
Elsevier required licence: © <2019>. This manuscript version is made available under the CC-BY-NC-
ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/         
The definitive publisher version is available online at 
[https://www.sciencedirect.com/science/article/pii/S004313541930274X?via%3Dihub] 
 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.sciencedirect.com/science/article/pii/S004313541930274X?via%3Dihub


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1

Pre-coagulation coupled with sponge-membrane filtration for organic matter 

removal and membrane fouling control during drinking water treatment  

Lijuan Denga,b,*, Huu-Hao Ngoc, Wenshan Guoc, Hongwei Zhanga,b,* 

a State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, 

Tianjin 300387, China 

b School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, 

China 

c Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, 

University of Technology Sydney, Sydney, NSW 2007, Australia

*Corresponding author, Email: hwzhang@tju.edu.cn; Tel: +86-13502171853  

Email: lijuan19850317@gmail.com; Tel: +86-18171272998 

Abstract 

A new hybrid system was developed in this study for the treatment of drinking water 

consisting of pre-coagulation using polyaluminium chloride (PACl) and membrane filtration 

(MF) with sponge cubes acting as biomass carriers (P-SMF). When compared to a conventional 

MF (CMF) and a MF after coagulation by utilizing PACl (P-MF), better removal of nutrients, 

UV254 and dissolved organic carbon (DOC) (> 65%) was obtained from the P-SMF. The 

accumulation of biopolymers (including polysaccharides and proteins), humic substances, 

hydrophilic organics, and other small molecular weight (MW) organic matter in the CMF led to 

the most severe membrane fouling coupled with  the highest pore blocking and cake resistance. 

Pre-coagulation was ineffective in eliminating small MW and hydrophilic organic matter. 
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Conversely, the larger MW organics (i.e. biopolymers and humic substances), small MW 

organics and hydrophilic organic compounds could be removed in significantly larger quantities 

in the P-SMF by PACl coagulation. This was achieved via adsorption and the biodegradation by 

attached biomass on these sponges and by the suspended sludge. Further analyses of the 

microbial community indicated that the combined addition of PACl and sponges generated a 

high enrichment of Zoolgloea, Amaricoccus and Reyranella leading to the reduction of 

biopolymers, and Flexibacter and Sphingobium were linked to the degradation of humic 

substances. Moreover, some members of Alphaproteobacteria in the P-SMF may be responsible 

for the removal of low MW organics. These results suggest that the pre-coagulation process 

coupled with adding sponge in the MF system is a promising technology for mitigating 

membrane fouling.  

Key words: Drinking water treatment; Membrane filtration; Coagulation; Sponge; Microbial 

community; Membrane fouling 

1. Introduction 

Membrane filtration has become a promising technology for the treatment of drinking water. 

However, membrane fouling induced by natural organic matter (NOM) (e.g. humic acid, 

biopolymers) and microorganisms is still a major obstacle for the wider application of membrane 

technologies. Chemical coagulation is a pretreatment method that can improve water quality, 

mitigate membrane fouling and eliminate some organic matter, especially hydrophobic fractions 

of NOM with a larger molecular size. Nevertheless, biopolymers’ (polysaccharides and proteins) 

contribution to irreversible fouling was not effectively reduced. Also the accumulation of 
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bacteria, any remaining biopolymers, hydrophilic NOM and low molecular weight (MW) 

organic matter on the membrane through operational processes was responsible for the 

occurrence of membrane fouling (Gao et al., 2011a; Matilainen and Sillanpää, 2010).  

Current studies have employed further treatment processes to enhance the removal of 

fouling materials in membrane tanks. It was reported that Fe/Mn (Fe(II)/K2MnO4 (combination 

of pre-oxidant and coagulant) as a pretreatment for ultrafiltration (UF): limited transmembrane 

pressure (TMP) development; reduced bacterial activity and the associated extracellular 

polymeric substances (EPS); altered organic matter properties; decreased levels of EPS within 

cake layer; and lowered MW organic matter (< 10,000 Da) in membrane pores (Yu and Graham, 

2015a). An integrated coagulation-UF system with a sand layer around the submerged membrane 

module successfully retarded the cake layer formation and inner membrane fouling. This was 

ascribed to the fact that the removal of deposited flocs in the sand layer by the backwash process 

led to fewer bacteria on the flocs’ surface, and less generation and accumulation of both 

biopolymers and EPS by the membrane (Yu and Graham, 2015b). Yu et al. (2016) discovered 

that the coagulation-UF process with addition of a submersible ultraviolet (UVC) lamp (pulsed 

UV in 1 min on and 31 min off cycles at 3.17 × 10-2 W/cm2) in the membrane tank at a low flux 

of 20 L/m2·h, did not equate to any measurable increment in TMP. In fact, this presented with 

smaller concentrations of bacteria and soluble microbial products (SMP), and considerably less 

organic matter in membrane pores.  

In recent years, the combination of biomass carriers with membrane technology has been 

taken into account for enhancing performance when treating drinking water. The performance of 

the attached growth membrane bioreactor (aMBR) with 15% polyvinyl alcohol gel (PVA-gel) as 

the carrier and conventional membrane filtration reactor (MF) for polluted surface water 
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treatment was evaluated by Li et al. (2017). They reported that compared to the MF system, 

aMBR clearly performed better in terms of organic matter removal, less membrane fouling and 

longer operating time. Conversely, some studies combined coagulation and PAC addition prior 

to membrane filtration for drinking water treatment. Tian et al. (2010) directly added 

polyaluminium chloride (PACl) and powdered activated carbon (PAC) into the submerged MBR 

(MCABR), which successfully removed dissolved organic matter (DOM) better through the 

synergetic effect of membrane separation, biodegradation by microorganisms, coagulation by 

PACl and PAC adsorption from slightly polluted surface water. Yu et al. (2014) pointed out that 

pre-coagulation by alum by continuously adding PAC at a low dosage before UF (CAUF) 

enhanced the DOM removal (especially proteinaceous materials), and minimized reversible and 

irreversible fouling in a short-term operation (< 20 days). However, after 20 days, a higher TMP 

development rate in the CAUF was observed due to the accumulation of microorganisms and the 

associated EPS in the cake layer.  

Hu et al. (2014) added PACl as the coagulant into micro-polluted surface water, which was 

collected as influent for a PAC-MBR. The PAC-MBR with the optimal PAC dosage (e.g. 2 g/L) 

could minimize membrane fouling and improve effluent water quality, while removing 

intermediate MW organic fraction (1-10 kDa) by PAC adsorption/biodegradation effect and 

larger MW organic fraction (> 10 kDa) by membrane rejection. However, the overdose of PAC 

(e.g. 3 g/L) caused less organic material to be removed, more rapid flux decline and worse 

membrane fouling. Moreover, sludge discharge or PAC replacement should be conducted to 

maintain low fouling propensity after a certain number of operational days. Observed here was 

the fact that membrane fouling of the PAC-MBR with pre-coagulation was significantly affected 
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by internal fouling. This system should be operated at a low flux rate in combination with 

effective physical cleaning protocols (Shao et al., 2014).  

Previous studies indicated that sponge as attached growth media in a long-term sponge-

submerged MBR successfully demonstrated its superiority in improving treatment performance. 

It also enhanced sludge characteristics and mitigated membrane fouling when treating synthetic 

domestic wastewater (Deng et al., 2014). In view of the potential advantages of using sponge in 

wastewater treatment, this study explored the feasibility of long-term operation of membrane 

filtration (MF) systems with sponge addition after coagulation by PACl (P-SMF) for the 

treatment of drinking water. Treatment performance was investigated in a conventional MF 

(CMF), a MF with pre-coagulation (P-MF) and a P-SMF, in terms of nutrient and organic matter 

removal. In all of the proposed MF systems, detailed analyses were conducted on characteristics 

of influent, effluent, suspended sludge, foulants extracted from membrane surfaces and 

membrane pores (e.g. MW distribution, hydrophilic components, EPS) along with the microbial 

community to explain membrane fouling behaviors and mechanisms.  

2. Materials and methods 

2.1. Synthetic drinking water source  

The synthetic drinking water was prepared by mixing domestic sewage with local tap water 

at a volumetric ratio of 1:40 and 1 mg/L humic acid, which stimulated the slightly polluted 

drinking water sources. Tapwater was retained overnight to completely remove residual chlorine 

before adding humic acid to domestic sewage. Water quality of synthetic drinking water sources 

is summarized in Table 1. Additionally, the temperature and pH of the prepared raw water were 

20.1 ± 2.3 ºC and 7.25 ± 0.36 over the entire study period, respectively. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6

Table 1.  

2.2. Experimental set-up and operational conditions

 Fig. S1 illustrates the experimental set-up of polyaluminium chloride (PACl) coagulation-

membrane filtration (MF) with sponge addition (P-SMF), PACl coagulation-MF (P-MF) and a 

conventional MF (CMF), which were operated in parallel throughout the whole experiment. The 

effective working volume for each membrane tank of MF systems was 2 L. For the P-SMF and 

P-MF, PACl as the coagulant was added to the synthetic drinking water at a dosage of 10 mg/L. 

Furthermore, the membrane tank of the P-SMF was filled with 6% of polyester-polyurethane 

porous sponge cubes (dimensions being 10 mm × 10 mm × 10 mm in length, width and height, 

respectively, density of 28-45 kg/m3, cell count of 90 cells/in). Prior to the continuous membrane 

filtration experiment, the sponge cubes were acclimatized for 15 days to ensure the enrichment 

of attached biomass on the sponge. In the membrane tank, a hollow fiber ultrafiltration (UF) 

membrane module was used, consisting of polyvinylidene fluoride (PVDF) membranes which 

had a pore size of 0.07 μm and an effective surface area of 0.20 m2. Aeration was supplied by a 

soaker hose air diffuser underneath the membrane modules at the bottom of the tank. Activated 

sludge collected from a local wastewater treatment plant was put in the membrane tank at an 

initial sludge concentration of 1.50 g/L, 1.52 g/L and 1.49 g/L for the P-SMF, P-MF and CMF, 

respectively. During the operation, there was no sludge waste (infinite sludge retention time 

(SRT)). Filtration flux of membrane permeate withdrawn from the membrane module was 

consistently controlled at 10 L/m2·h, resulting in a hydraulic retention time (HRT) of 1 h. A 

backwash mode was implemented to physically control membrane fouling during the experiment 

within a 58 min filtration cycle and 2 min backwash. When the experiment ended at TMP of 35.0 
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kPa, the membrane was removed from the tank and put in chemical solutions, specifically HCl 

(0.5%), NaOH (0.4%) and NaClO (0.2%) in sequence.  

2.3. Analysis methods 

Ammonium (NH4-N), nitrite (NO2-N), nitrate (NO3-N) and phosphorus (PO4-P) 

concentrations of influent and effluent samples were determined with standard methods (APHA, 

AWWA, WEF, 1998) using a HACH DR6000 UV VIS spectrophotometer (HACH Co., USA). 

These concentrations of suspended solids in the membrane tank as mixed liquor suspended solids 

(MLSS) and mixed liquor volatile suspended solids (MLVSS) were quantified based on standard 

methods (APHA, AWWA, WEF, 1998). The measurement of UV absorbance at 254 nm, UV254, 

of 0.45 mm filtered solutions was done utilizing the above-mentioned HACH spectrophotometer. 

Dissolved organic carbon (DOC) was determined using a total organic carbon (TOC) analyzer 

(TOC-LCPH, Shimadzu, Japan). The quantification of bacteria concentration as the 

Heterotrophic Plate Count (HPC) was done using the yeast extract agar method (ISO6222, 1999). 

Extracellular polymeric substances (EPS) and soluble microbial products (SMP) extracted from 

suspended sludge and cake layer in the membrane tank were analyzed for proteins (EPSP, SMPP) 

and polysaccharides (EPSC, SMPC) (Deng et al., 2014; Frølund et al., 1996; Raunkjer et al., 

1994). After removing the cake layer from the membrane surface, membrane fibers were taken 

and soaked in 0.01 mol/L NaOH (pH = 12) to extract foulants from membrane pores (Kimura et 

al., 2009).  

Three-dimensional excitation emission matrix (EEM) spectrophotometry served to 

determine dissolved organic matter (DOM) characteristics using a fluorescence 

spectrophotometer (RF-6000, Shimadzu, Japan). It was conducted at different emission 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8

wavelengths ranging from 200 to 550 nm at 5 nm increment and excitation wavelengths from 

200 to 450 nm at 5 nm increment with a scanning speed of 2000 nm/min. The determination of 

hydrophilic and hydrophobic organic components was carried out with resins of Superlite DAX-

8 (Supelco, USA) and Amberlite XAD-4 (Rohm and Hass, Germany), which fractionated NOM 

into strongly hydrophobic organic matter that was subsequently adsorbed by DAX-8. Weakly 

hydrophobic (or transphilic) organic matter was adsorbed by XAD-4 and hydrophilic organic 

matter which passed through both resins (Qu et al., 2012). Molecular weight distribution of 

samples was determined by high-performance size exclusion chromatograph (HPSEC) using a 

high performance liquid chromatogram (HPLC) (Shimadzu 20A Prominence LC system, 

Shimadzu, UK). It was equipped with UV/VIS detection (SPD-20A, Shimadzu, UK) at 254 nm. 

HPSEC was undertaken using a BioSep-SEC-s3000 column (Phenomenex, UK) 300 × 7.8 mm 

(inner diameter (ID)) and Security Guard™ Cartridge fitted with a GFC 3000 disc 4 × 3.0 mm 

(ID).  The mobile phase of 0.01 mol/L sodium acetate was employed at a flow rate of 1 mL/min.  

Then the samples were injected with a volume of 500 μL.  

At the experiment’s completion, the individual fouling component for the fouled membrane 

was determined based on the resistance-in-series model and Darcy’s equations (Choo and Lee, 

1996): 

J = P/μR                           (1) 

RT = RM + RC + RP             (2) 

where RT is total resistance, RM is the intrinsic membrane resistance, RC is the cake resistance, 

and RP is the pore blocking resistance. 

Fouled membrane and clean membrane were characterized by Fourier Transform Infrared 

Spectroscopy (FTIR, Nicolet iS50, Thermo Fisher Scientific, USA). Scanning electronic 
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microscopy (SEM) (Hitachi S4800, Japan) observations were undertaken for fouled membranes 

and a clean membrane sample, which could refer to the protocol proposed by Tian et al. (2010). 

A confocal laser scanning microscopy (Leica TCS SP8, Leisa, Germany) was used to observe the 

surface of the fouled membrane. SYTO 63 (20 μM, Thermo Fisher Scientific, USA), Fluorescein 

isothiocyanate (FITC) (10 g/L, sigma) and ConA (0.25 g/L, sigma) were employed to stain total 

bacterial cells, proteins and polysaccharides of foulants on the membrane surface, respectively 

(Chen et al., 2006). Suspended sludge, cake layer on membrane surface and attached biomass of 

sponge were sent to GENEWIZ to determine the microbial community of samples using high-

throughput sequencing.   

3. Results and discussion 

3.1. Treatment performance of the CMF, P-MF and P-SMF  

Nitrogen and phosphorus removals were also compared among the CMF, P-MF and P-SMF 

as shown in Table 1. All of the MF systems were efficient in removing NH4-N, reaching 85.87 ± 

4.78% for the CMF, 92.12 ± 3.26% for the P-MF, and 97.16 ± 2.98% for the P-SMF, 

respectively. Influent NO2-N was eliminated by approximately 50% for both the CMF and P-MF, 

while the P-SMF demonstrated higher NO2-N removal efficiency of 68.42 ± 3.65% and 

significant elimination of NO3-N by 71.55 ± 1.36%. These results indicated that the CMF could 

accomplish effective nitrification, while the addition of PACl wielded only a negligible impact 

on nitrogen removal. Furthermore, sponge addition enhanced the removal of nitrogen by creating: 

firstly, aerobic/anoxic conditions at the outer layer of the sponge; and secondly, anoxic/anaerobic 

conditions at the sponge’s inner layer (Chu and Wang, 2011; Guo et al., 2008). In the CMF, PO4-

P removal of 32.16 ± 7.24% was mainly realized by phosphorus uptake by phosphate 
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accumulating organisms (PAOs) (Guo et al., 2010). The P-MF removed 92.54 ± 6.05% of PO4-P, 

which was almost 3 times higher when compared to the CMF. This could be attributed to the 

chemical coagulation precipitating as insoluble Al-phosphates and adsorption of phosphate ions 

onto the positively charged Al(OH)3 colloids coupled with phosphorus uptake by phosphate 

accumulating organisms (PAOs) (Özacar et al., 2003; Polanska et al., 2005). Slightly more PO4-

P was removed in the P-SMF (95.72 ± 4.61%), suggesting that phosphate removal was mainly 

achieved by PACl coagulation and phosphorus uptake.  

During the whole study period no sludge withdrawal occurred. When the experiment was 

completed, MLSS levels increased to 2.67, 2.34 and 1.67 g/L at biomass growth rate of 0.040, 

0.050 and 0.002 g/L·d for the CMF, P-MF and P-SMF, respectively. MLVSS concentrations 

reached a higher value for the CMF (2.15 g/L) and P-MF (1.91 g/L) than for the P-SMF (1.39 

g/L). In the P-SMF, adding sponge could notably curtail suspended sludge concentration by 

stunting microorganism growth in activated sludge through adsorption onto and inside sponge 

cubes (Deng et al. 2014). For the effluents, suspended solids were virtually undetected in any of 

them (Turbidity < 0.06 NTU) together with notably low bacterial concentrations (< 6 CFU/mL in 

the effluents). This was achieved mainly by membrane rejection, PACl coagulation and retention 

by sponge for attached biomass growth.   

3.2. Membrane fouling development and fouling materials in membrane tanks 

The TMP variation versus operational time for the CMF, P-MF and P-SMF is illustrated in 

Fig. 1. The CMF displayed a gradual increase in TMP from 5.5 to 12.0 kPa within the first 15 

days and then rapidly rose to 35.0 kPa until day 29. It gave rise to the fastest fouling rate of 1.03 

kPa/d. As to the P-MF, a slow initial TMP increment was observed for the 22-day operation, 
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after which the TMP increase was much quicker for the remaining period. This resulted in a 

relatively lower fouling rate of 0.64 kPa/d. TMP in the P-SMF increased to 35.0 kPa after 86 

days at the lowest fouling rate of 0.34 kPa/d. These results suggested that the CMF was most 

seriously subjected to membrane fouling, which could be alleviated to some degree after PACl 

addition. The pre-coagulation coupled with sponge addition significantly prolonged filtration 

duration and increased membrane filterability.  

Fig. 1. 

The key factors contributing to membrane fouling are dissolved organic matter (DOM) from 

influent and EPS and SMP associated with bacteria. UV254 and DOC removals in the CMF, P-

MF and P-SMF are summarized in Table 1. Referring to the CMF, UV254 and DOC removals 

were lower than 20%, while the corresponding values increased to 52.16 ± 4.92% and 47.83 ± 

4.32% in the P-MF, respectively. Under the operational conditions in this study (influent pH 7.25 

± 0.36), adsorption of humic-like substances on Al(OH)3 crystals by sweep flocculation was 

responsible for NOM removal with Al(OH)3 fraction as the main products (Kabsch-Korbutowicz, 

2005). The application of sponge further improved UV254 and DOC removals in the P-SMF, 

reaching 74.71 ± 3.67% and 68.30 ± 5.36%, respectively. The MW distributions of DOM 

obtained from HPSEC analysis (Fig. 2) revealed that similar patterns were observed for influent 

and effluent samples, while the peaks corresponding to humic substances, biopolymers and small 

MW organic substances decreased for all MF systems to various degrees. The CMF effluent 

exhibited some decline in peaks corresponding to biopolymers, humic substances and small MW 

organic matter.  
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Suggested here is the possibility that biopolymers and humic substances accumulated in the 

CMF, which gave rise to the severest membrane fouling. Additionally, some small MW organics 

passed through membrane pores, resulting in certain levels of the corresponding organics being 

left in the effluent. On the other hand, the cake layer could retain small MW organics, while only 

a few of them were deposited on the membrane pores as documented in Section 3.3.1.  

Compared to the CMF, peaks related to biopolymers and humic substances of effluent were 

further decreased in the P-MF, except for small MW organics. It indicated that the pre-

coagulation process could reduce some biopolymers/EPS and humic substances, but it exerted 

only a slight effect on removals of small MW organic matter. Similar findings by Chen et al. 

(2017) and Lai et al. (2015) also pointed out that the coagulation process exerted greater effects 

on these higher than lower MW organic matter. In the P-SMF, biopolymers and humic 

substances could be removed by membrane separation, PACl coagulation, adsorption on sponge, 

and biodegradation with the attached biomass on the sponge and suspended sludge in the 

membrane tank. Moreover, the elimination of small MW organics was linked to the presence of 

sponge (Ngo et al., 2008) and some microorganisms in membrane tanks. The bacteria 

contributing to the removal of biopolymers, humic substances and small MW organic matters are 

described in Section 3.4.  

Fig. 2. 

EPS of mixed liquor was characterized by EEM spectroscopy to further elucidate the effects 

of organic matter on membrane fouling (Fig. 3). Six key fluorescence peaks referred to as 

fluorophores A, C, T1, T2, B and D were found. Humic-like substances were demonstrated by 

peaks A and C. Tryptophan-like (peak T) and tyrosine-like (peak B) materials were indicated as 
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protein-like fluorophores (Baker et al., 2003; Lee et al., 2008). The presence of peak D at Ex/Em 

of 270-280/300-310 nm suggests the presence of SMP-like substances. It was observed that in 

the CMF, intensities of peaks B, T1, and T2 were stronger than those of peaks D, A and C, 

confirming that mixed liquor mainly contained protein-like and SMP-like materials. Comparing 

the HPSEC and EEM results for the CMF, humic substances were more likely to be adsorbed on 

the membrane surface or in the membrane pores. In contrast, all peaks declined in the P-MF and 

P-SMF. Furthermore, the reduction in intensities of peaks associated with the protein- and SMP-

like substances in the P-SMF was greater than that in the P-MF. These results confirmed that 

fouling components (including biopolymers and humic substances) of mixed liquor could be 

more effectively removed with a combination of pre-coagulation and sponge addition in 

comparison to the pre-coagulation process alone.  

Fig. 3. 

Compositions of EPS and SMP in suspended sludge contributing to membrane fouling were 

designed for all MF systems for different TMP ranges (Table 2). During the period of gradual 

TMP increment (  12.0 kPa), EPS levels of the CMF, P-MF and P-SMF demonstrated narrow 

ranges of 8.53-12.10 mg/L, 6.00-9.80 mg/L and 4.37-6.26 mg/L, respectively. When TMP 

increased above 12 kPa (TMP jump), the CMF and P-MF exhibited a notable accumulation of 

EPS, while the increase in EPS was not significant in the P-SMF. More specifically, a marginal 

difference in EPSC was observed between the CMF and P-MF within the ranges of 5.59-8.26 and 

5.23-7.98 mg/L, respectively. EPSP levels in the CMF were 7.21-8.96 mg/L, which were higher 

than those for the P-MF (5.03-6.67 mg/L). For the P-SMF, both the EPSC and EPSP revealed a 

slight variation at the lowest levels at 2.84-3.56 mg/L and 4.17-4.56 mg/L, respectively. SMP 
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contents were lower than EPS in all MF systems. The CMF possessed more SMP (2.82-8.87 

mg/L) than the P-MF (2.13-6.47 mg/L) and P-SMF (0.82-2.52 mg/L).  

These results suggest that membrane fouling is mainly associated with EPSC and EPSP of 

mixed liquor. In the CMF, food supplied for the microorganisms (food to microorganism (F/M) 

ratio of 0.086 d-1) was extremely limited in the substrate available for microorganisms. 

Consequently, the sludge’s metabolic activity declined, while the endogenous metabolism, cell 

lysis and cell hydrolysis occurred simultaneously with the release of EPS and SMP (Wu and Lee, 

2011). These were reduced due to the addition of PACl by curtailing biomass growth (relatively 

higher F/M ratio of 0.093 d-1) and membrane separation. Having a more substantial reduction of 

proteins rather than polysaccharides in the P-MF, indicates that the hydrophobic fraction of 

biopolymers was more easily removed by PACl coagulation. Biopolymers (including proteins 

and polysaccharides) could be remarkably eliminated by sponge addition in the P-SMF through 

adsorption onto sponge and biodegradation by attached biomass of sponge (Deng et al., 2014). 

Moreover, the lowest biomass growth (F/M ratio of 0.130 d-1) limited the EPS and SMP 

generation in the P-SMF. 

Table 2. 

3.3. Foulants on the membrane surface and inside the membrane pores 

At the end of this experiment, membrane modules were removed from the reactor and 

fouling resistances were analyzed for all MF systems (Table 3). Total fouling resistance (RT) was 

higher for the CMF and P-MF (4.86 × 1012 m-1 and 3.47 × 1012 m-1, respectively), while the P-

SMF demonstrated the lowest RT of 1.74 × 1012 m-1. As for the CMF, RT comprised 45.16% of 

the cake layer resistance (RC, 2.19 × 1012 m-1), 40.32% of pore blocking resistance (RP, 1.96 × 
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1012 m-1) and 14.52% of clean membrane resistance (RM, 0.71 × 1012 m-1). PACl addition 

reduced RC and RP, which accounted for 44.70% and 34.74% of RT, respectively. For the P-SMF, 

RC of 1.74×1012 m-1 was almost one-second of that for the P-MF. Although there was a 

significant decline of RP to 0.21 × 1012 m-1 comprising 12.02% of RT, the proportion of RM

increased to 40.73% of RT. These results suggested that both the cake layer and pore blocking 

induced membrane fouling. Compared to the CMF, the pre-coagulation in the P-MF decreased 

the RC and RP, which in turn were substantially reduced by the sponge, and this led to the highest 

membrane permeability in the P-SMF. Characterization of the cake layer on the membrane 

surface and pore blocking is further investigated in the following sections.   

Table 3. 

3.3.1. Cake layer fouling

At the end of the experiment, the cake layer was retrieved from the membrane surface and 

its properties were analyzed in terms of EEM spectra, MW distributions and EPS compositions. 

The EEM fluorescence spectra of the cake layer on the membrane surface (Fig. 4) revealed that 

in the CMF, significantly high intensities were obtained for peaks represented by protein- (Peak 

T1, T2 and B), SMP- (Peak D) and humic-like substances (Peak A and C), which promoted 

severe cake fouling.  After pretreatment by PACl addition, some of the peak intensities declined 

with more substantial decrease in protein- and humic-like substances indicated by peaks A, C, B 

and T2. In the P-SMF, most peaks were not evident except for peak T1 (protein-like substances). 

The SEC results (Fig. 5) further supplemented the EEM fluorescence results. Cake layer from the 

CMF retained more biopolymers, humic substances and small MW organics, leading to higher 

RC. In comparison to the CMF, foulants on the membrane surface of the P-MF possessed fewer 
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biopolymers, and humic substances, and presented a slight reduction in the peak of small MW 

organic matter.  

All MW fractions of organics in the cake layer declined remarkably in the P-SMF. These 

outcomes indicate that cake fouling was mainly induced by the accumulation of biopolymers 

(including SMP- and protein-like substances), and humic-like substances on the membrane 

surface, and subsequently were eliminated by PACl coagulation to a certain degree. The 

accumulation of small MW organics within the cake layer in the P-MF could be ascribed to the 

coagulation process since it could not eliminate these components (Matilainen et al. 2010). The 

P-SMF clearly performed better in eliminating biopolymers, humic substances and small MW 

organics of the cake layer because the presence of PACl and sponge reduced organic matter in 

the suspended sludge.   

Fig. 4. 

Fig. 5. 

Foulants on the membrane surface (cake layer) were further characterized by FTIR (Fig. S2). 

As for the new PVDF membrane, adsorption peaks close to 840, 873, 1070, and 1170 cm-1 were 

associated with the chemical bonds CF2 and CH2 (Enomoto et al., 1968). The peaks near 1640 

cm-1 (amide I), 1510 cm-1 (amide II) and 1400 cm-1 (amide III) demonstrated the accumulation of 

protein or protein-like substances in the fouled membrane (Shirshova et al., 2006; Zhou et al., 

2007). Additionally, the sharp band at about 2940 cm-1 indicated polysaccharides or 

polysaccharide-like components (Chefetz et al., 1998; Shirshova et al., 2006). The P-SMF 

exhibited the lowest intensity peaks which were attributable to protein- and polysaccharide-like 

materials, followed by the P-MF and CMF. Compositions of EPS and SMP (Fig. S3) were 
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evaluated to support these results. It was discovered that the levels of EPSC and EPSP in the cake 

layer (13.67 ± 1.53 and 18.41 ± 2.51 mg/g cake layer, respectively) were remarkably high for the 

CMF.  PACl addition as a pretreatment did not significantly decrease the EPSC level, but it did in 

fact reduce the EPSP level by approximately 46%, respectively obtaining 10.79 ± 1.53 and 9.94 ± 

1.38 mg/g of the cake layer. In the P-SMF, EPSC and EPSP values decreased to 2.43 ± 0.19 and 

3.68 ± 0.32 mg/g of cake layer, respectively. Levels of SMPC and SMPP in the CMF (9.83 ± 1.19 

and 6.34 ± 0.84 mg/g cake layer, respectively) were higher than those of the P-MF (8.76 ± 0.78 

and 4.28 ± 0.56 mg/g cake layer, respectively) and P-SMF (2.18 ± 0.23 and 2.09 ± 0.18 mg/g 

cake layer, respectively). These results indicate that the cake layer formation was partly induced 

by the deposition of biopolymers (polysaccharides and proteins) on the membrane surface. Pre-

coagulation was better at removing the hydrophobic fraction of biopolymers (proteins) from 

foulants on the membrane surface. The addition of sponge further reduced the biopolymers in the 

cake layer formation process, resulting in the lowest RC in the P-SMF.      

To further clarify and support the results obtained above, SEM images and CLSM images 

for all MF systems were taken from the fouled membrane. When compared to the clean 

membrane, much more irregular and denser cake layer formed on the membrane surface in the 

CMF, where many more biopolymers (including polysaccharides and proteins) and bacteria were 

detected (Figs. S4(b) and (c)). After pre-coagulation involving the addition of PACl, the cake 

layer of the P-MF contained less bacteria and biopolymers (Figs. S4(d) and (e)). Compared to the 

CMF and P-MF, a flatter and smoother membrane surface was observed in the P-SMF, on which 

the fewest deposits (biopolymers and bacteria) were evident as illustrated in Figs. S4(f) and (g). 

These results suggest that the coexistence of biopolymers and bacteria could promote the 
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formation of a thick cake layer, which can be restricted by pre-coagulation and/or sponge 

addition.   

3.3.2. Pore blocking 

The internal foulants from the CMF demonstrated stronger intensities of peaks T1, T2, B and 

D than peaks C and A, and this indicated that pore blocking was mainly influenced by protein- 

and SMP-like substances, followed by humic-like substances (Fig. 6(a)). Although the PACl 

addition could reduce intensities of peaks A, C, T1, T2 and B associated with humic- and protein-

like substances somewhat, SMP-like substances as represented by peak D were still clearly 

visible (Fig. 6(b)). This indicated that some protein- and SMP-like substances, which could be 

deposited and/or accumulated in the membrane pores, were removed in the P-MF. Subsequently, 

the combined addition of PACl and sponge notably eliminated all peaks related to protein-, 

SMP- and humic-like substances in the P-SMF in comparison to other MF systems (Fig. 6(c)). 

Apart from this, the location of peaks T1 and T2 in EEM spectra of organics extracted from the 

membrane pores in both of the P-MF and P-SMF, were blue-shifted (20-30 nm) to shorter 

wavelengths along the emission axis. A blue shift is associated with the elimination of particular 

functional groups (e.g. carbonyl, hydroxyl and amine), or less evidence of -electron systems, 

and furthermore reduced the number of aromatic rings and conjugated bonds in a chain structure 

(Swietlik et al., 2004).  

The SEC results (Fig. 7) further suggested that biopolymers and humic substances were 

deposited in large numbers in the membrane pores of the CMF. The pre-coagulation process 

reduced these foulants to some degree in the P-MF. Further addition of sponge in the P-SMF 

substantially reduced adsorption of larger MW organics (biopolymers and humic substances) 
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into the membrane pores through adsorption and biodegradation. Since the majority of small 

MW organics penetrated the membrane pores and formed part of the cake layer (as discussed in 

Sections 3.2 and 3.3.1), they only remained in the membrane pores in small amounts. The 

coagulation process could not effectively remove small MW organic matter, while adding 

sponge in the P-SMF prompted a substantial reduction in these organic materials, thus producing 

the lowest RP. 

Fig. 6. 

Fig. 7. 

In this study, the hydrophilicity of organic matter plays a key role in membrane fouling. As 

shown in Fig. 8, the CMF eliminated about 43% of the hydrophilic organic matter, while the 

various concentrations of either strong hydrophobic and/or weak hydrophobic fractions slightly 

changed in the effluent sample (Table S1). As the membrane module used in this study 

comprised hydrophilic PVDF membranes, hydrophilic organic matter was more easily deposited 

and/or adsorbed into the membrane pores. It resulted in the severest membrane pore blocking 

and the highest RP in the CMF. After pre-coagulation by the PACl, the proportions of strongly 

hydrophobic and weakly hydrophobic compounds were reduced by 57.37 ± 2.94% and 50.13 ± 

2.61%, respectively. Both the P-MF and CMF effluents displayed similar levels of hydrophilic 

organic matter, which suggested the pre-coagulation process was better at removing strongly 

hydrophobic and some weakly hydrophobic matter than hydrophilic organic matter (Matilainen 

et al., 2010), thus giving rise to relatively higher RP in the P-MF. The considerable increase in 

the removal of strongly hydrophobic, weakly hydrophobic and hydrophilic fractions of organic 

matters (> 70%) was obtained for the P-SMF effluent. It demonstrated that when compared to the 
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P-MF, the combined addition of sponge and PACl noticeably eliminated hydrophobic and 

hydrophilic organic components, and thus proved to be more effective in ameliorating pore 

blocking as indicated by the lowest RP.  

Fig. 8. 

3.4. Microbial communities during the operational period 

The microbial community in the suspended sludge (SS), cake sludge (CS) and attached 

biomass of the sponge (ABS) in all MF systems was investigated, in order to explain the effects 

of pre-coagulation and/or sponge addition on microbial community varieties.

At the phylum level (Fig. 9(a)), the microbial community in all MF systems was dominated 

by Proteobacteria in SS (43.33-56.51%) and in CS (40.88-55.23%), which proved to be more 

abundant in the CMF and P-MF. Proteobacteria as a group of Gram-negative bacteria possessed 

bacterial lipopolysaccharides located on their outer surface as the major components, which 

enabled bacteria to more easily be deposited on the membrane surface (Tang et al., 2016). Thus 

more abundant Proteobacteria in the CMF and P-MF might be responsible for the more severe 

membrane fouling. Additionally, all samples were represented by Bacteriodetes, which 

accounted for smaller proportions of total bacterial phylum in the CMF (13.36% (SS), and 18.62% 

(CS)), and the P-MF (18.67% (SS), and 19.08% (CS)) than those in the P-SMF (28.4% (SS), 

27.76% (CS), and 17.33% (ABS)). Since Bacteriodetes were related to the degradation of 

carbohydrates and proteins (Buchanana and Gibbens, 1984), larger amounts of biopolymers in 

the CMF and P-MF could be partially ascribed to fewer Bacteroidetes. Other subdominant phyla 

in all samples were Nitrospirae (10.62-27.78%), followed by Acidobacteria (0.42%-9.52%), 

Actinobacteria (0.34%-4.71%), Gemmatimonadetes (0.46%-2.64%), Verrucomicrobia (0.46%-
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2.37%), Chloroflexi (0.23%-4.14%) and Ignavibacteriae (0.38%-4.27%). Previous studies have 

reported large amounts of Actinobacteria as filamentous bacteria in the MBR, in activated sludge 

processes and when using membrane biofilm (Miura et al., 2007a; Kwon et al., 2011).  

Actinobacteria occupied a larger proportion of the total bacterial community in SS samples of 

the CMF (4.71%), followed by the P-MF (3.29%), and P-SMF (2.71%). This could be another 

possible reason for the highest fouling rate in the CMF. PACl and/or sponge addition stimulated 

an increase in Chloroflexi from 1.74% to 3.16%, and 4.14% in SS, respectively. Chloroflexi

demonstrated its capacity for degradation of the SMP including soluble carbohydrates and 

cellular materials (Miura et al., 2007b). Thus less SMP in the P-MF and P-SMP might be 

ascribed to a larger amount of Chloroflexi.  

Fig. 9. 

At the class level (Fig. 9(b)), Nitrospira was observed in the 10.37%-28.76% range in all 

samples. Betaproteobacteria and Gammaproteobacteria which were attributed to phylum 

Proteobacteria ruled the microbial community with a relative abundance of 18.08%-36.70% in 

the CMF, and 15.35%-33.87% in the P-MF. These amounts were higher than those reported for 

the P-SMF (9.21%-26.57%). Betaproteobacteria and Gammaproteobacteria have been often 

reported as the prominent groups in membrane systems for wastewater treatment (Duan et al., 

2009; Fu et al., 2017; El-Fadel et al., 2017). Gammaproteobacteria promoted their attachment to 

the membrane surface, which induced biofouling (Gao et al., 2014a). Alphaproteobacteria could 

initiate biofouling by pre-attaching to a new membrane and subsequent colonization on the 

membrane, which promoted the attachment of many more other species on the membrane (Gao 

et al., 2011b). In addition, it emerged that Alphaproteobacteia and Deltaproteobacteria were 
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better enriched in SS of the CMF (5.03% and 6.56%, respectively) and P-MF (3.67% and 5.86%, 

respectively) than the P-SMF (2.59% and 4.02%, respectively). Overall, the highest relative 

abundance of Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria was 

associated with the severest membrane fouling in the CMF. On the other hand, more abundant 

Sphingobacteriia were detected in the P-SMF (14.35% in SS, 21.01% in CS and 3.61% in ABS) 

in comparison to the CMF (9.22% in SS and 15.57% in CS) and P-MF (6.72% in SS and 12.30% 

in CS). Biopolymers were evidently less abundant in the P-SMF, which might be due to the fact 

that some members belonging to Sphingobacteriia favored the degradation of macromolecules, 

i.e. polysaccharides, proteins (Fu et al., 2017).  

The bacterial community structure was further analyzed at genus level to clarify different 

membrane fouling behaviors in the three MF systems (Fig. 9(c)). The bacterial community of CS 

was similar to that of SS, indicating the microbial community in CS mainly derived from SS. 

Since this study was conducted under conditions of infinite SRT, Nitrospira as the dominant 

NOB member could be enriched in SS (24.13%-30.12%) without sludge withdrawal and ABS 

(28.76%). As well, one member of AOB, genus Nitrosomonas accounted for 3.22%-5.36% of the 

SS and 12.74% of ABS samples, respectively. As a result, the nitrification process proved to be 

effective in all MF systems. The relative abundance of Zoogloea and Rhizobium in SS samples 

was higher for the P-SMF (6.17% and 6.23%, respectively) than the P-MF (2.76% and 3.54%, 

respectively) and CMF (0.57% and 1.36%, respectively). Additionally, Zoogloea and Rhizobium

as denitrifying microorganisms were highly enriched in ABS samples (2.79% and 8.59%, 

respectively) of the P-SMF with preferential accumulation of Acidovorax (denitrifiers) (Nielsen 

et al., 2009). Consequently, the P-SMF realized more effective denitrification than the other MF 

systems. In the CMF, Thiothrix was strongly enriched in SS (20.76%) as the second most 
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abundant genus, members of which caused serious membrane fouling, biofilm formation and 

irreversible fouling. This process also induced the occurrence of filament-caused sludge bulking 

(Gao et al., 2014a and 2014b). Moreover, the genus Xanthomonas constituting 10.89% and 6.69% 

of the total bacterial community in SS and CS of the CMF, respectively, was the biopolymer-

producing bacteria, which could also significantly affect membrane fouling development (Jinhua 

et al., 2006).  

Some other bacteria were also detected in the CMF, for example Comamonas (2.36% (SS) 

and 5.64% (CS)) and Ferruginibacter (3.58% (SS) and 3.67% (CS)). These were easily 

deposited on aerobic membrane surfaces with the accumulation of dense organic matter (Xiong 

et al., 2016). In contrast, the relative abundance of Thiothrix, Xanthomonas, Ferruginibacter and 

Comamonas was lower for the P-MF and P-SMF. Yet, on the other hand, it was observed that the 

combined addition of PACl and/or sponge prompted an increase in proportions of 

Flavobacterium, especially for CS (2.51% for P-MF and 3.62% for P-SMF) and ABS samples 

(3.79%). Bacteria in the Cytophagae-Flavobacteria group belonging to Flavobacterium was 

reported to utilize protein, N-acetylglucosamine and chitin, and degrade part of the high 

molecular mass fraction of the DOM (Ma et al., 2013a). These results indicate that PACl and/or 

sponge addition could mitigate membrane fouling in MF systems.   

The abundance of a microbial community involved in membrane fouling reduction was also 

compared between the P-MF and P-SMF. It has been reported that Zoogloea (Class 

Betaproteobacteria) made possible the formation of characteristic cell aggregates which were 

embedded in extracellular gelatinous matrices, since zoogloeal matrices were favorable for 

sludge flocculation. Additionally, they adsorbed fine particles which ameliorated membrane 

fouling (Ma et al., 2013b). Therefore, less membrane fouling in the P-SMF might be related to 
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higher enrichment in species of Zoogloea in SS at 6.17% compared to that in the P-MF (2.76%). 

Larger proportions of Amaricoccus (Class Alphaproteobacteria), which reduced polysaccharides 

by using polysaccharides as substrate (Maszenan et al., 1997), were discovered in the P-SMF 

(8.63% (SS), 7.86% (CS) and 5.37% (ABS)) at amounts much larger than in the P-MF (3.62% 

(SS) and 5.63% (CS)). Reyranella (Class Alphaproteobacteria) is a kind of protein degrader 

(Inaba et al., 2017) that exhibited higher relative abundance of 5.29%-7.32% in the P-SMF 

compared to the P-MF (4.13%-5.46%). Thus, higher abundance of Amaricoccus and Reyranella

in the P-SMF could contribute to the reduction of biopolymers (polysaccharides and proteins), 

resulting in slower membrane fouling development than the P-MF.  

It was found that the diversity of microbial communities was highest in the P-SMF, 

including Flexibacter (Class Sphingobacteriia) and Sphingobium (Class Alphaproteobacteria) at 

the relative abundance of 3.74% and 3.45% (SS), 5.65% and 6.36% (CS) and 6.54% and 6.12% 

(ABS), respectively. These genera could degrade high-molecular DOC fractions and humic 

matter, and break refractory DOC and aromatic compounds (Basta et al., 2005; Hutalle-

Schmelzer et al., 2010). The genus Woodsholea (Class Alphaproteobacteria) for hydrolysis of 

organic substrates (Abraham et al., 2004) was better enriched in SS at 0.36% and ABS at 2.61% 

in the P-SMF, which have might partly contributed to the removal of small amount of MW 

organic matter. Moreover, these low MW organics could be eliminated by some unclassified 

bacteria attributed to Class Alphaproteobacteria in the P-SMF (Cottrell and Kirchman, 2000). 

Overall, the least membrane fouling in the P-SMF was explained by a shrinkage in the size of the 

bacterial community causing biofouling or release of biopolymers. Conversely, an increase 

occurred in the proportions and diversity of microbial community for degrading fouling materials 

in the suspended sludge and cake layer.  
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3.5. Economic feasibility of the P-SMF and recommendation for future studies

The initial investment includes membrane fibers (< $5), reactors (< $30), and aeration 

supplied by the public laboratory. Moreover, the cost of sponge used in this study was extremely 

low (< $0.1). The selected PACl at low dosage was a cost-effective coagulant. As the P-SMF 

could be operated for almost 90 days, it was not necessary for chemical cleaning and membrane 

replacement to be frequently conducted. Additionally, the reagents for chemical cleaning (i.e. 

HCl, NaOH and NaClO) are not expensive. Overall, the P-SMF system was an economically 

feasible option for drinking water treatment. 

Both HRT and filling ratio of sponge should be optimized so that the P-SMF system 

performs better, in other words, it can operate for a much longer time. Detailed analyses should 

focus on the specific genera affiliated with class Alphaproteobacteria, which is associated with 

the removal of low MW organic matter. Duplicate experiments for this study should be 

conducted to test whether the presence of microorganisms for the removal of humic substances is 

successful or otherwise. Furthermore, the enrichment of microorganisms for the removal of low 

MW organics and humic substances in the P-SMF constitutes a promising research topic. Further 

studies should evaluate the performance of the P-SMF system for treating various drinking water 

sources (e.g. ground water, surface water, river water). The effects of micropollutants (e.g. 

pharmaceuticals, personal care products (PPCPs) and endocrine disrupting compounds (EDCs) 

on the performance of the P-SMF system  should be investigated so that the possibilities of 

altering the microbial community during the treatment of drinking water can be assessed.  

4. Conclusions 
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This study focused on the feasibility of the P-SMF during a long-term experiment involving 

the treatment of drinking water. Enhanced nutrient, DOC and UV254 removals were realized by 

PACl pre-coagulation and sponge addition in the P-SMF compared to the P-MF and CMF. 

Larger MW organics (biopolymers and humic substances) and hydrophilic organic matter in the 

CMF accounted for the fastest membrane fouling development, and the most serious cake layer 

formation and pore blocking. The P-MF only eliminated larger MW organic matter, while the 

coupled process of pre-coagulation by PACl and sponge addition in MF system considerably 

enhanced the removal of larger and small MW organics, and hydrophilic organic matter. The P-

SMF indicated the most diverse microbial community, especially in the presence of Zoolgloea, 

Amaricoccus, Reyranella, Flexibacter and Sphingobium and some microorganisms belonging to 

Alphaproteobacteria for the reduction of fouling materials. Finally, it can be stated here that the 

P-SMF demonstrated its superiority in alleviating membrane fouling and reducing RP and RC.   
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Table 1. Water quality of influent and effluent samples from the P-SMF, P-MF and CMF 

Parameters Influent 
samples 

P-SMF  P-MF  CMF  

Effluent Removal 
efficiencies Effluent Removal 

efficiencies Effluent Removal 
efficiencies 

NH4-N (mg/L) 3.68 ± 0.69 0.10 ± 
0.02 

97.16 ± 
2.98%  

0.29 ± 
0.03  

92.12 ± 
3.26% 

0.52 ± 
0.05 

85.87 ± 
4.78% 

NO3-N (mg/L) 2.84 ± 1.27 0.808 ± 
0.36 

71.55 ± 
1.36% 

3.06 ± 
0.24 — 3.03 ± 

0.37 —  

NO2-N (mg/L) 0.125 ± 0.028 0.039 ± 
0.001 

68.42 ± 
3.65% 

0.058 ± 
0.005 

53.61 ± 
5.83% 

0.060 ± 
0.46  

52.03 ± 
7.31% 

PO4-P (mg/L) 0.098  ± 0.006 0.004 ± 
0.002 

95.72 ± 
4.61% 

0.007 ± 
0.002 

92.54 ± 
6.05% 

0.066 ± 
0.008 

32.16 ± 
7.24% 

Turbidity 
(NTU) 3.23 ± 1.26 0.04 ± 

0.01 
98.76 ± 
1.52% 

0.05 ± 
0.03 

98.45 ± 
1.36% 

0.05 ± 
0.03 

97.83 ± 
1.69% 

Total bacterial 
concentration 

(CFU/mL) 

(5.31 ± 1.42) 
× 105 3 ± 1  100% 4 ± 2 100% 5 ± 2 100% 

UV254 (cm-1) 0.087 ± 0.008 0.022 ± 
0.005 

74.71 ± 
3.67% 

0.042 ± 
0.005 

52.16 ± 
4.92% 

0.075  ± 
0.006 

14.22 ± 
5.76% 

DOC (mg/L) 5.29 ±1.21 1.68 ± 
0.48 

68.30 ± 
5.36% 

2.76 ± 
0.26 

47.83 ± 
4.32% 

4.36 ± 
0.49 

17.52 ± 
4.49% 
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Table 2. EPS and SMP compositions of mixed liquor in the P-SMF, P-MF and CMF at different 

TMP ranges 

Concentrations a

P-SMF P-MF CMF 

TMP  

 12 kPa 

TMP  

13-35 kPa 

TMP  

 12 kPa 

TMP  

13-35 kPa 

TMP  

 12 kPa 

TMP  

13-35 kPa 

EPSC (mg/L) 1.85-2.75 2.84-3.56 3.08-5.16 5.23-7.98 3.23-5.23 5.59-8.26 

EPSP (mg/L) 2.52-3.51 4.17-4.56 2.92-4.64 5.03-6.67 5.30-6.87 7.21-8.96 

EPS (mg/L) 4.37-6.26 7.01-8.12 6.00-9.80 10.26-
14.65 8.53-12.10 12.80-

17.22 

SMPC (mg/L) 0.57-0.88 1.04-1.36 1.26-3.05 3.19-4.83 1.68-3.42 3.63-5.18 

SMPP (mg/L) 0.25-0.86 1.05-1.16 0.87-1.31 1.27-1.64 1.14-1.84 2.08-3.69 

SMP (mg/L) 0.82-1.74 2.09-2.52 2.13-4.36 4.46-6.47 2.82-5.26 5.71-8.87 
a  EPSC, polysaccharides based EPS; EPSP, proteins based EPS; SMPC, polysaccharides based SMP; 

SMPP, proteins based SMP 
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Table 3. Fouling resistance distribution in the P-SMF, P-MF and CMF 

Resistance 
distribution 

P-SMF P-MF CMF 

1012 × m-1 % of RT 1012 × m-1 % of RT 1012 × m-1 % of RT

Total, RT 1.74 3.47 4.86 

Cake layer, RC 0.82 47.25 1.55 44.70 2.19 45.16 

Pore blocking, 
RP

0.21 12.02 1.21 34.74 1.96 40.32 

Clean 
membrane, RM

0.71 40.73 0.71 20.56 0.71 14.52 
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Figure captions 

Fig. 1. TMP variation over operational time for the CMF, P-MF and P-SMF 

Fig. 2. MW distribution of organic matter of influent and effluent for the CMF, P-MF and P-

SMF 

Fig. 3. EEM fluorescence spectra of EPS of mixed liquor from the CMF (a), P-MF (b) and P-

SMF (c) 

Fig. 4. EEM fluorescence spectra of organic matter of cake layer from the CMF (a), P-MF (b) 

and P-SMF (c) 

Fig. 5. MW distribution of organic matter from cake layer for the CMF, P-MF and P-SMF 

Fig. 6. EEM fluorescence spectra of organic matter extracted from membrane pores of the CMF 

(a), P-MF (b) and P-SMF (c) 

Fig. 7. MW distribution of organic matter from membrane pores for the CMF, P-MF and P-SMF 

Fig. 8. Removals of hydrophobic and hydrophilic components of organic matter by different MF 

systems 

Fig. 9. Distribution of microbial community in suspended sludge (SS(CMF), SS(P-MF), SS(P-

SMF)), cake sludge (CS(CMF), CS(P-MF) and CS(P-SMF)) and ABS at the phylum (a),  

class (b) and genus (c) levels  
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Fig. 1. TMP variation over operational time for the CMF, P-MF and P-SMF 
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Fig. 2. MW distribution of organic matter of influent and effluent  

for the CMF, P-MF and P-SMF 
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(a) 

(b) 
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(c) 

Fig. 3. EEM fluorescence spectra of EPS of mixed liquor  

from the CMF (a), P-MF (b) and P-SMF (c) 
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(a) 

(b) 
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(c) 

Fig. 4. EEM fluorescence spectra of organic matter of cake layer  

from the CMF (a), P-MF (b) and P-SMF (c) 
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Fig. 5. MW distribution of organic matter from cake layer 

for the CMF, P-MF and P-SMF 
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(a) 

(b) 
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(c) 

Fig. 6. EEM fluorescence spectra of organic matter extracted from membrane pores of the 

CMF (a), P-MF (b) and P-SMF (c) 
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Fig. 7. MW distribution of organic matter from membrane pores  

for the CMF, P-MF and P-SMF 
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Fig. 8. Removals of hydrophobic and hydrophilic components of organic matter  

by different MF systems 
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(a) 

(b) 
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(c) 

Fig. 9. Distribution of microbial community in suspended sludge (SS(CMF), SS(P-MF), SS(P-

SMF)), cake sludge (CS(CMF), CS(P-MF) and CS(P-SMF)) and ABS  

at the phylum (a), class (b) and genus (c) levels 
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