biomass of
sponge were sent to GENEWIZ to determine the microbial community of samples using high-

throughput sequencing.

3. Results and discussion
3.1. Treatment performance of the CMF, P-MF and P-SMF

Nitrogen and phosphorus removals were also compared among the CMF, P-MF and P-SMF
as shown in Table 1. All of the MF systems were efficient in removing NHy4-N, reaching 85.87 +
4.78% for the CMF, 92.12 + 3.26% for the P-MF, and 97.16 + 2.98% for the P-SMF,
respectively. Influent NO,-N was eliminated by approximately 50% for both the CMF and P-MF,
while the P-SMF demonstrated higher NO,-N removal efficiency of 68.42 + 3.65% and
significant elimination of NO3-N by 71.55 + 1.36%. These results indicated that the CMF could
accomplish effective nitrification, while the addition of PACI wielded only a negligible impact
on nitrogen removal. Furthermore, sponge addition enhanced the removal of nitrogen by creating:
firstly, aerobic/anoxic conditions at the outer layer of the sponge; and secondly, anoxic/anaerobic
conditions at the sponge’s inner layer (Chu and Wang, 2011; Guo et al., 2008). In the CMF, PO4-

P removal of 32.16 + 7.24% was mainly realized by phosphorus uptake by phosphate
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accumulating organisms (PAOs) (Guo et al., 2010). The P-MF removed 92.54 + 6.05% of PO4-P,
which was almost 3 times higher when compared to the CMF. This could be attributed to the
chemical coagulation precipitating as insoluble Al-phosphates and adsorption of phosphate ions
onto the positively charged Al(OH); colloids coupled with phosphorus uptake by phosphate
accumulating organisms (PAOs) (Ozacar et al., 2003; Polanska et al., 2005). Slightly more PO,-
P was removed in the P-SMF (95.72 + 4.61%), suggesting that phosphate removal was mainly
achieved by PACI coagulation and phosphorus uptake.

During the whole study period no sludge withdrawal occurred. When the experiment was
completed, MLSS levels increased to 2.67, 2.34 and 1.67 g/L at biomass growth rate of 0.040,
0.050 and 0.002 g/L-d for the CMF, P-MF and P-SMF, respectively. MLVSS concentrations
reached a higher value for the CMF (2.15 g/L) and P-MF (1.91 g/L) than for the P-SMF (1.39
g/L). In the P-SMF, adding sponge could notably curtail suspended sludge concentration by
stunting microorganism growth in activated sludge through adsorption onto and inside sponge
cubes (Deng et al. 2014). For the effluents, suspended solids were virtually undetected in any of
them (Turbidity < 0.06 NTU) together with notably low bacterial concentrations (< 6 CFU/mL in
the effluents). This was achieved mainly by membrane rejection, PACI coagulation and retention

by sponge for attached biomass growth.

3.2. Membrane fouling development and fouling materials in membrane tanks

The TMP variation versus operational time for the CMF, P-MF and P-SMF is illustrated in
Fig. 1. The CMF displayed a gradual increase in TMP from 5.5 to 12.0 kPa within the first 15
days and then rapidly rose to 35.0 kPa until day 29. It gave rise to the fastest fouling rate of 1.03

kPa/d. As to the P-MF, a slow initial TMP increment was observed for the 22-day operation,

10
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after which the TMP increase was much quicker for the remaining period. This resulted in a
relatively lower fouling rate of 0.64 kPa/d. TMP in the P-SMF increased to 35.0 kPa after 86
days at the lowest fouling rate of 0.34 kPa/d. These results suggested that the CMF was most
seriously subjected to membrane fouling, which could be alleviated to some degree after PACI
addition. The pre-coagulation coupled with sponge addition significantly prolonged filtration
duration and increased membrane filterability.

Fig. 1.

The key factors contributing to membrane fouling are dissolved organic matter (DOM) from
influent and EPS and SMP associated with bacteria. UV;s4 and DOC removals in the CMF, P-
MF and P-SMF are summarized in Table 1. Referring to the CMF, UV;s4 and DOC removals
were lower than 20%, while the corresponding values increased to 52.16 = 4.92% and 47.83 +
4.32% in the P-MF, respectively. Under the operational conditions in this study (influent pH 7.25
+ 0.36), adsorption of humic-like substances on AI(OH); crystals by sweep flocculation was
responsible for NOM removal with AI(OH); fraction as the main products (Kabsch-Korbutowicz,
2005). The application of sponge further improved UV,s4 and DOC removals in the P-SMF,
reaching 74.71 + 3.67% and 68.30 + 5.36%, respectively. The MW distributions of DOM
obtained from HPSEC analysis (Fig. 2) revealed that similar patterns were observed for influent
and effluent samples, while the peaks corresponding to humic substances, biopolymers and small
MW organic substances decreased for all MF systems to various degrees. The CMF effluent
exhibited some decline in peaks corresponding to biopolymers, humic substances and small MW

organic matter.

11
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Suggested here is the possibility that biopolymers and humic substances accumulated in the
CMF, which gave rise to the severest membrane fouling. Additionally, some small MW organics
passed through membrane pores, resulting in certain levels of the corresponding organics being
left in the effluent. On the other hand, the cake layer could retain small MW organics, while only
a few of them were deposited on the membrane pores as documented in Section 3.3.1.

Compared to the CMF, peaks related to biopolymers and humic substances of effluent were
further decreased in the P-MF, except for small MW organics. It indicated that the pre-
coagulation process could reduce some biopolymers/EPS and humic substances, but it exerted
only a slight effect on removals of small MW organic matter. Similar findings by Chen et al.
(2017) and Lai et al. (2015) also pointed out that the coagulation process exerted greater effects
on these higher than lower MW organic matter. In the P-SMF, biopolymers and humic
substances could be removed by membrane separation, PACI coagulation, adsorption on sponge,
and biodegradation with the attached biomass on the sponge and suspended sludge in the
membrane tank. Moreover, the elimination of small MW organics was linked to the presence of
sponge (Ngo et al., 2008) and some microorganisms in membrane tanks. The bacteria
contributing to the removal of biopolymers, humic substances and small MW organic matters are
described in Section 3.4.

Fig. 2.

EPS of mixed liquor was characterized by EEM spectroscopy to further elucidate the effects
of organic matter on membrane fouling (Fig. 3). Six key fluorescence peaks referred to as
fluorophores A, C, T}, T, B and D were found. Humic-like substances were demonstrated by

peaks A and C. Tryptophan-like (peak T) and tyrosine-like (peak B) materials were indicated as

12
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protein-like fluorophores (Baker et al., 2003; Lee et al., 2008). The presence of peak D at Ex/Em
of 270-280/300-310 nm suggests the presence of SMP-like substances. It was observed that in
the CMF, intensities of peaks B, T}, and T, were stronger than those of peaks D, A and C,
confirming that mixed liquor mainly contained protein-like and SMP-like materials. Comparing
the HPSEC and EEM results for the CMF, humic substances were more likely to be adsorbed on
the membrane surface or in the membrane pores. In contrast, all peaks declined in the P-MF and
P-SMF. Furthermore, the reduction in intensities of peaks associated with the protein- and SMP-
like substances in the P-SMF was greater than that in the P-MF. These results confirmed that
fouling components (including biopolymers and humic substances) of mixed liquor could be
more effectively removed with a combination of pre-coagulation and sponge addition in
comparison to the pre-coagulation process alone.

Fig. 3.

Compositions of EPS and SMP in suspended sludge contributing to membrane fouling were
designed for all MF systems for different TMP ranges (Table 2). During the period of gradual
TMP increment (< 12.0 kPa), EPS levels of the CMF, P-MF and P-SMF demonstrated narrow
ranges of 8.53-12.10 mg/L, 6.00-9.80 mg/L and 4.37-6.26 mg/L, respectively. When TMP
increased above 12 kPa (TMP jump), the CMF and P-MF exhibited a notable accumulation of
EPS, while the increase in EPS was not significant in the P-SMF. More specifically, a marginal
difference in EPS¢ was observed between the CMF and P-MF within the ranges of 5.59-8.26 and
5.23-7.98 mg/L, respectively. EPSp levels in the CMF were 7.21-8.96 mg/L, which were higher
than those for the P-MF (5.03-6.67 mg/L). For the P-SMF, both the EPS¢ and EPSp revealed a

slight variation at the lowest levels at 2.84-3.56 mg/L and 4.17-4.56 mg/L, respectively. SMP

13
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contents were lower than EPS in all MF systems. The CMF possessed more SMP (2.82-8.87
mg/L) than the P-MF (2.13-6.47 mg/L) and P-SMF (0.82-2.52 mg/L).

These results suggest that membrane fouling is mainly associated with EPS¢ and EPSp of
mixed liquor. In the CMF, food supplied for the microorganisms (food to microorganism (F/M)
ratio of 0.086 d™') was extremely limited in the substrate available for microorganisms.
Consequently, the sludge’s metabolic activity declined, while the endogenous metabolism, cell
lysis and cell hydrolysis occurred simultaneously with the release of EPS and SMP (Wu and Lee,
2011). These were reduced due to the addition of PACI by curtailing biomass growth (relatively
higher F/M ratio of 0.093 d) and membrane separation. Having a more substantial reduction of
proteins rather than polysaccharides in the P-MF, indicates that the hydrophobic fraction of
biopolymers was more easily removed by PACI coagulation. Biopolymers (including proteins
and polysaccharides) could be remarkably eliminated by sponge addition in the P-SMF through
adsorption onto sponge and biodegradation by attached biomass of sponge (Deng et al., 2014).
Moreover, the lowest biomass growth (F/M ratio of 0.130 d™') limited the EPS and SMP
generation in the P-SMF.

Table 2.

3.3. Foulants on the membrane surface and inside the membrane pores

At the end of this experiment, membrane modules were removed from the reactor and
fouling resistances were analyzed for all MF systems (Table 3). Total fouling resistance (Rt) was
higher for the CMF and P-MF (4.86 x 10> m™ and 3.47 x 10"> m™, respectively), while the P-
SMF demonstrated the lowest Rt of 1.74 x 10" m™. As for the CMF, Ry comprised 45.16% of

the cake layer resistance (Rc, 2.19 x 10" m™), 40.32% of pore blocking resistance (Rp, 1.96 x
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10"* m™) and 14.52% of clean membrane resistance (Ry, 0.71 x 10> m™). PACI addition

reduced R¢ and Rp, which accounted for 44.70% and 34.74% of Ry, respectively. For the P-SMF,
Rc of 1.74x10'? m™ was almost one-second of that for the P-MF. Although there was a
significant decline of Rp to 0.21 x 10" m™ comprising 12.02% of Rr, the proportion of Ry
increased to 40.73% of Rr. These results suggested that both the cake layer and pore blocking
induced membrane fouling. Compared to the CMF, the pre-coagulation in the P-MF decreased
the Rc and Rp, which in turn were substantially reduced by the sponge, and this led to the highest
membrane permeability in the P-SMF. Characterization of the cake layer on the membrane
surface and pore blocking is further investigated in the following sections.

Table 3.

3.3.1. Cake layer fouling

At the end of the experiment, the cake layer was retrieved from the membrane surface and
its properties were analyzed in terms of EEM spectra, MW distributions and EPS compositions.
The EEM fluorescence spectra of the cake layer on the membrane surface (Fig. 4) revealed that
in the CMF, significantly high intensities were obtained for peaks represented by protein- (Peak
T,, T, and B), SMP- (Peak D) and humic-like substances (Peak A and C), which promoted
severe cake fouling. After pretreatment by PACI addition, some of the peak intensities declined
with more substantial decrease in protein- and humic-like substances indicated by peaks A, C, B
and T,. In the P-SMF, most peaks were not evident except for peak T (protein-like substances).
The SEC results (Fig. 5) further supplemented the EEM fluorescence results. Cake layer from the
CMF retained more biopolymers, humic substances and small MW organics, leading to higher

Rc. In comparison to the CMF, foulants on the membrane surface of the P-MF possessed fewer
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biopolymers, and humic substances, and presented a slight reduction in the peak of small MW
organic matter.

All MW fractions of organics in the cake layer declined remarkably in the P-SMF. These
outcomes indicate that cake fouling was mainly induced by the accumulation of biopolymers
(including SMP- and protein-like substances), and humic-like substances on the membrane
surface, and subsequently were eliminated by PACI coagulation to a certain degree. The
accumulation of small MW organics within the cake layer in the P-MF could be ascribed to the
coagulation process since it could not eliminate these components (Matilainen et al. 2010). The
P-SMF clearly performed better in eliminating biopolymers, humic substances and small MW
organics of the cake layer because the presence of PACI and sponge reduced organic matter in
the suspended sludge.

Fig. 4.

Fig. 5.

Foulants on the membrane surface (cake layer) were further characterized by FTIR (Fig. S2).
As for the new PVDF membrane, adsorption peaks close to 840, 873, 1070, and 1170 cm™ were
associated with the chemical bonds CF, and CH, (Enomoto et al., 1968). The peaks near 1640
cm” (amide I), 1510 cm™ (amide IT) and 1400 cm™ (amide IIT) demonstrated the accumulation of
protein or protein-like substances in the fouled membrane (Shirshova et al., 2006; Zhou et al.,
2007). Additionally, the sharp band at about 2940 cm™ indicated polysaccharides or
polysaccharide-like components (Chefetz et al., 1998; Shirshova et al., 2006). The P-SMF
exhibited the lowest intensity peaks which were attributable to protein- and polysaccharide-like

materials, followed by the P-MF and CMF. Compositions of EPS and SMP (Fig. S3) were
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evaluated to support these results. It was discovered that the levels of EPSc and EPSp in the cake
layer (13.67 = 1.53 and 18.41 + 2.51 mg/g cake layer, respectively) were remarkably high for the
CMF. PACI addition as a pretreatment did not significantly decrease the EPSc level, but it did in
fact reduce the EPSp level by approximately 46%, respectively obtaining 10.79 = 1.53 and 9.94 +
1.38 mg/g of the cake layer. In the P-SMF, EPS¢ and EPSp values decreased to 2.43 + 0.19 and
3.68 £ 0.32 mg/g of cake layer, respectively. Levels of SMP¢ and SMPp in the CMF (9.83 £1.19
and 6.34 + 0.84 mg/g cake layer, respectively) were higher than those of the P-MF (8.76 = 0.78
and 4.28 + 0.56 mg/g cake layer, respectively) and P-SMF (2.18 £ 0.23 and 2.09 + 0.18 mg/g
cake layer, respectively). These results indicate that the cake layer formation was partly induced
by the deposition of biopolymers (polysaccharides and proteins) on the membrane surface. Pre-
coagulation was better at removing the hydrophobic fraction of biopolymers (proteins) from
foulants on the membrane surface. The addition of sponge further reduced the biopolymers in the
cake layer formation process, resulting in the lowest R¢ in the P-SMF.

To further clarify and support the results obtained above, SEM images and CLSM images
for all MF systems were taken from the fouled membrane. When compared to the clean
membrane, much more irregular and denser cake layer formed on the membrane surface in the
CMF, where many more biopolymers (including polysaccharides and proteins) and bacteria were
detected (Figs. S4(b) and (c)). After pre-coagulation involving the addition of PACI, the cake
layer of the P-MF contained less bacteria and biopolymers (Figs. S4(d) and (e)). Compared to the
CMF and P-MF, a flatter and smoother membrane surface was observed in the P-SMF, on which
the fewest deposits (biopolymers and bacteria) were evident as illustrated in Figs. S4(f) and (g).

These results suggest that the coexistence of biopolymers and bacteria could promote the
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formation of a thick cake layer, which can be restricted by pre-coagulation and/or sponge

addition.

3.3.2. Pore blocking

The internal foulants from the CMF demonstrated stronger intensities of peaks T;, T,, B and
D than peaks C and A, and this indicated that pore blocking was mainly influenced by protein-
and SMP-like substances, followed by humic-like substances (Fig. 6(a)). Although the PACI
addition could reduce intensities of peaks A, C, T, T, and B associated with humic- and protein-
like substances somewhat, SMP-like substances as represented by peak D were still clearly
visible (Fig. 6(b)). This indicated that some protein- and SMP-like substances, which could be
deposited and/or accumulated in the membrane pores, were removed in the P-MF. Subsequently,
the combined addition of PACI and sponge notably eliminated all peaks related to protein-,
SMP- and humic-like substances in the P-SMF in comparison to other MF systems (Fig. 6(c)).
Apart from this, the location of peaks T and T, in EEM spectra of organics extracted from the
membrane pores in both of the P-MF and P-SMF, were blue-shifted (20-30 nm) to shorter
wavelengths along the emission axis. A blue shift is associated with the elimination of particular
functional groups (e.g. carbonyl, hydroxyl and amine), or less evidence of m-electron systems,
and furthermore reduced the number of aromatic rings and conjugated bonds in a chain structure
(Swietlik et al., 2004).

The SEC results (Fig. 7) further suggested that biopolymers and humic substances were
deposited in large numbers in the membrane pores of the CMF. The pre-coagulation process
reduced these foulants to some degree in the P-MF. Further addition of sponge in the P-SMF

substantially reduced adsorption of larger MW organics (biopolymers and humic substances)
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into the membrane pores through adsorption and biodegradation. Since the majority of small
MW organics penetrated the membrane pores and formed part of the cake layer (as discussed in
Sections 3.2 and 3.3.1), they only remained in the membrane pores in small amounts. The
coagulation process could not effectively remove small MW organic matter, while adding
sponge in the P-SMF prompted a substantial reduction in these organic materials, thus producing
the lowest Rp.

Fig. 6.

Fig. 7.

In this study, the hydrophilicity of organic matter plays a key role in membrane fouling. As
shown in Fig. 8, the CMF eliminated about 43% of the hydrophilic organic matter, while the
various concentrations of either strong hydrophobic and/or weak hydrophobic fractions slightly
changed in the effluent sample (Table S1). As the membrane module used in this study
comprised hydrophilic PVDF membranes, hydrophilic organic matter was more easily deposited
and/or adsorbed into the membrane pores. It resulted in the severest membrane pore blocking
and the highest Rp in the CMF. After pre-coagulation by the PACI, the proportions of strongly
hydrophobic and weakly hydrophobic compounds were reduced by 57.37 & 2.94% and 50.13 +
2.61%, respectively. Both the P-MF and CMF effluents displayed similar levels of hydrophilic
organic matter, which suggested the pre-coagulation process was better at removing strongly
hydrophobic and some weakly hydrophobic matter than hydrophilic organic matter (Matilainen
et al., 2010), thus giving rise to relatively higher Rp in the P-MF. The considerable increase in
the removal of strongly hydrophobic, weakly hydrophobic and hydrophilic fractions of organic

matters (> 70%) was obtained for the P-SMF effluent. It demonstrated that when compared to the
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P-MF, the combined addition of sponge and PACI noticeably eliminated hydrophobic and
hydrophilic organic components, and thus proved to be more effective in ameliorating pore
blocking as indicated by the lowest Rp.

Fig. 8.

3.4. Microbial communities during the operational period

The microbial community in the suspended sludge (SS), cake sludge (CS) and attached
biomass of the sponge (ABS) in all MF systems was investigated, in order to explain the effects
of pre-coagulation and/or sponge addition on microbial community varieties.

At the phylum level (Fig. 9(a)), the microbial community in all MF systems was dominated
by Proteobacteria in SS (43.33-56.51%) and in CS (40.88-55.23%), which proved to be more
abundant in the CMF and P-MF. Proteobacteria as a group of Gram-negative bacteria possessed
bacterial lipopolysaccharides located on their outer surface as the major components, which
enabled bacteria to more easily be deposited on the membrane surface (Tang et al., 2016). Thus
more abundant Proteobacteria in the CMF and P-MF might be responsible for the more severe
membrane fouling. Additionally, all samples were represented by Bacteriodetes, which
accounted for smaller proportions of total bacterial phylum in the CMF (13.36% (SS), and 18.62%
(CS)), and the P-MF (18.67% (SS), and 19.08% (CS)) than those in the P-SMF (28.4% (SYS),
27.76% (CS), and 17.33% (ABS)). Since Bacteriodetes were related to the degradation of
carbohydrates and proteins (Buchanana and Gibbens, 1984), larger amounts of biopolymers in
the CMF and P-MF could be partially ascribed to fewer Bacteroidetes. Other subdominant phyla
in all samples were Nitrospirae (10.62-27.78%), followed by Acidobacteria (0.42%-9.52%),

Actinobacteria (0.34%-4.71%), Gemmatimonadetes (0.46%-2.64%), Verrucomicrobia (0.46%-
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2.37%), Chloroflexi (0.23%-4.14%) and Ignavibacteriae (0.38%-4.27%). Previous studies have
reported large amounts of Actinobacteria as filamentous bacteria in the MBR, in activated sludge
processes and when using membrane biofilm (Miura et al., 2007a; Kwon et al., 2011).
Actinobacteria occupied a larger proportion of the total bacterial community in SS samples of
the CMF (4.71%), followed by the P-MF (3.29%), and P-SMF (2.71%). This could be another
possible reason for the highest fouling rate in the CMF. PACI and/or sponge addition stimulated
an increase in Chloroflexi from 1.74% to 3.16%, and 4.14% in SS, respectively. Chloroflexi
demonstrated its capacity for degradation of the SMP including soluble carbohydrates and
cellular materials (Miura et al., 2007b). Thus less SMP in the P-MF and P-SMP might be
ascribed to a larger amount of Chloroflexi.

Fig. 9.

At the class level (Fig. 9(b)), Nitrospira was observed in the 10.37%-28.76% range in all
samples. Betaproteobacteria and Gammaproteobacteria which were attributed to phylum
Proteobacteria ruled the microbial community with a relative abundance of 18.08%-36.70% in
the CMF, and 15.35%-33.87% in the P-MF. These amounts were higher than those reported for
the P-SMF (9.21%-26.57%). Betaproteobacteria and Gammaproteobacteria have been often
reported as the prominent groups in membrane systems for wastewater treatment (Duan et al.,
2009; Fu et al., 2017; El-Fadel et al., 2017). Gammaproteobacteria promoted their attachment to
the membrane surface, which induced biofouling (Gao et al., 2014a). Alphaproteobacteria could
initiate biofouling by pre-attaching to a new membrane and subsequent colonization on the
membrane, which promoted the attachment of many more other species on the membrane (Gao

et al., 2011b). In addition, it emerged that Alphaproteobacteia and Deltaproteobacteria were
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better enriched in SS of the CMF (5.03% and 6.56%, respectively) and P-MF (3.67% and 5.86%,
respectively) than the P-SMF (2.59% and 4.02%, respectively). Overall, the highest relative
abundance of Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria was
associated with the severest membrane fouling in the CMF. On the other hand, more abundant
Sphingobacteriia were detected in the P-SMF (14.35% in SS, 21.01% in CS and 3.61% in ABS)
in comparison to the CMF (9.22% in SS and 15.57% in CS) and P-MF (6.72% in SS and 12.30%
in CS). Biopolymers were evidently less abundant in the P-SMF, which might be due to the fact
that some members belonging to Sphingobacteriia favored the degradation of macromolecules,
i.e. polysaccharides, proteins (Fu et al., 2017).

The bacterial community structure was further analyzed at genus level to clarify different
membrane fouling behaviors in the three MF systems (Fig. 9(c)). The bacterial community of CS
was similar to that of SS, indicating the microbial community in CS mainly derived from SS.
Since this study was conducted under conditions of infinite SRT, Nitrospira as the dominant
NOB member could be enriched in SS (24.13%-30.12%) without sludge withdrawal and ABS
(28.76%). As well, one member of AOB, genus Nitrosomonas accounted for 3.22%-5.36% of the
SS and 12.74% of ABS samples, respectively. As a result, the nitrification process proved to be
effective in all MF systems. The relative abundance of Zoogloea and Rhizobium in SS samples
was higher for the P-SMF (6.17% and 6.23%, respectively) than the P-MF (2.76% and 3.54%,
respectively) and CMF (0.57% and 1.36%, respectively). Additionally, Zoogloea and Rhizobium
as denitrifying microorganisms were highly enriched in ABS samples (2.79% and 8.59%,
respectively) of the P-SMF with preferential accumulation of Acidovorax (denitrifiers) (Nielsen
et al., 2009). Consequently, the P-SMF realized more effective denitrification than the other MF

systems. In the CMF, Thiothrix was strongly enriched in SS (20.76%) as the second most
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505 abundant genus, members of which caused serious membrane fouling, biofilm formation and
506 irreversible fouling. This process also induced the occurrence of filament-caused sludge bulking
507 (Gao et al., 2014a and 2014b). Moreover, the genus Xanthomonas constituting 10.89% and 6.69%
508  of the total bacterial community in SS and CS of the CMF, respectively, was the biopolymer-
509  producing bacteria, which could also significantly affect membrane fouling development (Jinhua
510 etal., 2006).

511 Some other bacteria were also detected in the CMF, for example Comamonas (2.36% (SS)
512 and 5.64% (CS)) and Ferruginibacter (3.58% (SS) and 3.67% (CS)). These were easily

513  deposited on aerobic membrane surfaces with the accumulation of dense organic matter (Xiong
514  etal., 2016). In contrast, the relative abundance of Thiothrix, Xanthomonas, Ferruginibacter and
515  Comamonas was lower for the P-MF and P-SMF. Yet, on the other hand, it was observed that the
516  combined addition of PACI and/or sponge prompted an increase in proportions of

517  Flavobacterium, especially for CS (2.51% for P-MF and 3.62% for P-SMF) and ABS samples
518  (3.79%). Bacteria in the Cytophagae-Flavobacteria group belonging to Flavobacterium was

519  reported to utilize protein, N-acetylglucosamine and chitin, and degrade part of the high

520  molecular mass fraction of the DOM (Ma et al., 2013a). These results indicate that PACI and/or
521  sponge addition could mitigate membrane fouling in MF systems.

522 The abundance of a microbial community involved in membrane fouling reduction was also
523  compared between the P-MF and P-SMF. It has been reported that Zoogloea (Class

524  Betaproteobacteria) made possible the formation of characteristic cell aggregates which were
525  embedded in extracellular gelatinous matrices, since zoogloeal matrices were favorable for

526  sludge flocculation. Additionally, they adsorbed fine particles which ameliorated membrane

527  fouling (Ma et al., 2013b). Therefore, less membrane fouling in the P-SMF might be related to
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higher enrichment in species of Zoogloea in SS at 6.17% compared to that in the P-MF (2.76%)).
Larger proportions of Amaricoccus (Class Alphaproteobacteria), which reduced polysaccharides
by using polysaccharides as substrate (Maszenan et al., 1997), were discovered in the P-SMF
(8.63% (SS), 7.86% (CS) and 5.37% (ABS)) at amounts much larger than in the P-MF (3.62%
(SS) and 5.63% (CNS)). Reyranella (Class Alphaproteobacteria) is a kind of protein degrader
(Inaba et al., 2017) that exhibited higher relative abundance of 5.29%-7.32% in the P-SMF
compared to the P-MF (4.13%-5.46%). Thus, higher abundance of Amaricoccus and Reyranella
in the P-SMF could contribute to the reduction of biopolymers (polysaccharides and proteins),
resulting in slower membrane fouling development than the P-MF.

It was found that the diversity of microbial communities was highest in the P-SMF,
including Flexibacter (Class Sphingobacteriia) and Sphingobium (Class Alphaproteobacteria) at
the relative abundance of 3.74% and 3.45% (SS), 5.65% and 6.36% (CS) and 6.54% and 6.12%
(ABS), respectively. These genera could degrade high-molecular DOC fractions and humic
matter, and break refractory DOC and aromatic compounds (Basta et al., 2005; Hutalle-
Schmelzer et al., 2010). The genus Woodsholea (Class Alphaproteobacteria) for hydrolysis of
organic substrates (Abraham et al., 2004) was better enriched in SS at 0.36% and ABS at 2.61%
in the P-SMF, which have might partly contributed to the removal of small amount of MW
organic matter. Moreover, these low MW organics could be eliminated by some unclassified
bacteria attributed to Class Alphaproteobacteria in the P-SMF (Cottrell and Kirchman, 2000).
Overall, the least membrane fouling in the P-SMF was explained by a shrinkage in the size of the
bacterial community causing biofouling or release of biopolymers. Conversely, an increase
occurred in the proportions and diversity of microbial community for degrading fouling materials

in the suspended sludge and cake layer.
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3.5. Economic feasibility of the P-SMF and recommendation for future studies

The initial investment includes membrane fibers (< $5), reactors (< $30), and aeration
supplied by the public laboratory. Moreover, the cost of sponge used in this study was extremely
low (< $0.1). The selected PACI at low dosage was a cost-effective coagulant. As the P-SMF
could be operated for almost 90 days, it was not necessary for chemical cleaning and membrane
replacement to be frequently conducted. Additionally, the reagents for chemical cleaning (i.e.
HCI, NaOH and NaClO) are not expensive. Overall, the P-SMF system was an economically
feasible option for drinking water treatment.

Both HRT and filling ratio of sponge should be optimized so that the P-SMF system
performs better, in other words, it can operate for a much longer time. Detailed analyses should
focus on the specific genera affiliated with class Alphaproteobacteria, which is associated with
the removal of low MW organic matter. Duplicate experiments for this study should be
conducted to test whether the presence of microorganisms for the removal of humic substances is
successful or otherwise. Furthermore, the enrichment of microorganisms for the removal of low
MW organics and humic substances in the P-SMF constitutes a promising research topic. Further
studies should evaluate the performance of the P-SMF system for treating various drinking water
sources (e.g. ground water, surface water, river water). The effects of micropollutants (e.g.
pharmaceuticals, personal care products (PPCPs) and endocrine disrupting compounds (EDCs)
on the performance of the P-SMF system should be investigated so that the possibilities of

altering the microbial community during the treatment of drinking water can be assessed.

4. Conclusions
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This study focused on the feasibility of the P-SMF during a long-term experiment involving
the treatment of drinking water. Enhanced nutrient, DOC and UV,s4 removals were realized by
PACI pre-coagulation and sponge addition in the P-SMF compared to the P-MF and CMF.
Larger MW organics (biopolymers and humic substances) and hydrophilic organic matter in the
CMF accounted for the fastest membrane fouling development, and the most serious cake layer
formation and pore blocking. The P-MF only eliminated larger MW organic matter, while the
coupled process of pre-coagulation by PACI and sponge addition in MF system considerably
enhanced the removal of larger and small MW organics, and hydrophilic organic matter. The P-
SMF indicated the most diverse microbial community, especially in the presence of Zoolgloea,
Amaricoccus, Reyranella, Flexibacter and Sphingobium and some microorganisms belonging to
Alphaproteobacteria for the reduction of fouling materials. Finally, it can be stated here that the

P-SMF demonstrated its superiority in alleviating membrane fouling and reducing Rp and Re.
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Table 1. Water quality of influent and effluent samples from the P-SMF, P-MF and CMF

P-SMF P-MF CMF
Influent
Parameters samples Removal Removal Removal
P Effluent . . Effluent . . Effluent . .
efficiencies efficiencies efficiencies
0.10+ 97.16 + 0.29 + 92.12 + 052+ 85.87 +
NH;-N (mg/L)  3.68+0.69 0.02 2.98% 0.03 3.26% 0.05 4.78%
0.808 + 71.55 + 3.06 + 3.03 +
NO;-N (mg/L)  2.84:+1.27 0.36 1.36% 0.24 - 037 -
0.039 + 68.42 + 0.058+  53.61+ 0060+ 5203+
NO»N(mg/L) 0.125£0.028 55, 3.65% 0.005 5.83% 0.46 731%
0.004 + 95.72 + 0007+  92.54= 0066+ 3216+
PO,P (mg/L)  0.098 £0.006 5, 4.61% 0.002 6.05% 0.008 7.24%
Turbidity 3934 16 0.04 + 98.76 + 0.05 + 98.45 + 0.05 + 97.83 +
(NTU) : : 0.01 1.52% 0.03 1.36% 0.03 1.69%
Total bacterial
concentration (5'3>1< T015'42) 3+1 100% 442 100% 5+£2 100%
(CFU/mL)
N 0.022 + 7471 + 0042+ 5216+ 0075 + 1422+
UV254 (em™)  0.087£0.008 4 () 3.67% 0.005 4.92% 0.006 5.76%
1.68 + 68.30 + 2.76 + 47.83 + 4.36 + 17.52 +
DOC (mg/L) 3.29 2121 0.48 536% 0.26 4.32% 0.49 4.49%




Table 2. EPS and SMP compositions of mixed liquor in the P-SMF, P-MF and CMF at different

TMP ranges

P-SMF P-MF CMF

Concentrations* TMP TMP TMP TMP TMP TMP
<12kPa 13-35kPa <12kPa 13-35kPa <12kPa  13-35kPa

EPSc (mg/L) 1.85-2.75  2.84-3.56  3.08-5.16  5.23-7.98  3.23-5.23  5.59-8.26
EPSp (mg/L) 2.52-3.51 4.17-4.56  2.92-464  5.03-6.67 5.30-6.87  7.21-8.96

10.26- 12.80-

EPS (mg/L) 4.37-6.26  7.01-8.12  6.00-9.80 14.65 8.53-12.10 1722

SMP¢ (mg/L) 0.57-0.88  1.04-1.36  1.26-3.05  3.19-4.83 1.68-3.42  3.63-5.18
SMPp (mg/L) 0.25-0.86  1.05-1.16  0.87-1.31 1.27-1.64  1.14-1.84  2.08-3.69

SMP (mg/L) 0.82-1.74  2.09-2.52 2.13-4.36 4.46-6.47 2.82-5.26 5.71-8.87
* EPSc, polysaccharides based EPS; EPSp, proteins based EPS; SMP, polysaccharides based SMP;

SMP5, proteins based SMP



Table 3. Fouling resistance distribution in the P-SMF, P-MF and CMF

P-SMF P-MF CMF
Resistance
distribution 10%xm' % of Rt 10%xm?' % of Rt 102 x m™! % of Rt
Total, Ry 1.74 3.47 4.86
Cake layer, R¢ 0.82 4725 1.55 4470 2.19 45.16
E"re blocking, 0.21 12.02 121 34.74 1.96 40.32

P

Clean 0.71 40.73 0.71 20.56 0.71 14.52

membrane, Ry




Figure captions

Fig. 1. TMP variation over operational time for the CMF, P-MF and P-SMF

Fig. 2. MW distribution of organic matter of influent and effluent for the CMF, P-MF and P-
SMF

Fig. 3. EEM fluorescence spectra of EPS of mixed liquor from the CMF (a), P-MF (b) and P-
SMF (c¢)

Fig. 4. EEM fluorescence spectra of organic matter of cake layer from the CMF (a), P-MF (b)
and P-SMF (c)

Fig. 5. MW distribution of organic matter from cake layer for the CMF, P-MF and P-SMF

Fig. 6. EEM fluorescence spectra of organic matter extracted from membrane pores of the CMF
(a), P-MF (b) and P-SMF (c)

Fig. 7. MW distribution of organic matter from membrane pores for the CMF, P-MF and P-SMF
Fig. 8. Removals of hydrophobic and hydrophilic components of organic matter by different MF
systems

Fig. 9. Distribution of microbial community in suspended sludge (SS(CMF), SS(P-MF), SS(P-
SMF)), cake sludge (CS(CMF), CS(P-MF) and CS(P-SMF)) and ABS at the phylum (a),

class (b) and genus (c) levels
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Fig. 1. TMP variation over operational time for the CMF, P-MF and P-SMF
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