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Abstract

The Counting Convolutional Neural Network (CCNN) has been widely used for

crowd counting. However, they typically end up with a complicated network

model resulting in a challenge for real-time processing. Existing solutions aim

to reduce the size of the network model, but unavoidably sacrifice the network

accuracy. Different from existing pruning solutions, in this paper, a new prun-

ing strategy is proposed by considering the contributions of various filters to

the final result. The filters in the original CCNN model are grouped into pos-

itive, negative and irrelevant types. We prune the irrelevant filters of which

feature maps contain little information, and the negative filters determined by

a mask learned from the training dataset. Our solution improves the results

of the counting model without fine-tuning or retraining the pruned model. We

demonstrate the advantages of our proposed approach on the problem of crowd

counting. Our experimental results on benchmark datasets show that the net-

work model pruned using our approach not only reduces the network size but

also improves the counting accuracies by 4% to 17% less MAE than the state

of the arts.
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1. Introduction

Vision-based density estimation for accurately counting or estimating the

number of people (or objects) in crowded scenes is a desirable technique in

many real world applications including visual surveillance, traffic monitoring and

crowd analysis. This is true especially in restricted, public places such as train

stations, where incidents, traffic delay and even terrible stampedes have been

reported due to overcrowding in these places. There is an urgent demand for

real-time decision-making corresponding to crowd control and planning. Various

real-world situations, such as occlusions, size and shape variations of people,

and perspective distortion, have posed great challenges for practical solutions

capable of handling such situations. Thus, correctly counting in crowded scenes

has become an open and popular research problem nowadays [1].

The existing approaches for crowd counting can be roughly grouped into

detection-based and feature-regression-based approaches. The detection-based

approaches employ object detectors to detect or localize each person in the scene,

and the counting is simply the number of total detections. These approaches

can surpass human’s performance in images with relatively large people sizes

and sparse crowd densities [2, 3, 4]. However, in complex scenes with serious

occlusions and extremely crowded scenes, detection-based approaches often fail

to detect individuals and hence produce inaccurate counting [5]. The feature-

regression-based approaches, e.g., [6, 7, 8, 9], on the other hand, aim to obtain

the density function of an image containing people and then calculate the to-

tal count by integrating the densities over the whole image space. They have

demonstrated a countable solution for handling highly crowded scenes.

Recently, a Counting Convolutional Neural Network (CCNN) model [6] has

been proposed, which can learn to count people and produce density maps in

images. Compared with the traditional hand-crafted feature based approaches,

this approach has achieved much better accuracies in wider, real-world crowded
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scenes. However, high capacity deep networks typically have significant infer-

ence costs especially when being used in complex scenes. This has resulted

in a challenge for embedded sensors or mobile devices, where computational

and power resources are often very limited. Many research works have been

reported to reduce the storage and computation costs of deep neural networks

for various applications. A typical solution is to prune the weights with small

magnitudes and then retrain the network aiming not to downgrade the overall

accuracy significantly [10, 11, 12, 13]. Yet, to our best of knowledge, no one

has attempted to simplify the deep network models in a way that also improves

their accuracies.

In this paper, aiming to learn a lighter and more accurate deep network

model, we propose a new strategy to prune the CCNN network [6] to not only

simplify the network but also improve its accuracy. We examine the contri-

butions of various filters in CCNN to the classification, and group the filters

into positive, negative and irrelevant filters, respectively. Based on the feature

maps of filters, we prune the irrelevant and negative filters so as to make the

model lighter. Different from the existing pruning algorithms, our goal is to not

only reduce the size of the model, but also improve the performance through

our proposed pruning strategy. When tested on benchmark datasets, our solu-

tion not only prunes the network but also improves the accuracy by removing

non-contributing and negatively contributing filters.

The main contributions of our work are summarized as follows.

• We propose a new pruning strategy that not only prunes the network but

also improves the accuracy without fine tuning.

• We propose a simple but effective mechanism to prune the irrelevant filters

based on the feature maps which have little information, as well as the

negative filters learned from training data.

The rest of the paper is organized as follows. Section 2 shows the related

work. In Section 3, the details about our proposed network pruning technique
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are given. The experiments conducted on various datasets are presented in

Section 4. Finally, the paper concludes in Section 5.

2. Related work

Since detection-based counting approaches cannot be adapted to highly con-

gested scenes, researchers try to deploy regression-based approaches to learn the

relations between cropped image patches and their densities, and then calcu-

late the number of particular objects. In recent years, many researchers [1]

have developed deep learning models for image segmentation, classification and

recognition, and have achieved very good results. Inspired by these, Convo-

lutional Neural Network (CNN) models have been proposed to learn to count

people and produce density maps in images simultaneously. These models work

well for objects of a similar size in an image or a video. Sindagi and Patel [5]

proposed an end-to-end cascaded network of CNNs that can learn globally rel-

evant and discriminative features to estimate highly refined density maps with

low counting errors. Onoro-Rubio and Lopez-Sastre in [6] proposed a regres-

sion model called Counting CNN (CCNN) and the Hydra CNN for multi-scaled

crowd counting. The CCNN and Hydra CNN can map the appearance features

of input image patches to corresponding density maps.

Inspired by the Hydra CNN model, some researchers have tried to utilize

more complex deep models to solve the problem caused by the significant vari-

ance of people’s appearance in a captured image/video. Deepak et al. [7] pro-

posed a switching CNN to select the best CNN regressor for each of the differ-

ent receptive fields and achieved better results. Kumagai1 et al. [8] proposed

a mixture of CCNNs and adaptively selected multiple CNNs according to the

appearance of a testing image for predicting the number of people. Zhang et

al. [9] proposed a multi-column network from three independent CNNs, and

then used the combined features of these three networks to get a density map.

Li et al. [14] proposed CSRNet by combining VGG-16 and dilated convolution

layers to aggregate multi-scale contextual information. All of these works have
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suggested some effective solutions for counting people in complex real-world

senses. However, all of these models require very high computation resources

for running, creating a challenge for embedded or mobile systems to adopt these

models. Therefore, it makes sense to reduce the network complexity.

Network pruning and sharing have been adopted to reduce the network com-

plexity and address the over-fitting issue. A recent trend in this direction is to

prune redundant or non-informative weights in a pre-trained CNN model. For

example, Srinivas and Babu [15] explored the redundancies among neurons,

and proposed a data-free pruning method to remove redundant neurons. Pavlo

Molchanov et al. [11] proposed a new method to prune filters in neural networks.

Li et al. [12] proposed to prune the filters that have little effect on the accuracy.

The deep compression method in [13] removed the redundant connections and

quantized the weights, and then used Huffman coding to encode the quantized

weights. In [16], a simple regularization method based on soft weight-sharing

was proposed, and it included both quantization and pruning in one simple

procedure. It is worthy to note that the above pruning schemes typically pro-

duce connection pruning in CNNs. However, all of these solutions achieve the

pruning goal at the cost of losing accuracy to some extent.

For many cases, the networks may not have to be so complicated, so their

complexity can be reduced. Then, is there any way to prune networks without

decreasing their accuracies but with improved accuracies? It has been widely

known that some filters contain little information for the final classification.

However, according to our observation, some filters actually have negative im-

pacts on the final classification. Therefore, pruning these filters will not only

simplify the network models but also improve the network performance. In this

paper, we propose a pruning approach and demonstrate its superiority on the

application of crowd counting.
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Figure 1: The structure of the CCNN model [6]

3. Network Pruning

Our work presented in this paper is initially designed for pruning the CCNN

model [6] and can be applied to prune other crowd-counting network models.

In this section, we first briefly introduce the CCNN-based crowd counting ap-

proach [6] and then present the details of our proposed pruning strategy.

3.1. CCNN

The CCNN approach [6] is formulated as a regression model that produces

objects’ density maps based on the corresponding appearances of image patches.

Utilizing the sliding window technique, small patches are extracted from the

input image as input to a pre-trained CNN model, which then produces an

estimated density map for the corresponding image patch.

Fig. 1 shows the structure of the CCNN model, where input image patches

are fed into a deep network to estimate their density maps.

Given an annotated training image I, where each of the targets is annotated

with a dot (see Fig. 3), the density map, denoted as DI , of the image, is defined

as a sum of Gaussian functions centered at each dotted annotation as:

DI(p) =
∑
µ∈AI

N(p;µ,Σ), (1)

whereAI is the set of dotted annotation of the image I, andN(p;µ,Σ) represents

the evaluation of a normalized 2D Gaussian function, with a mean of µ and

isotropic covariance matrix of Σ, evaluated at pixel p.
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Figure 2: Example of the feature maps in layer conv4. (a) Input image. (b) Filters activating

mostly on targets. (c) Filters activating mostly on background. (d) Filters with nearly no

activations.

With the resultant density map DI , the total object count NI can be ob-

tained by integrating the density map values DI over the entire image space,

as:

NI =
∑
p∈I

DI(p). (2)

Note that all the Gaussian functions are summed and normalized, so the total

object count is preserved even when there is overlapping between targets.

3.2. Determining the types of filters

In training the CCNN model, the whole image is fed into the model. In crowd

counting datasets, such as UCF and UCSD datasets, all of the images in training

and testing datasets contain the target area, where the crowd is distributed, and

the background area, where there are no people. According to [17], different

filters activate on different targets of the images. Fig. 2 shows the activations

of different filters in the feature maps corresponding to background and target

areas, respectively.

In this figure, we can see that some feature maps have stronger activations on

target area (see Fig. 2(b)), some filters activate mostly on background area (see
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Figure 3: Learning the mask from an annotated training image.

Fig. 2(c)), and some feature maps contain nearly no activation (see Fig. 2(d))

and hence have little contribution to the classification result. Therefore, we can

prune the model according to the activations of feature maps at different areas.

To examine the activations of feature maps corresponding to different areas,

we learn a mask from annotated training images to identify the target area.

Then, we define a simple mechanism to determine whether a filter makes posi-

tive or negative contributions to the classification, based on whether it mostly

activates on target area or background area.

In a density mapDI , an intensity value larger than zero indicates that it has a

non-zero density at the corresponding location. Thus, a binary mask, denoted by

M(x, y) (where (x, y) is the coordinates of the pixel p), corresponding to a target

(when its value is 1) and background pixel (when its value is 0), respectively,

can be derived from the density map function DI as:

M(x, y) =

 1, if DI(p) > 0;

0, otherwise.
(3)

Fig. 3 shows an example of the areas derived from the mask. In Fig. 3, the

white area corresponds to the crowd area, and the black area represents the
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Figure 4: Model pruning with one mask

background. With the target and background learned using the mask, we can

then easily determine whether a filter makes positive or negative contributions

.

As shown in Fig. 4, after images are fed into the model, we apply the mask to

all the feature maps in each layer. If the average magnitude of the background

area (with the mask values equal to 0) divided by the average magnitude of the

target area (with the mask values equal to 1) is higher than a pre-defined thresh-

old η (selected based on experiments), it is concluded that the corresponding

filter activates more on the background than the target area (see Fig. 2(c)) and

it is defined as a possible negative filter.

3.3. Pruning filters and feature maps

Each training image has its own mask identifying its foreground and back-

ground, so it determines its own set of possible negative filters. In order to

select the negative filters that are applicable to the entire dataset, we propose

a simple voting mechanism to determine a maximum set of negative filters for

the whole set of data. If a possible negative filter is included in most possible

negative filter sets of training data, this filter will mostly likely be a negative

filter for all data. Therefore, in this paper, a filter is pruned if it is included in
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Table 1: The MAE results obtained on all sub-datasets in the UCF dataset obtained using

the CCNN models with and without pruning.

data0 data1 data2 data3 data4 MAE

CCNN [6] 775 476 510 276 373 488

Pruned CCNN 759 396 488 247 335 445

more than half of the negative filter sets.

To better illustrate this process, we take images from the UCF dataset. The

UCF CC 50 dataset [11] consists of 50 pictures, collected from publicly available

web images. Images in the UCF dataset are randomly split into five subsets and

a 5-fold cross-validation is performed by following the standard setting in [18].

We randomly take a 10-image set from the training set and then create their

masks from their dotted annotation maps. Then, the resultant mask is applied

to the corresponding training images. If filters activate on more than half (i.e., 5

in this example) of the training images, the filter is determined to be a possible

negative filter according to Sect. 3.2 and will be pruned; If the feature map

contains nearly no information, this filter is determined to be an irrelevant filter

and will also be pruned.

Table 1 shows the MAE results obtained on all sub-datasets in the UCF

dataset obtained using the CCNN models with and without pruning. As can be

seen from this table that, after pruning, the accuracies are improved with the

MAE reduced from 488 to 445. More comprehensive experiments are presented

in Sect. 4.

3.4. Pruning of different layers

For the CNN model, in the shallow layers, the filters extract basic features,

such as edges, anchors and so on. While in the deep layers, the filters tend

to extract high level features, such as those to identify heads and bodies [17].

Therefore, we do not prune the shallow layers of the model, and only prune deep

layers. What is more, we also prune those filters without activations shown on
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Figure 5: Examples of the density heat maps obtained with the original CCNN approach

and our pruned CCNN model, where ground truth counts and estimation counts are shown

underneath the images. (a) Input crowd images. (b) Density heat map obtained with the

original CCNN. (c) Density heat map obtained with our pruned CCNN

the feature maps at all layers.

Fig. 6 shows the MAE results obtained for all five subsets of the UCF dataset

when all of he single layers are pruned without re-tuning. In this figure, the

red line in each graph is the MAE of the original CNN model for each sub-

dataset. As shown in this figure, pruning deep layers, e.g., pruning Conv5 layer

(shown as the purple bars in the chart) vs pruning Conv2 layer (shown as the

blue bars in the chart), tends to have more impact to the performance of the

overall model. On the contrary, pruning shallow layers (e.g., Conv2 or Conv3)

always has little effects on the performance. We can make a conclusion that

by pruning filters on deep layers, the counting results always get better. Thus,

in our strategy, pruning is mostly carried out for Conv5 layer. Irrelevant filters

containing little information in feature maps are pruned in Conv2 and Conv3,

while in deep layers (Conv4 and Conv5), both irrelevant and negative filter are

pruned.

11



4. Experiments

In this paper, we evaluate and compare our proposed pruning mechanism

on crowd counting CCNN networks on four widely used benchmark datasets,

i.e., the UCF [19], UCSD [20], ShanghaiTech [21] datasets, and the TRANCOS

dataset [22]. We implement our filter pruning algorithm based on the Caffe deep

learning framework. When filters are pruned, a new model with fewer filters

is created and the remaining parameters of the modified layers as well as the

unaffected layers are copied into the new model.

4.1. Comparison with the original CCNN model

Fig. 5 shows two estimated density heat maps and counts obtained with

the original CCNN and our pruned CCNN on two exemplar crowd images. As

it can be seen, the estimation obtained with our pruned CCNN is much more

accurate.

Next, following the convention of the similar works [7, 23, 8, 9] for crowd

counting, we evaluate the performance of different approaches quantitatively on

two datasets using the Mean Absolute Error (MAE), which is defined as:

MAE = 1/N

N∑
1

|zi − z′i|, (4)

where N is the number of test images, zi is the actual number of people in the

i-th image, and z′i is the estimated number of people in the i-th image. Roughly

speaking, the lower the MAE is, the better accuracy the estimation method has.

4.1.1. Experimental results on the UCSD dataset

The UCSD dataset [20]contains 2,000 frames of video captured with a surveil-

lance camera from a single scene on the UCSD campus. It has four sub-

sets, namely ‘maximal’, ‘downscale’, ‘upscale’, and ‘minimal’ sub-datasets. The

dataset provides the Region of Interest (ROIs) for each video frame. We use

the ROI as the mask to determine the type of filters. As the scene of UCSD is

fixed, we use one mask and follow the rules in the UCF to prune the model. The
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Table 2: Comparison of the MAE results on the UCSD dataset

maximal downscale upscale minimal

CCNN [6] 1.70 1.79 1.13 1.50

Our pruned CCNN 1.63 1.70 0.96 1.49

Pruned Model size/MB 1.5 1.3 1.3 1.5

Table 3: Comparison of the MAE results TRANCOS datasets

Method GAME0 GAME1 GAME2 GAME3

CCNN 12.49 16.58 20.02 22.41

Pruned CCNN 11.25 14.26 16.43 19.72

Pruned Model size/MB 1.7 1.1 2.1 1.8

results are shown in Table 2. Note that the size of the original model is 2.3MB.

As shown in this table, after the pruning, the sizes of the models for the four

sub-datasets are 1.5MB, 1.3MB, 1.3MB and 1.5MB, respectively, decreased

by 35% to 44%. Moreover, the accuracy obtained on all four sub-datasets are

improved to some extents with reduced MAEs.

4.1.2. Experimental results on the TRANCOS dataset

TRANCOS [22] is a publicly available dataset, which provides a collection

of 1,244 images of different traffic scenes, obtained from real video surveillance

cameras, with a total of 46,796 annotated vehicles. The objects have been

manually annotated using dots.

Table 3 reports the MAE results obtained on this dataset with the original

CCNN model and our pruned model. As it can be seen from this table, the

crowd count using the pruned CCNN is significantly higher than that of the

original CCNN.
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Table 4: Comparison of the proposed algorithm and other pruning algorithms on CCNN

Model/DATA CCNN [12] ThiNet [24] Distillation [25] Our algorithm

UCSD maximal 1.70 1.73 1.72 1.72 1.63

UCSD minimal 1.50 1.50 1.51 1.55 1.49

UCSD upscale 1.13 1.14 1.14 1.11 0.96

UCSD downscale 1.79 1.78 1.81 1.84 1.70

UCF data0 775 775 782 768 759

UCF data1 476 476 450 483 396

UCF data2 510 510 515 529 488

UCF data3 276 276 279 293 247

UCF data4 373 373 377 364 335

4.2. Comparison with other pruning algorithms

We compare our proposed algorithm with other pruning algorithms applied

to the CCNN model, i.e., [12] and [24]. As the UCSD and UCF are the only two

datasets for crowd counting based on CCNNs, we demonstrate the comparison

on these two datasets.

Table 4 reports the MAE performance obtained using the proposed pruning

algorithm and the algorithms proposed in [12] and [24]. As shown in this table,

the MAE of our pruned CCNN on both datasets UCSD and UCF are signifi-

cantly better than those of the original CCNN and the pruned CCNN with other

pruning algorithms. Note that the results of [12], ThiNet [24] and Knowledge

Distillation [25] are similar to those of the original CCNN and hence almost

do not show any significant improvement on accuracy. However, our proposed

pruning algorithm can not only reduce the size of the model, but also improve

the results of the original CCNN model.

4.3. Pruning results on other crowd counting models

To demonstrate that our pruning method can also work with other models,

we use the same method to prune other crowd counting models, i.e., the MCNN
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model [21] and Switch-CNN models [7], on the ShanghaiTech dataset [21], UCF

dataset [11] and UCSD dataset respectively. Note that, different from other

pruning algorithms, we do not fine-tune or re-train our new model after pruning,

but it still produces better results.

The ShanghaiTech dataset is a new large-scale crowd counting dataset in-

cluding 482 images for congested scenes with 241,667 annotated persons. The

results are shown in Tables 5 and 6.

Note that, in order to compare with MCNN and Switch-CNN, we add an-

other metric, i.e., Mean Squared Error (MSE), which is defined by:

MSE =

√√√√ 1

N
|
N∑
i=1

|Ci − CGTi |2, (5)

where N is the number of images in the test set and CGTi is the ground truth of

number of people in the test image, and Ci is the number of estimated counting.

As shown in these two tables, both of the MAE and MSE results obtained

with the pruned MCNN and pruned Switch-CNN are significantly better than

with the original MCNN and Switch-CNN, respectively. Moreover, the sizes

of the original MCNN and Switch-CNN are 515KB, while the size of pruned

models are decreased at different degree. This demonstrates that our algorithm

can not only work on CCNN, but also on other counting models.

4.4. Impact of η

Moreover, we use a ratio learned from the dataset to determine the contri-

bution of the filters in order to optimize the pruning effectiveness. In our work,

the η is determined statistically through experiments. Fig. 6 shows the MAE

results obtained on each of the five subset of the UCF dataset with different

ratio η.

According to Fig. 6, the performance of different sub-models on this dataset

achieves the best when using a ratio 2 to prune the Conv5 layer.

5. Conclusion
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Table 5: Comparison of the results obtained on the ShanghaiTech dataset using the MCNN

and Switch-CNN counting models with and without applying our pruning method

partA partB

Method MAE MSE MAE MSE

MCNN [21] 110.2 173.2 26.4 41.3

Pruned MCNN 100.5 170.5 23.5 39.7

Switch-CNN[7] 90.4 135.0 21.6 30.1

Pruned Switch-CNN 89.5 136.2 21.5 32.3

Pruned MCNN size/KB 425 462

Pruned Switch-CNN size/KB 436 477

Table 6: Comparison of the results obtained on the UCF and UCSD datasets using the MCNN

and Switch-CNN counting models with and without applying our pruning method

UCF UCSD

Method MAE MSE MAE MSE

MCNN [21] 377.6 509.1 1.07 1.35

Pruned MCNN 326.5 472.3 1.02 1.31

Switch-CNN[7] 318.1 439.2 1.62 2.10

Pruned Switch-CNN 305.1 410.9 1.44 1.73

Pruned MCNN size/KB 413 389

Pruned Switch-CNN size/KB 503 495

In this paper, we have proposed a new pruning strategy for crowd counting

that works with CCNN and other crowd counting models. Through identifying

positive, negative and irrelevant filters according to the activations of feature

maps, our solution has not only reduced the network size but also improved

the accuracy by removing non-contributing and negatively contributing filters.

Experimental results on benchmark datasets have shown that, compared with

other existing pruning algorithms, our proposed technique can improve the ac-

curacy of counting models without fine-tuning or retraining the pruned model,
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Figure 6: The MAE results of the estimations obtained on different subsets of the UCF dataset

by pruning different layers with different ratios η.

and meanwhile reduce the size of the models.
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